1
|
Borchers LR, Yuan JP, Leong JK, Jo B, Chahal R, Ryu J, Nam A, Coury SM, Gotlib IH. Sex-Specific Vulnerability to Externalizing Problems: Sensitivity to Early Stress and Nucleus Accumbens Activation Over Adolescence. Biol Psychiatry 2025; 97:73-80. [PMID: 38272286 PMCID: PMC11266527 DOI: 10.1016/j.biopsych.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Exposure and sensitivity to early-life stress (ELS) are related to increased risk for psychopathology in adolescence. While cross-sectional studies have reported blunted nucleus accumbens (NAcc) activation in the context of these associations, researchers have not yet assessed the effects of ELS on developmental trajectories of activation. We examined whether trajectories are affected by stress and the moderating role of biological sex in predicting vulnerability to symptoms of psychopathology. METHODS Adolescents (n = 173) completed 3 assessments at 2-year intervals across puberty (ages 9-18 years). At baseline, we assessed objective ELS and stress sensitivity using the Traumatic Events Screening Inventory for Children. At all time points, we assessed NAcc activation using the Monetary Incentive Delay task and externalizing, internalizing, and total problems using the Youth Self-Report. We examined correlations between NAcc trajectories (extracted using linear mixed-effects models) with ELS and stress sensitivity and conducted multivariate regression analysis to examine the interaction of NAcc trajectories and biological sex in predicting symptoms of psychopathology. RESULTS Symptoms increased over adolescence. Stress sensitivity, but not objective ELS, was associated with decreasing trajectories of NAcc activation. Biological sex interacted with NAcc trajectories to predict psychopathology; boys, but not girls, with decreasing NAcc activation had more severe externalizing problems in adolescence. These findings were replicated in the putamen and caudate but not in the medial prefrontal cortex or control brain regions. CONCLUSIONS NAcc activation may be a sex-specific marker of externalizing problems in adolescence. Efforts to reduce stress sensitivity may help to decrease symptoms of psychopathology in adolescent boys.
Collapse
Affiliation(s)
- Lauren R Borchers
- Department of Psychology, Stanford University, Stanford, California.
| | - Justin P Yuan
- Department of Psychology, Stanford University, Stanford, California
| | - Josiah K Leong
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford, California
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, California
| | - Joshua Ryu
- Department of Psychology, Stanford University, Stanford, California
| | - Andrew Nam
- Department of Psychology, Stanford University, Stanford, California
| | - Saché M Coury
- Department of Psychology, Stanford University, Stanford, California
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California
| |
Collapse
|
2
|
Gerván P, Oláh G, Utczás K, Tróznai Z, Berencsi A, Gombos F, Kovács I. The influence of relative pubertal maturity on executive function development in adolescent girls. Sci Rep 2024; 14:28140. [PMID: 39548095 PMCID: PMC11568130 DOI: 10.1038/s41598-024-71768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/30/2024] [Indexed: 11/17/2024] Open
Abstract
A positive association between pubertal maturity as assessed by skeletal development, and specific cognitive abilities has recently been demonstrated in a cohort of adolescent girls. The current study explores the impact of chronological age and relative pubertal maturity on executive function within the same cohort. Relative maturity, determined by the difference between chronological age and skeletal age, establishes the criteria for enrolling participants into average, advanced, or delayed relative maturity subgroups. Performance is assessed using the Numerical Stroop test and analyzed across four conditions, each with varying task requirements related to inhibition and task switching. The effects of chronological age and relative maturity on executive functions are tested by a linear mixed model. Within the examined age-range (12-15 y), a more protracted development was found for inhibition as compared to switching. In line with the previous findings, the results reveal significant development in executive performance as a function of chronological age, and relative maturity also demonstrated significant effect on the development of executing functioning. The significant interaction effect between Chronological Age and Relative Maturity suggests that the degree of interplay between these factors varies across the examined age range. Specifically, relative maturity may have a more noticeable impact on EF functioning in middle adolescence compared to early adolescence.
Collapse
Affiliation(s)
- Patrícia Gerván
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, Budapest, 1088, Hungary.
- Institute of Psychology, Eötvös Loránd University, Budapest, 1075, Hungary.
| | - Gyöngyi Oláh
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, Budapest, 1088, Hungary
- Doctoral College of Semmelweis University, Budapest, 1089, Hungary
| | - Katinka Utczás
- Research Centre for Sport Physiology, Hungarian University of Sports Science, Budapest, 1123, Hungary
| | - Zsófia Tróznai
- Research Centre for Sport Physiology, Hungarian University of Sports Science, Budapest, 1123, Hungary
| | - Andrea Berencsi
- Institute for the Methodology of Special Needs Education and Rehabilitation, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, 1097, Hungary
| | - Ferenc Gombos
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, Budapest, 1088, Hungary
- Laboratory for Psychological Research, Pázmány Péter Catholic University, Budapest, 1088, Hungary
| | - Ilona Kovács
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, Budapest, 1088, Hungary
- Institute of Psychology, Eötvös Loránd University, Budapest, 1075, Hungary
- Doctoral College of Semmelweis University, Budapest, 1089, Hungary
| |
Collapse
|
3
|
Clinchard C, Casas B, Kim-Spoon J. Child maltreatment and executive function development throughout adolescence and into young adulthood. Dev Psychopathol 2024:1-14. [PMID: 39465607 DOI: 10.1017/s0954579424001457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Child maltreatment impacts approximately one in seven children in the United States, leading to adverse outcomes throughout life. Adolescence is a time period critical for the development of executive function, but there is little research examining how abuse and neglect may differently affect the developmental trajectories of executive function throughout adolescence and into young adulthood. In the current study, 167 adolescents participated at six time points from ages 14 to 20. At each time point, adolescents completed behavioral tasks measuring the three dimensions of executive function (working memory, inhibitory control, and cognitive flexibility). Neglect and abuse in early life (ages 1-13) were reported at ages 18-19. Unconditional growth curve models revealed age-related improvement in all three executive function dimensions. Conditional growth curve models tested the prospective effects of recalled neglect and abuse on the developmental trajectories of executive function. The results revealed that neglect was associated with developmental changes in working memory abilities, such that greater levels of neglect during ages 1-13 were associated with slower increases in working memory abilities across ages 14-20. These findings highlight the adverse consequences of early neglect experiences shown by delayed working memory development during adolescence into young adulthood.
Collapse
Affiliation(s)
| | - Brooks Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | | |
Collapse
|
4
|
Zhao T, Zhang Y, Li Y, Wu J, Wang R, Lv Q, Li D, Lang Y. Resting-state brain networks alterations in adolescents with Internet Gaming Disorder associate with cognitive control impairments. Front Psychiatry 2024; 15:1404050. [PMID: 39315326 PMCID: PMC11416985 DOI: 10.3389/fpsyt.2024.1404050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Research indicates that cognitive control is compromised in individuals with internet gaming disorder (IGD). However, the neural mechanisms behind it are still unclear. This study aims to investigate alterations in resting-state brain networks in adolescents with IGD and the potential neurobiological mechanisms underlying cognitive dysfunction. Materials and methods A total of 44 adolescent IGD subjects (male/female: 38/6) and 50 healthy controls (male/female: 40/10) were enrolled. Participants underwent demographic assessments, Young's Internet Addiction Scale, Barratt Impulsiveness Scale 11 Chinese Revised Version, the Chinese Adolescents' Maladaptive Cognitions Scale, exploratory eye movement tests, and functional magnetic resonance imaging (fMRI). FMRI data were analyzed using the GIFT software for independent component analysis, focusing on functional connectivity within and between resting-state brain networks. Results In comparison to the control group, impulsivity in adolescent IGD subjects showed a positive correlation with the severity of IGD (r=0.6350, p < 0.001), linked to impairments in the Executive Control Network (ECN) and a decrease in functional connectivity between the Salience Network (SN) and ECN (r=0.4307, p=0.0021; r=-0.5147, p=0.0034). Decreased resting state activity of the dorsal attention network (DAN) was associated with attentional dysregulation of IGD in adolescents (r=0.4071, p=0.0017), and ECN increased functional connectivity with DAN. The degree of IGD was positively correlated with enhanced functional connectivity between the ECN and DAN (r=0.4283, p=0.0037). Conclusions This research demonstrates that changes in the ECN and DAN correlate with heightened impulsivity and attentional deficits in adolescents with IGD. The interaction between cognitive control disorders and resting-state brain networks in adolescent IGD is related.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Lang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhu J, Garin CM, Qi XL, Machado A, Wang Z, Hamed SB, Stanford TR, Salinas E, Whitlow CT, Anderson AW, Zhou XM, Calabro FJ, Luna B, Constantinidis C. Brain structure and activity predicting cognitive maturation in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.608315. [PMID: 39229176 PMCID: PMC11370567 DOI: 10.1101/2024.08.23.608315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Cognitive abilities of primates, including humans, continue to improve through adolescence 1,2. While a range of changes in brain structure and connectivity have been documented 3,4, how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development. The developmental trajectory of neural activity in the prefrontal cortex accounted remarkably well for working memory improvements. While complex aspects of activity changed progressively during adolescence, such as the rotation of stimulus representation in multidimensional neuronal space, which has been implicated in cognitive flexibility, even simpler attributes, such as the baseline firing rate in the period preceding a stimulus appearance had predictive power over behavior. Unexpectedly, decreases in brain volume and thickness, which are widely thought to underlie cognitive changes in humans 5 did not predict well the trajectory of neural activity or cognitive performance changes. Whole brain cortical volume in particular, exhibited an increase and reached a local maximum in late adolescence, at a time of rapid behavioral improvement. Maturation of long-distance white matter tracts linking the frontal lobe with areas of the association cortex and subcortical regions best predicted changes in neuronal activity and behavior. Our results provide evidence that optimization of neural activity depending on widely distributed circuitry effects cognitive development in adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Clément M Garin
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Xue-Lian Qi
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Anna Machado
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Zhengyang Wang
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS Université de Lyon, 69675 Bron Cedex, France
| | - Terrence R Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, NC 27203, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213 USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville TN 37235 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville TN 37235 USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville TN 37232, USA
| |
Collapse
|
6
|
Zhu J, Zhou XM, Constantinidis C, Salinas E, Stanford TR. Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity. iScience 2024; 27:110488. [PMID: 39156644 PMCID: PMC11326912 DOI: 10.1016/j.isci.2024.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The ability to suppress inappropriate actions and respond rapidly to appropriate ones matures late in life, after puberty. We investigated the development of this capability in monkeys trained to look away from a lone, bright stimulus (antisaccade task). We evaluated behavioral performance and recorded neural activity in the prefrontal cortex both before and after the transition from puberty to adulthood. Compared to when young, adult monkeys processed the stimulus more rapidly, resisted more effectively the involuntary urge to look at it, and adhered to the task rule more consistently. The spatially selective visuomotor neurons in the prefrontal cortex provided neural correlates of these behavioral changes indicative of a faster transition from stimulus-driven (exogenous) to goal-driven (endogenous) control within the time course of each trial. The results reveal parallel signatures of cognitive maturation in behavior and prefrontal activity that are consistent with improvements in attentional allocation after adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Terrence R. Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Ravindranath O, Perica MI, Parr AC, Ojha A, McKeon SD, Montano G, Ullendorff N, Luna B, Edmiston EK. Adolescent neurocognitive development and decision-making abilities regarding gender-affirming care. Dev Cogn Neurosci 2024; 67:101351. [PMID: 38383174 PMCID: PMC11247355 DOI: 10.1016/j.dcn.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Recently, politicians and legislative bodies have cited neurodevelopmental literature to argue that brain immaturity undermines decision-making regarding gender-affirming care (GAC) in youth. Here, we review this literature as it applies to adolescents' ability to make decisions regarding GAC. The research shows that while adolescence is a time of peak risk-taking behavior that may lead to impulsive decisions, neurocognitive systems supporting adult-level decisions are available given deliberative processes that minimize influence of short-term rewards and peers. Since GAC decisions occur over an extended period and with support from adult caregivers and clinicians, adolescents can engage adult-level decision-making in this context. We also weigh the benefits of providing GAC access during adolescence and consider the significant costs of blocking or delaying GAC. Transgender and non-binary (TNB) adolescents face significant mental health challenges, many of which are mitigated by GAC access. Further, initiating the GAC process during adolescence, which we define as beginning at pubertal onset, leads to better long-term mental health outcomes than waiting until adulthood. Taken together, existing research indicates that many adolescents can make informed decisions regarding gender-affirming care, and that this care is critical for the well-being of TNB youth. We highlight relevant considerations for policy makers, researchers, and clinicians.
Collapse
Affiliation(s)
- Orma Ravindranath
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Maria I Perica
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Parr
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amar Ojha
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shane D McKeon
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald Montano
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Naomi Ullendorff
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan School of Medicine, USA
| |
Collapse
|
8
|
Paige KJ, Colder CR, Cope LM, Hardee JE, Heitzeg MM, Soules ME, Weigard AS. Clarifying the longitudinal factor structure, temporal stability, and construct validity of Go/No-Go task-related neural activation across adolescence and young adulthood. Dev Cogn Neurosci 2024; 67:101390. [PMID: 38759528 PMCID: PMC11127199 DOI: 10.1016/j.dcn.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
This study aimed to clarify the psychometric properties and development of Go/No-Go (GNG) task-related neural activation across critical periods of neurobiological maturation by examining its longitudinal stability, factor structure, developmental change, and associations with a computational index of task-general cognitive control. A longitudinal sample (N=289) of adolescents from the Michigan Longitudinal Study was assessed at four time-points (mean number of timepoints per participant=2.05; standard deviation=0.89) spanning early adolescence (ages 10-13) to young adulthood (22-25). Results suggested that regional neural activations from the "successful inhibition" (SI>GO) and "failed inhibition" (FI>GO; error-monitoring) contrasts are each described well by a single general factor. Neural activity across both contrasts showed developmental increases throughout adolescence that plateau in young adulthood. Neural activity metrics evidenced low temporal stability across this period of marked developmental change, and the SI>GO factor showed no relations with a behavioral index of cognitive control. The FI>GO factor displayed stronger criterion validity in the form of significant, positive associations with behaviorally measured cognitive control. Findings emphasize the utility of well-validated psychometric methods and longitudinal data for clarifying the measurement properties of functional neuroimaging metrics and improving measurement practices in developmental cognitive neuroscience.
Collapse
Affiliation(s)
- K J Paige
- Department of Psychology, The State University of New York at Buffalo, USA.
| | - C R Colder
- Department of Psychology, The State University of New York at Buffalo, USA
| | - L M Cope
- Department of Psychiatry, University of Michigan, USA
| | - J E Hardee
- Department of Psychiatry, University of Michigan, USA
| | - M M Heitzeg
- Department of Psychiatry, University of Michigan, USA
| | - M E Soules
- Department of Psychiatry, University of Michigan, USA
| | - A S Weigard
- Department of Psychiatry, University of Michigan, USA
| |
Collapse
|
9
|
Meghji S, Hilderley AJ, Murias K, Brooks BL, Andersen J, Fehlings D, Dlamini N, Kirton A, Carlson HL. Executive functioning, ADHD symptoms and resting state functional connectivity in children with perinatal stroke. Brain Imaging Behav 2024; 18:263-278. [PMID: 38038867 PMCID: PMC11156742 DOI: 10.1007/s11682-023-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Perinatal stroke describes a group of focal, vascular brain injuries that occur early in development, often resulting in lifelong disability. Two types of perinatal stroke predominate, arterial ischemic stroke (AIS) and periventricular venous infarction (PVI). Though perinatal stroke is typically considered a motor disorder, other comorbidities commonly exist including attention-deficit hyperactivity disorder (ADHD) and deficits in executive function. Rates of ADHD symptoms are higher in children with perinatal stroke and deficits in executive function may also occur but underlying mechanisms are not known. We measured resting state functional connectivity in children with perinatal stroke using previously established dorsal attention, frontoparietal, and default mode network seeds. Associations with parental ratings of executive function and ADHD symptoms were examined. A total of 120 participants aged 6-19 years [AIS N = 31; PVI N = 30; Controls N = 59] were recruited. In comparison to typically developing peers, both the AIS and PVI groups showed lower intra- and inter-hemispheric functional connectivity values in the networks investigated. Group differences in between-network connectivity were also demonstrated, showing weaker anticorrelations between task-positive (frontoparietal and dorsal attention) and task-negative (default mode) networks in stroke groups compared to controls. Both within-network and between-network functional connectivity values were highly associated with parental reports of executive function and ADHD symptoms. These results suggest that differences in functional connectivity exist both within and between networks after perinatal stroke, the degree of which is associated with ADHD symptoms and executive function.
Collapse
Affiliation(s)
- Suraya Meghji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
| | - Alicia J Hilderley
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kara Murias
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Brian L Brooks
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - John Andersen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Darcy Fehlings
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Nomazulu Dlamini
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Children's Stroke Program, Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada.
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Aly M, Ishihara T, Torii S, Kamijo K. Being underweight, academic performance and cognitive control in undergraduate women. Arch Womens Ment Health 2024; 27:249-258. [PMID: 38082003 DOI: 10.1007/s00737-023-01410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 03/13/2024]
Abstract
The prevalence of underweight among young women is a serious international health issue. However, the evidence on how being underweight negatively affects brain health and cognition is still unclear. This study investigated the association between underweight status, academic performance, and neurocognitive control in young Japanese women using a cross-sectional design. We analyzed the academic performance of female undergraduates, comparing underweight and healthy-weight groups (n = 43; age 18-23 years, M = 21.1, SD = 1.3) based on their grade point average (GPA). We also analyzed their error-related negativity (ERN), an electrophysiological measure that potentially reflects academic performance, during an arrowhead version of the flanker task to assess cognitive control of action monitoring. Participants with a low body mass index were found to have lower GPAs. Furthermore, the underweight students exhibited smaller ERN amplitudes, which indicates decreased cognitive control in action monitoring. These findings suggest that a healthy weight status is essential for effective cognitive functioning and academic success in young adult women, among whom being underweight is a serious health problem.
Collapse
Affiliation(s)
- Mohamed Aly
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, Japan
- Department of Educational Sciences and Sports Psychology, Faculty of Physical Education, Assiut University, Assiut, Egypt
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, Japan.
| |
Collapse
|
11
|
Son JJ, Killanin AD, Arif Y, Johnson HJ, Okelberry HJ, Weyrich L, Wang YP, Calhoun VD, Stephen JM, Taylor BK, Wilson TW. Developmentally sensitive multispectral cortical connectivity profiles serving visual selective attention. Dev Cogn Neurosci 2024; 66:101371. [PMID: 38582064 PMCID: PMC11004069 DOI: 10.1016/j.dcn.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Throughout childhood and adolescence, the brain undergoes significant structural and functional changes that contribute to the maturation of multiple cognitive domains, including selective attention. Selective attention is crucial for healthy executive functioning and while key brain regions serving selective attention have been identified, their age-related changes in neural oscillatory dynamics and connectivity remain largely unknown. We examined the developmental sensitivity of selective attention circuitry in 91 typically developing youth aged 6 - 13 years old. Participants completed a number-based Simon task while undergoing magnetoencephalography (MEG) and the resulting data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and task-related peak voxels in the occipital, parietal, and cerebellar cortices were used as seeds for subsequent whole-brain connectivity analyses in the alpha and gamma range. Our key findings revealed developmentally sensitive connectivity profiles in multiple regions crucial for selective attention, including the temporoparietal junction (alpha) and prefrontal cortex (gamma). Overall, these findings suggest that brain regions serving selective attention are highly sensitive to developmental changes during the pubertal transition period.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Lucas Weyrich
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, GA, USA
| | | | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
12
|
Wei H, Jin Z. EEG correlates of trait test anxiety in the flanker task for adolescents. Neurosci Lett 2024; 826:137725. [PMID: 38467269 DOI: 10.1016/j.neulet.2024.137725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Adolescents face constant exams and often experience severe test anxiety. Previous studies suggested that test anxiety impairs individuals' inhibitory control. Neurophysiological evidence suggests that anxiety interferes with the recruitment of the prefrontal region of the brain, which modulates top-down attentional control during the completion of inhibitory control tasks. However, there is little neurophysiological evidence regarding how test anxiety impairs inhibitory control in adolescents. This study used the flanker task to measure individuals' inhibitory control ability, and both event-related potential and electroencephalography indicators were used to measure neurophysiological processes. The results showed that increased trait test anxiety was significantly negatively correlated with theta power oscillation, while adolescents performed both incongruent and congruent trials. This finding suggests that trait test anxiety adolescents are less able to exert greater effort to complete the inhibitory control task and show impoverished top-down attentional control resources.
Collapse
Affiliation(s)
- Hua Wei
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, Jiangsu, China.
| | - Zhenni Jin
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Kim-Spoon J, Brieant A, Folker A, Lindenmuth M, Lee J, Casas B, Deater-Deckard K. Psychopathology as long-term sequelae of maltreatment and socioeconomic disadvantage: Neurocognitive development perspectives. Dev Psychopathol 2024:1-12. [PMID: 38476054 PMCID: PMC11393179 DOI: 10.1017/s0954579424000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Neuroscience research underscores the critical impact of adverse experiences on brain development. Yet, there is limited understanding of the specific pathways linking adverse experiences to accelerated or delayed brain development and their ultimate contributions to psychopathology. Here, we present new longitudinal data demonstrating that neurocognitive functioning during adolescence, as affected by adverse experiences, predicts psychopathology during young adulthood. The sample included 167 participants (52% male) assessed in adolescence and young adulthood. Adverse experiences were measured by early maltreatment experiences and low family socioeconomic status. Cognitive control was assessed by neural activation and behavioral performance during the Multi-Source Interference Task. Psychopathology was measured by self-reported internalizing and externalizing symptomatology. Results indicated that higher maltreatment predicted heightened frontoparietal activation during cognitive control, indicating delayed neurodevelopment, which, in turn predicted higher internalizing and externalizing symptomatology. Furthermore, higher maltreatment predicted a steeper decline in frontoparietal activation across adolescence, indicating neural plasticity in cognitive control-related brain development, which was associated with lower internalizing symptomatology. Our results elucidate the crucial role of neurocognitive development in the processes linking adverse experiences and psychopathology. Implications of the findings and directions for future research on the effects of adverse experiences on brain development are discussed.
Collapse
Affiliation(s)
| | - Alexis Brieant
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Ann Folker
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jacob Lee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Brooks Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
- Helsinki Collegium for Advanced Studies, Helsinki, Finland
| |
Collapse
|
14
|
Ladouceur CD. Can Cognitive-Behavioral Therapy Normalize Neural Function in Youths With Pediatric Anxiety Disorders? A Developmental Neuroscience Perspective. Am J Psychiatry 2024; 181:175-177. [PMID: 38425260 DOI: 10.1176/appi.ajp.20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
15
|
Flournoy JC, Bryce NV, Dennison MJ, Rodman AM, McNeilly EA, Lurie LA, Bitran D, Reid-Russell A, Vidal Bustamante CM, Madhyastha T, McLaughlin KA. A precision neuroscience approach to estimating reliability of neural responses during emotion processing: Implications for task-fMRI. Neuroimage 2024; 285:120503. [PMID: 38141745 PMCID: PMC10872443 DOI: 10.1016/j.neuroimage.2023.120503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023] Open
Abstract
Recent work demonstrating low test-retest reliability of neural activation during fMRI tasks raises questions about the utility of task-based fMRI for the study of individual variation in brain function. Two possible sources of the instability in task-based BOLD signal over time are noise or measurement error in the instrument, and meaningful variation across time within-individuals in the construct itself-brain activation elicited during fMRI tasks. Examining the contribution of these two sources of test-retest unreliability in task-evoked brain activity has far-reaching implications for cognitive neuroscience. If test-retest reliability largely reflects measurement error, it suggests that task-based fMRI has little utility in the study of either inter- or intra-individual differences. On the other hand, if task-evoked BOLD signal varies meaningfully over time, it would suggest that this tool may yet be well suited to studying intraindividual variation. We parse these sources of variance in BOLD signal in response to emotional cues over time and within-individuals in a longitudinal sample with 10 monthly fMRI scans. Test-retest reliability was low, reflecting a lack of stability in between-person differences across scans. In contrast, within-person, within-session internal consistency of the BOLD signal was higher, and within-person fluctuations across sessions explained almost half the variance in voxel-level neural responses. Additionally, monthly fluctuations in neural response to emotional cues were associated with intraindividual variation in mood, sleep, and exposure to stressors. Rather than reflecting trait-like differences across people, neural responses to emotional cues may be more reflective of intraindividual variation over time. These patterns suggest that task-based fMRI may be able to contribute to the study of individual variation in brain function if more attention is given to within-individual variation approaches, psychometrics-beginning with improving reliability beyond the modest estimates observed here, and the validity of task fMRI beyond the suggestive associations reported here.
Collapse
Affiliation(s)
| | | | - Meg J Dennison
- Phoenix Australia-Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Lucy A Lurie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | | | | | | | - Tara Madhyastha
- Rescale; Integrated Brain Imaging Center, University of Washington
| | | |
Collapse
|
16
|
Chen DY, Di X, Biswal B. Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: A longitudinal fMRI study. Hum Brain Mapp 2024; 45:e26515. [PMID: 38183372 PMCID: PMC10789211 DOI: 10.1002/hbm.26515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 01/08/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold (BH) task is commonly used to understand cerebrovascular reactivity (CVR) in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's BH data set from the Nathan Kline Institute (NKI) Rockland Sample (aged 6-18 years old at enrollment). A general linear model approach was applied to derive CVR from BH data. To model both the longitudinal and cross-sectional effects of age on BH response, we used mixed-effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased BH BOLD signals in multiple networks across age, in which linear and logarithmic mixed-effects models provided the best fit with the lowest Akaike information criterion scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes that occur with age.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
- Rutgers Biomedical and Health SciencesRutgers School of Graduate StudiesNewarkNew JerseyUSA
| | - Xin Di
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| | - Bharat Biswal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNew JerseyUSA
| |
Collapse
|
17
|
van der Meulen M, Dobbelaar S, van Drunen L, Heunis S, van IJzendoorn MH, Blankenstein NE, Crone EA. Transitioning from childhood into adolescence: A comprehensive longitudinal behavioral and neuroimaging study on prosocial behavior and social inclusion. Neuroimage 2023; 284:120445. [PMID: 37939890 DOI: 10.1016/j.neuroimage.2023.120445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023] Open
Abstract
Acting prosocially and feeling socially included are important factors for developing social relations. However, little is known about the development of neural trajectories of prosocial behavior and social inclusion in the transition from middle childhood to early adolescence. In this pre-registered study, we investigated the development of prosocial behavior, social inclusion, and their neural mechanisms in a three-wave longitudinal design (ages 7-13 years; NT1 = 512; NT2 = 456; NT3 = 336). We used the Prosocial Cyberball Game, a ball tossing game in which one player is excluded, to measure prosocial compensating behavior. Prosocial compensating behavior showed a linear developmental increase, similar to parent-reported prosocial behavior, whereas parent-reported empathy showed a quadratic trajectory with highest levels in late childhood. On a neural level we found a peak in ventral striatum activity during prosocial compensating behavior. Neural activity during social inclusion showed quadratic age effects in anterior cingulate cortex, insula, striatum, and precuneus, and a linear increase in temporo-parietal junction. Finally, changes in prosocial compensating behavior were negatively associated with changes in ventral striatum and mPFC activity during social inclusion, indicating an important co-occurrence between development in brain and social behavior. Together these findings shed a light on the mechanisms underlying social development from childhood into adolescence.
Collapse
Affiliation(s)
- Mara van der Meulen
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Simone Dobbelaar
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands.
| | - Lina van Drunen
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Stephan Heunis
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Marinus H van IJzendoorn
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Department of Psychiatry, Monash University, Melbourne, Australia; Research Department of Clinical, Education and Health Psychology, UCL, University of London, United Kingdom
| | - Neeltje E Blankenstein
- Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Eveline A Crone
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Institute of Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
18
|
Lewis L, Corcoran M, Cho KIK, Kwak Y, Hayes RA, Larsen B, Jalbrzikowski M. Age-associated alterations in thalamocortical structural connectivity in youths with a psychosis-spectrum disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:86. [PMID: 38081873 PMCID: PMC10713597 DOI: 10.1038/s41537-023-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Psychotic symptoms typically emerge in adolescence. Age-associated thalamocortical connectivity differences in psychosis remain unclear. We analyzed diffusion-weighted imaging data from 1254 participants 8-23 years old (typically developing (TD):N = 626, psychosis-spectrum (PS): N = 329, other psychopathology (OP): N = 299) from the Philadelphia Neurodevelopmental Cohort. We modeled thalamocortical tracts using deterministic fiber tractography, extracted Q-Space Diffeomorphic Reconstruction (QSDR) and diffusion tensor imaging (DTI) measures, and then used generalized additive models to determine group and age-associated thalamocortical connectivity differences. Compared to other groups, PS exhibited thalamocortical reductions in QSDR global fractional anisotropy (GFA, p-values range = 3.0 × 10-6-0.05) and DTI fractional anisotropy (FA, p-values range = 4.2 × 10-4-0.03). Compared to TD, PS exhibited shallower thalamus-prefrontal age-associated increases in GFA and FA during mid-childhood, but steeper age-associated increases during adolescence. TD and OP exhibited decreases in thalamus-frontal mean and radial diffusivities during adolescence; PS did not. Altered developmental trajectories of thalamocortical connectivity may contribute to the disruptions observed in adults with psychosis.
Collapse
Affiliation(s)
- Lydia Lewis
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mary Corcoran
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Kang Ik K Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - YooBin Kwak
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Dall'Aglio L, Xu B, Tiemeier H, Muetzel RL. Longitudinal Associations Between White Matter Microstructure and Psychiatric Symptoms in Youth. J Am Acad Child Adolesc Psychiatry 2023; 62:1326-1339. [PMID: 37400062 DOI: 10.1016/j.jaac.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Associations between psychiatric problems and white matter (WM) microstructure have been reported in youth. Yet, a deeper understanding of this relation has been hampered by a dearth of well-powered longitudinal studies and a lack of explicit examination of the bidirectional associations between brain and behavior. We investigated the temporal directionality of WM microstructure and psychiatric symptom associations in youth. METHOD In this observational study, we leveraged the world's largest single- and multi-site cohorts of neurodevelopment: the Generation R (GenR) and Adolescent Brain Cognitive Development Studies (ABCD) (total n scans = 11,400; total N = 5,700). We assessed psychiatric symptoms with the Child Behavioral Checklist as broad-band internalizing and externalizing scales, and as syndrome scales (eg, Anxious/Depressed). We quantified WM with diffusion tensor imaging (DTI), globally and at a tract level. We used cross-lagged panel models to test bidirectional associations of global and specific measures of psychopathology and WM microstructure, meta-analyzed results across cohorts, and used linear mixed-effects models for validation. RESULTS We did not identify any longitudinal associations of global WM microstructure with internalizing or externalizing problems across cohorts (confirmatory analyses) before, and after multiple testing corrections. We observed similar findings for longitudinal associations between tract-based microstructure with internalizing and externalizing symptoms, and for global WM microstructure with specific syndromes (exploratory analyses). Some cross-sectional associations surpassed multiple testing corrections in ABCD, but not in GenR. CONCLUSION Uni- or bi-directionality of longitudinal associations between WM and psychiatric symptoms were not robustly identified. We have proposed several explanations for these findings, including interindividual differences, the use of longitudinal approaches, and smaller effects than expected. STUDY REGISTRATION INFORMATION Bidirectionality Brain Function and Psychiatric Symptoms; https://doi.org/10.17605/OSF.IO/PNY92.
Collapse
Affiliation(s)
- Lorenza Dall'Aglio
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bing Xu
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; Harvard T. Chan School of Public Health, Boston, Massachusetts
| | - Ryan L Muetzel
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Brieant A, Clinchard C, Deater-Deckard K, Lee J, King-Casas B, Kim-Spoon J. Differential Associations of Adversity Profiles with Adolescent Cognitive Control and Psychopathology. Res Child Adolesc Psychopathol 2023; 51:1725-1738. [PMID: 36107273 DOI: 10.1007/s10802-022-00972-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Adverse childhood experiences are common and have long-term consequences for biological and psychosocial adjustment. We used a person-centered approach to characterize distinct profiles of adversity in early adolescence and examined associations with later cognitive control and psychopathology. The sample included 167 adolescents (47% female) and their primary caregivers who participated in a longitudinal study across four time points (approximately one year between assessments). At Time 1 (Mage = 14 years), we measured seven indicators of adversity: socioeconomic disadvantage, abuse, neglect, household chaos, parent substance use, parent depression, and negative life events. At Times 2-4, adolescents' behavioral performance and functional activation during a cognitive control task were measured. At Time 5, adolescents and their caregiver reported on adolescent internalizing and externalizing symptomatology. Using latent profile analysis, we identified four distinct adversity subgroups: a low exposure group, a neglect group, a household instability group, and a poly-adversity group. These groups significantly differed on subsequent levels of psychopathology, but not cognitive control. Specifically, the poly-adversity group reported significantly higher levels of both internalizing and externalizing symptomatology relative to the low exposure group, and the household instability group demonstrated elevated risk for externalizing symptomatology. When using a cumulative risk approach, higher levels of adversity exposure were associated with significantly worse cognitive control performance (but not neural activation). These results suggest that psychopathology outcomes may be differentially predicted by distinct patterns of risk, and that cognitive control impairment may be more strongly predicted by cumulative risk.
Collapse
Affiliation(s)
- Alexis Brieant
- Department of Psychology, Yale University, New Haven, CT, 06520, USA.
| | | | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, MA, Amherst, USA
| | - Jacob Lee
- Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Brooks King-Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
- Fralin Biomedical Research Institute, Roanoke, VA, USA
| | | |
Collapse
|
21
|
Tervo-Clemmens B, Calabro FJ, Parr AC, Fedor J, Foran W, Luna B. A canonical trajectory of executive function maturation from adolescence to adulthood. Nat Commun 2023; 14:6922. [PMID: 37903830 PMCID: PMC10616171 DOI: 10.1038/s41467-023-42540-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Theories of human neurobehavioral development suggest executive functions mature from childhood through adolescence, underlying adolescent risk-taking and the emergence of psychopathology. Investigations with relatively small datasets or narrow subsets of measures have identified general executive function development, but the specific maturational timing and independence of potential executive function subcomponents remain unknown. Integrating four independent datasets (N = 10,766; 8-35 years old) with twenty-three measures from seventeen tasks, we provide a precise charting, multi-assessment investigation, and replication of executive function development from adolescence to adulthood. Across assessments and datasets, executive functions follow a canonical non-linear trajectory, with rapid and statistically significant development in late childhood to mid-adolescence (10-15 years old), before stabilizing to adult-levels in late adolescence (18-20 years old). Age effects are well captured by domain-general processes that generate reproducible developmental templates across assessments and datasets. Results provide a canonical trajectory of executive function maturation that demarcates the boundaries of adolescence and can be integrated into future studies.
Collapse
Affiliation(s)
- Brenden Tervo-Clemmens
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|
23
|
Zhu J, Hammond BM, Zhou XM, Constantinidis C. Laminar pattern of adolescent development changes in working memory neuronal activity. J Neurophysiol 2023; 130:980-989. [PMID: 37703490 PMCID: PMC10649837 DOI: 10.1152/jn.00294.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a nonhuman primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from the young and adult stage of male monkeys, at different cortical depths. Superficial layers exhibited an increased baseline firing rate in the adult stage. Unexpectedly, we also detected substantial increases in delay period activity in the middle layers after adolescence, which was confirmed even after excluding penetrations near sulci. Finally, improved discriminability around the saccade period was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement.NEW & NOTEWORTHY Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here, we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, substantial changes were evident in intermediate layers of the prefrontal cortex.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin M Hammond
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, Tennessee, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
24
|
Hammar Å, Schmid MT, Petersdotter L, Ousdal OT, Milde AM. Inhibitory control as possible risk and/or resilience factor for the development of trauma related symptoms-a study of the Utøya terror attack survivors. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-13. [PMID: 37672478 DOI: 10.1080/23279095.2023.2253553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
PTSD symptomatology is known to be associated with executive dysfunction. Inhibitory control is a core component of executive functioning, and inhibitory skills are essential both for adequate functioning in everyday life and important in situations following trauma. The aim of the present study was to examine the relationship between trauma exposure, inhibitory control and PTSD symptomatology in adolescent survivors of the terror attack at Utøya, Norway on the 22nd of July, 2011. In this cross-sectional case-control study, 20 trauma exposed adolescents and 20 healthy controls matched in age and gender were compared on a neuropsychological test of cognitive inhibition (Color-Word Interference Test) and a self-report measure of inhibition ability (BRIEF-A). Our analyses revealed that the trauma exposed group differed significantly on the self-reported measure of inhibitory control compared to the control group, but there were no differences between groups on the objective measures of cognitive inhibition. Follow-up analyses with subgroups in the trauma exposed group based on PTSD symptomatology (PTSD + and PTSD-) and the control group revealed that the PTSD- group showed significantly better results than both the PTSD + and the control group on the measures of inhibitory control. Moreover, the follow-up analyses showed that the PTSD + group showed significantly poorer results from the other two groups on the measures of inhibitory control and self-reported inhibition. We conclude that impaired inhibitory control, measured both objectively and by self-reported questionnaire, is related to PTSD symptomatology. Findings suggest that inhibitory dysfunctions may be a vulnerability factor for the development of PTSD symptomatology in trauma exposed adolescents, and thus it seems that the ability to exhibit inhibitory control could be a possible resilience factor to prevent the development of PTSD symptoms.
Collapse
Affiliation(s)
- Åsa Hammar
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Department of Psychology, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Sweden
| | - Marit Therese Schmid
- Department of Welfare and Participation, Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | | | - Olga Therese Ousdal
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Anne Marita Milde
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian Research Centre, NORCE, Bergen, Norway
| |
Collapse
|
25
|
Zhuang W, Niebaum J, Munakata Y. Changes in adaptation to time horizons across development. Dev Psychol 2023; 59:1532-1542. [PMID: 37166865 PMCID: PMC10524449 DOI: 10.1037/dev0001529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
When making decisions, the amount of time remaining matters. When time horizons are long, exploring unknown options can inform later decisions, but when time horizons are short, exploiting known options should be prioritized. While adults and adolescents adapt their exploration in this way, it is unclear when such adaptation emerges and how individuals behave when time horizons are ambiguous, as in many real-life situations. We examined these questions by having 5- to 6-year-olds (N = 43), 11- to 12-year-olds (N = 40), and adult college students (N = 49) in the United States complete a Simplified Horizons Task under short, long, and ambiguous time horizons. Adaptation to time horizons increased with age: older children and adults explored more when horizons were long than when short, and while some younger children adapted to time horizons, younger children overall did not show strong evidence of adapting. Under ambiguous horizons, older children and adults preferred to exploit over explore, while younger children did not show this preference. Thus, adaptation to time horizons is evident by ages 11-12 and may begin to emerge around 5-6 years, and children decrease their tendencies to explore under short and ambiguous time horizons with development. This developmental shift may lead to less learning but more adaptive decision making. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Winnie Zhuang
- Department of Psychology and Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of Colorado Boulder
| | - Jesse Niebaum
- Department of Psychology and Center for Mind and Brain, University of California, Davis
| | - Yuko Munakata
- Department of Psychology and Center for Mind and Brain, University of California, Davis
- Department of Psychology, University of Colorado Boulder
| |
Collapse
|
26
|
Zhu J, Hammond BM, Zhou XM, Constantinidis C. Laminar pattern of adolescent development changes in working memory neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550982. [PMID: 37546979 PMCID: PMC10402138 DOI: 10.1101/2023.07.28.550982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a non-human primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from neurons recorded in the young and adult stage, at different cortical depths. Superficial layers exhibited increased baseline firing rate in the adult stage. Unexpectedly, changes in persistent activity were most pronounced in the middle layers. Finally, improved discriminability of stimulus location was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement. NEW AND NOTEWORTHY Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, greatest changes were evident in intermediate layers of the prefrontal cortex.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235
| | | | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Computer Science, Vanderbilt University, Nashville, TN 37235
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212
| |
Collapse
|
27
|
Chen DY, Di X, Biswal B. Cerebrovascular reactivity increases across development in multiple networks as revealed by a breath-holding task: a longitudinal fMRI study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522905. [PMID: 36712029 PMCID: PMC9881997 DOI: 10.1101/2023.01.05.522905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to understand the neurodevelopmental changes that occur in cognition and behavior across childhood. The blood-oxygen-level-dependent (BOLD) signal obtained from fMRI is understood to be comprised of both neuronal and vascular information. However, it is unclear whether the vascular response is altered across age in studies investigating development in children. Since the breath-hold task is commonly used to understand cerebrovascular reactivity in fMRI studies, it can be used to account for developmental differences in vascular response. This study examines how the cerebrovascular response changes over age in a longitudinal children's breath-hold dataset from the Nathan Kline Institute (NKI) Rockland Sample (ages 6 to 18 years old at enrollment). A general linear model (GLM) approach was applied to derive cerebrovascular reactivity from breath-hold data. To model both the longitudinal and cross-sectional effects of age on breath-hold response, we used mixed effects modeling with the following terms: linear, quadratic, logarithmic, and quadratic-logarithmic, to find the best-fitting model. We observed increased breath-hold BOLD signal in multiple networks across age, in which linear and logarithmic mixed effects models provided the best fit with the lowest Akaike Information Criterion (AIC) scores. This shows that the cerebrovascular response increases across development in a brain network-specific manner. Therefore, fMRI studies investigating the developmental period should account for cerebrovascular changes which occur with age.
Collapse
Affiliation(s)
- Donna Y. Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, US
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, US
| |
Collapse
|
28
|
Hunt E, Hogan A, Will EA, Roberts JE. ADHD and ASD symptoms in young males with fragile X syndrome: associations with early trajectories of inhibitory control. Child Neuropsychol 2023; 29:760-786. [PMID: 36082630 PMCID: PMC9995619 DOI: 10.1080/09297049.2022.2120605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Inhibitory control (IC), the ability to suppress inappropriate responses, emerges late in the first year of life and improves across typical development, concurrent with brain maturation. The development of IC is critical to various social-emotional and behavioral functions, with IC difficulties being linked to numerous neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder characterized by IC difficulties, and elevated rates of ADHD and ASD, making it a useful model for understanding the early development and consequences of IC. In this longitudinal study, we characterized IC trajectories across multiple time points between 16 and 71 months of age in young males with FXS (n = 79) relative to neurotypical (NT) controls (n=49). To explore the association between behavioral outcomes and IC, we identified a subsample of 50 children with longitudinal IC data and an outcome assessment for ADHD and ASD symptoms at age 5 (FXS: n = 26, NT: n = 24). Results indicated that, compared to their NT peers, young males with FXS exhibit differences in IC as early as 24 months, with group differences increasing through age 5. Additionally, we determined that lower IC levels at 24 months were associated with later ADHD symptoms and a decreasing slope in IC over time was associated with later ASD symptoms in male children with FXS. These findings help refine early developmental phenotypes of FXS and highlight IC as a potential target for early detection and intervention of ASD and ADHD symptoms in male children with FXS.
Collapse
Affiliation(s)
- Erin Hunt
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Abigail Hogan
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Elizabeth A Will
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Jane E Roberts
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
29
|
Dobbelaar S, Achterberg M, van Duijvenvoorde ACK, van IJzendoorn MH, Crone EA. Developmental patterns and individual differences in responding to social feedback: A longitudinal fMRI study from childhood to adolescence. Dev Cogn Neurosci 2023; 62:101264. [PMID: 37331231 PMCID: PMC10285498 DOI: 10.1016/j.dcn.2023.101264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023] Open
Abstract
Learning to control behavior when receiving feedback underlies social adaptation in childhood and adolescence, and is potentially strengthened by environmental support factors, such as parents. This study examined the neural development of responding to social feedback from childhood to adolescence, and effects of parental sensitivity on this development. We studied these questions in a 3-wave longitudinal fMRI sample (ages 7-13 years, n = 512). We measured responses to feedback using the fMRI Social Network Aggression Task through noise blasts following peer feedback and associated neural activity, and parental sensitivity using observations of parent-child interactions during Etch-a-Sketch. Results revealed largest reductions in noise blasts following positive feedback between middle and late childhood and following negative feedback between late childhood and early adolescence. Additionally, brain-behavior associations between dorsolateral prefrontal cortex activation and noise blast durations became more differentiated across development. Parental sensitivity was only associated with noise blast duration following positive feedback in childhood, but not in adolescence. There was no relation between parental sensitivity and neural activity. Our findings contribute to our understanding of neural development and individual differences in responding to social feedback, and the role of parenting in supporting children's adaption to social feedback.
Collapse
Affiliation(s)
- Simone Dobbelaar
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Michelle Achterberg
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Anna C K van Duijvenvoorde
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands
| | - Marinus H van IJzendoorn
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands; Research Department of Clinical, Education and Health Psychology, UCL, University of London, United Kingdom
| | - Eveline A Crone
- Leiden Consortium on Individual Development, Leiden University, the Netherlands; Developmental and Educational Psychology, Leiden University, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, the Netherlands; Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
30
|
Mo Z, Grennan G, Kulkarni A, Ramanathan D, Balasubramani PP, Mishra J. Parietal alpha underlies slower cognitive responses during interference processing in adolescents. Behav Brain Res 2023; 443:114356. [PMID: 36801472 DOI: 10.1016/j.bbr.2023.114356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Adolescence is a critical period when cognitive control is rapidly maturing across several core dimensions. Here, we evaluated how healthy adolescents (13-17 years of age, n = 44) versus young adults (18-25 years of age, n = 49) differ across a series of cognitive assessments with simultaneous electroencephalography (EEG) recordings. Cognitive tasks included selective attention, inhibitory control, working memory, as well as both non-emotional and emotional interference processing. We found that adolescents displayed significantly slower responses than young adults specifically on the interference processing tasks. Evaluation of EEG event-related spectral perturbations (ERSPs) on the interference tasks showed that adolescents consistently had greater event-related desynchronization in alpha/beta frequencies in parietal regions. Midline frontal theta activity was also greater in the flanker interference task in adolescents, suggesting greater cognitive effort. Parietal alpha activity predicted age-related speed differences during non-emotional flanker interference processing, and frontoparietal connectivity, specifically midfrontal theta - parietal alpha functional connectivity predicted speed effects during emotional interference. Overall, our neuro-cognitive results illustrate developing cognitive control in adolescents particularly for interference processing, predicted by differential alpha band activity and connectivity in parietal brain regions.
Collapse
Affiliation(s)
- Zihao Mo
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Gillian Grennan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Atharv Kulkarni
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | | | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Conejero Á, Rico-Picó J, Moyano S, Hoyo Á, Rueda MR. Predicting behavioral and brain markers of inhibitory control at preschool age from early measures of executive attention. Front Psychol 2023; 14:983361. [PMID: 36935994 PMCID: PMC10018214 DOI: 10.3389/fpsyg.2023.983361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Background Inhibitory control (IC) is the ability to prevent prepotent responses when inappropriate. Longitudinal research on IC development has mainly focused on early childhood and adolescence, while research on IC development in the first years of life is still scarce. To address this gap in the literature, we explored the association between executive attention (EA) and elementary forms of IC in infancy and toddlerhood, with individual differences in IC later at 5 years of age. Method We conducted a five-wave longitudinal study in which children's EA and IC (n = 96) were tested at the age of 9 and 16 months and 2, 3, and 5 years. Children performed various age-appropriate EA and IC tasks in each wave, measuring inhibition of attention, endogenous control of attention, inhibition of the response, and conflict inhibition. At 5 years of age, IC was measured with a Go/No-go task while recording event-related potentials. After correlation analyses, structural equation model analyses were performed to predict IC at 5 years of age from EA and early IC measures. Results The results revealed that EA at 9 months predicted IC measures at 2 years of age. Likewise, measures of IC at 2 years predicted performance on the Go/No-go task at behavioral and neural levels. No direct association was found between EA at 9 months and IC at 5 years of age. We further observed that some EA and IC measures were not associated across time. Conclusion As we expected, EA skills in infancy and toddlerhood were related to better performance of children on IC tasks, toghether with a more mature inhibition-related brain functioning. Altogether, the results indicate that IC in early childhood could be predicted from EA and IC at 9 months and 2 years of age and suggest that the early emergence of IC relies on the development of particular EA and basic IC skills. However, some discontinuities in the longitudinal development of IC are observed in the first 5 years of life. These findings provide further support for the hierarchical model of IC development.
Collapse
Affiliation(s)
- Ángela Conejero
- Department of Developmental and Educational Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Josué Rico-Picó
- Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Sebastián Moyano
- Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Ángela Hoyo
- Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - M. Rosario Rueda
- Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| |
Collapse
|
32
|
Maza MT, Fox KA, Kwon SJ, Flannery JE, Lindquist KA, Prinstein MJ, Telzer EH. Association of Habitual Checking Behaviors on Social Media With Longitudinal Functional Brain Development. JAMA Pediatr 2023; 177:160-167. [PMID: 36595277 PMCID: PMC9857400 DOI: 10.1001/jamapediatrics.2022.4924] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023]
Abstract
Importance Social media platforms provide adolescents with unprecedented opportunities for social interactions during a critical developmental period when the brain is especially sensitive to social feedback. Objective To explore how adolescents' frequency of checking behaviors on social media platforms is associated with longitudinal changes in functional brain development across adolescence. Design, Setting, and Participants A 3-year longitudinal cohort study of functional magnetic resonance imaging (fMRI) among sixth- and seventh-grade students recruited from 3 public middle schools in rural North Carolina. Exposures At wave 1, participants reported the frequency at which they checked Facebook, Instagram, and Snapchat. Main Outcome or Measure Neural responses to the Social Incentive Delay task when anticipating receiving social feedback, measured annually using fMRI for 3 years. Participants saw a cue that indicated whether the social feedback (adolescent faces with emotional expressions) would be a reward, punishment, or neutral; after a delay, a target appeared and students responded by pressing a button as quickly as possible; a display of social feedback depended on trial type and reaction time. Results Of 178 participants recruited at age 12 years, 169 participants (mean [SD] age, 12.89 [0.58] years; range, 11.93-14.52 years; 91 [53.8%] female; 38 [22.5%] Black, 60 [35.5%] Latinx, 50 [29.6%] White, 15 [8.9%] multiracial) met the inclusion criteria. Participants with habitual social media checking behaviors showed lower neural sensitivity to social anticipation at age 12 years compared with those with nonhabitual checking behaviors in the left amygdala, posterior insula (PI), and ventral striatum (VS; β, -0.22; 95% CI, -0.33 to -0.11), right amygdala (β, -0.19; 95% CI, -0.30 to -0.08), right anterior insula (AI; β, -0.23; 95% CI, -0.37 to -0.09), and left dorsolateral prefrontal cortex (DLPFC; β, -0.29; 95% CI, -0.44 to -0.14). Among those with habitual checking behaviors, there were longitudinal increases in the left amygdala/PI/VS (β, 0.11; 95% CI, 0.04 to 0.18), right amygdala (β, 0.09; 95% CI, 0.02 to 0.16), right AI (β, 0.15; 95% CI, 0.02 to 0.20), and left DLPFC (β, 0.19; 95% CI, 0.05 to 0.25) during social anticipation, whereas among those with nonhabitual checking behaviors, longitudinal decreases were seen in the left amygdala/PI/VS (β, -0.12; 95% CI, -0.19 to -0.06), right amygdala (β, -0.10; 95% CI, -0.17 to -0.03), right AI (β, -0.13; 95% CI, -0.22 to -0.04), and left DLPFC (β, -0.10, 95% CI, -0.22 to -0.03). Conclusions and Relevance The results of this cohort study suggest that social media checking behaviors in early adolescence may be associated with changes in the brain's sensitivity to social rewards and punishments. Further research examining long-term associations between social media use, adolescent neural development, and psychological adjustment is needed to understand the effects of a ubiquitous influence on development for today's adolescents.
Collapse
Affiliation(s)
- Maria T. Maza
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| | - Kara A. Fox
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| | - Seh-Joo Kwon
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| | - Jessica E. Flannery
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| | - Kristen A. Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| | - Mitchell J. Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| | - Eva H. Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
33
|
McQuaid GA, Darcey VL, Patterson AE, Rose EJ, VanMeter AS, Fishbein DH. Baseline brain and behavioral factors distinguish adolescent substance initiators and non-initiators at follow-up. Front Psychiatry 2022; 13:1025259. [PMID: 36569626 PMCID: PMC9780121 DOI: 10.3389/fpsyt.2022.1025259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Earlier substance use (SU) initiation is associated with greater risk for the development of SU disorders (SUDs), while delays in SU initiation are associated with a diminished risk for SUDs. Thus, identifying brain and behavioral factors that are markers of enhanced risk for earlier SU has major public health import. Heightened reward-sensitivity and risk-taking are two factors that confer risk for earlier SU. Materials and methods We characterized neural and behavioral factors associated with reward-sensitivity and risk-taking in substance-naïve adolescents (N = 70; 11.1-14.0 years), examining whether these factors differed as a function of subsequent SU initiation at 18- and 36-months follow-up. Adolescents completed a reward-related decision-making task while undergoing functional MRI. Measures of reward sensitivity (Behavioral Inhibition System-Behavioral Approach System; BIS-BAS), impulsive decision-making (delay discounting task), and SUD risk [Drug Use Screening Inventory, Revised (DUSI-R)] were collected. These metrics were compared for youth who did [Substance Initiators (SI); n = 27] and did not [Substance Non-initiators (SN); n = 43] initiate SU at follow-up. Results While SI and SN youth showed similar task-based risk-taking behavior, SI youth showed more variable patterns of activation in left insular cortex during high-risk selections, and left anterior cingulate cortex in response to rewarded outcomes. Groups displayed similar discounting behavior. SI participants scored higher on the DUSI-R and the BAS sub-scale. Conclusion Activation patterns in the insula and anterior cingulate cortex may serve as a biomarker for earlier SU initiation. Importantly, these brain regions are implicated in the development and experience of SUDs, suggesting differences in these regions prior to substance exposure.
Collapse
Affiliation(s)
- Goldie A. McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, United States
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Valerie L. Darcey
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
- The Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Amanda E. Patterson
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Emma Jane Rose
- Department of Psychology, The Pennsylvania State University, University Park, PA, United States
| | - Ashley S. VanMeter
- Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC, United States
| | - Diana H. Fishbein
- Frank Porter Graham Child Development Institute, The University of North Carolina, Chapel Hill, Chapel Hill, NC, United States
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
34
|
Garcini LM, Arredondo MM, Berry O, Church JA, Fryberg S, Thomason ME, McLaughlin KA. Increasing diversity in developmental cognitive neuroscience: A roadmap for increasing representation in pediatric neuroimaging research. Dev Cogn Neurosci 2022; 58:101167. [PMID: 36335807 PMCID: PMC9638728 DOI: 10.1016/j.dcn.2022.101167] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/13/2023] Open
Abstract
Understanding of human brain development has advanced rapidly as the field of developmental cognitive neuroscience (DCN) has matured into an established scientific discipline. Despite substantial progress, DCN lags behind other related disciplines in terms of diverse representation, standardized reporting requirements for socio-demographic characteristics of participants in pediatric neuroimaging studies, and use of intentional sampling strategies to more accurately represent the socio-demographic, ethnic, and racial composition of the populations from which participants are sampled. Additional efforts are needed to shift DCN towards a more inclusive field that facilitates the study of individual differences across a variety of cultural and contextual experiences. In this commentary, we outline and discuss barriers within our current scientific practice (e.g., research methods) and beliefs (i.e., what constitutes good science, good scientists, and good research questions) that contribute to under-representation and limited diversity within pediatric neuroimaging studies and propose strategies to overcome those barriers. We discuss strategies to address barriers at intrapersonal, interpersonal, community, systemic, and structural levels. Highlighting strength-based models of inclusion and recognition of the value of diversity in DCN research, along with acknowledgement of the support needed to diversify the field is critical for advancing understanding of neurodevelopment and reducing health inequities.
Collapse
Affiliation(s)
- Luz M Garcini
- Department of Psychological Sciences, Rice University, United States
| | - Maria M Arredondo
- Department of Human Development and Family Sciences, The University of Texas at Austin, United States.
| | - Obianuju Berry
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, United States
| | - Jessica A Church
- Department of Psychology, The University of Texas at Austin, United States
| | | | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, United States
| | | |
Collapse
|
35
|
Huffman LG, Oshri A. Continuity versus change in latent profiles of emotion regulation and working memory during adolescence. Dev Cogn Neurosci 2022; 58:101177. [PMID: 36436429 PMCID: PMC9706540 DOI: 10.1016/j.dcn.2022.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
Significant structural and functional brain development occurs during early adolescence. These changes underlie developments in central neurocognitive processes such as working memory (WM) and emotion regulation (ER). The preponderance of studies modeling trajectories of adolescent brain development use variable-centered approaches, omitting attention to individual differences that may undergird neurobiological embedding of early life stress and attendant psychopathology. This preregistered, data-driven study used latent transition analysis (LTA) to identify (1) latent profiles of neural function during a WM and implicit ER task, (2) transitions in profiles across 24 months, and 3) associations between transitions, parental support, and subsequent psychopathology. Using two waves of data from the ABCD Study (Mage T1 = 10; Mage T2 = 12), we found three unique profiles of neural function at both T1 and T2. The Typical, Emotion Hypo-response, and Emotion-Hyper response profiles were characterized by, respectively: moderate amygdala activation and fusiform deactivation; high ACC, fusiform, and insula deactivation; and high amygdala, ACC, and insula response to ER. While 69.5 % remained in the Typical profile from T1 to T2, 27.8 % of the sample moved from one profile at T1 to another at T2. However, neither latent profiles nor transitions exhibited associations between parental support or psychopathology symptoms.
Collapse
Affiliation(s)
- Landry Goodgame Huffman
- Neuroscience Program, University of Georgia, Athens, GA, USA; Department of Human Development & Family Science, University of Georgia, Athens, GA, USA.
| | - Assaf Oshri
- Neuroscience Program, University of Georgia, Athens, GA, USA; Department of Human Development & Family Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
36
|
Ravindranath O, Calabro FJ, Foran W, Luna B. Pubertal development underlies optimization of inhibitory control through specialization of ventrolateral prefrontal cortex. Dev Cogn Neurosci 2022; 58:101162. [PMID: 36308857 PMCID: PMC9618767 DOI: 10.1016/j.dcn.2022.101162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023] Open
Abstract
Inhibitory control improves into young adulthood after specialization of relevant brain systems during adolescence. However, the biological mechanisms supporting this unique transition are not well understood. Given that adolescence is defined by puberty, we examined relative contributions of chronological age and pubertal maturation to inhibitory control development. 105 8-19-year-olds completed 1-5 longitudinal visits (227 visits total) in which pubertal development was assessed via self-reported Tanner stage and inhibitory control was assessed with an in-scanner antisaccade task. As expected, percentage and latency of correct antisaccade responses improved with age and pubertal stage. When controlling for pubertal stage, chronological age was distinctly associated with correct response rate. In contrast, pubertal stage was uniquely associated with antisaccade latency even when controlling for age. Chronological age was associated with fMRI task activation in several regions including the right dorsolateral prefrontal cortex, while puberty was associated with right ventrolateral prefrontal cortex (VLPFC) activation. Furthermore, task-related connectivity between VLPFC and cingulate was associated with both pubertal stage and response latency. These results suggest that while age-related developmental processes may support maturation of brain systems underlying the ability to inhibit a response, puberty may play a larger role in the effectiveness of generating cognitive control responses.
Collapse
Affiliation(s)
- Orma Ravindranath
- Psychology, University of Pittsburgh, USA; Center for Neural Basis of Cognition, University of Pittsburgh, USA.
| | - Finnegan J Calabro
- Center for Neural Basis of Cognition, University of Pittsburgh, USA; Psychiatry, University of Pittsburgh, USA; Bioengineering, University of Pittsburgh, USA
| | | | - Beatriz Luna
- Psychology, University of Pittsburgh, USA; Center for Neural Basis of Cognition, University of Pittsburgh, USA; Psychiatry, University of Pittsburgh, USA
| |
Collapse
|
37
|
Ojha A, Parr AC, Foran W, Calabro FJ, Luna B. Puberty contributes to adolescent development of fronto-striatal functional connectivity supporting inhibitory control. Dev Cogn Neurosci 2022; 58:101183. [PMID: 36495791 PMCID: PMC9730138 DOI: 10.1016/j.dcn.2022.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Adolescence is defined by puberty and represents a period characterized by neural circuitry maturation (e.g., fronto-striatal systems) facilitating cognitive improvements. Though studies have characterized age-related changes, the extent to which puberty influences maturation of fronto-striatal networks is less known. Here, we combine two longitudinal datasets to characterize the role of puberty in the development of fronto-striatal resting-state functional connectivity (rsFC) and its relationship to inhibitory control in 106 10-18-year-olds. Beyond age effects, we found that puberty was related to decreases in rsFC between the caudate and the anterior vmPFC, rostral and ventral ACC, and v/dlPFC, as well as with rsFC increases between the dlPFC and nucleus accumbens (NAcc) across males and females. Stronger caudate rsFC with the dlPFC and vlPFC during early puberty was associated with worse inhibitory control and slower correct responses, respectively, whereas by late puberty, stronger vlPFC rsFC with the dorsal striatum was associated with faster correct responses. Taken together, our findings suggest that certain fronto-striatal connections are associated with pubertal maturation beyond age effects, which, in turn are related to inhibitory control. We discuss implications of puberty-related fronto-striatal maturation to further our understanding of pubertal effects related to adolescent cognitive and affective neurodevelopment.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Correspondence to: Laboratory of Neurocognitive Development, University of Pittsburgh, 121 Meyran Ave, Pittsburgh, PA 15213, USA.
| | - Ashley C. Parr
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Aoki C, Santiago AN. Pathway-specific GABAergic inhibition contributes to the gain of resilience against anorexia-like behavior of adolescent female mice. Front Behav Neurosci 2022; 16:990354. [PMID: 36311865 PMCID: PMC9606475 DOI: 10.3389/fnbeh.2022.990354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Anorexia nervosa is one of the most debilitating mental illnesses that emerges during adolescence, especially among females. Anorexia nervosa is characterized by severe voluntary food restriction and compulsive exercising, which combine to cause extreme body weight loss. We use activity-based anorexia (ABA), an animal model, to investigate the neurobiological bases of vulnerability to anorexia nervosa. This is a Mini-Review, focused on new ideas that have emerged based on recent findings from the Aoki Lab. Our findings point to the cellular and molecular underpinnings of three ABA phenomena: (1) age-dependence of ABA vulnerability; (2) individual differences in the persistence of ABA vulnerability during adolescence; (3) GABAergic synaptic plasticity in the hippocampus and the prefrontal cortex that contributes to the suppression of the maladaptive anorexia-like behaviors. We also include new data on the contribution to ABA vulnerability by cell type-specific knockdown of a GABA receptor subunit, α4, in dorsal hippocampus. Although the GABA system recurs as a key player in the gain of ABA resilience, the data predict why targeting the GABA system, singularly, may have only limited efficacy in treating anorexia nervosa. This is because boosting the GABAergic system may suppress the maladaptive behavior of over-exercising but could also suppress food consumption. We hypothesize that a sub-anesthetic dose of ketamine may be the magic bullet, since a single injection of this drug to mid-adolescent female mice undergoing ABA induction enhances food consumption and reduces wheel running, thereby reducing body weight loss through plasticity at excitatory synaptic inputs to both excitatory and inhibitory neurons. The same treatment is not as efficacious during late adolescence but multiple dosing of ketamine can suppress ABA vulnerability partially. This caveat underscores the importance of conducting behavioral, synaptic and molecular analyses across multiple time points spanning the developmental stage of adolescence and into adulthood. Since this is a Mini-Review, we recommend additional literature for readers seeking more comprehensive reviews on these subjects.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, New York University, New York, NY, United States
- NYU Langone Medical Center, Neuroscience Institute, New York, NY, United States
| | | |
Collapse
|
39
|
Kang W, Hernández SP, Rahman MS, Voigt K, Malvaso A. Inhibitory Control Development: A Network Neuroscience Perspective. Front Psychol 2022; 13:651547. [PMID: 36300046 PMCID: PMC9588931 DOI: 10.3389/fpsyg.2022.651547] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/25/2022] [Indexed: 07/30/2023] Open
Abstract
As one of the core executive functions, inhibition plays an important role in human life through development. Inhibitory control is defined as the ability to suppress actions when they are unlikely to accomplish valuable results. Contemporary neuroscience has investigated the underlying neural mechanisms of inhibitory control. The controversy started to arise, which resulted in two schools of thought: a modulatory and a network account of inhibitory control. In this systematic review, we survey developmental mechanisms in inhibitory control as well as neurodevelopmental diseases related to inhibitory dysfunctions. This evidence stands against the modulatory perspective of inhibitory control: the development of inhibitory control does not depend on a dedicated region such as the right inferior frontal gyrus (rIFG) but relies on a more broadly distributed network.
Collapse
Affiliation(s)
- Weixi Kang
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | - Katharina Voigt
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Antonio Malvaso
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Li M, Lindenmuth M, Tarnai K, Lee J, King-Casas B, Kim-Spoon J, Deater-Deckard K. Development of cognitive control during adolescence: The integrative effects of family socioeconomic status and parenting behaviors. Dev Cogn Neurosci 2022; 57:101139. [PMID: 35905528 PMCID: PMC9335383 DOI: 10.1016/j.dcn.2022.101139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 12/25/2022] Open
Abstract
Cognitive control is of great interest to researchers and practitioners. The concurrent association between family socioeconomic status (SES) and adolescent cognitive control is well-documented. However, little is known about whether and how SES relates to individual differences in the development of adolescent cognitive control. The current four-year longitudinal investigation (N = 167, 13-14 years at Wave 1) used multi-source interference task performance (reaction time in interference correct trials minus neutral correct trials) and corresponding neural activities (blood oxygen level dependent contrast of interference versus neutral conditions) as measures of cognitive control. SES and parenting behaviors (warmth, monitoring) were measured through surveys. We examined direct and indirect effects of earlier SES on the development of cognitive control via parenting behaviors; the moderating effect of parenting also was explored. Results of latent growth modeling (LGM) revealed significant interactive effects between SES and parenting predicting behavioral and neural measures of cognitive control. Lower family SES was associated with poorer cognitive performance when coupled with low parental warmth. In contrast, higher family SES was associated with greater improvement in performance, as well as a higher intercept and steeper decrease in frontoparietal activation over time, when coupled with high parental monitoring. These findings extend prior cross-sectional evidence to show the moderating effect of the parenting environment on the potential effects of SES on developmental changes in adolescent cognitive control.
Collapse
Affiliation(s)
- Mengjiao Li
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Kathryn Tarnai
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Jacob Lee
- Virginia Tech Carilion Research Institute, Blacksburg, VA, USA
| | - Brooks King-Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA; Virginia Tech Carilion Research Institute, Blacksburg, VA, USA
| | | | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
41
|
Vetter NC, Fröhner JH, Hoffmann K, Backhausen LL, Smolka MN. Adolescent to young adult longitudinal development across 8 years for matching emotional stimuli during functional magnetic resonance imaging. Dev Cogn Neurosci 2022; 57:101131. [PMID: 35907311 PMCID: PMC9352466 DOI: 10.1016/j.dcn.2022.101131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
We investigated development from adolescence to young adulthood of neural bottom-up and top-down processes using a functional magnetic resonance imaging task on emotional attention. We followed 249 participants from age 14-22 in up to four waves resulting in 687 total scans of a matching task in which participants decided whether two pictures were the same including distracting emotional or neutral scenes. We applied generalized additive mixed models and a reliability approach for longitudinal analysis. Reaction times and error rates decreased longitudinally. For top-down processing, we found a longitudinal increase for the bilateral inferior frontal gyrus (IFG) for negative stimuli and in the left IFG also for positive and neutral stimuli. For bottom-up activation in the bilateral amygdala, we found a relative stability for negative and neutral stimuli. For positive stimuli, there was an increase starting in the twenties. Results show ongoing behavioral and top-down prefrontal development relatively independent from emotional valence. Amygdala bottom-up activation remained stable except for positive stimuli. Current findings add to the sparse literature on longitudinal top-down and bottom-up development into young adulthood and emphasize the role of reliability. These findings might help to characterize healthy in contrast to dysfunctional development of emotional attention.
Collapse
Affiliation(s)
- Nora C Vetter
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany; Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany.
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
| | - Klara Hoffmann
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Lea L Backhausen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany; Department of Child and Adolescent Psychiatry, Faculty of Medicine of the Technische Universität Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Germany
| |
Collapse
|
42
|
Perica MI, Calabro FJ, Larsen B, Foran W, Yushmanov VE, Hetherington H, Tervo-Clemmens B, Moon CH, Luna B. Development of frontal GABA and glutamate supports excitation/inhibition balance from adolescence into adulthood. Prog Neurobiol 2022; 219:102370. [DOI: 10.1016/j.pneurobio.2022.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
43
|
Long J, Song X, Wang Y, Wang C, Huang R, Zhang R. Distinct neural activation patterns of age in subcomponents of inhibitory control: A fMRI meta-analysis. Front Aging Neurosci 2022; 14:938789. [PMID: 35992590 PMCID: PMC9389163 DOI: 10.3389/fnagi.2022.938789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Inhibitory control (IC) is a fundamental cognitive function showing age-related change across the healthy lifespan. Since different cognitive resources are needed in the two subcomponents of IC (cognitive inhibition and response inhibition), regions of the brain are differentially activated. In this study, we aimed to determine whether there is a distinct age-related activation pattern in these two subcomponents. A total of 278 fMRI articles were included in the current analysis. Multilevel kernel density analysis was used to provide data on brain activation under each subcomponent of IC. Contrast analyses were conducted to capture the distinct activated brain regions for the two subcomponents, whereas meta-regression analyses were performed to identify brain regions with distinct age-related activation patterns in the two subcomponents of IC. The results showed that the right inferior frontal gyrus and the bilateral insula were activated during the two IC subcomponents. Contrast analyses revealed stronger activation in the superior parietal lobule during cognitive inhibition, whereas stronger activation during response inhibition was observed primarily in the right inferior frontal gyrus, bilateral insula, and angular gyrus. Furthermore, regression analyses showed that activation of the left anterior cingulate cortex, left inferior frontal gyrus, bilateral insula, and left superior parietal lobule increased and decreased with age during cognitive inhibition and response inhibition, respectively. The results showed distinct activation patterns of aging for the two subcomponents of IC, which may be related to the differential cognitive resources recruited. These findings may help to enhance knowledge of age-related changes in the activation patterns of IC.
Collapse
Affiliation(s)
- Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - You Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
The Moderating Role of Psychological Flexibility on the Association between Distress-Driven Impulsivity and Problematic Internet Use. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159592. [PMID: 35954947 PMCID: PMC9368545 DOI: 10.3390/ijerph19159592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022]
Abstract
Background: Problematic internet use is receiving increasing attention in the addiction field, yet the mechanisms driving such behaviours remain unclear. Previous research has shown that impulsivity- and compulsivity-related constructs may interactively contribute to a range of problematic behaviours. The current study examined whether distress-driven impulsivity and psychological flexibility may interactively contribute to problematic internet use, which has not been addressed in prior literature. Method: Two hundred and one participants completed an online survey. Bootstrapped moderation analysis was conducted to examine the collected data on distress-driven impulsivity, psychological flexibility, and their interaction in relation to problematic internet use. Results: The interaction between distress-driven impulsivity and psychological flexibility was significantly related to problematic internet use. Simple slope tests confirmed that distress-driven impulsivity was associated with problematic internet use among individuals with low flexibility levels. Conclusions: Our findings highlight the moderating role of psychological inflexibility in the association between distress-driven impulsivity and problematic internet use. Prevention and/or early interventions for problematic internet use should consider targeting psychological inflexibility and distress-driven impulsivity.
Collapse
|
45
|
Inhibitory control within the context of early life poverty and implications for outcomes. Neurosci Biobehav Rev 2022; 140:104778. [PMID: 35843346 DOI: 10.1016/j.neubiorev.2022.104778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Early life poverty confers risk for unfavorable outcomes including lower academic achievement, behavioral difficulties, and neurodevelopmental disorders. Disruptions in inhibitory control (IC) have been posed as one mechanism to explain the relationship between early life poverty and deleterious outcomes. There is robust research to suggest that early life poverty is associated with development of poorer IC. Further, poorer IC in children is related to decreased academic achievement and social competence, and increased externalizing and internalizing behavior. There is some parent-report evidence to suggest that IC is a mediator of the relationship between poverty and externalizing behaviors, as well as some limited evidence to suggest that IC is a mediator between poverty and academic achievement. Future work should aim to determine whether early life poverty's relation to IC could be explained by verbal ability which is thought to be central to the development of effective IC. In addition, future neuroimaging work should utilize IC fMRI tasks to identify key neural mechanisms that might contribute to a relationship between early life poverty and IC.
Collapse
|
46
|
Kerr-German A, Namuth A, Santosa H, Buss AT, White S. To snack or not to snack: Using fNIRS to link inhibitory control to functional connectivity in the toddler brain. Dev Sci 2022; 25:e13229. [PMID: 35005833 PMCID: PMC9232869 DOI: 10.1111/desc.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022]
Abstract
Inhibitory control (IC) emerges in infancy, continues to develop throughout childhood and is linked to later life outcomes such as school achievement, prosocial behavior, and psychopathology. Little, however, is known about the neural processes underpinning IC, especially in 2-year-olds. In this study, we examine functional connectivity (FC) in 2.5-year-olds while recording hemodynamic responses via functional infrared spectroscopy (fNIRS) during a traditional snack delay task. We found that functional connectivity strength between left frontal and parietal cortex and bilateral parietal cortex were positively associated with performance on this task. The current findings present the first neural data for toddlers during this IC task. Further, these data are the first to link this self-regulatory process to differences in brain development within this population. Implications for future directions and work with clinical populations are discussed.
Collapse
Affiliation(s)
- Anastasia Kerr-German
- Boys Town National Research Hospital, Center for Childhood Deafness, Language and Learning
| | - August Namuth
- Boys Town National Research Hospital, Center for Childhood Deafness, Language and Learning
| | | | | | - Stuart White
- Boys Town National Research Hospital, Institute for Human Neuroscience
| |
Collapse
|
47
|
Keskin G, Branje S. Longitudinal relations between maternal and adolescent emotion dysregulation and maternal autonomy support. J Adolesc 2022; 94:811-828. [PMID: 35754358 PMCID: PMC9544504 DOI: 10.1002/jad.12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Maternal characteristics and mother-adolescent relationships are thought to affect the emotional development of adolescents. Adolescents can learn to regulate their emotions by observing their mothers, and this is further facilitated by maternal autonomy support. Therefore, this study longitudinally examined the associations among maternal emotion dysregulation, maternal autonomy support, and adolescent emotion dysregulation. METHOD Participants were 466 Dutch adolescents (54.51% males; Mage = 14.03, SD = 0.45) and 462 mothers (Mage = 45.49, SD = 4.47), who completed self-reports of emotion dysregulation and maternal autonomy support for five consecutive years. RESULTS Random Intercept-Cross Lagged Panel Model analyses showed that at the between-family level, maternal emotion dysregulation was correlated with adolescent emotion dysregulation, adolescent-reported maternal autonomy support, and mother-reported maternal autonomy support; and adolescent emotion dysregulation was correlated with adolescent-reported maternal autonomy support. At the within-family level, higher than usual maternal emotion dysregulation was positively related to adolescent emotion dysregulation at Time 1, yet, was negatively related to adolescent emotion dysregulation at other time points concurrently, and predicted lower adolescent emotion dysregulation in the next year. Also, higher than usual adolescent emotion dysregulation was related to lower adolescent-reported maternal autonomy support both concurrently and the next year. CONCLUSIONS Both mothers and adolescents played an important role in adolescent emotional development. To promote adolescent emotional development, it is important to target both maternal emotion dysregulation to understand the development of adolescent emotion dysregulation, and adolescent emotion dysregulation to prevent mothers from providing less autonomy support to their adolescents.
Collapse
Affiliation(s)
- Gizem Keskin
- Department of Psychology, University of British Columbia, Okanagan, Canada
| | - Susan Branje
- Department of Youth and Family, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
Khan S, Hashmi JA, Mamashli F, Hämäläinen MS, Kenet T. Functional Significance of Human Resting-State Networks Hubs Identified Using MEG During the Transition From Childhood to Adulthood. Front Neurol 2022; 13:814940. [PMID: 35812111 PMCID: PMC9259855 DOI: 10.3389/fneur.2022.814940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Cortical hubs identified within resting-state networks (RSNs), areas of the cortex that have a higher-than-average number of connections, are known to be critical to typical cognitive functioning and are often implicated in disorders leading to abnormal cognitive functioning. Functionally defined cortical hubs are also known to change with age in the developing, maturing brain, mostly based on studies carried out using fMRI. We have recently used magnetoencephalography (MEG) to study the maturation trajectories of RSNs and their hubs from age 7 to 29 in 131 healthy participants with high temporal resolution. We found that maturation trajectories diverge as a function of the underlying cortical rhythm. Specifically, we found the beta band (13–30 Hz)-mediated RSNs became more locally efficient with maturation, i.e., more organized into clusters and connected with nearby regions, while gamma (31–80 Hz)-mediated RSNs became more globally efficient with maturation, i.e., prioritizing faster signal transmission between distant cortical regions. We also found that different sets of hubs were associated with each of these networks. To better understand the functional significance of this divergence, we wanted to examine the cortical functions associated with the identified hubs that grew or shrunk with maturation within each of these networks. To that end, we analyzed the results of the prior study using Neurosynth, a platform for large-scale, automated synthesis of fMRI data that links brain coordinates with their probabilistically associated terms. By mapping the Neurosynth terms associated with each of these hubs, we found that maturing hubs identified in the gamma band RSNs were more likely to be associated with bottom-up processes while maturing hubs identified in the beta band RSNs were more likely to be associated with top-down functions. The results were consistent with the idea that beta band-mediated networks preferentially support the maturation of top-down processing, while the gamma band-mediated networks preferentially support the maturation of bottom-up processing.
Collapse
Affiliation(s)
- Sheraz Khan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- *Correspondence: Sheraz Khan
| | - Javeria Ali Hashmi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - Fahimeh Mamashli
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matti S. Hämäläinen
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
49
|
Weiss H, Luciana M. Neurobehavioral maturation of motor response inhibition in adolescence - A narrative review. Neurosci Biobehav Rev 2022; 137:104646. [PMID: 35367223 PMCID: PMC9119966 DOI: 10.1016/j.neubiorev.2022.104646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/19/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Immature motor response inhibition in adolescence is considered contributory to adolescent risk-taking and externalizing behaviors. We review studies reporting age-related variations in motor response inhibition and MRI measurements from typically-developing adolescents. Reviewed studies measured response inhibition using one of three tasks-the Stop Signal Task, Go/No-Go, and Antisaccade Task. Task reliability appears to be particularly strong for the SST. Across tasks and study designs, results indicate that inhibitory control improves markedly through early adolescence. The trajectory of change in later adolescence and into young adulthood (i.e., linear or plateauing) varies depending on the task design. Neuroimaging studies identify adult-like response inhibition networks that are involved in behavioral development. The pros and cons of each task are discussed, including recommendations to guide future studies. Ongoing studies in large longitudinal datasets offer opportunities for further exploration of the shape of change in response inhibition, related neural regions, and associations with other affective and cognitive processes to identify potential impacts of motor response inhibition immaturities or individual differences on adolescent risk-taking behaviors.
Collapse
Affiliation(s)
- Hannah Weiss
- Department of Psychology, University of Minnesota, Minneapolis, USA.
| | - Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, USA
| |
Collapse
|
50
|
Yep R, Smorenburg ML, Riek HC, Calancie OG, Kirkpatrick RH, Perkins JE, Huang J, Coe BC, Brien DC, Munoz DP. Interleaved Pro/Anti-saccade Behavior Across the Lifespan. Front Aging Neurosci 2022; 14:842549. [PMID: 35663573 PMCID: PMC9159803 DOI: 10.3389/fnagi.2022.842549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The capacity for inhibitory control is an important cognitive process that undergoes dynamic changes over the course of the lifespan. Robust characterization of this trajectory, considering age continuously and using flexible modeling techniques, is critical to advance our understanding of the neural mechanisms that differ in healthy aging and neurological disease. The interleaved pro/anti-saccade task (IPAST), in which pro- and anti-saccade trials are randomly interleaved within a block, provides a simple and sensitive means of assessing the neural circuitry underlying inhibitory control. We utilized IPAST data collected from a large cross-sectional cohort of normative participants (n = 604, 5-93 years of age), standardized pre-processing protocols, generalized additive modeling, and change point analysis to investigate the effect of age on saccade behavior and identify significant periods of change throughout the lifespan. Maturation of IPAST measures occurred throughout adolescence, while subsequent decline began as early as the mid-20s and continued into old age. Considering pro-saccade correct responses and anti-saccade direction errors made at express (short) and regular (long) latencies was crucial in differentiating developmental and aging processes. We additionally characterized the effect of age on voluntary override time, a novel measure describing the time at which voluntary processes begin to overcome automated processes on anti-saccade trials. Drawing on converging animal neurophysiology, human neuroimaging, and computational modeling literature, we propose potential frontal-parietal and frontal-striatal mechanisms that may mediate the behavioral changes revealed in our analysis. We liken the models presented here to "cognitive growth curves" which have important implications for improved detection of neurological disease states that emerge during vulnerable windows of developing and aging.
Collapse
Affiliation(s)
- Rachel Yep
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | | | - Heidi C. Riek
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Olivia G. Calancie
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Ryan H. Kirkpatrick
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Julia E. Perkins
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Jeff Huang
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Brian C. Coe
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Donald C. Brien
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Douglas P. Munoz
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Medicine, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|