1
|
Pneumolysin boosts the neuroinflammatory response to Streptococcus pneumoniae through enhanced endocytosis. Nat Commun 2022; 13:5032. [PMID: 36028511 PMCID: PMC9418233 DOI: 10.1038/s41467-022-32624-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In pneumococcal meningitis, bacterial growth in the cerebrospinal fluid results in lysis, the release of toxic factors, and subsequent neuroinflammation. Exposure of primary murine glia to Streptococcus pneumoniae lysates leads to strong proinflammatory cytokine and chemokine production, blocked by inhibition of the intracellular innate receptor Nod1. Lysates enhance dynamin-dependent endocytosis, and dynamin inhibition reduces neuroinflammation, blocking ligand internalization. Here we identify the cholesterol-dependent cytolysin pneumolysin as a pro-endocytotic factor in lysates, its elimination reduces their proinflammatory effect. Only pore-competent pneumolysin enhances endocytosis in a dynamin-, phosphatidylinositol-3-kinase- and potassium-dependent manner. Endocytic enhancement is limited to toxin-exposed parts of the membrane, the effect is rapid and pneumolysin permanently alters membrane dynamics. In a murine model of pneumococcal meningitis, mice treated with chlorpromazine, a neuroleptic with a complementary endocytosis inhibitory effect show reduced neuroinflammation. Thus, the dynamin-dependent endocytosis emerges as a factor in pneumococcal neuroinflammation, and its enhancement by a cytolysin represents a proinflammatory control mechanism.
Collapse
|
2
|
Tan LY, Huang B, Xu S, Wei ZB, Yang LY, Miao AJ. Aggregation Reverses the Carrier Effects of TiO 2 Nanoparticles on Cadmium Accumulation in the Waterflea Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:932-939. [PMID: 27984694 DOI: 10.1021/acs.est.6b03951] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Our previous study reported that the Ca-dependent aggregation of polyacrylate-coated TiO2 nanoparticles (PAA-TiO2-NPs) determines their routes of uptake by the waterflea Daphnia magna. Besides the effects of aggregation on NP bioaccumulation, how this process may influence the bioavailability of NP-adsorbed pollutants remains obscure. In the present study, the aggregation of PAA-TiO2-NPs was also adjusted through Ca. Then the accumulation and toxicity of Cd in D. magna were investigated in the presence and absence of the NPs. Although PAA-TiO2-NPs ameliorated Cd toxicity at both low and high Ca concentrations, the underlying mechanisms differed completely. At low Ca, the metal-NP complexes were accumulated by endocytosis and passive drinking, with both pollutants distributed throughout the daphnid. Nevertheless, Cd accumulation was reduced due to its rapid dissociation from the NPs during the endocytosis of the metal-NP complexes. At high Ca, the metal-NP complexes were actively ingested, Cd accumulation was induced, and both pollutants were concentrated in the daphnid gut. The aggregation-dependent effects of PAA-TiO2-NPs on Cd bioaccumulation were further evidenced by the distinct patterns of metal efflux from D. magna at different Ca concentrations. Overall, Cd adsorption by PAA-TiO2-NPs may either increase or reduce its bioaccumulation, as determined by the aggregation of the NPs.
Collapse
Affiliation(s)
- Ling-Yan Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Bin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Shen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
3
|
Tagliavini A, Tabak J, Bertram R, Pedersen MG. Is bursting more effective than spiking in evoking pituitary hormone secretion? A spatiotemporal simulation study of calcium and granule dynamics. Am J Physiol Endocrinol Metab 2016; 310:E515-25. [PMID: 26786781 DOI: 10.1152/ajpendo.00500.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
Endocrine cells of the pituitary gland secrete a number of hormones, and the amount of hormone released by a cell is controlled in large part by the cell's electrical activity and subsequent Ca(2+) influx. Typical electrical behaviors of pituitary cells include continuous spiking and so-called pseudo-plateau bursting. It has been shown that the amplitude of Ca(2+) fluctuations is greater in bursting cells, leading to the hypothesis that bursting cells release more hormone than spiking cells. In this work, we apply computer simulations to test this hypothesis. We use experimental recordings of electrical activity as input to mathematical models of Ca(2+) channel activity, buffered Ca(2+) diffusion, and Ca(2+)-driven exocytosis. To compare the efficacy of spiking and bursting on the same cell, we pharmacologically block the large-conductance potassium (BK) current from a bursting cell or add a BK current to a spiking cell via dynamic clamp. We find that bursting is generally at least as effective as spiking at evoking hormone release and is often considerably more effective, even when normalizing to Ca(2+) influx. Our hybrid experimental/modeling approach confirms that adding a BK-type K(+) current, which is typically associated with decreased cell activity and reduced secretion, can actually produce an increase in hormone secretion, as suggested earlier.
Collapse
Affiliation(s)
- Alessia Tagliavini
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Joël Tabak
- Department of Mathematics and Program in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida; and Exeter University Medical School, Biomedical Neuroscience, Exeter, United Kingdom
| | - Richard Bertram
- Department of Mathematics and Program in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida; and
| | | |
Collapse
|
4
|
Komai AM, Brännmark C, Musovic S, Olofsson CS. PKA-independent cAMP stimulation of white adipocyte exocytosis and adipokine secretion: modulations by Ca2+ and ATP. J Physiol 2014; 592:5169-86. [PMID: 25194045 DOI: 10.1113/jphysiol.2014.280388] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We examined the effects of cAMP, Ca(2+) and ATP on exocytosis and adipokine release in white adipocytes by a combination of membrane capacitance patch-clamp recordings and biochemical measurements of adipokine secretion. 3T3-L1 adipocyte exocytosis proceeded even in the complete absence of intracellular Ca(2+) ([Ca(2+)]i; buffered with BAPTA) provided cAMP (0.1 mm) was included in the intracellular (pipette-filling) solution. Exocytosis typically plateaued within ∼10 min, probably signifying depletion of a releasable vesicle pool. Inclusion of 3 mm ATP in combination with elevation of [Ca(2+)]i to ≥700 nm augmented the rate of cAMP-evoked exocytosis ∼2-fold and exocytosis proceeded for longer periods (≥20 min) than with cAMP alone. Exocytosis was stimulated to a similar extent upon substitution of cAMP by the Epac (exchange proteins activated by cAMP) agonist 8-Br-2'-O-Me-cAMP (1 mm included in the pipette solution). Inhibition of protein kinase A (PKA) by addition of Rp-cAMPS (0.5 mm) to the cAMP-containing pipette solution was without effect. A combination of the adenylate cyclase activator forskolin (10 μm) and the phosphodiesterase inhibitor IBMX (200 μm; forsk-IBMX) augmented adiponectin secretion measured over 30 min 3-fold and 2-fold in 3T3-L1 and human subcutaneous adipocytes, respectively. This effect was unaltered by pre-loading of cells with the Ca(2+) chelator BAPTA-AM and 2-fold amplified upon inclusion of the Ca(2+) ionophore ionomycin (1 μm) in the extracellular solution. Adiponectin release was also stimulated by the membrane-permeable Epac agonist 8-Br-2'-O-Me-cAMP-AM but unaffected by inclusion of the membrane-permeable PKA inhibitor Rp-8-Br-cAMPS (200 μm). The adipokines leptin, resistin and apelin were present in low amounts in the incubation medium (1-6% of measured adiponectin). Adipsin was secreted in substantial quantities (50% of adiponectin concentration) but release of this adipokine was unaffected by forsk-IBMX. We propose that white adipocyte exocytosis is stimulated by cAMP/Epac-dependent but Ca(2+)- and PKA-independent release of vesicles residing in a readily releasable pool and that the release is augmented by a combination of Ca(2+) and ATP. We further suggest that secreted vesicles chiefly contain adiponectin.
Collapse
Affiliation(s)
- Ali M Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Cecilia Brännmark
- Discovery Sciences, AstraZeneca R&D, Pepparedsleden 1, SE43153, Mölndal, Sweden
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| |
Collapse
|
5
|
Cantero MDR, Cantiello HF. Calcium transport and local pool regulate polycystin-2 (TRPP2) function in human syncytiotrophoblast. Biophys J 2014; 105:365-75. [PMID: 23870258 DOI: 10.1016/j.bpj.2013.05.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 01/26/2023] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca(2+)-permeable, nonselective cation channel implicated in Ca(2+) transport and epithelial cell signaling. Although PC2 may contribute to Ca(2+) transport in human term placenta, the regulatory mechanisms associated with Ca(2+) handling in this tissue are largely unknown. In this work we assessed the regulation by Ca(2+) of PC2 channel function from a preparation of apical membranes of human syncytiotrophoblast (PC2hst) reconstituted in a lipid bilayer system. Addition of either EGTA or BAPTA to the cis hemi-chamber, representing the cytoplasmic domain of the channel, and lowering Ca(2+) to ∼0.6-0.8 nM, inhibited spontaneous PC2hst channel activity, with a time response dependent on the chelator tested. EGTA reduced PC2hst channel currents by 86%, with a t1/2 = 3.6 min, whereas BAPTA rapidly and completely (100%) eliminated channel activity with a t1/2 = 0.8 min. Subsequent titration with Ca(2+) reversed the inhibition, which followed a Hill-type function with apparent dissociation constants of 1-5 nM, and 4 Ca(2+) binding sites. The degree of inhibition by the cis Ca(2+) chelator largely depended on increasing trans Ca(2+). This was consistent with measurable Ca(2+) transport through the channel, feeding the regulatory sites in the cytoplasmic domain. Interestingly, the reconstituted in vitro translated PC2 (PC2iv) was completely insensitive to Ca(2+) regulation, suggesting that the regulatory sites are not intrinsic to the channel protein. Our findings demonstrate the presence of a Ca(2+) microdomain largely accessible through the channel that controls PC2 function in human syncytiotrophoblast of term placenta.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Cátedra de Biofísica, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Lueke K, Kaiser T, Svetlitchny A, Welzel O, Wenzel EM, Tyagarajan S, Kornhuber J, Groemer TW. Basic presynaptic functions in hippocampal neurons are not affected by acute or chronic lithium treatment. J Neural Transm (Vienna) 2013; 121:211-9. [DOI: 10.1007/s00702-013-1087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/27/2013] [Indexed: 01/27/2023]
|
7
|
Samson M, Jung D. Intracellular trafficking and fate of chimeric adenovirus 5/F35 in human B lymphocytes. J Gene Med 2012; 13:451-61. [PMID: 21766397 DOI: 10.1002/jgm.1588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Investigation of the molecular processes that control the development and function of lymphocytes is essential for our understanding of humoral immunity, as well as lymphocyte-associated pathogenesis. Adenovirus-mediated gene transfer provides a powerful tool for investigating these processes. However, we observed variation in transgene expression among normal human peripheral blood B lymphocytes from different donors and at distinct stages of differentiation. It is recognized that efficient gene transfer is highly dependent on the intracellular route by which the viruses travel within the host cell. Thus, we aimed to examine this aspect in the present study. METHODS We analyzed the binding, uptake, intracellular trafficking and fate of CY3-labelled Ad5/F35 vectors in lymphoid cell lines and primary B cells. Furthermore, we decreased protein synthesis levels and rapid endocytosis in a plasma cell line exhibiting a high level of protein synthesis activity and activated transcription and endocytosis in primary B cells, which are less active than plasma cells. RESULTS Major differences in intracellular trafficking pattern between B cells and plasma cell line U266 were identified that explain the observed divergence in transgene expression efficiency. Importantly, modification of the transcriptional or translational activity of U266 cells reverted the Ad5/F35 endocytic trafficking to that seen in B cells, with a loss of transgene expression, whereas activation of B cells with phorbol 12-myristate 13-acetate had the opposite effects. CONCLUSIONS Taken together, these results suggest that Ad5/F35 is more efficiently transduced in cells with a strong transcriptional activity as a result of differences in intracellular trafficking. This finding extends our current knowledge of the mechanisms of adenovirus-mediated gene transfer.
Collapse
|
8
|
Schwartz A, Ort T, Kajekar R, Wade PR, Hornby PJ. Electrical stimulation of the isolated rat intestine in the presence of nutrient stimulus enhances glucagon-like peptide-1 release. Physiol Meas 2010; 31:1147-59. [PMID: 20664162 DOI: 10.1088/0967-3334/31/9/006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The release of small intestinal hormones by constituents of ingested food, such as fatty acids, is integral to post-prandial responses that reduce food intake. Recent evidence suggests that small intestinal electrical stimulation reduces food intake, although the mechanism of action is debated. To test the hypothesis that intestinal stimulation directly alters hormone release locally we used isolated rat distal ileum and measured glucagon-like peptide-1 (GLP-1) released in the presence or absence of linoleic acid (LA) and electrical field stimulation (EFS). Intact segments were oriented longitudinally between bipolar stimulating electrodes in organ bath chambers containing modified Krebs-Ringers bicarbonate (KRB) buffer including protease inhibitors. Incubation in LA (3 mg ml(-1)) for 45 min increased GLP-1 concentration (21.9 +/- 2.6 pM versus KRB buffer alone 3.6 +/- 0.1 pM). Eleven electrical stimulation conditions were tested. In the presence of LA none of the stimulation conditions inhibited LA-evoked GLP-1 release, whereas two high frequency short pulse widths (14 V, 20 Hz, 5 ms and 14 V, 40 Hz, 5 ms) and one low frequency long pulse width (14 V, 0.4 Hz, 300 ms) EFS conditions enhanced LA-evoked GLP-1 release by >250%. These results are consistent with a local effect of intestinal electrical stimulation to enhance GLP-1 release in response to luminal nutrients in the intestines. Enhancing hormone release could improve the efficacy of intestinal electrical stimulation and provide a potential treatment for obesity and metabolic conditions.
Collapse
Affiliation(s)
- Ann Schwartz
- Immunology, Centocor Research & Development, Inc., Radnor, PA 19087, USA
| | | | | | | | | |
Collapse
|
9
|
Teka W, Tsaneva-Atanasova K, Bertram R, Tabak J. From plateau to pseudo-plateau bursting: making the transition. Bull Math Biol 2010; 73:1292-311. [PMID: 20658200 DOI: 10.1007/s11538-010-9559-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Bursting electrical activity is ubiquitous in excitable cells such as neurons and many endocrine cells. The technique of fast/slow analysis, which takes advantage of time scale differences, is typically used to analyze the dynamics of bursting in mathematical models. Two classes of bursting oscillations that have been identified with this technique, plateau and pseudo-plateau bursting, are often observed in neurons and endocrine cells, respectively. These two types of bursting have very different properties and likely serve different functions. This latter point is supported by the divergent expression of the bursting patterns into different cell types, and raises the question of whether it is even possible for a model for one type of cell to produce bursting of the type seen in the other type without large changes to the model. Using fast/slow analysis, we show here that this is possible, and we provide a procedure for achieving this transition. This suggests that the design principles for bursting in endocrine cells are just quantitative variations of those for bursting in neurons.
Collapse
Affiliation(s)
- Wondimu Teka
- Department of Mathematics, Florida State University, Tallahassee, USA
| | | | | | | |
Collapse
|
10
|
Modeling study of the effects of membrane surface charge on calcium microdomains and neurotransmitter release. Biophys J 2008; 95:2160-71. [PMID: 18502810 DOI: 10.1529/biophysj.107.124909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synchronous neurotransmitter release is mediated by the opening of voltage-gated Ca(2+) channels and the build-up of submembrane Ca(2+) microdomains. Previous models of Ca(2+) microdomains have neglected possible electrostatic interactions between Ca(2+) ions and negative surface charges on the inner leaflet of the plasma membrane. To address the effects of these interactions, we built a computational model of ion electrodiffusion described by the Nernst-Planck and Poisson equations. We found that inclusion of a negative surface charge significantly alters the spatial characteristics of Ca(2+) microdomains. Specifically, close to the membrane, Ca(2+) ions accumulate, as expected from the strong electrostatic attraction exerted on positively charged Ca(2+) ions. Farther away from the membrane, increasing the surface charge density results in a reduction of the Ca(2+) concentration because of the preferential spread of Ca(2+) ions along lateral directions. The model also predicts that the negative surface charge will decrease the spatial gradient of the Ca(2+) microdomain in the lateral direction, resulting in increased overlap of microdomains originating from different Ca(2+) channels. Finally, we found that surface charge increases the probability of vesicle release if the Ca(2+) sensor is located within the electrical double layer, whereas this probability is decreased if the Ca(2+) sensor lies at greater distances from the membrane. Our data suggest that membrane surface charges exert a significant influence on the profile of Ca(2+) microdomains, and should be taken into account in models of neurotransmitter release.
Collapse
|
11
|
García AG, García-De-Diego AM, Gandía L, Borges R, García-Sancho J. Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiol Rev 2006; 86:1093-131. [PMID: 17015485 DOI: 10.1152/physrev.00039.2005] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca2+concentration ([Ca2+]c) depends on at least four efficient regulatory systems: 1) plasmalemmal calcium channels, 2) endoplasmic reticulum, 3) mitochondria, and 4) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca2+]c. Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K+, acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca2+entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca2+(CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca2+that modulates catecholamine release. Targeted aequorins with different Ca2+affinities show that mitochondria undergo surprisingly rapid millimolar Ca2+transients, upon stimulation of chromaffin cells with ACh, high K+, or caffeine. Physiological stimuli generate [Ca2+]cmicrodomains in which the local subplasmalemmal [Ca2+]crises abruptly from 0.1 to ∼50 μM, triggering CICR, mitochondrial Ca2+uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca2+uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca2+redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca2+release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca2+]cthat regulate the early and late steps of exocytosis.
Collapse
Affiliation(s)
- Antonio G García
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Madrid, Spain.
| | | | | | | | | |
Collapse
|
12
|
Giancippoli A, Novara M, de Luca A, Baldelli P, Marcantoni A, Carbone E, Carabelli V. Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J 2006; 90:1830-41. [PMID: 16361341 PMCID: PMC1367332 DOI: 10.1529/biophysj.105.071647] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/29/2005] [Indexed: 11/18/2022] Open
Abstract
We have studied the functional role of CaV3 channels in triggering fast exocytosis in rat chromaffin cells (RCCs). CaV3 T-type channels were selectively recruited by chronic exposures to cAMP (3 days) via an exchange protein directly activated by cAMP (Epac)-mediated pathway. Here we show that cAMP-treated cells had increased secretory responses, which could be evoked even at very low depolarizations (-50, -40 mV). Potentiation of exocytosis in cAMP-treated cells did not occur in the presence of 50 microM Ni2+, which selectively blocks T-type currents in RCCs. This suggests that the "low-threshold exocytosis" induced by cAMP is due to increased Ca2+ influx through cAMP-recruited T-type channels, rather than to an enhanced secretion downstream of Ca2+ entry, as previously reported for short-term cAMP treatments (20 min). Newly recruited T-type channels increase the fast secretory response at low voltages without altering the size of the immediately releasable pool. They also preserve the Ca2+ dependence of exocytosis, the initial speed of vesicle depletion, and the mean quantal size of single secretory events. All this indicates that cAMP-recruited CaV3 channels enhance the secretory activity of RCCs at low voltages by coupling to the secretory apparatus with a Ca2+ efficacy similar to that of already existing high-threshold Ca2+ channels. Finally, using RT-PCRs we found that the fast inactivating low-threshold Ca2+ current component recruited by cAMP is selectively associated to the alpha1H (CaV3.2) channel isoform.
Collapse
Affiliation(s)
- A Giancippoli
- Department of Neuroscience, NIS Centre of Excellence, CNISM Research Unit, 10125 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels.
Collapse
Affiliation(s)
- Ruth Heidelberger
- Department of Neurobiology & Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences and Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Witkovsky
- Department of Ophthalmology and Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA
- *Corresponding author. Tel: +1 212 263 6488; fax: +1 212 263 7602. E-mail address: (P. Witkovsky)
| |
Collapse
|
14
|
Korteweg N, Maia AS, Thompson B, Roubos EW, Burbach JPH, Verhage M. The role of Munc18-1 in docking and exocytosis of peptide hormone vesicles in the anterior pituitary. Biol Cell 2005; 97:445-55. [PMID: 15898951 DOI: 10.1042/bc20040101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Many neurons secrete classical transmitters from synaptic vesicles as well as peptide transmitters from LDCVs (large dense-core vesicles). Little is known about the mechanistic differences between these two secretory pathways. The soluble protein Munc18-1 is essential for synaptic vesicle secretion [Verhage, Maia, Plomp, Brussaard, Heeroma, Vermeer, Toonen, Hammer, van den Berg, Missler, et al. (2000) Science 287, 864-869.]. RESULTS In the present study, we tested if Munc18 genes are also involved in peptidergic secretion from LDCVs using the anterior pituitary as a model system. We show that Munc18-1 is the dominant isoform expressed in the anterior pituitary. In Munc18-1 null mutant mice, the anterior pituitary developed normally and the five major endocrine cell types had a normal distribution. However, circulating peptide hormone levels were decreased by up to 50-fold in the null mutant, whereas the intracellular levels were significantly higher than that in controls. Ultrastructural analysis using the tannic acid method revealed striking differences in the distribution of secretory vesicles: (i) the number of exocytotic figures was mostly decreased in the null mutants and (ii) the LDCVs accumulated near but not at their target membrane. This is in contrast with the apparently normal distribution of synaptic vesicles in developing synapses in the null mutant (Verhage et al., 2000). CONCLUSIONS We conclude that Munc18-1 is involved in the secretion of peptide hormones and in the docking of LDCVs. These results unmask an apparent mechanistic difference between LDCVs and synaptic vesicles.
Collapse
Affiliation(s)
- Niki Korteweg
- Molecular Neuroscience, Rudolf Magnus Institute, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Sedej S, Rose T, Rupnik M. cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices. J Physiol 2005; 567:799-813. [PMID: 15994184 PMCID: PMC1474225 DOI: 10.1113/jphysiol.2005.090381] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyclic AMP regulates Ca(2+)-dependent exocytosis through a classical protein kinase A (PKA)-dependent and an alternative cAMP-guanine nucleotide exchange factor (GEF)/Epac-dependent pathway in many secretory cells. Although increased cAMP is believed to double secretory output in isolated pituitary cells, the direct target(s) for cAMP action and a detailed and high-time resolved analysis of the effect of intracellular cAMP levels on the secretory activity in melanotrophs are still lacking. We investigated the effect of 200 microM cAMP on the kinetics of secretory vesicle depletion in mouse melanotrophs from fresh pituitary tissue slices. The whole-cell patch-clamp technique was used to depolarize melanotrophs and increase the cytosolic Ca(2+) concentration ([Ca(2+)](i)). Exogenous cAMP elicited an about twofold increase in cumulative membrane capacitance change and approximately 34% increase of high-voltage activated Ca(2+) channel amplitude. cAMP-dependent mechanisms did not affect [Ca(2+)](i), since the application of forskolin failed to change [Ca(2+)](i) in melanotrophs, a phenomenon readily observed in anterior lobe. Depolarization-induced secretion resulted in two distinct kinetic components: a linear and a threshold component, both stimulated by cAMP. The linear component (ATP-independent) probably represented the exocytosis of the release-ready vesicles, whereas the threshold component was assigned to the exocytosis of secretory vesicles that required ATP-dependent reaction(s) and > 800 nM [Ca(2+)](i). The linear component was modulated by 8-pCPT-2Me-cAMP (Epac agonist), while either H-89 (PKA inhibitor) or Rp-cAMPS (the competitive antagonist of cAMP binding to PKA) completely prevented the action of cAMP on the threshold component. In line with this, 6-Phe-cAMP, (PKA agonist), increased the threshold component. From our study, we suggest that the stimulation of cAMP production by application of oestrogen, as found in pregnant mice, increases the efficacy of the hormonal output through both PKA and cAMP-GEFII/Epac2-dependent mechanisms.
Collapse
Affiliation(s)
- Simon Sedej
- European Neuroscience Institute--Göttingen, Germany
| | | | | |
Collapse
|
16
|
Stojilkovic SS, Zemkova H, Van Goor F. Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends Endocrinol Metab 2005; 16:152-9. [PMID: 15860411 DOI: 10.1016/j.tem.2005.03.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All secretory pituitary cells exhibit spontaneous and extracellular Ca2+-dependent electrical activity. Somatotrophs and lactotrophs fire plateau-bursting action potentials, which generate Ca2+ signals of sufficient amplitude to trigger hormone release. Gonadotrophs also fire action potentials spontaneously, but as single, high-amplitude spikes with limited ability to promote Ca2+ influx and secretion. However, Ca2+ mobilization in gonadotrophs transforms single spiking into plateau-bursting-type electrical activity and triggers secretion. Patch clamp analysis revealed that somatotrophs and lactotrophs, but not gonadotrophs, express BK (big)-type Ca2+-controlled K+ channels, activation of which is closely associated with voltage-gated Ca2+ influx. Conversely, pituitary gonadotrophs express SK (small)-type Ca2+-activated K+ channels that are colocalized with intracellular Ca2+ release sites. Activation of both channels is crucial for plateau-bursting-type rhythmic electrical activity and secretion.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- Section on Cellular Signaling, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, MD 20892-4510, USA.
| | | | | |
Collapse
|
17
|
de Kock CPJ, Burnashev N, Lodder JC, Mansvelder HD, Brussaard AB. NMDA receptors induce somatodendritic secretion in hypothalamic neurones of lactating female rats. J Physiol 2004; 561:53-64. [PMID: 15459239 PMCID: PMC1665332 DOI: 10.1113/jphysiol.2004.069005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many neurones in the mammalian brain are known to release the content of their vesicles from somatodendritic locations. These vesicles usually contain retrograde messengers that modulate network properties. The back-propagating action potential is thought to be the principal physiological stimulus that evokes somatodendritic release. In contrast, here we show that calcium influx through NMDA receptor (NMDAR) channels, in the absence of postsynaptic cell firing, is also able to induce vesicle fusion from non-synaptic sites in nucleated outside-out patches of dorsomedial supraoptic nucleus (SON) neurones of adult female rats, in particular during their reproductive stages. The physiological significance of this mechanism was characterized in intact brain slices, where NMDAR-mediated release of oxytocin was shown to retrogradely inhibit presynaptic GABA release, in the absence of postsynaptic cell firing. This implies that glutamatergic synaptic input in itself is sufficient to elicit the release of oxytocin, which in turn acts as a retrograde messenger leading to the depression of nearby GABA synapses. In addition, we found that during lactation, when oxytocin demand is high, NMDA-induced oxytocin release is up-regulated compared to that in non-reproductive rats. Thus, in the hypothalamus, local signalling back and forth between pre- and postsynaptic compartments and between different synapses may occur independently of the firing activity of the postsynaptic neurone.
Collapse
Affiliation(s)
- Christiaan P J de Kock
- Department of Experimental Neurophysiology, CNCR, Vrije Universiteit Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Belmeguenai A, Desrues L, Leprince J, Vaudry H, Tonon MC, Louiset E. Neurotensin stimulates both calcium mobilization from inositol trisphosphate-sensitive intracellular stores and calcium influx through membrane channels in frog pituitary melanotrophs. Endocrinology 2003; 144:5556-67. [PMID: 14500581 DOI: 10.1210/en.2003-0176] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurotensin (NT) is a potent stimulator of electrical and secretory activities in frog pituitary melanotrophs. The aim of the present study was to characterize the transduction pathways associated with activation of NT receptors in frog melanotrophs. Application of synthetic frog NT (fNT) increased the cytosolic calcium concentration ([Ca2+]c) and stimulated the formation of inositol trisphosphate (IP3). The phospholipase C inhibitor U-73122 blocked the electrophysiological and secretory effects of fNT. Intracellular application of the IP3 receptor antagonist heparin abolished fNT-induced electrical activity. Suppression of Ca2+ in the incubation medium markedly reduced the effect of NT on [Ca2+]c, firing rate, and alpha-melanocyte-stimulating hormone (alphaMSH) secretion. Similarly, the inhibitor of IP3-induced Ca2+ release and store-operated Ca2+ channels, 2-Aminoethoxydiphenylborane, and the nonselective Ca2+ channel blockers GdCl3 and NiCl2, attenuated the [Ca2+]c increase and the electrical and secretory responses evoked by fNT. Coapplication of the L- and N-type Ca2+ channel blockers nifedipine and omega-CgTx GVIA reduced the effects of fNT on action potential discharge, [Ca2+]c increase, and alphaMSH release. The protein kinase C (PKC) inhibitors, PKC-(19-31) and chelerythrine, reduced the electrophysiological and secretory responses induced by iterative applications of fNT. Collectively, these results demonstrate that, in frog melanotrophs, NT stimulates the phospholipase C/PKC pathway and increases [Ca2+]c. Both Ca2+ release from intracellular stores and Ca2+ influx through L- and N-type Ca2+ channels are involved in fNT-induced alphaMSH secretion. In addition, the present data indicate that PKC plays a crucial role in maintenance of the responsiveness of melanotrophs to NT.
Collapse
Affiliation(s)
- Amor Belmeguenai
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, Institut National de la Santé et de la Recherche Médicale, Unité-413, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
19
|
Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MBA. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003; 195:461-9. [PMID: 12704656 DOI: 10.1002/jcp.10265] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secretory membrane activities of two rat prostate cancer cell lines of markedly different metastatic potential, and corresponding electrophysiological characteristics, were studied in a comparative approach. In particular, voltage-gated Na(+) channels (VGSCs) were expressed in the strongly metastatic MAT-LyLu but not in the closely related, but weakly metastatic, AT-2 cells. Uptake and release of the non-cytotoxic marker horseradish peroxidase (HRP) were used as indices of general endocytotic and exocytotic membrane activity, respectively. The amount of tracer present in a given experimental condition was quantified by light microscopic digital imaging. The uptake of HRP was an active process, abolished completely by incubating the cells at low temperature (5 degrees C) and suppressed by disrupting the cytoskeleton. Interestingly, the extent of HRP uptake into the strongly metastatic MAT-LyLu cells was almost twice that into the weakly metastatic AT-2 cells. Vesicular uptake of HRP occurred in a fast followed by a slow phase; these appeared to correspond to cytoplasmic and perinuclear pools, respectively. Importantly, the overall quantitative difference in the uptake disappeared in the presence of 1 microM tetrodotoxin which significantly reduced the uptake of HRP into the MAT-LyLu cells. There was no effect on the AT-2 cells, consistent with functional VGSC expression occurring selectively in the former. A similar effect was observed in Na(+)-free medium. The uptake was partially dependent upon extracellular Ca(2+) but was not affected by raising the extracellular K(+) concentration. We suggest that functional VGSC expression could potentiate prostate cancer cells' metastatic ability by enhancing their secretory membrane activity.
Collapse
Affiliation(s)
- M E Mycielska
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology, and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
20
|
de Kock CPJ, Wierda KDB, Bosman LWJ, Min R, Koksma JJ, Mansvelder HD, Verhage M, Brussaard AB. Somatodendritic secretion in oxytocin neurons is upregulated during the female reproductive cycle. J Neurosci 2003; 23:2726-34. [PMID: 12684458 PMCID: PMC6742088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
During the female reproductive cycle, hypothalamic oxytocin (OT) neurons undergo sharp changes in excitability. In lactating mammals, bursts of electrical activity of OT neurons result in the release of large amounts of OT in the bloodstream, which causes milk ejection. One hypothesis is that OT neurons regulate their own firing activity and that of nearby OT neurons by somatodendritic release of OT. In this study, we show that OT neuron activity strongly reduces inhibitory synaptic transmission to these neurons. This effect is blocked by antagonists of both adenosine and OT receptors and is mimicked by OT application. Inhibition of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation by tetanus toxin completely blocked the stimulation-induced reduction in inhibitory input, as did the calcium chelator BAPTA. During lactation, the readily releasable pool of secretory vesicles in OT cell bodies was doubled, and calcium currents were upregulated. This resulted in an increased inhibition of GABAergic synaptic transmission by somatodendritic release during lactation compared with the adult virgin stage. These results demonstrate that somatodendritic release is augmented during lactation, which is a novel form of plasticity to change the strength of synaptic transmission.
Collapse
Affiliation(s)
- Christiaan P J de Kock
- Department of Experimental Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Artalejo CR, Elhamdani A, Palfrey HC. Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci U S A 2002; 99:6358-63. [PMID: 11959911 PMCID: PMC122953 DOI: 10.1073/pnas.082658499] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient stimulation of secretion in calf chromaffin cells is invariably followed by rapid endocytosis (RE), a clathrin- and K(+)-independent process with a half time of several seconds. Here we show that when exocytosis is triggered in a more sustained manner, a much slower form of endocytosis (SE) replaces RE. SE is complete within 10 min and is abolished when anticlathrin antibodies are introduced into the cell or when intracellular K(+) is removed. RE, but not SE, is blocked by intracellular administration of antidynamin-1 antibodies; the inverse specificity was found for antidynamin-2 antibodies. Replacement of extracellular Ca(2+) by Ba(2+) or Sr(2+) completely blocked RE but had little effect on SE. Thus chromaffin cells exhibit two kinetically and mechanistically distinct forms of endocytosis that are coupled to different extents of exocytosis and are mediated by different isoforms of dynamin. We surmise that RE is associated with the transient fusion ("kiss-and-run") mechanism of transmitter release and is the prevalent means of vesicle recapture and recycling under normal physiological conditions, whereas the clathrin-based SE mechanism comes into play only at higher levels of stimulation and may be associated with complete fusion of vesicles with the plasma membrane.
Collapse
Affiliation(s)
- Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
22
|
Mansvelder HD, Lodder JC, Sons MS, Kits KS. Dopamine modulates exocytosis independent of Ca(2+) entry in melanotropic cells. J Neurophysiol 2002; 87:793-801. [PMID: 11826047 DOI: 10.1152/jn.00468.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine is a known inhibitor of pituitary melanotropic cells. It reduces Ca(2+) influx by hyperpolarizing the cell membrane and by modulating high- and low-voltage-activated (HVA and LVA) Ca(2+) channels. As a result, dopamine reduces the hormonal output of the cell. However, it is unknown how dopamine affects each of the four different HVA Ca(2+) channel types individually. Moreover, it is unknown whether dopamine interacts with exocytosis independent of Ca(2+) channels. Here we show that dopamine differentially modulates the HVA Ca(2+) channels and that it affects the stimulus-secretion coupling through a direct effect on the exocytotic machinery. Sustained L- and P-type Ba(2+) currents are reduced in amplitude and inactivating N- and Q-type currents acquire different activation and inactivation kinetics in the presence of dopamine. The Q-type current shows slow activation, which is a hallmark for direct G-protein modulation. We used membrane capacitance measurements to monitor exocytosis. Surprisingly, we find that the amount of exocytosis per step depolarization is not diminished by dopamine despite the reduction in Ca(2+) current. To test whether dopamine affects the release machinery downstream of Ca(2+) entry, we stimulated exocytosis by dialyzing cells with buffered high-Ca(2+) solutions. Dopamine increased the amount and the rate of exocytosis. In the first 90 s, the rate of secretion was increased two- to threefold, but it was normalized again at 180 s, suggesting that predominantly vesicles that fuse early in the exocytotic phase are modulated by dopamine. Thus while Ca(2+) channels are inhibited by dopamine, the exocytotic machinery downstream of Ca(2+) influx is sensitized. As a result, release is more effectively stimulated by Ca(2+) influx during dopamine inhibition.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Research Institute Neurosciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Elhamdani A, Palfrey HC, Artalejo CR. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells. Neuron 2001; 31:819-30. [PMID: 11567619 DOI: 10.1016/s0896-6273(01)00418-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To what extent the quantal hypothesis of transmitter release applies to dense-core vesicle (DCV) secretion is unknown. We determined the characteristics of individual secretory events in calf chromaffin cells using catecholamine amperometry combined with different patterns of stimulation. Raising the frequency of action potential trains from 0.25-10 Hz in 2 mM [Ca(2+)]o or [Ca(2+)]o from 0.25-7 mM at 7 Hz elevated the amount released per event (quantal size). With increased stimulation, quantal size rose continuously, not abruptly, suggesting that release efficiency from a single population of DCVs rather than recruitment of different-sized vesicles contributed to the effect. These results suggest that catecholamine secretion does not conform to the quantal model. Inhibition of rapid endocytosis damped secretion in successive episodes, implying an essential role for this process in the recycling of vesicles needed for continuous secretion.
Collapse
Affiliation(s)
- A Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
24
|
Van Goor F, Zivadinovic D, Martinez-Fuentes AJ, Stojilkovic SS. Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. J Biol Chem 2001; 276:33840-6. [PMID: 11457854 DOI: 10.1074/jbc.m105386200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In excitable cells, voltage-gated calcium influx provides an effective mechanism for the activation of exocytosis. In this study, we demonstrate that although rat anterior pituitary lactotrophs, somatotrophs, and gonadotrophs exhibited spontaneous and extracellular calcium-dependent electrical activity, voltage-gated calcium influx triggered secretion only in lactotrophs and somatotrophs. The lack of action potential-driven secretion in gonadotrophs was not due to the proportion of spontaneously firing cells or spike frequency. Gonadotrophs exhibited calcium signals during prolonged depolarization comparable with signals observed in somatotrophs and lactotrophs. The secretory vesicles in all three cell types also had a similar sensitivity to voltage-gated calcium influx. However, the pattern of action potential calcium influx differed among three cell types. Spontaneous activity in gonadotrophs was characterized by high amplitude, sharp spikes that had a limited capacity to promote calcium influx, whereas lactotrophs and somatotrophs fired plateau-bursting action potentials that generated high amplitude calcium signals. Furthermore, a shift in the pattern of firing from sharp spikes to plateau-like spikes in gonadotrophs triggered luteinizing hormone secretion. These results indicate that the cell type-specific action potential secretion coupling in pituitary cells is determined by the capacity of their plasma membrane oscillator to generate threshold calcium signals.
Collapse
Affiliation(s)
- F Van Goor
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
25
|
Dinkelacker V, Voets T, Neher E, Moser T. The readily releasable pool of vesicles in chromaffin cells is replenished in a temperature-dependent manner and transiently overfills at 37 degrees C. J Neurosci 2000; 20:8377-83. [PMID: 11069944 PMCID: PMC6773192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Maturation of exocytic vesicles to the release-ready state is regulated by several factors, including intracellular calcium concentration ([Ca(2+)](int)) and the state of protein phosphorylation. Here we investigated the effects of temperature on the recovery from depletion of the readily releasable pool (RRP) of vesicles in adrenal chromaffin cells. Exocytosis and [Ca(2+)](int) were monitored by combined membrane capacitance and fura-2 measurements. At higher temperatures, a faster pool refilling and a larger RRP size were observed. The time constants of the recovery from depletion ranged from 3.6 to 1.1 sec (22 and 37 degrees C, respectively) yielding a Q(10) of 2.3. The changes of the Ca(2+) signal between the different temperatures could not account for the differences in recovery kinetics. At 32 and 37 degrees C, we observed a transient overfilling of the RRP after pool depletion, which stands in clear contrast to the sustained secretory depression seen at lower temperatures. The overshoot in RRP size was very prominent in cells with lower basal [Ca(2+)](int), hence with a large difference between prestimulus and poststimulus [Ca(2+)](int). In cells with higher basal [Ca(2+)](int), the pool was larger under steady-state conditions but showed less overfilling on stimulation. We conclude that vesicle maturation is markedly accelerated at physiological temperature, thus allowing for a rapid adaptation of the pool size to the relatively short-lived Ca(2+) transient.
Collapse
Affiliation(s)
- V Dinkelacker
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
26
|
Brezina V, Church PJ, Weiss KR. Temporal pattern dependence of neuronal peptide transmitter release: models and experiments. J Neurosci 2000; 20:6760-72. [PMID: 10995819 PMCID: PMC6772811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In this paper we construct, on the basis of existing experimental data, a mathematical model of firing-elicited release of peptide transmitters from motor neuron B15 in the accessory radula closer neuromuscular system of Aplysia. The model consists of a slow "mobilizing" reaction and the fast release reaction itself. Experimentally, however, it was possible to measure only the mean, heavily averaged release, lacking fast kinetic information. Considered in the conventional way, the data were insufficient to completely specify the details of the model, in particular the relative properties of the slow and the unobservable fast reaction. We illustrate here, with our model and with additional experiments, how to approach such a problem by considering another dimension of release, namely its pattern dependence. The mean release is sensitive to the temporal pattern of firing, even to pattern on time scales much faster than the time scale on which the release is averaged. The mean release varies with the time scale and magnitude of the pattern, relative to the time scale and nonlinearity of the release reactions with which the pattern interacts. The type and magnitude of pattern dependence, especially when correlated systematically over a range of patterns, can therefore yield information about the properties of the release reactions. Thus, temporal pattern can be used as a probe of the release process, even of its fast, directly unobservable components. More generally, the analysis provides insights into the possible ways in which such pattern dependence, widespread especially in neuropeptide- and hormone-releasing systems, might arise from the properties of the underlying cellular reactions.
Collapse
Affiliation(s)
- V Brezina
- Department of Physiology and Biophysics and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | |
Collapse
|
27
|
Kits KS, Mansvelder HD. Regulation of exocytosis in neuroendocrine cells: spatial organization of channels and vesicles, stimulus-secretion coupling, calcium buffers and modulation. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:78-94. [PMID: 10967354 DOI: 10.1016/s0165-0173(00)00023-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuroendocrine cells display a similar calcium dependence of release as synapses but a strongly different organization of channels and vesicles. Biophysical and biochemical properties of large dense core vesicle release in neuroendocrine cells suggest that vesicles and channels are dissociated by a distance of 100-300 nm. This distinctive organization relates to the sensitivity of the release process to mobile calcium buffers, the resulting relationship between calcium influx and release and the modulatory mechanisms regulating the efficiency of excitation-release coupling. At distances of 100-300 nm, calcium buffers determine the calcium concentration close to the vesicle. Notably, the concentration and diffusion rate of mobile buffers affect the efficacy of release, but local saturation of buffers, possibly enhanced by diffusion barriers, may limit their effects. Buffer conditions may result in a linear relationship between calcium influx and exocytosis, in spite of the third or fourth power relation between intracellular calcium concentration and release. Modulation of excitation-secretion coupling not only concerns the calcium channels, but also the secretory process. Transmitter regulation mediated by cAMP and PKA, as well as use-dependent regulation involving calcium, primarily stimulates filling of the releasable pool. In addition, direct effects of cAMP on the probability of release have been reported. One mechanism to achieve increased release probability is to decrease the distance between channels and vesicles. GTP may stimulate release independently from calcium. Thus, while in most cases primary inputs triggering these pathways await identification, it is evident that large dense core vesicle release is a highly controlled and flexible process.
Collapse
Affiliation(s)
- K S Kits
- Department of Neurophysiology, Research Institute for Neurosciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Mansvelder HD, Kits KS. All classes of calcium channel couple with equal efficiency to exocytosis in rat melanotropes, inducing linear stimulus-secretion coupling. J Physiol 2000; 526 Pt 2:327-39. [PMID: 10896721 PMCID: PMC2270011 DOI: 10.1111/j.1469-7793.2000.t01-1-00327.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The contribution of low voltage-activated (LVA) T-type Ca2+ channels and four different types of high voltage-activated (HVA) Ca2+ channel to exocytosis, and the relationship between calcium influx and exocytosis during action potentials (APs) were studied in pituitary melanotropes. 2. Selective HVA Ca2+ channel blockers reduced exocytosis, monitored by membrane capacitance measurements, proportional to the reduction in Ca2+ influx. The efficacy of Ca2+ in stimulating exocytosis did not change in the presence of the Ca2+ channel blockers, indicating that all HVA Ca2+ channels act together in stimulating exocytosis. 3. The relationship between Ca2+ influx and exocytosis during the AP was examined using APs recorded from spontaneously active melanotropes as command templates under voltage clamp. Under voltage clamp, multiphasic Ca2+ currents were activated over the entire duration of the APs, i.e. during the rising phase as well as the plateau phase. The maximum amplitude of the Ca2+ current coincided with the peak of the AP. 4. The relationship between Ca2+ entry and exocytosis was linear for the different phases of the AP. Also, the influx of Ca2+ through LVA T-type channels stimulated exocytosis with the same efficacy as through the HVA channels. 5. APs of increasing duration ( approximately 50 to approximately 300 ms) evoked increasing amounts of exocytosis. The number of entering Ca2+ ions and the capacitance change were linearly related to AP duration, resulting in a fixed relationship between Ca2+ entry and exocytosis. 6. The results show that Ca2+ ions, entering a melanotrope, couple with equal strength to exocytosis regardless of the channel type involved. We suggest that the linear relationship between Ca2+ entry and secretion observed under physiological conditions (during APs), results from the equal strength with which LVA and HVA channels in melanotropes couple to exocytosis. This guarantees that secretion takes place over the entire duration of the AP.
Collapse
Affiliation(s)
- H D Mansvelder
- Research Institute of Neurosciences, Department of Neurophysiology, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1087 HV Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Rupnik M, Kreft M, Sikdar SK, Grilc S, Romih R, Zupancic G, Martin TF, Zorec R. Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc Natl Acad Sci U S A 2000; 97:5627-32. [PMID: 10792045 PMCID: PMC25879 DOI: 10.1073/pnas.090359097] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca(2+)-dependent activator protein for secretion), a protein required for Ca(2+)-dependent exocytosis of dense-core vesicles, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. Flash photolysis of caged Ca(2+) elicited biphasic capacitance increases consisting of rapid and slow components with distinct Ca(2+) dependencies. A threshold of approximately 10 microM Ca(2+) was required to trigger the slow component, while the rapid capacitance increase was recorded already at a intracellular Ca(2+) activity < 10 microM. Both kinetic membrane capacitance components were abolished by botulinum neurotoxin B or E treatment, suggesting involvement of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent vesicle fusion. The rapid but not the slow component was inhibited by CAPS antibody. These results were further clarified by immunocytochemical studies that revealed that CAPS was present on only a subset of dense-core vesicles. Overall, the results indicate that dense-core vesicle exocytosis in melanotrophs occurs by two parallel pathways. The faster pathway exhibits high sensitivity to Ca(2+) and requires the presence of CAPS, which appears to act at a late stage in the secretory pathway.
Collapse
Affiliation(s)
- M Rupnik
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical School, Ljubljana, Slovenia SI-1001
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Elhamdani A, Brown ME, Artalejo CR, Palfrey HC. Enhancement of the dense-core vesicle secretory cycle by glucocorticoid differentiation of PC12 cells: characteristics of rapid exocytosis and endocytosis. J Neurosci 2000; 20:2495-503. [PMID: 10729329 PMCID: PMC6772253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The secretory cycle of dense-core vesicles (DCVs) in physiologically stimulated patch-clamped PC12 cells was analyzed using both amperometry and capacitance measurements. Untreated cells had low or undetectable Ca currents and sparse secretory responses to short depolarizations. Dexamethasone (5 microM) treatment for 5-7 d tripled Ca current magnitude and dramatically increased quantal secretion in response to depolarization with action potentials. Such cells expressed L-, N-, and P-type Ca channels, and depolarization evoked rapid catecholamine secretion recorded as amperometric spikes; the average latency was approximately 50 msec. These spikes were much smaller and shorter than those of primary adrenal chromaffin cells, reflecting the smaller size of DCVs in PC12 cells. Depolarizing pulse trains also elicited a rapid increase in membrane capacitance corresponding to exocytosis in differentiated but not in naïve cells. On termination of stimulation, membrane capacitance declined within 20 sec to baseline indicative of rapid endocytosis (RE). RE did not take place when secretion was stimulated in the presence of Ba or Sr, indicating that RE is Ca-specific. RE was blocked when either anti-dynamin antibodies or the pleckstrin homology domain of dynamin-1 was loaded into the cell via the patch pipette. These studies indicate that neuroendocrine differentiation of PC12 cells with glucocorticoids enhances the development of the excitable membrane and increases the coupling between Ca channels and vesicle release sites, leading to rapid exocytosis and endocytosis. Slow catecholamine secretion in undifferentiated cells may be caused in part by a lack of localized secretory machinery rather than being an intrinsic property of dense-core vesicles.
Collapse
Affiliation(s)
- A Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
31
|
Neale EA, Bowers LM, Jia M, Bateman KE, Williamson LC. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol 1999; 147:1249-60. [PMID: 10601338 PMCID: PMC2168097 DOI: 10.1083/jcb.147.6.1249] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.
Collapse
Affiliation(s)
- E A Neale
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.
Collapse
Affiliation(s)
- M A Cousin
- Cell Signalling Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
33
|
Vogel SS, Smith RM, Baibakov B, Ikebuchi Y, Lambert NA. Calcium influx is required for endocytotic membrane retrieval. Proc Natl Acad Sci U S A 1999; 96:5019-24. [PMID: 10220411 PMCID: PMC21809 DOI: 10.1073/pnas.96.9.5019] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells use endocytotic membrane retrieval to compensate for excess surface membrane after exocytosis. Retrieval is thought to be calcium-dependent, but the source of this calcium is not known. We found that, in sea urchin eggs, endocytotic membrane retrieval required extracellular calcium. Inhibitors of P-type calcium channels-cadmium, omega-conotoxin MVIIC, omega-agatoxin IVA, and omega-agatoxin TK-blocked membrane retrieval; selective inhibitors of N-type and L-type channels did not. Treatment with calcium ionophores overcame agatoxin inhibition in a calcium-dependent manner. Cadmium blocked membrane retrieval when applied during the first 5 minutes after fertilization, the period when the membrane potential is depolarized. We conclude that calcium influx through omega-agatoxin-sensitive channels plays a key role in signaling for endocytotic membrane retrieval.
Collapse
Affiliation(s)
- S S Vogel
- Institute of Molecular Medicine and Genetics, Department of Medicine, Veterans Affairs Medical Center, Medical College of Georgia, 1120 15th Street CB 2803, Augusta, GA 30912-2630, USA.
| | | | | | | | | |
Collapse
|
34
|
Charles AC, Piros ET, Evans CJ, Hales TG. L-type Ca2+ channels and K+ channels specifically modulate the frequency and amplitude of spontaneous Ca2+ oscillations and have distinct roles in prolactin release in GH3 cells. J Biol Chem 1999; 274:7508-15. [PMID: 10066818 DOI: 10.1074/jbc.274.11.7508] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GH3 cells showed spontaneous rhythmic oscillations in intracellular calcium concentration ([Ca2+]i) and spontaneous prolactin release. The L-type Ca2+ channel inhibitor nimodipine reduced the frequency of Ca2+ oscillations at lower concentrations (100nM-1 microM), whereas at higher concentrations (10 microM), it completely abolished them. Ca2+ oscillations persisted following exposure to thapsigargin, indicating that inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores were not required for spontaneous activity. The K+ channel inhibitors Ba2+, Cs+, and tetraethylammonium (TEA) had distinct effects on different K+ currents, as well as on Ca2+ oscillations and prolactin release. Cs+ inhibited the inward rectifier K+ current (KIR) and increased the frequency of Ca2+ oscillations. TEA inhibited outward K+ currents activated at voltages above -40 mV (grouped within the category of Ca2+ and voltage-activated currents, KCa,V) and increased the amplitude of Ca2+ oscillations. Ba2+ inhibited both KIR and KCa,V and increased both the amplitude and the frequency of Ca2+ oscillations. Prolactin release was increased by Ba2+ and Cs+ but not by TEA. These results indicate that L-type Ca2+ channels and KIR channels modulate the frequency of Ca2+ oscillations and prolactin release, whereas TEA-sensitive KCa,V channels modulate the amplitude of Ca2+ oscillations without altering prolactin release. Differential regulation of these channels can produce frequency or amplitude modulation of calcium signaling that stimulates specific pituitary cell functions.
Collapse
Affiliation(s)
- A C Charles
- Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
35
|
Kits KS, de Vlieger TA, Kooi BW, Mansvelder HD. Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles. Biophys J 1999; 76:1693-705. [PMID: 10049349 PMCID: PMC1300145 DOI: 10.1016/s0006-3495(99)77328-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fast exocytosis in melanotropic cells, activated by calcium entry through voltage-gated calcium channels, is very sensitive to mobile calcium buffers (complete block at 800 microM ethylene glycol bis(beta-aminoethyl ether)-N,N,N'N'-tetraacetic acid (EGTA)). This indicates that calcium diffuses a substantial distance from the channel to the vesicle. Surprisingly, 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), having a similar KD for calcium as EGTA but a approximately 100 times faster binding rate, blocked exocytosis only twice as effectively as EGTA. Using computer simulations, we demonstrate that this result cannot be explained by free diffusion and buffer binding rates. We hypothesized that local saturation of calcium buffers is involved. A diffusion barrier for both calcium and buffer molecules, located 50-300 nm from the membrane and reducing diffusion 1000 to 10,000 times, generated similar calcium concentrations for specific concentrations of EGTA and BAPTA. With such barriers, calcium rise phase kinetics upon short step depolarizations (2-20 ms) were faster for EGTA than for BAPTA, implying that short depolarizations should allow exocytosis with 50 microM EGTA but not with 25 microM BAPTA. This prediction was confirmed experimentally with capacitance measurements. Coupling exocytosis to calcium dynamics in the model, we found that a barrier with a approximately 3000 times reduced diffusion at approximately 130 nm beneath the membrane best explains the experimentally observed effects of EGTA and BAPTA on block and kinetics of release.
Collapse
Affiliation(s)
- K S Kits
- Membrane Physiology Section, Research Institute Neurosciences, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The
| | | | | | | |
Collapse
|
36
|
Cousin MA, Robinson PJ. Ba2+ does not support synaptic vesicle retrieval in rat cerebrocortical synaptosomes. Neurosci Lett 1998; 253:1-4. [PMID: 9754790 DOI: 10.1016/s0304-3940(98)00610-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To investigate whether any specific requirement for extracellular Ca2+ exists in the control synaptic vesicle retrieval, we examined the ability of the divalent cation Ba2+ to substitute for Ca2+ in both vesicle exocytosis and endocytosis. Ba2+ stimulated glutamate release from rat cerebrocortical synaptosomes. Ba2+-evoked release was inhibited by bafilomycin A1, indicating release was via exocytosis of synaptic vesicles. However, Ba2+ did not stimulate vesicle retrieval, monitored by a FM2-10-based retrieval assay. Therefore synaptic vesicle retrieval in central nerve terminals has a specific requirement for extracellular Ca2+ and the Ca2+ receptor for retrieval has a different cation specificity to the Ca2+ receptor for exocytosis.
Collapse
Affiliation(s)
- M A Cousin
- Children's Medical Research Institute, Wentworthville, NSW, Australia.
| | | |
Collapse
|