1
|
Jones TA, Nemchek V, Fracassi M. Experience-driven competition in neural reorganization after stroke. J Physiol 2025; 603:737-757. [PMID: 39476290 PMCID: PMC11785499 DOI: 10.1113/jp285565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/27/2024] [Indexed: 02/01/2025] Open
Abstract
Behavioural experiences interact with regenerative responses to shape patterns of neural reorganization after stroke. This review is focused on the competitive nature of these behavioural experience effects. Interactions between learning-related plasticity and regenerative reactions have been found to underlie the establishment of new compensatory behaviours and the efficacy of motor rehabilitative training in rodent stroke models. Learning in intact brains depends on competitive and cooperative mechanisms of synaptic plasticity. Synapses are added in response to learning and selectively maintained and strengthened via activity-dependent competition. Long-term memories for experiences that occur closely in time can be weakened or enhanced by competitive or cooperative interactions in the time-dependent process of stabilizing synaptic changes. Rodent stroke model findings suggest that compensatory reliance on the non-paretic hand after stroke can shape and stabilize synaptic reorganization patterns in both hemispheres, to compete with the capacity for experiences of the paretic side to do so. However, the competitive edge of the non-paretic side can be countered by overlapping experiences of the paretic hand, and might even be shifted in a cooperative direction with skilfully coordinated bimanual experience. Advances in the basic understanding of learning-related synaptic competition are helping to inform the basis of experience-dependent variations in stroke outcome.
Collapse
Affiliation(s)
- Theresa A. Jones
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Victoria Nemchek
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| | - Michela Fracassi
- Psychology Department & Institute for Neuroscience, University of Texas at Austin
| |
Collapse
|
2
|
Cheng S, Liu Y, Gao Y, Dong Z. "As if it were my own hand": inducing the rubber hand illusion through virtual reality for motor imagery enhancement. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:7086-7096. [PMID: 39250394 DOI: 10.1109/tvcg.2024.3456147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Brain-computer interfaces (BCI) are widely used in the field of disability assistance and rehabilitation, and virtual reality (VR) is increasingly used for visual guidance of BCI-MI (motor imagery). Therefore, how to improve the quality of electroencephalogram (EEG) signals for MI in VR has emerged as a critical issue. People can perform MI more easily when they visualize the hand used for visual guidance as their own, and the Rubber Hand Illusion (RHI) can increase people's ownership of the prosthetic hand. We proposed to induce RHI in VR to enhance participants' MI ability and designed five methods of inducing RHI, namely active movement, haptic stimulation, passive movement, active movement mixed with haptic stimulation, and passive movement mixed with haptic stimulation, respectively. We constructed a first-person training scenario to train participants' MI ability through the five induction methods. The experimental results showed that through the training, the participants' feeling of ownership of the virtual hand in VR was enhanced, and the MI ability was improved. Among them, the method of mixing active movement and tactile stimulation proved to have a good effect on enhancing MI. Finally, we developed a BCI system in VR utilizing the above training method, and the performance of the participants improved after the training. This also suggests that our proposed method is promising for future application in BCI rehabilitation systems.
Collapse
|
3
|
Milbocker KA, Smith IF, Klintsova AY. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. Brain Plast 2024; 9:75-95. [PMID: 38993580 PMCID: PMC11234674 DOI: 10.3233/bpl-230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury. Neuroplasticity-related research spans several decades, and hundreds of reviews have been written and published since its inception. Here we present an overview of the empirical papers published between 2017 and 2023 that address the unique effects of exercise, plasticity-stimulating activities, and the depriving effect of social isolation on brain plasticity and behavior.
Collapse
Affiliation(s)
| | - Ian F. Smith
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| |
Collapse
|
4
|
Motor skills training-induced activation of descending pathways mediating cortical command to hindlimb motoneurons in experimental diabetic rats. Exp Neurol 2023; 363:114357. [PMID: 36849002 DOI: 10.1016/j.expneurol.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Diabetes disrupts the corticospinal tract (CST) system components that control hindlimb and trunk movement, resulting in weakness of the lower extremities. However, there is no information about a method to improve these disorders. This study aimed to investigate the rehabilitative effects of 2 weeks of aerobic training (AT) and complex motor skills training (ST) on motor disorders in streptozotocin-induced type 1 diabetic rats. In this study, electrophysiological mapping of the motor cortex showed that the diabetes mellitus (DM)-ST group had a larger motor cortical area compared to the DM-AT group and sedentary diabetic animals. Moreover, hand grip strength and rotarod latency increased in the DM-ST group; however, these two parameters did not change in the DM-AT group, as well as in control and sedentary diabetic rats. Furthermore, in the DM-ST group, cortical stimulation-induced and motor-evoked potentials were preserved after the interception of the CST; however, this potential disappeared after additional lesions were made on lateral funiculus, suggesting that their function extends to activating motor descending pathways other than the CST locating lateral funiculus. According to immunohistochemical analysis, the larger fibers present on the dorsal part of the lateral funiculus, which corresponds to the rubrospinal tract of the DM-ST group, expressed the phosphorylated growth-associated protein, 43 kD, which is a specific marker of axons with plastic changes. Additionally, electrical stimulation of the red nucleus revealed expansion of the hindlimb-responsible area and increased motor-evoked potentials of the hindlimb in the DM-ST group, suggesting a strengthening of synaptic connections between the red nucleus and spinal interneurons driving motoneurons. These results reveal that ST induces plastic changes in the rubrospinal tract in a diabetic model, which can compensate for diabetes by disrupting the CST system components that control the hindlimb. This finding suggests that ST can be a novel rehabilitation strategy to improve motor dysfunctions in diabetic patients.
Collapse
|
5
|
Zaccard CR, Gippo I, Song A, Geula C, Penzes P. Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease. Front Mol Neurosci 2023; 16:1059730. [PMID: 36741924 PMCID: PMC9895827 DOI: 10.3389/fnmol.2023.1059730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders.
Collapse
Affiliation(s)
- Colleen R. Zaccard
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Isabel Gippo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amy Song
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Peter Penzes,
| |
Collapse
|
6
|
Younger DS. Motor sequela of adult and pediatric stroke: Imminent losses and ultimate gains. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:305-346. [PMID: 37620077 DOI: 10.1016/b978-0-323-98817-9.00025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Stroke is the leading cause of neurological disability in the United States and worldwide. Remarkable advances have been made over the past 20 years in acute vascular treatments to reduce infarct size and improve neurological outcome. Substantially less progress has been made in the understanding and clinical approaches to neurological recovery after stroke. This chapter reviews the epidemiology, bedside examination, localization approaches, and classification of stroke, with an emphasis on motor stroke presentations and management, and promising research approaches to enhancing motor aspects of stroke recovery.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
7
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Kuwahara W, Miyawaki Y, Kaneko F. Impact of the Upper Limb Physiotherapy on Behavioral and Brain Adaptations in Post-Stroke Patients. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many stroke patients suffer from motor impairments due to paralysis, and consequently, motor paralysis of upper limbs seems to be particularly prone to residual impairment compared to that of lower limbs. Although ‘learned non-use’ that by managing reasonably well using only the unaffected upper limb in their actions, the patients can achieve their desired behavior, and these success experiences strengthen this pattern of behavior can be interpreted as a post-stroke adaptation, physiotherapy may lead to poor recovery of motor impairment. This review article discusses the impact of upper limb physiotherapy after stroke on behavioral/brain adaptations. Our previous studies demonstrated that patients with severe post-stroke sensorimotor impairments in a chronic phase might have abnormal functional connectivity. To prevent such adaptation after stroke, upper limb physiotherapy is important. In rehabilitation practices, hyper-adaptation has been often observed in not only behavioral but also brain changes. Although several studies are reporting clinical efficacy in patients with moderate to mild paralysis, there might be no effective treatment for patients with severe motor paralysis. To overcome these serious problems, we have developed a novel approach, kinesthetic illusion induced by visual stimulation (KINVIS) therapy. We showed that the effects of KINVIS therapy with therapeutic exercise on upper limb motor functions were mediated by spasticity, and functional connectivity in the brain was also changed with the improvement of motor function after KINVIS therapy. Brain changes underlying behavioral changes need to be more examined, and the adaptation of stroke patients needs to be clarified in detail.
Collapse
|
9
|
McCabe JP, Pundik S, Daly JJ. Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sci 2022; 12:1055. [PMID: 36009118 PMCID: PMC9405607 DOI: 10.3390/brainsci12081055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023] Open
Abstract
The central nervous system (CNS) control of human gait is complex, including descending cortical control, affective ascending neural pathways, interhemispheric communication, whole brain networks of functional connectivity, and neural interactions between the brain and spinal cord. Many important studies were conducted in the past, which administered gait training using externally targeted methods such as treadmill, weight support, over-ground gait coordination training, functional electrical stimulation, bracing, and walking aids. Though the phenomenon of CNS activity-dependent plasticity has served as a basis for more recently developed gait training methods, neurorehabilitation gait training has yet to be precisely focused and quantified according to the CNS source of gait control. Therefore, we offer the following hypotheses to the field: Hypothesis 1. Gait neurorehabilitation after stroke will move forward in important ways if research studies include brain structural and functional characteristics as measures of response to treatment. Hypothesis 2. Individuals with persistent gait dyscoordination after stroke will achieve greater recovery in response to interventions that incorporate the current and emerging knowledge of CNS function by directly engaging CNS plasticity and pairing it with peripherally directed, plasticity-based motor learning interventions. These hypotheses are justified by the increase in the study of neural control of motor function, with emerging research beginning to elucidate neural factors that drive recovery. Some are developing new measures of brain function. A number of groups have developed and are sharing sophisticated, curated databases containing brain images and brain signal data, as well as other types of measures and signal processing methods for data analysis. It will be to the great advantage of stroke survivors if the results of the current state-of-the-art and emerging neural function research can be applied to the development of new gait training interventions.
Collapse
Affiliation(s)
- Jessica P. McCabe
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Svetlana Pundik
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Janis J. Daly
- Brain Plasticity and NeuroRecovery Laboratory, Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH 44016, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
10
|
Frost SB, Chen D, Barbay S, Friel KM, Plautz EJ, Nudo RJ. Reorganization of Ventral Premotor Cortex After Ischemic Brain Injury: Effects of Forced Use. Neurorehabil Neural Repair 2022; 36:514-524. [PMID: 35559809 PMCID: PMC9378490 DOI: 10.1177/15459683221101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Physical use of the affected upper extremity can have a beneficial effect on motor recovery in people after stroke. Few studies have examined neurological mechanisms underlying the effects of forced use in non-human primates. In particular, the ventral premotor cortex (PMV) has been previously implicated in recovery after injury. OBJECTIVE To examine changes in motor maps in PMV after a period of forced use following ischemic infarct in primary motor cortex (M1). METHODS Intracortical microstimulation (ICMS) techniques were used to derive motor maps in PMV of four adult squirrel monkeys before and after an experimentally induced ischemic infarct in the M1 distal forelimb area (DFL) in the dominant hemisphere. Monkeys wore a sleeved jacket (generally 24 hrs/day) that forced limb use contralateral to the infarct in tasks requiring skilled digit use. No specific rehabilitative training was provided. RESULTS At 3 mos post-infarct, ICMS maps revealed a significant expansion of the DFL representation in PMV relative to pre-infarct baseline (mean = +77.3%; n = 3). Regression analysis revealed that the magnitude of PMV changes was largely driven by M1 lesion size, with a modest effect of forced use. One additional monkey examined after ∼18 months of forced use demonstrated a 201.7% increase, unprecedented in non-human primate studies. CONCLUSIONS Functional reorganization in PMV following an ischemic infarct in the M1 DFL is primarily driven by M1 lesion size. Additional expansion occurs in PMV with extremely long periods of forced use but such extended constraint is not considered clinically feasible.
Collapse
Affiliation(s)
- Shawn B. Frost
- Dept. Rehabilitation Medicine; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Daofen Chen
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Physical Therapy & Rehabilitation Science; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Scott Barbay
- Dept. Rehabilitation Medicine; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Kathleen M. Friel
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Erik J. Plautz
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| | - Randolph J. Nudo
- Dept. Rehabilitation Medicine; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Landon Center on Aging; Univ. of Kansas Medical Center, Kansas City, KS 66160
- Dept. of Molecular and Integrative Physiology; Univ. of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
11
|
Martini APR, Hoeper E, Pedroso TA, Carvalho AVS, Odorcyk FK, Fabres RB, Pereira NDSC, Netto CA. Effects of acrobatic training on spatial memory and astrocytic scar in CA1 subfield of hippocampus after chronic cerebral hypoperfusion in male and female rats. Behav Brain Res 2022; 430:113935. [PMID: 35605797 DOI: 10.1016/j.bbr.2022.113935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022]
Abstract
Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Eduarda Hoeper
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Biological Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Avila Pedroso
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduation in Physical Therapy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Andrey Vinicios Soares Carvalho
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto Pereira
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Meijer A, Königs M, Pouwels PJ, Smith J, Visscher C, Bosker RJ, Hartman E, Oosterlaan J. Resting state networks mediate the association between both cardiovascular fitness and gross motor skills with neurocognitive functioning. Child Dev 2022; 93:e412-e426. [PMID: 35426121 PMCID: PMC9545658 DOI: 10.1111/cdev.13759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that cardiovascular fitness and gross motor skill performance are related to neurocognitive functioning by influencing brain structure and functioning. This study investigates the role of resting-state networks (RSNs) in the relation of cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy 8- to 11-year-old children (n = 90, 45 girls, 10% migration background). Cardiovascular fitness and gross motor skills were related to brain activity in RSNs. Furthermore, brain activity in RSNs mediated the relation of both cardiovascular fitness (Frontoparietal network and Somatomotor network) and gross motor skills (Somatomotor network) with neurocognitive functioning. The results indicate that brain functioning may contribute to the relation between both cardiovascular fitness and gross motor skills with neurocognitive functioning.
Collapse
Affiliation(s)
- Anna Meijer
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marsh Königs
- Emma Children’s Hospital, Amsterdam UMC, Emma Neuroscience Group, Department of PediatricsAmsterdam Reproduction & DevelopmentUniversity of AmsterdamAmsterdamThe Netherlands
| | - Petra J.W. Pouwels
- Department of Radiology and Nuclear Medicine, Amsterdam UMCVrije Universiteit, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Joanne Smith
- Center for Human Movement SciencesUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Chris Visscher
- Center for Human Movement SciencesUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Roel J. Bosker
- Groningen Institute for Educational ResearchUniversity of GroningenGroningenThe Netherlands
| | - Esther Hartman
- Center for Human Movement SciencesUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Emma Children’s Hospital, Amsterdam UMC, Emma Neuroscience Group, Department of PediatricsAmsterdam Reproduction & DevelopmentUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
13
|
Demers M, Varghese R, Winstein C. Retrospective Analysis of Task-Specific Effects on Brain Activity After Stroke: A Pilot Study. Front Hum Neurosci 2022; 16:871239. [PMID: 35721357 PMCID: PMC9201099 DOI: 10.3389/fnhum.2022.871239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Evidence supports cortical reorganization in sensorimotor areas induced by constraint-induced movement therapy (CIMT). However, only a few studies examined the neural plastic changes as a function of task specificity. This retrospective analysis aims to evaluate the functional brain activation changes during a precision and a power grasp task in chronic stroke survivors who received 2-weeks of CIMT compared to a no-treatment control group. Methods Fourteen chronic stroke survivors, randomized to CIMT (n = 8) or non-CIMT (n = 6), underwent functional MRI (fMRI) before and after a 2-week period. Two behavioral measures, the 6-item Wolf Motor Function Test (WMFT-6) and the Motor Activity Log (MAL), and fMRI brain scans were collected before and after a 2-week period. During scan runs, participants performed two different grasp tasks (precision, power). Pre to post changes in laterality index (LI) were compared by group and task for two predetermined motor regions of interest: dorsal premotor cortex (PMd) and primary motor cortex (MI). Results In contrast to the control group, the CIMT group showed significant improvements in the WMFT-6. For the MAL, both groups showed a trend toward greater improvements from baseline. Two weeks of CIMT resulted in a relative increase in activity in a key region of the motor network, PMd of the lesioned hemisphere, under precision grasp task conditions compared to the non-treatment control group. No changes in LI were observed in MI for either task or group. Conclusion These findings provide preliminary evidence for task-specific effects of CIMT in the promotion of recovery-supportive cortical reorganization in chronic stroke survivors.
Collapse
Affiliation(s)
- Marika Demers
- Motor Behavior and Neurorehabilitation Laboratory, Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Rini Varghese
- Motor Behavior and Neurorehabilitation Laboratory, Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Carolee Winstein
- Motor Behavior and Neurorehabilitation Laboratory, Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Necessity and Content of Swing Phase Gait Coordination Training Post Stroke; A Case Report. Brain Sci 2021; 11:brainsci11111498. [PMID: 34827497 PMCID: PMC8615654 DOI: 10.3390/brainsci11111498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Background/Problem: Standard neurorehabilitation and gait training has not proved effective in restoring normal gait coordination for many stroke survivors. Rather, persistent gait dyscoordination occurs, with associated poor function, and progressively deteriorating quality of life. One difficulty is the array of symptoms exhibited by stroke survivors with gait deficits. Some researchers have addressed lower limb weakness following stroke with exercises designed to strengthen muscles, with the expectation of improving gait. However, gait dyscoordination in many stroke survivors appears to result from more than straightforward muscle weakness. PURPOSE Thus, the purpose of this case study is to report results of long-duration gait coordination training in an individual with initial good strength, but poor gait swing phase hip/knee and ankle coordination. METHODS Mr. X was enrolled at >6 months after a left hemisphere ischemic stroke. Gait deficits included a 'stiff-legged gait' characterized by the absence of hip and knee flexion during right mid-swing, despite the fact that he showed good initial strength in right lower limb quadriceps, hamstrings, and ankle dorsiflexors. Treatment was provided 4 times/week for 1.5 h, for 12 weeks. The combined treatment included the following: motor learning exercises designed for coordination training of the lower limb; functional electrical stimulation (FES) assisted practice; weight-supported coordination practice; and over-ground and treadmill walking. The FES was used as an adjunct to enhance muscle response during motor learning and prior to volitional recovery of motor control. Weight-supported treadmill training was administered to titrate weight and pressure applied at the joints and to the plantar foot surface during stance phase and pre-swing phase of the involved limb. Later in the protocol, treadmill training was administered to improve speed of movement during the gait cycle. Response to treatment was assessed through an array of impairment, functional mobility, and life role participation measures. RESULTS At post-treatment, Mr. X exhibited some recovery of hip, knee, and ankle coordination during swing phase according to kinematic measures, and the stiff-legged gait was resolved. Muscle strength measures remained essentially constant throughout the study. The modified Ashworth scale showed improved knee extensor tone from baseline of 1 to normal (0) at post-treatment. Gait coordination overall improved by 12 points according to the Gait Assessment and Intervention Tool, Six Minute Walk Test improved by 532', and the Stroke Impact Scale improved by 12 points, including changes in daily activities; mobility; and meaningful activities. DISCUSSION Through the combined use of motor learning exercises, FES, weight-support, and treadmill training, coordination of the right lower limb improved sufficiently to exhibit a more normal swing phase, reducing the probability of falls, and subsequent downwardly spiraling dysfunction. The recovery of lower limb coordination during swing phase illustrates what is possible when strength is sufficient and when coordination training is targeted in a carefully titrated, highly incrementalized manner. Conclusions/Contribution to the Field: This case study contributes to the literature in several ways: (1) illustrates combined interventions for gait training and response to treatment; (2) provides supporting case evidence of relationships among knee flexion coordination, swing phase coordination, functional mobility, and quality of life; (3) illustrates that strength is necessary, but not sufficient to restore coordinated gait swing phase after stroke in some stroke survivors; and (4) provides details regarding coordination training and progression of gait training treatment for stroke survivors.
Collapse
|
15
|
Meijer A, Pouwels PJW, Smith J, Visscher C, Bosker RJ, Hartman E, Oosterlaan J, Königs M. The relationship between white matter microstructure, cardiovascular fitness, gross motor skills, and neurocognitive functioning in children. J Neurosci Res 2021; 99:2201-2215. [PMID: 34019710 PMCID: PMC8453576 DOI: 10.1002/jnr.24851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022]
Abstract
Recent evidence indicates that both cardiovascular fitness and gross motor skill performance are related to enhanced neurocognitive functioning in children by influencing brain structure and functioning. This study investigates the role of white matter microstructure in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning in healthy children. In total 92 children (mean age 9.1 years, range 8.0-10.7) were included in this study. Cardiovascular fitness and gross motor skill performance were assessed using performance-based tests. Neurocognitive functioning was assessed using computerized tests (working memory, inhibition, interference control, information processing, and attention). Diffusion tensor imaging was used in combination with tract-based spatial statistics to assess white matter microstructure as defined by fractional anisotropy (FA), axial and radial diffusivity (AD, RD). The results revealed positive associations of both cardiovascular fitness and gross motor skills with neurocognitive functioning. Information processing and motor response inhibition were associated with FA in a cluster located in the corpus callosum. Within this cluster, higher cardiovascular fitness and better gross motor skills were both associated with greater FA, greater AD, and lower RD. No mediating role was found for FA in the relationship of both cardiovascular fitness and gross motor skills with neurocognitive functioning. The results indicate that cardiovascular fitness and gross motor skills are related to neurocognitive functioning as well as white matter microstructure in children. However, this study provides no evidence for a mediating role of white matter microstructure in these relationships.
Collapse
Affiliation(s)
- Anna Meijer
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Petra J. W. Pouwels
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Joanne Smith
- Center for Human Movement SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Chris Visscher
- Center for Human Movement SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Roel J. Bosker
- Groningen Institute for Educational ResearchUniversity of GroningenGroningenThe Netherlands
| | - Esther Hartman
- Center for Human Movement SciencesUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Emma Neuroscience GroupEmma Children’s Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Marsh Königs
- Emma Neuroscience GroupEmma Children’s Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
16
|
Mendoza Ramos V, Paulyn C, Van den Steen L, Hernandez‐Diaz Huici ME, De Bodt M, Van Nuffelen G. Effect of boost articulation therapy (BArT) on intelligibility in adults with dysarthria. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2021; 56:271-282. [PMID: 33484095 PMCID: PMC8048921 DOI: 10.1111/1460-6984.12595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The articulatory accuracy of patients with dysarthria is one of the most affected speech dimensions with a high impact on speech intelligibility. Behavioural treatments of articulation can either involve direct or indirect approaches. The latter have been thoroughly investigated and are generally appreciated for their almost immediate effects on articulation and intelligibility. The number of studies on (short-term) direct articulation therapy is limited. AIMS To investigate the effects of short-term, boost articulation therapy (BArT) on speech intelligibility in patients with chronic or progressive dysarthria and the effect of severity of dysarthria on the outcome. METHODS & PROCEDURES The study consists of a two-group pre-/post-test design to assess speech intelligibility at phoneme and sentence level and during spontaneous speech, automatic speech and reading a phonetically balanced text. A total of 17 subjects with mild to severe dysarthria participated in the study and were randomly assigned to either a patient-tailored, intensive articulatory drill programme or an intensive minimal pair training. Both training programmes were based on the principles of motor learning. Each training programme consisted of five sessions of 45 min completed within one week. OUTCOMES & RESULTS Following treatment, a statistically significant increase of mean group intelligibility was shown at phoneme and sentence level, and in automatic sequences. This was supported by an acoustic analysis that revealed a reduction in formant centralization ratio. Within specific groups of severity, large and moderate positive effect sizes with Cohen's d were demonstrated. CONCLUSIONS & IMPLICATIONS BArT successfully improves speech intelligibility in patients with chronic or progressive dysarthria at different levels of the impairment. What this paper adds What is already known on the subject Behavioural treatment of articulation in patients with dysarthria mainly involves indirect strategies, which have shown positive effects on speech intelligibility. However, there is limited evidence on the short-term effects of direct articulation therapy at the segmental level of speech. This study investigates the effectiveness of BArT on speech intelligibility in patients with chronic or progressive dysarthria at all severity levels. What this paper adds to existing knowledge The intensive and direct articulatory therapy programmes developed and applied in this study intend to reduce the impairment instead of compensating it. This approach results in a significant improvement of speech intelligibility at different dysarthria severity levels in a short period of time while contributing to exploit and develop all available residual motor skills in persons with dysarthria. What are the potential or actual clinical implications of this work? The improvements in intelligibility demonstrate the effectiveness of a BArT at the segmental level of speech. This makes it to be considered a suitable approach in the treatment of patients with chronic or progressive dysarthria.
Collapse
Affiliation(s)
- Viviana Mendoza Ramos
- Department of Otorhinolaryngology, Head and Neck Surgery and Communication DisordersUniversity Hospital of AntwerpEdegemBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijkAntwerpBelgium
| | - Charlotte Paulyn
- Faculty of Medicine and Social Health SciencesUniversity of GhentGhentBelgium
| | - Leen Van den Steen
- Department of Otorhinolaryngology, Head and Neck Surgery and Communication DisordersUniversity Hospital of AntwerpEdegemBelgium
| | | | - Marc De Bodt
- Department of Otorhinolaryngology, Head and Neck Surgery and Communication DisordersUniversity Hospital of AntwerpEdegemBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijkAntwerpBelgium
- Faculty of Medicine and Social Health SciencesUniversity of GhentGhentBelgium
| | - Gwen Van Nuffelen
- Department of Otorhinolaryngology, Head and Neck Surgery and Communication DisordersUniversity Hospital of AntwerpEdegemBelgium
- Faculty of Medicine and Health SciencesUniversity of AntwerpWilrijkAntwerpBelgium
- Faculty of Medicine and Social Health SciencesUniversity of GhentGhentBelgium
| |
Collapse
|
17
|
Gould L, Kress S, Neudorf J, Gibb K, Persad A, Meguro K, Norton J, Borowsky R. An fMRI, DTI and Neurophysiological Examination of Atypical Organization of Motor Cortex in Ipsilesional Hemisphere Following Post-Stroke Recovery. J Stroke Cerebrovasc Dis 2021; 30:105593. [PMID: 33434816 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES We report a 61-year-old woman who developed left hemiparesis following a right frontal stroke. She underwent rehabilitation and regained function of the left side of her body. Three years after her first stroke, she developed a large left subdural hematoma and again presented with left hemiparesis. MATERIALS AND METHODS Prior to the cranioplasty, an fMRI scan involving left and right hand movement, arm movement, and foot peddling were conducted in order to determine whether the patient showed ipsilateral activation for the motor tasks, thus explaining the left hemiparesis following the left subdural hematoma. Diffusion tensor imaging (DTI) tractography was also collected to visualize the motor and sensory tracts. RESULTS The fMRI results revealed activation in the expected contralateral left primary motor cortex (M1) for the right-sided motor tasks, and bilateral M1 activation for the left-sided motor tasks. Intraoperative neurophysiology confirmed these findings, whereby electromyography revealed left-sided (i.e., ipsilateral) responses for four of the five electrode locations. The DTI results indicated that the corticospinal tracts and spinothalamic tracts were within normal limits and showed no displacement or disorganization. CONCLUSIONS These results suggest that there may have been reorganization of the M1 following her initial stroke, and that the left hemisphere may have become involved in moving the left side of the body thereby leading to left hemiparesis following the left subdural hematoma. The findings suggest that cortical reorganization may occur in stroke patients recovering from hemiparesis, and specifically, that components of motor processing subserved by M1 may be taken over by ipsilateral regions.
Collapse
Affiliation(s)
- Layla Gould
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Shaylyn Kress
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Josh Neudorf
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Katherine Gibb
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Amit Persad
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Kotoo Meguro
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Jonathan Norton
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Ron Borowsky
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| |
Collapse
|
18
|
Barcellos N, Cechinel LR, de Meireles LCF, Lovatel GA, Bruch GE, Carregal VM, Massensini AR, Dalla Costa T, Pereira LO, Siqueira IR. Effects of exercise modalities on BDNF and IL-1β content in circulating total extracellular vesicles and particles obtained from aged rats. Exp Gerontol 2020; 142:111124. [DOI: 10.1016/j.exger.2020.111124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
|
19
|
de Almeida W, Confortim HD, Deniz BF, Miguel PM, Vieira MC, Bronauth L, Dos Santos AS, Bertoldi K, Siqueira IR, Pereira LO. Acrobatic exercise recovers object recognition memory impairment in hypoxic-ischemic rats. Int J Dev Neurosci 2020; 81:60-70. [PMID: 33135304 DOI: 10.1002/jdn.10075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,UNIVEL Centro Universitário, Cascavel, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karine Bertoldi
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
McLeod F, Boyle K, Marzo A, Martin-Flores N, Moe TZ, Palomer E, Gibb AJ, Salinas PC. Wnt Signaling Through Nitric Oxide Synthase Promotes the Formation of Multi-Innervated Spines. Front Synaptic Neurosci 2020; 12:575863. [PMID: 33013349 PMCID: PMC7509412 DOI: 10.3389/fnsyn.2020.575863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Structural plasticity of synapses correlates with changes in synaptic strength. Dynamic modifications in dendritic spine number and size are crucial for long-term potentiation (LTP), the cellular correlate of learning and memory. Recent studies have suggested the generation of multi-innervated spines (MIS), in the form of several excitatory presynaptic inputs onto one spine, are crucial for hippocampal memory storage. However, little is known about the molecular mechanisms underlying MIS formation and their contribution to LTP. Using 3D enhanced resolution confocal images, we examined the contribution of Wnt synaptic modulators in MIS formation in the context of LTP. We show that blockage of endogenous Wnts with specific Wnt antagonists supresses the formation of MIS upon chemical LTP induction in cultured hippocampal neurons. Gain- and loss-of-function studies demonstrate that Wnt7a signaling promotes MIS formation through the postsynaptic Wnt scaffold protein Disheveled 1 (Dvl1) by stimulating neuronal nitric oxide (NO) synthase (nNOS). Subsequently, NO activates soluble guanylyl cyclase (sGC) to increase MIS formation. Consistently, we observed an enhanced frequency and amplitude of excitatory postsynaptic currents. Collectively, our findings identify a unique role for Wnt secreted proteins through nNOS/NO/sGC signaling to modulate MIS formation during LTP.
Collapse
Affiliation(s)
- Faye McLeod
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kieran Boyle
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Aude Marzo
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Thaw Zin Moe
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series. Brain Sci 2020; 10:brainsci10080555. [PMID: 32824012 PMCID: PMC7464211 DOI: 10.3390/brainsci10080555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023] Open
Abstract
(1) Objective: The objective was two-fold: (a) test a protocol of combined interventions; (b) administer this combined protocol within the framework of a six-month, intensive, long-duration program. The array of interventions was designed to target the treatment-resistant impairments underlying persistent mobility dysfunction: weakness, balance deficit, limb movement dyscoordination, and gait dyscoordination. (2) Methods: A convenience sample of eight chronic stroke survivors (>4 months post stroke) was enrolled. Treatment was 5 days/week, 1-2.5 h/day for 6 months, as follows: strengthening exercise, balance training, limb/gait coordination training, and aerobic exercise. Outcome measures: Berg Balance Scale (BBS), Fugl-Meyer Lower Limb Coordination (FM), gait speed, 6 Minute Walk Test (6MWT), Timed up and Go (TUG), Functional Independence Measure (FIM), Craig Handicap Assessment Rating Tool (CHART), and personal milestones. Pre-/post-treatment comparisons were conducted using the Permutation Test, suitable for ordinal measures and small sample size. (3) Results: For the group, there was a statistically (p ≤ 0.04) significant improvement in balance, limb movement coordination (FM), gait speed, functional mobility (TUG), and functional activities (FIM). There were measurable differences (minimum detectible change: MDC) in BBS, FM, gait speed, 6MWT, and TUG. There were clinically significant milestones achieved for selected subjects according to clinical benchmarks for the BBS, 6MWT, gait speed, and TUG, as well as achievement of personal milestones of life role participation. Effect sizes (Cohen's D) ranged from 0.5 to 1.0 (with the exception of the (6MWT)). After six months of treatment, the above array of gains were beyond that reported by other published studies of chronic stroke survivor interventions. Personal milestones included: walking to mailbox, gardening/yardwork, walking a distance to neighbors, return to driving, membership at a fitness center, vacation trip to the beach, swimming at local pool, returning to work, housework, cooking meals. (4) Conclusions: Stroke survivors with mobility dysfunction were able to participate in the long-duration, intensive program, with the intervention array targeted to address impairments underlying mobility dysfunction. There were either clinically or statistically significant improvements in an array of measures of impairment, functional mobility, and personal milestone achievements.
Collapse
|
22
|
Combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by chlorpyrifos. Mol Biol Rep 2020; 47:5985-5996. [PMID: 32780254 DOI: 10.1007/s11033-020-05672-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the combination effect of exercise training and eugenol supplementation on the hippocampus apoptosis induced by CPF. 64 adult male albino rats were randomly selected and devided into eight groups of eight including: control, exercise (EXE), chlorpyrifos (CPF), Control + Oil (Co + Oil), Control + DMSO (Co + DMSO), chlorpyrifos + eugenol (CPF + Sup), chlorpyrifos + exercise (CPF + Exe) and, chlorpyrifos + exercise + eugenol (CPF + Exe + Eu). Four experimental groups received intraperitoneal injection (5 days a week) of 3.0 mg/kg body weight CPF in DMSO for 6 consecutive weeks. The exercise groups performed aerobic 5 days per week over 4 weeks. Eugenol were administered by gavage. Finally, the animals were sacrificed using CO2 gas (a half of the rats were anesthetized with ketamine and xylazine and then perfused) to evaluate hippocampus histology and parameters. The results of this study showed that CPF injection significantly decreased BDNF, AChE and ATP in CA1 area of the hippocampus (p ˂ 0.05). Also, CA1 apoptosis by tunnel assay, it was found that CPF receiving groups with different dosage, showed a significant increase compared to other groups, which was confirmed by increasing cytochrome C and procaspase-3 in CPF groups (p ˂ 0.05). The result of this study show that 4 weeks of exercise training and eugenol supplementation does not improve the destructive effects of CPF in CA1 area of the hippocampus. As a result, it is recommended that future studies longer periods for treatment with exercise and eugenol supplementation.
Collapse
|
23
|
Early Exercise after Intracerebral Hemorrhage Inhibits Inflammation and Promotes Neuroprotection in the Sensorimotor Cortex in Rats. Neuroscience 2020; 438:86-99. [DOI: 10.1016/j.neuroscience.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 01/03/2023]
|
24
|
Zaccard CR, Shapiro L, Martin-de-Saavedra MD, Pratt C, Myczek K, Song A, Forrest MP, Penzes P. Rapid 3D Enhanced Resolution Microscopy Reveals Diversity in Dendritic Spinule Dynamics, Regulation, and Function. Neuron 2020; 107:522-537.e6. [PMID: 32464088 DOI: 10.1016/j.neuron.2020.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/19/2019] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.
Collapse
Affiliation(s)
- Colleen R Zaccard
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Lauren Shapiro
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | | | - Christopher Pratt
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Amy Song
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
25
|
Marešová D, Kotková K, Kozler P, Pokorný J. Forelimb Movement Disorder in Rat Experimental Model. Physiol Res 2019; 68:1037-1042. [PMID: 31647297 DOI: 10.33549/physiolres.934172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Study of motor activity is an important part of the experimental models of neural disorders of rats. It is used to study effects of the CNS impairment, however studies on the peripheral nervous system lesions are much less frequent. The aim of the study was to extend the spectrum of experimental models of anterior limb movement disorders in rats by blockade of the right anterior limb brachial plexus with the local anesthetic Marcaine (Ma), or with aqua for injection administered into the same location (Aq) (with control intact group C). Two other groups with anterior limb movement disorders underwent induction of cellular brain edema by water intoxication (MaWI and AqWI). Results showed a lower spontaneous motor activity of animals in all experimental groups versus controls, and lower spontaneous motor activity of animals in the MaWI group compared to other experimental groups in all categories. There was no difference in spontaneous activity between the groups Ma, Aq and AqWI. Our study indicates that alterations of spontaneous motor activity may result from the impaired forelimb motor activity induced by the anesthetic effect of Marcaine, by the volumetric effect of water, as a result of induced brain edema, or due to combination of these individual effects.
Collapse
Affiliation(s)
- D Marešová
- Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
26
|
de Meireles LCF, Galvão F, Walker DM, Cechinel LR, de Souza Grefenhagen ÁI, Andrade G, Palazzo RP, Lovatel GA, Basso CG, Nestler EJ, Siqueira IR. Exercise Modalities Improve Aversive Memory and Survival Rate in Aged Rats: Role of Hippocampal Epigenetic Modifications. Mol Neurobiol 2019; 56:8408-8419. [PMID: 31250382 PMCID: PMC6918477 DOI: 10.1007/s12035-019-01675-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/09/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the effects of aging and different exercise modalities on aversive memory and epigenetic landscapes at brain-derived neurotrophic factor, cFos, and DNA methyltransferase 3 alpha (Bdnf, cFos, and Dnmt3a, respectively) gene promoters in hippocampus of rats. Specifically, active epigenetic histone markers (H3K9ac, H3K4me3, and H4K8ac) and a repressive mark (H3K9me2) were evaluated. Adult and aged male Wistar rats (2 and 22 months old) were subjected to aerobic, acrobatic, resistance, or combined exercise modalities for 20 min, 3 times a week, during 12 weeks. Aging per se altered histone modifications at the promoters of Bdnf, cFos, and Dnmt3a. All exercise modalities improved both survival rate and aversive memory performance in aged animals (n = 7-10). Exercise altered hippocampal epigenetic marks in an age- and modality-dependent manner (n = 4-5). Aerobic and resistance modalities attenuated age-induced effects on hippocampal Bdnf promoter H3K4me3. Besides, exercise modalities which improved memory performance in aged rats were able to modify H3K9ac or H3K4me3 at the cFos promoter, which could increase gene transcription. Our results highlight biological mechanisms which support the efficacy of all tested exercise modalities attenuating memory deficits induced by aging.
Collapse
Affiliation(s)
| | - Fernando Galvão
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deena M Walker
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ágnis Iohana de Souza Grefenhagen
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Gisele Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberta Passos Palazzo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Agustini Lovatel
- Departamento de Fisioterapia, Universidade Federal de Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Carla Giovanna Basso
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050-170, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
27
|
Zhang L, So KF. Exercise, spinogenesis and cognitive functions. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:323-360. [PMID: 31607360 DOI: 10.1016/bs.irn.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exercise training improves mental and cognitive functions by enhancing neurogenesis and neuroprotection. Recent studies suggest the facilitation of spinogenesis across different brain regions including hippocampus and cerebral cortex by physical activity. In this article we will summarize major findings for exercise effects on synaptogenesis and spinogenesis, in order to provide mechanisms for exercise intervention of both psychiatric diseases and neurodegenerative disorders. We will also revisit major findings for molecular mechanism governing exercise-related spinogenesis, and will discuss the screening for novel factors, or exerkines, whose levels are correlated with endurance training and affect neural plasticity. We believe that further studies focusing on the molecular mechanism of exercise-mediate spinogenesis should benefit the optimization of exercise therapy in clinics and the evaluation of treatment efficiency using specific biomarkers.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, PR China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, PR China; Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, PR China; State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, PR China.
| |
Collapse
|
28
|
Yang Y, Lu J, Zuo Y. Changes of Synaptic Structures Associated with Learning, Memory and Diseases. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
29
|
Mu J, Bakreen A, Juntunen M, Korhonen P, Oinonen E, Cui L, Myllyniemi M, Zhao S, Miettinen S, Jolkkonen J. Combined Adipose Tissue-Derived Mesenchymal Stem Cell Therapy and Rehabilitation in Experimental Stroke. Front Neurol 2019; 10:235. [PMID: 30972000 PMCID: PMC6443824 DOI: 10.3389/fneur.2019.00235] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 01/12/2023] Open
Abstract
Background/Objective: Stroke is a leading global cause of adult disability. As the population ages as well as suffers co-morbidities, it is expected that the stroke burden will increase further. There are no established safe and effective restorative treatments to facilitate a good functional outcome in stroke patients. Cell-based therapies, which have a wide therapeutic window, might benefit a large percentage of patients, especially if combined with different restorative strategies. In this study, we tested whether the therapeutic effect of human adipose tissue-derived mesenchymal stem cells (ADMSCs) could be further enhanced by rehabilitation in an experimental model of stroke. Methods: Focal cerebral ischemia was induced in adult male Sprague Dawley rats by permanently occluding the distal middle cerebral artery (MCAO). After the intravenous infusion of vehicle (n = 46) or ADMSCs (2 × 106) either at 2 (n = 37) or 7 (n = 7) days after the operation, half of the animals were housed in an enriched environment mimicking rehabilitation. Subsequently, their behavioral recovery was assessed by a neurological score, and performance in the cylinder and sticky label tests during a 42-day behavioral follow-up. At the end of the follow-up, rats were perfused for histology to assess the extent of angiogenesis (RECA-1), gliosis (GFAP), and glial scar formation. Results: No adverse effects were observed during the follow-up. Combined ADMSC therapy and rehabilitation improved forelimb use in the cylinder test in comparison to MCAO controls on post-operative days 21 and 42 (P < 0.01). In the sticky label test, ADMSCs and rehabilitation alone or together, significantly decreased the removal time as compared to MCAO controls on post-operative days 21 and 42. An early initiation of combined therapy seemed to be more effective. Infarct size, measured by MRI on post-operative days 1 and 43, did not differ between the experimental groups. Stereological counting revealed an ischemia-induced increase both in the density of blood vessels and the numbers of glial cells in the perilesional cortex, but there were no differences among MCAO groups. Glial scar volume was also similar in MCAO groups. Conclusion: Early delivery of ADMSCs and combined rehabilitation enhanced behavioral recovery in an experimental stroke model. The mechanisms underlying these treatment effects remain unknown.
Collapse
Affiliation(s)
- Jingwei Mu
- Department of Neurology, The People's Hospital of China Medical University, Shenyang, China.,Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - Miia Juntunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Paula Korhonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ella Oinonen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Lili Cui
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Myllyniemi
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Shanshan Zhao
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Jukka Jolkkonen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
30
|
Song M, Kim J. A Paradigm to Enhance Motor Imagery Using Rubber Hand Illusion Induced by Visuo-Tactile Stimulus. IEEE Trans Neural Syst Rehabil Eng 2019; 27:477-486. [PMID: 30703031 DOI: 10.1109/tnsre.2019.2895029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enhancing motor imagery (MI) results in amplified event-related desynchronization (ERD) and is important for MI-based rehabilitation and brain-computer interface (BCI) applications. Many attempts to enhance the MI by providing a visual guidance have been reported. We believe that the rubber hand illusion (RHI), which induces body ownership over an external object, can provide better guidance to enhance MI; thus, an RHI-based paradigm with motorized moving rubber hand was proposed. To validate the proposed MI enhancing paradigm, we conducted an experimental comparison among paradigms with 20 healthy subjects. The peak amplitude and arrival times of ERD were compared at contralateral and ipsilateral electroencephalogram channels. We found significantly amplified ERD caused by the proposed paradigm, which is similar to the ERD caused by motor execution. In addition, the arrival time suggests that the proposed paradigm is applicable for BCI. In conclusion, the proposed paradigm can significantly enhance the MI with better characteristics for use with BCI.
Collapse
|
31
|
Characterization of Multiple Synaptic Boutons in Cerebral Motor Cortex in Physiological and Pathological Condition: Acrobatic Motor Training Model and Traumatic Brain Injury Model. Appl Microsc 2018. [DOI: 10.9729/am.2018.48.4.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Confortim HD, Deniz BF, de Almeida W, Miguel PM, Bronauth L, Vieira MC, de Oliveira BC, Pereira LO. Neonatal hypoxia-ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats. Brain Res 2018; 1707:27-44. [PMID: 30448443 DOI: 10.1016/j.brainres.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.
Collapse
Affiliation(s)
- Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Graham SA, Roth EJ, Brown DA. Walking and balance outcomes for stroke survivors: a randomized clinical trial comparing body-weight-supported treadmill training with versus without challenging mobility skills. J Neuroeng Rehabil 2018; 15:92. [PMID: 30382860 PMCID: PMC6211560 DOI: 10.1186/s12984-018-0442-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023] Open
Abstract
Background Treadmill training, with or without body-weight support (BWSTT), typically involves high step count, faster walking speed, and higher heart-rate intensity than overground walking training. The addition of challenging mobility skill practice may offer increased opportunities to improve walking and balance skills. Here we compare walking and balance outcomes of chronic stroke survivors performing BWSTT with BWSTT including challenging mobility skills. Methods Single-blind randomized clinical trial comparing two BWSTT interventions performed in a rehabilitation research laboratory facility over 6 weeks. Participants were 18+ years of age with chronic (≥5 months) poststroke hemiparesis due to a cortical or subcortical ischemic or hemorrhagic stroke and walking speeds < 1.1 m/s at baseline. A hands-free group (HF; n = 15) performed BWSTT without assistance from handrails or assistive devices, and a hands-free plus challenge group (HF + C; n = 14) performed the same protocol while additionally practicing challenging mobility skills. The primary outcome was change in comfortable walking speed (CWS), with secondary outcomes of fast walk speed (FWS), six-minute walk distance, Berg Balance Scale (BBS) scores, and Activities Specific Balance Confidence (ABC) scores. Results Significant pre-post improvement of CWS (Z = − 4.2, p ≤ 0.0001) from a median of 0.35 m/s (range 0.10 to 1.09) to a median of 0.54 m/s (range 0.1 to 1.17), but no difference observed between groups (U = 96.0, p = 0.69). Pre-post improvements across all participants resulted in reclassified baseline ambulation status from sixteen to ten household ambulators, three to seven limited community ambulators, and ten to twelve community ambulators. Secondary outcomes showed similar pre-post improvements with no between-group differences. Conclusions The addition of challenging mobility skills to a hands-free BWSTT protocol did not lead to greater improvements in CWS following 6 weeks of training. One reason for lack of group differences may be that both groups were adequately challenged by walking in an active, self-driven treadmill environment without use of handrails or assistive devices. Trial registration NCT02787759 Falls-based Training for Walking Post-Stroke (FBT); retrospectively registered June 1st, 2016.
Collapse
Affiliation(s)
- Sarah A Graham
- Departments of Physical and Occupational Therapy, University of Alabama at Birmingham, Building 516 20th Street South, Birmingham, AL, 35233-4555, USA.
| | - Elliot J Roth
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David A Brown
- Departments of Physical and Occupational Therapy, University of Alabama at Birmingham, Building 516 20th Street South, Birmingham, AL, 35233-4555, USA
| |
Collapse
|
34
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
35
|
Stewan Feltrin F, Zaninotto AL, Guirado VMP, Macruz F, Sakuno D, Dalaqua M, Magalhães LGA, Paiva WS, Andrade AFD, Otaduy MCG, Leite CC. Longitudinal changes in brain volumetry and cognitive functions after moderate and severe diffuse axonal injury. Brain Inj 2018; 32:1208-1217. [PMID: 30024781 DOI: 10.1080/02699052.2018.1494852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Diffuse axonal injury (DAI) induces a long-term process of brain atrophy and cognitive deficits. The goal of this study was to determine whether there are correlations between brain volume loss, microhaemorrhage load (MHL) and neuropsychological performance during the first year after DAI. METHODS Twenty-four patients with moderate or severe DAI were evaluated at 2, 6 and 12 months post-injury. MHL was evaluated at 3 months, and brain volumetry was evaluated at 3, 6 and 12 months. The trail making test (TMT) was used to evaluate executive function (EF), and the Hopkins verbal learning test (HVLT) was used to evaluate episodic verbal memory (EVM) at 6 and 12 months. RESULTS There were significant white matter volume (WMV), subcortical grey matter volume and total brain volume (TBV) reductions during the study period (p < 0.05). MHL was correlated only with WMV reduction. EF and EVM were not correlated with MHL but were, in part, correlated with WMV and TBV reductions. CONCLUSIONS Our findings suggest that MHL may be a predictor of WMV reduction but cannot predict EF or EVM in DAI. Brain atrophy progresses over time, but patients showed better EF and EVM in some of the tests, which could be due to neuroplasticity.
Collapse
Affiliation(s)
- Fabrício Stewan Feltrin
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Ana Luiza Zaninotto
- b Division of Psychology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Vinícius M P Guirado
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Fabiola Macruz
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Daniel Sakuno
- d Department of Radiology , Hospital Universitário HU-UEPG, Universidade Estadual de Ponta Grossa , Ponta Grossa , Brazil
| | - Mariana Dalaqua
- e Department of Radiology , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | | | - Wellingson Silva Paiva
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Almir Ferreira de Andrade
- c Division of Neurosurgery , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Maria C G Otaduy
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Claudia C Leite
- a Laboratory of Magnetic Resonance, LIM44, Department of Radiology , Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| |
Collapse
|
36
|
McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is Environmental Enrichment Ready for Clinical Application in Human Post-stroke Rehabilitation? Front Behav Neurosci 2018; 12:135. [PMID: 30050416 PMCID: PMC6050361 DOI: 10.3389/fnbeh.2018.00135] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment (EE) has been widely used as a means to enhance brain plasticity mechanisms (e.g., increased dendritic branching, synaptogenesis, etc.) and improve behavioral function in both normal and brain-damaged animals. In spite of the demonstrated efficacy of EE for enhancing brain plasticity, it has largely remained a laboratory phenomenon with little translation to the clinical setting. Impediments to the implementation of enrichment as an intervention for human stroke rehabilitation and a lack of clinical translation can be attributed to a number of factors not limited to: (i) concerns that EE is actually the "normal state" for animals, whereas standard housing is a form of impoverishment; (ii) difficulty in standardizing EE conditions across clinical sites; (iii) the exact mechanisms underlying the beneficial actions of enrichment are largely correlative in nature; (iv) a lack of knowledge concerning what aspects of enrichment (e.g., exercise, socialization, cognitive stimulation) represent the critical or active ingredients for enhancing brain plasticity; and (v) the required "dose" of enrichment is unknown, since most laboratory studies employ continuous periods of enrichment, a condition that most clinicians view as impractical. In this review article, we summarize preclinical stroke recovery studies that have successfully utilized EE to promote functional recovery and highlight the potential underlying mechanisms. Subsequently, we discuss how EE is being applied in a clinical setting and address differences in preclinical and clinical EE work to date. It is argued that the best way forward is through the careful alignment of preclinical and clinical rehabilitation research. A combination of both approaches will allow research to fully address gaps in knowledge and facilitate the implementation of EE to the clinical setting.
Collapse
Affiliation(s)
- Matthew W McDonald
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Kathryn S Hayward
- Stroke Division, Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.,NHMRC Centre for Research Excellence in Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Ingrid C M Rosbergen
- Division of Physiotherapy, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia.,Allied Health Services, Sunshine Coast Hospital and Health Service, Birtinya, QLD, Australia
| | - Matthew S Jeffers
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Dale Corbett
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| |
Collapse
|
37
|
Sampaio-Baptista C, Sanders ZB, Johansen-Berg H. Structural Plasticity in Adulthood with Motor Learning and Stroke Rehabilitation. Annu Rev Neurosci 2018; 41:25-40. [DOI: 10.1146/annurev-neuro-080317-062015] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of advanced noninvasive techniques to image the human brain has enabled the demonstration of structural plasticity during adulthood in response to motor learning. Understanding the basic mechanisms of structural plasticity in the context of motor learning is essential to improve motor rehabilitation in stroke patients. Here, we review and discuss the emerging evidence for motor-learning-related structural plasticity and the implications for stroke rehabilitation. In the clinical context, a few studies have started to assess the effects of rehabilitation on structural measures to understand recovery poststroke and additionally to predict intervention outcomes. Structural imaging will likely have a role in the future in providing measures that inform patient stratification for optimal outcomes.
Collapse
Affiliation(s)
- Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;,
| | - Zeena-Britt Sanders
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;,
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom;,
| |
Collapse
|
38
|
Motor imagery enhancement paradigm using moving rubber hand illusion system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1146-1149. [PMID: 29060078 DOI: 10.1109/embc.2017.8037032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Motor imagery (MI) has been widely used in neurorehabilitation and brain computer interface. The size of event-related desynchronization (ERD) is a key parameter for successful motor imaginary rehabilitation and BCI adaptation. Many studies have used visual guidance for enhancement/ amplification of motor imagery ERD amplitude, but their enhancements were not significant. We propose a novel ERD enhancing paradigm using body-ownership illusion, or also known as rubber hand illusion (RHI). The system was made by motorized, moving rubber hand which can simulate wrist extension. The amplifying effects of the proposed RHI paradigm were evaluated by comparing ERD sizes of the proposed paradigm with motor imagery and actual motor execution paradigms. The comparison result shows that the improvement of ERD size due to the proposed paradigm was statistically significant (p<;0.05) compared with the other paradigms.
Collapse
|
39
|
Pundik S, Scoco A, Skelly M, McCabe JP, Daly JJ. Greater Cortical Thickness Is Associated With Enhanced Sensory Function After Arm Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair 2018; 32:590-601. [DOI: 10.1177/1545968318778810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective. Somatosensory function is critical to normal motor control. After stroke, dysfunction of the sensory systems prevents normal motor function and degrades quality of life. Structural neuroplasticity underpinnings of sensory recovery after stroke are not fully understood. The objective of this study was to identify changes in bilateral cortical thickness (CT) that may drive recovery of sensory acuity. Methods. Chronic stroke survivors (n = 20) were treated with 12 weeks of rehabilitation. Measures were sensory acuity (monofilament), Fugl-Meyer upper limb and CT change. Permutation-based general linear regression modeling identified cortical regions in which change in CT was associated with change in sensory acuity. Results. For the ipsilesional hemisphere in response to treatment, CT increase was significantly associated with sensory improvement in the area encompassing the occipital pole, lateral occipital cortex (inferior and superior divisions), intracalcarine cortex, cuneal cortex, precuneus cortex, inferior temporal gyrus, occipital fusiform gyrus, supracalcarine cortex, and temporal occipital fusiform cortex. For the contralesional hemisphere, increased CT was associated with improved sensory acuity within the posterior parietal cortex that included supramarginal and angular gyri. Following upper limb therapy, monofilament test score changed from 45.0 ± 13.3 to 42.6 ± 12.9 mm ( P = .063) and Fugl-Meyer score changed from 22.1 ± 7.8 to 32.3 ± 10.1 ( P < .001). Conclusions. Rehabilitation in the chronic stage after stroke produced structural brain changes that were strongly associated with enhanced sensory acuity. Improved sensory perception was associated with increased CT in bilateral high-order association sensory cortices reflecting the complex nature of sensory function and recovery in response to rehabilitation.
Collapse
Affiliation(s)
- Svetlana Pundik
- Case Western Reserve University, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| | - Aleka Scoco
- Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Janis J. Daly
- University of Florida, Gainesville, FL, USA
- Gainesville VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
40
|
Kim HW, Oh S, Lee SH, Lee S, Na JE, Lee KJ, Rhyu IJ. Different types of multiple-synapse boutons in the cerebellar cortex between physically enriched and ataxic mutant mice. Microsc Res Tech 2018; 82:25-32. [PMID: 29774619 DOI: 10.1002/jemt.23054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/31/2018] [Accepted: 04/27/2018] [Indexed: 11/10/2022]
Abstract
Experience-dependent synapse remodeling is associated with information storage in the nervous system. Neuronal synapses show alteration in various neurological and cognitive disorders in their structure and function. At the ultrastructural level, parallel fiber boutons contacting multiple spines of Purkinje cells in the cerebellar cortex are commonly observed in physiologically enriched animals as well as pathological ataxic mutants. However, the dendritic origin of those spines on parallel fiber multiple-synapse boutons (MSBs) has been poorly understood. Here, we investigated this issue by 3-dimensional ultrastructural analysis to determine synaptic connectivity of MSBs in both mice housed in physically enriched environment and cerebellar ataxic mutants. Our results demonstrated that environmental enrichment selectively induced MSBs to contact spines from the same parent dendrite, indicating focal strengthening of synapse through the simultaneous activation of two adjacent spines. In contrast, ataxic mutants displaying impaired motor coordination had significantly more MSBs involving spines originating from different neighboring dendrites compared to both wild-type and environmentally enriched animals, suggesting that compromising multiple synapse formation may lead to abnormal motor behavior in the mutant mice. These findings propose that environmental stimulation in normal animals mainly involves the refinement of preexisting synaptic networks, whereas pathological ataxic conditions may results from less-selective but compromising multiple synaptic formation. This study underscores that different types of multiple synapse boutons may have disparate effects on cerebellar synaptic transmission.
Collapse
Affiliation(s)
- Hyun-Wook Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Seunghak Oh
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Seung Hwan Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Sanghoon Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Ji-Eun Na
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Kea Joo Lee
- Laboratory of Synaptic Circuit Plasticity, Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, 41068, Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| |
Collapse
|
41
|
Friel KM, Lee P, Soles LV, Smorenburg ARP, Kuo HC, Gupta D, Edwards DJ. Combined transcranial direct current stimulation and robotic upper limb therapy improves upper limb function in an adult with cerebral palsy. NeuroRehabilitation 2018; 41:41-50. [PMID: 28505986 PMCID: PMC5546204 DOI: 10.3233/nre-171455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND: Robotic therapy can improve upper limb function in
hemiparesis. Excitatory transcranial direct current stimulation (tDCS) can prime
brain motor circuits before therapy. OBJECTIVE: We tested safety and efficacy of tDCS plus robotic therapy in
an adult with unilateral spastic cerebral palsy (USCP). METHODS: In each of 36 sessions, anodal tDCS (2 mA,
20 min) was applied over the motor map of the affected hand. Immediately after
tDCS, the participant completed robotic therapy, using the shoulder, elbow, and wrist
(MIT Manus). The participant sat in a padded chair with affected arm abducted,
forearm supported, and hand grasping the robot handle. The participant controlled the
robot arm with his affected arm to move a cursor from the center of a circle to each
of eight targets (960 movements). Motor function was tested before, after, and six
months after therapy with the Wolf Motor Function Test (WMFT) and Fugl-Meyer
(FM). RESULTS: Reaching accuracy on the robot task improved significantly
after therapy. The WMFT and FM improved clinically meaningful amounts after therapy.
The motor map of the affected hand expanded after therapy. Improvements were
maintained six months after therapy. CONCLUSIONS: Combined tDCS and robotics safely improved upper limb
function in an adult with USCP.
Collapse
Affiliation(s)
- Kathleen M Friel
- Burke Medical Research Institute, White Plains, NY, USA.,Brain Mind Research Institute, Weill Cornell Medical Center, New York, NY, USA.,Blythedale Children's Hospital, Valhalla, NY, USA
| | - Peter Lee
- Burke Medical Research Institute, White Plains, NY, USA.,Montefiore Medical Center, Bronx, NY, USA
| | - Lindsey V Soles
- Burke Medical Research Institute, White Plains, NY, USA.,Blythedale Children's Hospital, Valhalla, NY, USA
| | | | - Hsing-Ching Kuo
- Burke Medical Research Institute, White Plains, NY, USA.,University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Disha Gupta
- Burke Medical Research Institute, White Plains, NY, USA.,Brain Mind Research Institute, Weill Cornell Medical Center, New York, NY, USA.,Department of Computational Science and Engineering, Cornell University, Ithaca, NY, USA.,Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Dylan J Edwards
- Burke Medical Research Institute, White Plains, NY, USA.,Department of Neurology, Weill Cornell Medical Center, New York, NY, USA.,School of Medical and Health Sciences, ECU Australia
| |
Collapse
|
42
|
The effects of acrobatic exercise on brain plasticity: a systematic review of animal studies. Brain Struct Funct 2018; 223:2055-2071. [DOI: 10.1007/s00429-018-1631-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/17/2018] [Indexed: 12/24/2022]
|
43
|
Cell Therapy in Stroke-Cautious Steps Towards a Clinical Treatment. Transl Stroke Res 2017; 9:321-332. [PMID: 29150739 DOI: 10.1007/s12975-017-0587-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
In the future, stroke patients may receive stem cell therapy as this has the potential to restore lost functions. However, the development of clinically deliverable therapy has been slower and more challenging than expected. Despite recommendations by STAIR and STEPS consortiums, there remain flaws in experimental studies such as lack of animals with comorbidities, inconsistent approaches to experimental design, and concurrent rehabilitation that might lead to a bias towards positive results. Clinical studies have typically been small, lacking control groups as well as often without clear biological hypotheses to guide patient selection. Furthermore, they have used a wide range of cell types, doses, and delivery methods, and outcome measures. Although some ongoing and recent trial programs offer hints that these obstacles are now being tackled, the Horizon2020 funded RESSTORE trial will be given as an example of inconsistent regulatory requirements and challenges in harmonized cell production, logistic, and clinical criteria in an international multicenter study. The PISCES trials highlight the complex issues around intracerebral cell transplantation. Therefore, a better understanding of translational challenges is expected to pave the way to more successful help for stroke patients.
Collapse
|
44
|
Circuit changes in motor cortex during motor skill learning. Neuroscience 2017; 368:283-297. [PMID: 28918262 DOI: 10.1016/j.neuroscience.2017.09.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed.
Collapse
|
45
|
Valentín‐Gudiol M, Mattern‐Baxter K, Girabent‐Farrés M, Bagur‐Calafat C, Hadders‐Algra M, Angulo‐Barroso RM. Treadmill interventions in children under six years of age at risk of neuromotor delay. Cochrane Database Syst Rev 2017; 7:CD009242. [PMID: 28755534 PMCID: PMC6483121 DOI: 10.1002/14651858.cd009242.pub3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Delayed motor development may occur in children with Down syndrome, cerebral palsy, general developmental delay or children born preterm. It limits the child's exploration of the environment and can hinder cognitive and social-emotional development. Literature suggests that task-specific training, such as locomotor treadmill training, facilitates motor development. OBJECTIVES To assess the effectiveness of treadmill interventions on locomotor development in children with delayed ambulation or in pre-ambulatory children (or both), who are under six years of age and who are at risk for neuromotor delay. SEARCH METHODS In May 2017, we searched CENTRAL, MEDLINE, Embase, six other databases and a number of trials registers. We also searched the reference lists of relevant studies and systematic reviews. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that evaluated the effect of treadmill intervention in the target population. DATA COLLECTION AND ANALYSIS Four authors independently extracted the data. Outcome parameters were structured according to the International Classification of Functioning, Disability and Health model. MAIN RESULTS This is an update of a Cochrane review from 2011, which included five trials. This update includes seven studies on treadmill intervention in 175 children: 104 were allocated to treadmill groups, and 71 were controls. The studies varied in population (children with Down syndrome, cerebral palsy, developmental delay or at moderate risk for neuromotor delay); comparison type (treadmill versus no treadmill; treadmill with versus without orthoses; high- versus low-intensity training); study duration, and assessed outcomes. Due to the diversity of the studies, only data from five studies were used in meta-analyses for five outcomes: age of independent walking onset, overall gross motor function, gross motor function related to standing and walking, and gait velocity. GRADE assessments of quality of the evidence ranged from high to very low.The effects of treadmill intervention on independent walking onset compared to no treadmill intervention was population dependent, but showed no overall effect (mean difference (MD) -2.08, 95% confidence intervals (CI) -5.38 to 1.22, 2 studies, 58 children; moderate-quality evidence): 30 children with Down syndrome benefited from treadmill training (MD -4.00, 95% CI -6.96 to -1.04), but 28 children at moderate risk of developmental delay did not (MD -0.60, 95% CI -2.34 to 1.14). We found no evidence regarding walking onset in two studies that compared treadmill intervention with and without orthotics in 17 children (MD 0.10, 95% CI -5.96 to 6.16), and high- versus low-intensity treadmill interventions in 30 children with Down syndrome (MD -2.13, 95% -4.96 to 0.70).Treadmill intervention did not improve overall gross motor function (MD 0.88, 95% CI -4.54 to 6.30, 2 studies, 36 children; moderate-quality evidence) or gross motor skills related to standing (MD 5.41, 95% CI -1.64 to 12.43, 2 studies, 32 children; low-quality evidence), and had a negligible improvement in gross motor skills related to walking (MD 4.51, 95% CI 0.29 to 8.73, 2 studies, 32 children; low-quality evidence). It led to improved walking skills in 20 ambulatory children with developmental delay (MD 7.60, 95% CI 0.88 to 14.32, 1 study) and favourable gross motor skills in 12 children with cerebral palsy (MD 8.00, 95% CI 3.18 to 12.82). A study which compared treadmill intervention with and without orthotics in 17 children with Down syndrome suggested that adding orthotics might hinder overall gross motor progress (MD -8.40, 95% CI -14.55 to -2.25).Overall, treadmill intervention showed a very small increase in walking speed compared to no treadmill intervention (MD 0.23, 95% CI 0.08 to 0.37, 2 studies, 32 children; high-quality evidence). Treadmill intervention increased walking speed in 20 ambulatory children with developmental delay (MD 0.25, 95% CI 0.08 to 0.42), but not in 12 children with cerebral palsy (MD 0.18, 95% CI -0.09 to 0.45). AUTHORS' CONCLUSIONS This update of the review from 2011 provides additional evidence of the efficacy of treadmill intervention for certain groups of children up to six years of age, but power to find significant results still remains limited. The current findings indicate that treadmill intervention may accelerate the development of independent walking in children with Down syndrome and may accelerate motor skill attainment in children with cerebral palsy and general developmental delay. Future research should first confirm these findings with larger and better designed studies, especially for infants with cerebral palsy and developmental delay. Once efficacy is established, research should examine the optimal dosage of treadmill intervention in these populations.
Collapse
Affiliation(s)
- Marta Valentín‐Gudiol
- Universitat Internacional de CatalunyaDepartment of Physical TherapyBarcelonaSpain
- Ramon Llull UniversityBlanquerna School of Health SciencesBarcelonaSpain
| | - Katrin Mattern‐Baxter
- California State UniversityDepartment of Physical Therapy6000 J StSacramentoCaliforniaUSA95819
| | - Montserrat Girabent‐Farrés
- Universitat Internacional de CatalunyaDepartment of Physical Therapy, Biostatistics UnitC/ Josep trueta, s/nSant Cugat del VallèsBarcelonaSpain08195
| | | | - Mijna Hadders‐Algra
- University of Groningen, University Medical Center Groningen, Department of PaediatricsHanzeplein 1GroningenNetherlands9713 GZ
| | - Rosa Maria Angulo‐Barroso
- University of BarcelonaDepartment of Health and Applied Sciences, National Institute of Physical EducationAve. de L'Estadi 12‐22BarcelonaBarcelonaSpain08036
- California State UniversityDepartment of KinesiologyNorthridgeCaliforniaUSA
| | | |
Collapse
|
46
|
Tang QP, Shen Q, Wu LX, Feng XL, Liu H, Wu B, Huang XS, Wang GQ, Li ZH, Liu ZJ. STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats. J Zhejiang Univ Sci B 2017; 17:493-502. [PMID: 27381726 DOI: 10.1631/jzus.b1500297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Willed-movement training has been demonstrated to be a promising approach to increase motor performance and neural plasticity in ischemic rats. However, little is known regarding the molecular signals that are involved in neural plasticity following willed-movement training. To investigate the potential signals related to neural plasticity following willed-movement training, littermate rats were randomly assigned into three groups: middle cerebral artery occlusion, environmental modification, and willed-movement training. The infarct volume was measured 18 d after occlusion of the right middle cerebral artery. Reverse transcription-polymerase chain reaction (PCR) and immunofluorescence staining were used to detect the changes in the signal transducer and activator of transcription 3 (STAT3) mRNA and protein, respectively. A chromatin immunoprecipitation was used to investigate whether STAT3 bound to plasticity-related genes, such as brain-derived neurotrophic factor (BDNF), synaptophysin, and protein interacting with C kinase 1 (PICK1). In this study, we demonstrated that STAT3 mRNA and protein were markedly increased following 15-d willed-movement training in the ischemic hemispheres of the treated rats. STAT3 bound to BDNF, PICK1, and synaptophysin promoters in the neocortical cells of rats. These data suggest that the increased STAT3 levels after willed-movement training might play critical roles in the neural plasticity by directly regulating plasticity-related genes.
Collapse
Affiliation(s)
- Qing-Ping Tang
- Department of Rehabilitation, Brain Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha 410007, China.,Department of Physiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Qin Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li-Xiang Wu
- Department of Physiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Xiang-Ling Feng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Hui Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Bei Wu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiao-Song Huang
- Department of Neurology, Brain Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Gai-Qing Wang
- Department of Neurology, the Second Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Zhong-Hao Li
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zun-Jing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
47
|
Abstract
Stroke instigates a dynamic process of repair and remodelling of remaining neural circuits, and this process is shaped by behavioural experiences. The onset of motor disability simultaneously creates a powerful incentive to develop new, compensatory ways of performing daily activities. Compensatory movement strategies that are developed in response to motor impairments can be a dominant force in shaping post-stroke neural remodelling responses and can have mixed effects on functional outcome. The possibility of selectively harnessing the effects of compensatory behaviour on neural reorganization is still an insufficiently explored route for optimizing functional outcome after stroke.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
48
|
Fucà E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis 2017; 102:49-59. [PMID: 28237314 DOI: 10.1016/j.nbd.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment options for degenerative cerebellar ataxias are currently very limited. A large fraction of such disorders is represented by hereditary cerebellar ataxias, whose familiar transmission facilitates an early diagnosis and may possibly allow to start preventive treatments before the onset of the neurodegeneration and appearance of first symptoms. In spite of the heterogeneous aetiology, histological alterations of ataxias often include the primary degeneration of the cerebellar cortex caused by Purkinje cells (PCs) loss. Thus, approaches aimed at replacing or preserving PCs could represent promising ways of disease management. In the present study, we compared the efficacy of two different preventive strategies, namely cell replacement and motor training. We used tambaleante (tbl) mice as a model for progressive ataxia caused by selective loss of PCs and evaluated the effectiveness of the preventive transplantation of healthy PCs into early postnatal tbl cerebella, in terms of PC replacement and functional preservation. On the other hand, we investigated the effects of motor training on PC survival, cerebellar circuitry and their behavioral correlates. Our results demonstrate that, despite a good survival rate and integration of grafted PCs, the adopted grafting protocol could not alleviate the ataxic symptoms in tbl mice. Conversely, preventive motor training increases PCs survival with a moderate positive impact on the motor phenotype.
Collapse
Affiliation(s)
- Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| | - Michela Guglielmotto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy
| | - Ketty Leto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
49
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
50
|
Kelly M, Shah S. Axonal Sprouting and Neuronal Connectivity following Central Nervous System Insult: Implications for Occupational Therapy. Br J Occup Ther 2016. [DOI: 10.1177/030802260206501006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on selected contemporary research, this paper presents a critical analysis of central nervous system (CNS) reorganisation following insult and the need for therapists better to understand the processes that constitute reorganisation and their possible contribution to the development of spasticity. In the treatment of the sequelae of CNS lesions, the synaptic reorganisation as a result of losses caused by injury - in the form of axonal sprouting - is illustrated, focusing on neuronal reconnectivity. Critical analysis of laboratory, electron microscopy and other animal and human studies is also conducted to integrate the controversies identified and to highlight the concepts that become relevant for occupational therapists, in order to optimise therapeutic intervention for maximising restitution in patients with CNS insult. The paper further discusses the capacity of the CNS to compensate and the need to utilise occupational therapy interventions, such as imagining, mental rehearsals, constraint-induced therapy, virtual reality, biofeedback and the traditional repetitive tasks, which leads to ensuring and facilitating the emergence of new synapses to perform motor tasks and manual skills and to prevent secondary changes. These external stimulations provided by the therapists are likely to stimulate both the damaged hemisphere cross-innervation and/or collateral sprouting. These scientifically based treatment strategies and neurological rehabilitation programmes would, in turn, contribute to improving the quality of life of people with CNS insult.
Collapse
|