1
|
Ortiz-Moriano MP, Masiá P, Acle S, Ardura A, Garcia-Vazquez E, Machado-Schiaffino G. Changes in global methylation patterns of Mytilus galloprovincialis exposed to microplastics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107115. [PMID: 39378735 DOI: 10.1016/j.aquatox.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Microplastics (MPs) disturb the normal activity of aquatic organisms at different levels, causing physiological stress and altering feeding, growth, and reproduction. Alterations of epigenetic patterns due to exposure to MPs have scarcely been studied in invertebrates. In this study, Mytilus galloprovincialis mussels (N = 61) were intermittently exposed to different concentrations of pure polystyrene microbeads for three weeks. The concentrations used in this research were similar to those currently found in certain polluted environments (E1), as well as higher doses to which mussels could be further exposed (E2 and E3). After exposure period, the global methylation patterns were investigated using Amplified Fragment Length Polymorphism (AFLPs). Significantly lower methylation was found in exposed groups compared to the control group. The level of hypomethylation increased with the concentration of microbeads. Similar results were found from field samples inhabiting two sites differentially MPs-polluted. The implications of this discovery were analysed and discussed, noting the already known effects of MPs on metabolism and cell division. Further studies on this and other sentinel organisms are recommended to understand the response of the aquatic species to the currently increasing MPs pollution.
Collapse
Affiliation(s)
- Marta Pilar Ortiz-Moriano
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, 33006, Oviedo, Spain
| | - Paula Masiá
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, 33006, Oviedo, Spain
| | - Susana Acle
- BIOPARC Acuario de Gijon S.A., Playa de Poniente, S/n, 33212, Gijon, Spain
| | - Alba Ardura
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, 33006, Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, 33006, Oviedo, Spain
| | - Gonzalo Machado-Schiaffino
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Clavería s/n, 33006, Oviedo, Spain.
| |
Collapse
|
2
|
Tsiami F, Lago C, Pozza N, Piccioni F, Zhao X, Lülsberg F, Root DE, Tiberi L, Kool M, Schittenhelm J, Bandopadhayay P, Segal RA, Tabatabai G, Merk DJ. Genome-wide CRISPR-Cas9 knockout screens identify DNMT1 as a druggable dependency in sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2024; 12:125. [PMID: 39107797 PMCID: PMC11304869 DOI: 10.1186/s40478-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Sonic hedgehog subgroup of medulloblastoma (SHH-MB) is characterized by aberrant activation of the SHH signaling pathway. An inhibition of the positive SHH regulator Smoothened (SMO) has demonstrated promising clinical efficacy. Yet, primary and acquired resistance to SMO inhibitors limit their efficacy. An understanding of underlying molecular mechanisms of resistance to therapy is warranted to bridge this unmet need. Here, we make use of genome-wide CRISPR-Cas9 knockout screens in murine SMB21 and human DAOY cells, in order to unravel genetic dependencies and drug-related genetic interactors that could serve as alternative therapeutic targets for SHH-MB. Our screens reinforce SMB21 cells as a faithful model system for SHH-MB, as opposed to DAOY cells, and identify members of the epigenetic machinery including DNA methyltransferase 1 (DNMT1) as druggable targets in SHH-dependent tumors. We show that Dnmt1 plays a crucial role in normal murine cerebellar development and is required for SHH-MB growth in vivo. Additionally, DNMT1 pharmacological inhibition alone and in combination with SMO inhibition effectively inhibits tumor growth in murine and human SHH-MB cell models and prolongs survival of SHH-MB mouse models by inhibiting SHH signaling output downstream of SMO. In conclusion, our data highlight the potential of inhibiting epigenetic regulators as a novel therapeutic avenue in SMO-inhibitor sensitive as well as resistant SHH-MBs.
Collapse
Affiliation(s)
- Foteini Tsiami
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Chiara Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Noemi Pozza
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Merck Research Laboratories, Cambridge, MA, USA
| | - Xuesong Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Fabienne Lülsberg
- Institute for Anatomy, Anatomy and Cell Biology, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - David E Root
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Marcel Kool
- Hopp Children's Cancer Center (KITZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, Institute of Neuropathology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children´S Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Comprehensive Cancer Center Tübingen Stuttgart, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, Heidelberg, Germany
| | - Daniel J Merk
- Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
3
|
Blaze J, Browne CJ, Futamura R, Javidfar B, Zachariou V, Nestler EJ, Akbarian S. tRNA epitranscriptomic alterations associated with opioid-induced reward-seeking and long-term opioid withdrawal in male mice. Neuropsychopharmacology 2024; 49:1276-1284. [PMID: 38332016 PMCID: PMC11224224 DOI: 10.1038/s41386-024-01813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
DNA cytosine methylation has been documented as a potential epigenetic mechanism of transcriptional regulation underlying opioid use disorder. However, methylation of RNA cytosine residues, which would drive another level of biological influence as an epitranscriptomic mechanism of gene and protein regulation has not been studied in the context of addiction. Here, we probed whether chronic morphine exposure could alter tRNA cytosine methylation (m5C) and resulting expression levels in the medial prefrontal cortex (mPFC), a brain region crucial for reward processing and executive function that exhibits opioid-induced molecular restructuring. We identified dynamic changes in glycine tRNA (tRNAGlyGCC) cytosine methylation, corresponding to altered expression levels of this tRNA at multiple timepoints following 15 days of daily morphine. Additionally, a robust increase in methylation, coupled with decreased expression, was present after 30 days of withdrawal, suggesting that repeated opioid administration produces changes to the tRNA regulome long after discontinuation. Furthermore, forebrain-wide knockout of neuronal Nsun2, a tRNA methyltransferase, was associated with disruption of opioid conditioned place preference, and this effect was recapitulated by regional mPFC Nsun2 knockout. Taken together, these studies provide a foundational link between the regulation of tRNA cytosine methylation and opioid reward and highlight the tRNA machinery as a potential therapeutic target in addiction.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Caleb J Browne
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rita Futamura
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Behnam Javidfar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venetia Zachariou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Eric J Nestler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
5
|
Singh M, Saxena S, Mohan KN. DNMT1 downregulation as well as its overexpression distinctly affect mostly overlapping genes implicated in schizophrenia, autism spectrum, epilepsy, and bipolar disorders. Front Mol Neurosci 2023; 16:1275697. [PMID: 38125006 PMCID: PMC10731955 DOI: 10.3389/fnmol.2023.1275697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Data on schizophrenia (SZ), epilepsy (EPD) and bipolar disorders (BPD) suggested an association of DNMT1 overexpression whereas certain variants of the gene were predicted to result in its increased expression in autism spectrum disorder (ASD). In addition, loss of DNMT1 in frontal cortex resulted in behavioral abnormalities in mice. Here we investigated the effects of increased as well as lack of DNMT1 expression using Dnmt1tet/tet neurons as a model for abnormal neurogenesis and 10,861 genes showing transcript level dysregulation in datasets from the four disorders. In case of overexpression, 3,211 (∼ 30%) genes were dysregulated, affecting pathways involved in neurogenesis, semaphorin signaling, ephrin receptor activity, etc. A disproportionately higher proportion of dysregulated genes were associated with epilepsy. When transcriptome data of Dnmt1tet/tet neurons treated with doxycycline that downregulated DNMT1 was used, 3,356 genes (∼31%) were dysregulated with a significant proportion involved in pathways similar to those in untreated cells. Both conditions resulted in ∼68% of dysregulated genes wherein a majority showed similar patterns of transcript level changes. Among the genes with transcripts returning to normal levels, ribosome assembly/biogenesis was most significant whereas in absence of DNMT1, a new set of 903 genes became dysregulated and are involved in similar pathways as mentioned above. These findings provide support for overexpression of DNMT1 as well as its downregulation as risk factor for the four disorders and that its levels within a tight range are essential for normal neurodevelopment/mental health.
Collapse
Affiliation(s)
- Minali Singh
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| | - Sonal Saxena
- Centre for Human Disease Research, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India
- Centre for Human Disease Research, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| |
Collapse
|
6
|
Wang Z, Yang H, Han Y, Teng J, Kong X, Qi X. Screening and identification of key biomarkers associated with amyotrophic lateral sclerosis and depression using bioinformatics. Medicine (Baltimore) 2023; 102:e36265. [PMID: 38013317 PMCID: PMC10681454 DOI: 10.1097/md.0000000000036265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
This study aims to identify common molecular biomarkers between amyotrophic lateral sclerosis (ALS) and depression using bioinformatics methods, in order to provide potential targets and new ideas and methods for the diagnosis and treatment of these diseases. Microarray datasets GSE139384, GSE35978 and GSE87610 were obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between ALS and depression were identified. After screening for overlapping DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Furthermore, a protein-protein interaction (PPI) network was constructed using the STRING database and Cytoscape software, and hub genes were identified. Finally, a network between miRNAs and hub genes was constructed using the NetworkAnalyst tool, and possible key miRNAs were predicted. A total of 357 genes have been identified as common DEGs between ALS and depression. GO and KEGG enrichment analyses of the 357 DEGs showed that they were mainly involved in cytoplasmic translation. Further analysis of the PPI network using Cytoscape and MCODE plugins identified 6 hub genes, including mitochondrial ribosomal protein S12 (MRPS12), poly(rC) binding protein 1 (PARP1), SNRNP200, PCBP1, small G protein signaling modulator 1 (SGSM1), and DNA methyltransferase 1 (DNMT1). Five possible target miRNAs, including miR-221-5p, miR-21-5p, miR-100-5p, miR-30b-5p, and miR-615-3p, were predicted by constructing a miRNA-gene network. This study used bioinformatics techniques to explore the potential association between ALS and depression, and identified potential biomarkers. These biomarkers may provide new ideas and methods for the early diagnosis, treatment, and monitoring of ALS and depression.
Collapse
Affiliation(s)
- Ziyue Wang
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Hao Yang
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Yu Han
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Jing Teng
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Xinru Kong
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Xianghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| |
Collapse
|
7
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
8
|
Lu CF, Zhou YN, Zhang J, Su S, Liu Y, Peng GH, Zang W, Cao J. The role of epigenetic methylation/demethylation in the regulation of retinal photoreceptors. Front Cell Dev Biol 2023; 11:1149132. [PMID: 37305686 PMCID: PMC10251769 DOI: 10.3389/fcell.2023.1149132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Photoreceptors are integral and crucial for the retina, as they convert light into electrical signals. Epigenetics plays a vital role in determining the precise expression of genetic information in space and time during the development and maturation of photoreceptors, cell differentiation, degeneration, death, and various pathological processes. Epigenetic regulation has three main manifestations: histone modification, DNA methylation, and RNA-based mechanisms, where methylation is involved in two regulatory mechanisms-histone methylation and DNA methylation. DNA methylation is the most studied form of epigenetic modification, while histone methylation is a relatively stable regulatory mechanism. Evidence suggests that normal methylation regulation is essential for the growth and development of photoreceptors and the maintenance of their functions, while abnormal methylation can lead to many pathological forms of photoreceptors. However, the role of methylation/demethylation in regulating retinal photoreceptors remains unclear. Therefore, this study aims to review the role of methylation/demethylation in regulating photoreceptors in various physiological and pathological situations and discuss the underlying mechanisms involved. Given the critical role of epigenetic regulation in gene expression and cellular differentiation, investigating the specific molecular mechanisms underlying these processes in photoreceptors may provide valuable insights into the pathogenesis of retinal diseases. Moreover, understanding these mechanisms could lead to the development of novel therapies that target the epigenetic machinery, thereby promoting the maintenance of retinal function throughout an individual's lifespan.
Collapse
Affiliation(s)
- Chao-Fan Lu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ya-Nan Zhou
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Ahrodia T, Kandiyal B, Das B. Microbiota and epigenetics: Health impact. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:93-117. [PMID: 37225326 DOI: 10.1016/bs.pmbts.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetic changes associated with disease development and progressions are of increasing importance because of their potential diagnostic and therapeutic applications. Several epigenetic changes associated with chronic metabolic disorders have been studied in various diseases. Epigenetic changes are mostly modulated by environmental factors, including the human microbiota living in different parts of our bodies. The microbial structural components and the microbially derived metabolites directly interact with host cells, thereby maintaining homeostasis. Microbiome dysbiosis, on the other hand, is known to produce elevated levels of disease-linked metabolites, which may directly affect a host metabolic pathway or induce epigenetic changes that can lead to disease development. Despite their important role in host physiology and signal transduction, there has been little research into the mechanics and pathways associated with epigenetic modifications. This chapter focuses on the relationship between microbes and their epigenetic effects in diseased pathology, as well as on the regulation and metabolism of the dietary options available to the microbes. Furthermore, this chapter also provides a prospective link between these two important phenomena, termed "Microbiome and Epigenetics."
Collapse
Affiliation(s)
- Taruna Ahrodia
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bharti Kandiyal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
10
|
Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, Kerkeshko GO, Zalozniaia IV. Epigenetic Mechanisms Involved in the Effects of Maternal Hyperhomocysteinemia on the Functional State of Placenta and Nervous System Plasticity in the Offspring. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:435-456. [PMID: 37080931 DOI: 10.1134/s0006297923040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
According to modern view, susceptibility to diseases, specifically to cognitive and neuropsychiatric disorders, can form during embryonic development. Adverse factors affecting mother during the pregnancy increase the risk of developing pathologies. Despite the association between elevated maternal blood homocysteine (Hcy) and fetal brain impairments, as well as cognitive deficits in the offspring, the role of brain plasticity in the development of these pathologies remains poorly studied. Here, we review the data on the negative impact of hyperhomocysteinemia (HHcy) on the neural plasticity, in particular, its possible influence on the offspring brain plasticity through epigenetic mechanisms, such as changes in intracellular methylation potential, activity of DNA methyltransferases, DNA methylation, histone modifications, and microRNA expression in brain cells. Since placenta plays a key role in the transport of nutrients and transmission of signals from mother to fetus, its dysfunction due to aberrant epigenetic regulation can affect the development of fetal CNS. The review also presents the data on the impact of maternal HHcy on the epigenetic regulation in the placenta. The data presented in the review are not only interesting from purely scientific point of view, but can help in understanding the role of HHcy and epigenetic mechanisms in the pathogenesis of diseases, such as pregnancy pathologies resulting in the delayed development of fetal brain, cognitive impairments in the offspring during childhood, and neuropsychiatric and neurodegenerative disorders later in life, as well as in the search for approaches for their prevention using neuroprotectors.
Collapse
Affiliation(s)
- Alexander V Arutjunyan
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia.
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Yulia P Milyutina
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Anastasia D Shcherbitskaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb O Kerkeshko
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
- St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, 197110, Russia
| | - Irina V Zalozniaia
- Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
11
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
12
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
13
|
Dwivedi Y, Shelton RC. Genomics in Treatment Development. ADVANCES IN NEUROBIOLOGY 2023; 30:363-385. [PMID: 36928858 DOI: 10.1007/978-3-031-21054-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Human Genome Project mapped the 3 billion base pairs in the human genome, which ushered in a new generation of genomically focused treatment development. While this has been very successful in other areas, neuroscience has been largely devoid of such developments. This is in large part because there are very few neurological or mental health conditions that are related to single-gene variants. While developments in pharmacogenomics have been somewhat successful, the use of genetic information in practice has to do with drug metabolism and adverse reactions. Studies of drug metabolism related to genetic variations are an important part of drug development. However, outside of cancer biology, the actual translation of genomic information into novel therapies has been limited. Epigenetics, which relates in part to the effects of the environment on DNA, is a promising newer area of relevance to CNS disorders. The environment can induce chemical modifications of DNA (e.g., cytosine methylation), which can be induced by the environment and may represent either shorter- or longer-term changes. Given the importance of environmental influences on CNS disorders, epigenetics may identify important treatment targets in the future.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Kim YA, Siddiqui T, Blaze J, Cosacak MI, Winters T, Kumar A, Tein E, Sproul AA, Teich AF, Bartolini F, Akbarian S, Kizil C, Hargus G, Santa-Maria I. RNA methyltransferase NSun2 deficiency promotes neurodegeneration through epitranscriptomic regulation of tau phosphorylation. Acta Neuropathol 2023; 145:29-48. [PMID: 36357715 PMCID: PMC9807547 DOI: 10.1007/s00401-022-02511-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Abstract
Epitranscriptomic regulation adds a layer of post-transcriptional control to brain function during development and adulthood. The identification of RNA-modifying enzymes has opened the possibility of investigating the role epitranscriptomic changes play in the disease process. NOP2/Sun RNA methyltransferase 2 (NSun2) is one of the few known brain-enriched methyltransferases able to methylate mammalian non-coding RNAs. NSun2 loss of function due to autosomal-recessive mutations has been associated with neurological abnormalities in humans. Here, we show NSun2 is expressed in adult human neurons in the hippocampal formation and prefrontal cortex. Strikingly, we unravel decreased NSun2 protein expression and an increased ratio of pTau/NSun2 in the brains of patients with Alzheimer's disease (AD) as demonstrated by Western blotting and immunostaining, respectively. In a well-established Drosophila melanogaster model of tau-induced toxicity, reduction of NSun2 exacerbated tau toxicity, while overexpression of NSun2 partially abrogated the toxic effects. Conditional ablation of NSun2 in the mouse brain promoted a decrease in the miR-125b m6A levels and tau hyperphosphorylation. Utilizing human induced pluripotent stem cell (iPSC)-derived neuronal cultures, we confirmed NSun2 deficiency results in tau hyperphosphorylation. We also found that neuronal NSun2 levels decrease in response to amyloid-beta oligomers (AβO). Notably, AβO-induced tau phosphorylation and cell toxicity in human neurons could be rescued by overexpression of NSun2. Altogether, these results indicate that neuronal NSun2 deficiency promotes dysregulation of miR-125b and tau phosphorylation in AD and highlights a novel avenue for therapeutic targeting.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Tohid Siddiqui
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany
| | - Jennifer Blaze
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany
| | - Tristan Winters
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Ellen Tein
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Dresden, Germany
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
| | - Gunnar Hargus
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Edificio E, Pozuelo de Alarcón, Madrid, 28223, Spain.
| |
Collapse
|
15
|
Balendran V, Ritter KE, Martin DM. Epigenetic mechanisms of inner ear development. Hear Res 2022; 426:108440. [PMID: 35063312 PMCID: PMC9276839 DOI: 10.1016/j.heares.2022.108440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
Epigenetic factors are critically important for embryonic and postnatal development. Over the past decade, substantial technological advancements have occurred that now permit the study of epigenetic mechanisms that govern all aspects of inner ear development, from otocyst patterning to maturation and maintenance of hair cell stereocilia. In this review, we highlight how three major classes of epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) are essential for the development of the inner ear. We highlight open avenues for research and discuss how new tools enable the employment of epigenetic factors in regenerative and therapeutic approaches for hearing and balance disorders.
Collapse
Affiliation(s)
- Vinodh Balendran
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - K Elaine Ritter
- Department of Pediatrics, Medical Center Drive, University of Michigan Medical School, 8220C MSRB III, 1150 W, Ann Arbor, MI 48109-5652, United States
| | - Donna M Martin
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pediatrics, Medical Center Drive, University of Michigan Medical School, 8220C MSRB III, 1150 W, Ann Arbor, MI 48109-5652, United States; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
16
|
Kaluscha S, Domcke S, Wirbelauer C, Stadler MB, Durdu S, Burger L, Schübeler D. Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nat Genet 2022; 54:1895-1906. [PMID: 36471082 PMCID: PMC9729108 DOI: 10.1038/s41588-022-01241-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Cytosine methylation efficiently silences CpG-rich regulatory regions of genes and repeats in mammalian genomes. To what extent this entails direct inhibition of transcription factor (TF) binding versus indirect inhibition via recruitment of methyl-CpG-binding domain (MBD) proteins is unclear. Here we show that combinatorial genetic deletions of all four proteins with functional MBDs in mouse embryonic stem cells, derived neurons or a human cell line do not reactivate genes or repeats with methylated promoters. These do, however, become activated by methylation-restricted TFs if DNA methylation is removed. We identify several causal TFs in neurons, including ONECUT1, which is methylation sensitive only at a motif variant. Rampantly upregulated retrotransposons in methylation-free neurons feature a CRE motif, which activates them in the absence of DNA methylation via methylation-sensitive binding of CREB1. Our study reveals methylation-sensitive TFs in vivo and argues that direct inhibition, rather than indirect repression by the tested MBD proteins, is the prevailing mechanism of methylation-mediated repression at regulatory regions and repeats.
Collapse
Affiliation(s)
- Sebastian Kaluscha
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Faculty of Sciences, Basel, Switzerland
| | - Silvia Domcke
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
- University of Basel, Faculty of Sciences, Basel, Switzerland
| | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Faculty of Sciences, Basel, Switzerland.
| |
Collapse
|
17
|
Shen XY, Shi SH, Li H, Wang CC, Zhang Y, Yu H, Li YB, Liu B. The role of Gadd45b in neurologic and neuropsychiatric disorders: An overview. Front Mol Neurosci 2022; 15:1021207. [PMID: 36311022 PMCID: PMC9606402 DOI: 10.3389/fnmol.2022.1021207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Growth arrest and DNA damage-inducible beta (Gadd45b) is directly intertwined with stress-induced DNA repair, cell cycle arrest, survival, and apoptosis. Previous research on Gadd45b has focused chiefly on non-neuronal cells. Gadd45b is extensively expressed in the nervous system and plays a critical role in epigenetic DNA demethylation, neuroplasticity, and neuroprotection, according to accumulating evidence. This article provided an overview of the preclinical and clinical effects of Gadd45b, as well as its hypothesized mechanisms of action, focusing on major psychosis, depression, autism, stroke, seizure, dementia, Parkinson’s disease, and autoimmune diseases of the nervous system.
Collapse
Affiliation(s)
- Xiao-yue Shen
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-han Shi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Cong-cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hui Yu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yan-bin Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Yan-bin Li,
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Bin Liu,
| |
Collapse
|
18
|
Wang R, Yang M, Wu Y, Liu R, Liu M, Li Q, Su X, Xin Y, Huo W, Deng Q, Ba Y, Huang H. SIRT1 modifies DNA methylation linked to synaptic deficits induced by Pb in vitro and in vivo. Int J Biol Macromol 2022; 217:219-228. [PMID: 35839949 DOI: 10.1016/j.ijbiomac.2022.07.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.2 % Pb-exposure group. After treatment with resveratrol, the effects of Pb exposure on the expression of the above molecules and pathological features were significantly ameliorated in the hippocampus of rats. In vitro results showed that after the treatment with SRT1720, the expression of SIRT1 was activated and thus reversed the effect on DNMTs, MeCP2, apoptosis and synaptic plasticity-related genes and their DNA methylation levels induced by Pb exposure. In conclusion, we validated the important protective role of SIRT1 in neurotoxicity induced by Pb exposure through in vivo and in vitro experiments, providing potential therapeutic targets for the treatment and prevention of brain damage.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Xiao Su
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Yongjuan Xin
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Wenqian Huo
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan province 450001, China.
| |
Collapse
|
19
|
Mohan KN. DNMT1: catalytic and non-catalytic roles in different biological processes. Epigenomics 2022; 14:629-643. [PMID: 35410490 DOI: 10.2217/epi-2022-0035] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNMT1 is the main enzyme that uses the information on DNA methylation patterns in the parent strand and methylates the daughter strand in freshly replicated hemimethylated DNA. It is widely known that DNMT1 is a component of the epigenetic machinery mediating gene repression via increased promoter methylation. However, recent data suggest that DNMT1 can also modulate gene expression independent of its catalytic activity and participates in multiple processes including the cell cycle, DNA damage repair and stem cell function. This review summarizes the noncanonical functions of DNMT1, some of which are clearly independent of maintenance methylation. Finally, phenotypic data on altered DNMT1 levels suggesting that maintenance of optimal levels of DNMT1 is vital for normal development and health is presented.
Collapse
Affiliation(s)
- Kommu Naga Mohan
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500078, India
| |
Collapse
|
20
|
Tachibana K, Kawazoe S, Onoda A, Umezawa M, Takeda K. Effects of Prenatal Exposure to Titanium Dioxide Nanoparticles on DNA Methylation and Gene Expression Profile in the Mouse Brain. FRONTIERS IN TOXICOLOGY 2022; 3:705910. [PMID: 35295148 PMCID: PMC8915839 DOI: 10.3389/ftox.2021.705910] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives: Titanium dioxide nanoparticles (TiO2-NP) are important materials used in commercial practice. Reportedly, TiO2-NP exposure during pregnancy can affect the development of the central nervous system in mouse offspring; however, the underlying mechanism remains unknown. In the present study, we investigated the impact of prenatal TiO2-NP exposure on global DNA methylation and mRNA expression patterns in the brains of neonatal mice. Materials and Methods: Pregnant C57BL/6J mice were intratracheally administered a TiO2-NP suspension (100 μg/mouse) on gestational day 10.5, and brains were collected from male and female offspring at day 1 postpartum. After extraction of methylated DNA by immunoprecipitation, the DNA methylation profile was analyzed using a mouse CpG island microarray. Total RNA was obtained, and mRNA expression profiles were comprehensively assessed using microarray analysis. Results: Among genes in the CpG island microarray, DNA methylation was increased in 614 and 2,924 genes and decreased in 6,220 and 6,477 genes in male and female offspring, respectively. Combined with mRNA microarray analysis, 88 and 89 genes were upregulated (≥1.5-fold) accompanied by demethylation of CpG islands, whereas 13 and 33 genes were downregulated (≤0.67-fold) accompanied by methylation of CpG islands in male and female offspring mice, respectively. Gene Set Enrichment Analysis (GSEA) revealed that these genes were enriched in gene ontology terms related to the regulation of transcription factors, cell proliferation, and organism development. Additionally, MeSH terms related to stem cells and morphogenesis were enriched. Conclusion: Prenatal TiO2-NP exposure induced genome-wide alterations in DNA methylation and mRNA expression in the brains of male and female offspring. Based on GSEA findings, it can be speculated that prenatal TiO2-NP exposure causes adverse effects on brain functions by altering the DNA methylation state of the fetal brain, especially neural stem cells, resulting in the subsequent abnormal regulation of transcription factors that modulate development and differentiation.
Collapse
Affiliation(s)
- Ken Tachibana
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-onoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Shotaro Kawazoe
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Atsuto Onoda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-onoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Masakazu Umezawa
- The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-onoda City University, Sanyo-onoda, Japan.,The Center for Environmental Health Science for the Next Generation, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
21
|
Maretina MA, Valetdinova KR, Tsyganova NA, Egorova AA, Ovechkina VS, Schiöth HB, Zakian SM, Baranov VS, Kiselev AV. Identification of specific gene methylation patterns during motor neuron differentiation from spinal muscular atrophy patient-derived iPSC. Gene 2022; 811:146109. [PMID: 34871761 DOI: 10.1016/j.gene.2021.146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/08/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Spinal muscular atrophy is a progressive motor neuron disorder caused by deletions or point mutations in the SMN1 gene. It is not known why motor neurons are particularly sensitive to a decrease in SMN protein levels and what factors besides SMN2 underlie the high clinical heterogeneity of the disease. Here we studied the methylation patterns of genes on sequential stages of motor neuron differentiation from induced pluripotent stem cells derived from the patients with SMA type I and II. The genes involved in the regulation of pluripotency, neural differentiation as well as those associated with spinal muscular atrophy development were included. The results show that the PAX6, HB9, CHAT, ARHGAP22, and SMN2 genes are differently methylated in cells derived from SMA patients compared to the cells of healthy individuals. This study clarifies the specificities of the disease pathogenesis and extends the knowledge of pathways involved in the SMA progression.
Collapse
Affiliation(s)
- M A Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - K R Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia
| | - N A Tsyganova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - A A Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - V S Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia; Novosibirsk State University, 630090 Novosibirsk, Russia
| | - H B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, S-75124 Uppsala, Sweden; Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - S M Zakian
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novsibirsk, Russia; Meshalkin National Medical Research Center, Ministry of Healthcare of the Russian Federation, 630055 Novosibirsk, Russia
| | - V S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia
| | - A V Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
22
|
Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:363-394. [DOI: 10.1007/978-3-031-11454-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Beck MA, Fischer H, Grabner LM, Groffics T, Winter M, Tangermann S, Meischel T, Zaussinger‐Haas B, Wagner P, Fischer C, Folie C, Arand J, Schöfer C, Ramsahoye B, Lagger S, Machat G, Eisenwort G, Schneider S, Podhornik A, Kothmayer M, Reichart U, Glösmann M, Tamir I, Mildner M, Sheibani‐Tezerji R, Kenner L, Petzelbauer P, Egger G, Sibilia M, Ablasser A, Seiser C. DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J 2021; 40:e108234. [PMID: 34586646 PMCID: PMC8591534 DOI: 10.15252/embj.2021108234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.
Collapse
|
24
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
25
|
Wang W, Zhao X, Shao Y, Duan X, Wang Y, Li J, Li J, Li D, Li X, Wong J. Mutation-induced DNMT1 cleavage drives neurodegenerative disease. SCIENCE ADVANCES 2021; 7:eabe8511. [PMID: 34516921 PMCID: PMC8442919 DOI: 10.1126/sciadv.abe8511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Specific mutations within the replication foci targeting sequence (RFTS) domain of human DNMT1 are causative of two types of adult-onset neurodegenerative diseases, HSAN1E and ADCA-DN, but the underlying mechanisms are largely unknown. We generated Dnmt1-M1 and Dnmt1-M2 knock-in mouse models that are equivalent to Y495C and D490E-P491Y mutation in patients with HSAN1E, respectively. We found that both mutant heterozygous mice are viable, have reduced DNMT1 proteins, and exhibit neurodegenerative phenotypes including impaired learning and memory. The homozygous mutants die around embryonic day 10.5 and are apparently devoid of DNMT1 proteins. We present the evidence that the mutant DNMT1 proteins are unstable, most likely because of cleavage within RFTS domain by an unidentified proteinase. Moreover, we provide evidence that the RFTS mutation–induced cleavage of DNMT1, but not mutation itself, is responsible for functional defect of mutant DNMT1. Our study shed light on the mechanism of DNMT1 RFTS mutation causing neurodegenerative diseases.
Collapse
Affiliation(s)
- Wencai Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| | - Xingsen Zhao
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoya Duan
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xuekun Li
- The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital–ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, 6600th Nanfeng Road, Fengxian District, Shanghai 201499, China
| |
Collapse
|
26
|
Cheng W, Luo N, Zhang Y, Zhang X, Tan H, Zhang D, Sui J, Yue W, Yan H. DNA Methylation and Resting Brain Function Mediate the Association between Childhood Urbanicity and Better Speed of Processing. Cereb Cortex 2021; 31:4709-4718. [PMID: 33987663 PMCID: PMC8408435 DOI: 10.1093/cercor/bhab117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Urbanicity has been suggested to affect cognition, but the underlying mechanism remains unknown. We examined whether epigenetic modification (DNA methylation, DNAm), and brain white matter fiber integrity (fractional anisotropy, FA) or local spontaneous brain function activity (regional homogeneity, ReHo) play roles in the association between childhood urbanicity and cognition based on 497 healthy Chinese adults. We found significant correlation between childhood urbanicity and better cognitive performance. Multiset canonical correlation analysis (mCCA) identified an intercorrelated DNAm-FA-ReHo triplet, which showed significant pairwise correlations (DNAm-FA: Bonferroni-adjusted P, Pbon = 4.99E-03, rho = 0.216; DNAm-ReHo: Pbon = 4.08E-03, rho = 0.239; ReHo-FA: Pbon = 1.68E-06, rho = 0.328). Causal mediation analysis revealed that 1) ReHo mediated 10.86% childhood urbanicity effects on the speed of processing and 2) childhood urbanicity alters ReHo through DNA methylation in the cadherin and Wnt signaling pathways (mediated effect: 48.55%). The mediation effect of increased ReHo in the superior temporal gyrus underlying urbanicity impact on a better speed of processing was further validated in an independent cohort. Our work suggests a mediation role for ReHo, particularly increased brain activity in the superior temporal gyrus, in the urbanicity-associated speed of processing.
Collapse
Affiliation(s)
- Weiqiu Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|
27
|
Blaze J, Navickas A, Phillips HL, Heissel S, Plaza-Jennings A, Miglani S, Asgharian H, Foo M, Katanski CD, Watkins CP, Pennington ZT, Javidfar B, Espeso-Gil S, Rostandy B, Alwaseem H, Hahn CG, Molina H, Cai DJ, Pan T, Yao WD, Goodarzi H, Haghighi F, Akbarian S. Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun 2021; 12:4913. [PMID: 34389722 PMCID: PMC8363735 DOI: 10.1038/s41467-021-24969-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.
Collapse
Affiliation(s)
- J Blaze
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - A Navickas
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H L Phillips
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - S Heissel
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - A Plaza-Jennings
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Miglani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - H Asgharian
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - M Foo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - C P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Z T Pennington
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Javidfar
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - S Espeso-Gil
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - B Rostandy
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - C G Hahn
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Molina
- The Rockefeller University Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - D J Cai
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - T Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - W D Yao
- Departments of Psychiatry and Behavioral Sciences, Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - H Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - F Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
29
|
Balmik AA, Chinnathambi S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer's disease. Cell Commun Signal 2021; 19:51. [PMID: 33962636 PMCID: PMC8103764 DOI: 10.1186/s12964-021-00732-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer's, Parkinson's and Huntington's disease involves abnormal aggregation and accumulation of toxic proteins aggregates. Post-translational modifications (PTMs) of the causative proteins play an important role in the etiology of disease as they could either slow down or accelerate the disease progression. Alzheimer disease is associated with the aggregation and accumulation of two major protein aggregates-intracellular neurofibrillary tangles made up of microtubule-associated protein Tau and extracellular Amyloid-β plaques. Post-translational modifications are important for the regulation of Tau`s function but an imbalance in PTMs may lead to abnormal Tau function and aggregation. Tau methylation is one of the important PTM of Tau in its physiological state. However, the methylation signature on Tau lysine changes once it acquires pathological aggregated form. Tau methylation can compete with other PTMs such as acetylation and ubiquitination. The state of PTM at these sites determines the fate of Tau protein in terms of its function and stability. The global methylation in neurons, microglia and astrocytes are involved in multiple cellular functions involving their role in epigenetic regulation of gene expression via DNA methylation. Here, we have discussed the effect of methylation on Tau function in a site-specific manner and their cross-talk with other lysine modifications. We have also elaborated the role of methylation in epigenetic aspects and neurodegenerative conditions associated with the imbalance in methylation metabolism affecting global methylation state of cells. Video abstract.
Collapse
Affiliation(s)
- Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008,, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002,, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008,, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002,, India.
| |
Collapse
|
30
|
Whole genome methylation and transcriptome analyses to identify risk for cerebral palsy (CP) in extremely low gestational age neonates (ELGAN). Sci Rep 2021; 11:5305. [PMID: 33674671 PMCID: PMC7935929 DOI: 10.1038/s41598-021-84214-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Preterm birth remains the leading identifiable risk factor for cerebral palsy (CP), a devastating form of motor impairment due to developmental brain injury occurring around the time of birth. We performed genome wide methylation and whole transcriptome analyses to elucidate the early pathogenesis of CP in extremely low gestational age neonates (ELGANs). We evaluated peripheral blood cell specimens collected during a randomized trial of erythropoietin for neuroprotection in the ELGAN (PENUT Trial, NCT# 01378273). DNA methylation data were generated from 94 PENUT subjects (n = 47 CP vs. n = 47 Control) on day 1 and 14 of life. Gene expression data were generated from a subset of 56 subjects. Only one differentially methylated region was identified for the day 1 to 14 change between CP versus no CP, without evidence for differential gene expression of the associated gene RNA Pseudouridine Synthase Domain Containing 2. iPathwayGuide meta-analyses identified a relevant upregulation of JAK1 expression in the setting of decreased methylation that was observed in control subjects but not CP subjects. Evaluation of whole transcriptome data identified several top pathways of potential clinical relevance including thermogenesis, ferroptossis, ribosomal activity and other neurodegenerative conditions that differentiated CP from controls.
Collapse
|
31
|
Sun J, Yang J, Miao X, Loh HH, Pei D, Zheng H. Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:7. [PMID: 33649938 PMCID: PMC7921253 DOI: 10.1186/s13619-020-00070-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epigenetic modifications, namely non-coding RNAs, DNA methylation, and histone modifications such as methylation, phosphorylation, acetylation, ubiquitylation, and sumoylation play a significant role in brain development. DNA methyltransferases, methyl-CpG binding proteins, and ten-eleven translocation proteins facilitate the maintenance, interpretation, and removal of DNA methylation, respectively. Different forms of methylation, including 5-methylcytosine, 5-hydroxymethylcytosine, and other oxidized forms, have been detected by recently developed sequencing technologies. Emerging evidence suggests that the diversity of DNA methylation patterns in the brain plays a key role in fine-tuning and coordinating gene expression in the development, plasticity, and disorders of the mammalian central nervous system. Neural stem cells (NSCs), originating from the neuroepithelium, generate neurons and glial cells in the central nervous system and contribute to brain plasticity in the adult mammalian brain. MAIN BODY Here, we summarized recent research in proteins responsible for the establishment, maintenance, interpretation, and removal of DNA methylation and those involved in the regulation of the proliferation and differentiation of NSCs. In addition, we discussed the interactions of chemicals with epigenetic pathways to regulate NSCs as well as the connections between proteins involved in DNA methylation and human diseases. CONCLUSION Understanding the interplay between DNA methylation and NSCs in a broad biological context can facilitate the related studies and reduce potential misunderstanding.
Collapse
Affiliation(s)
- Jiaqi Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.
| | - Junzheng Yang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Xiaoli Miao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Horace H Loh
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China
| | - Duanqing Pei
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China.,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China.,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,School of Life Science, Westlake University, Hangzhou, 310024, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), #188 Kaiyuan Ave., Science City, Huangpu District, Guangzhou, 510700, China. .,CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, 510530, China. .,Institutes for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
32
|
Streck EL, Bussular FP, Wessler LB, Duarte MB, Rezende VL, Rodrigues MS, Torres CA, Lemos IS, Candiotto G, Gava FF, de Oliveira J, Valvassori SS. Administration of branched-chain amino acids alters epigenetic regulatory enzymes in an animal model of Maple Syrup Urine Disease. Metab Brain Dis 2021; 36:247-254. [PMID: 33098071 DOI: 10.1007/s11011-020-00631-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder that affects the activity of the branched-chainα-keto acid dehydrogenase complex (BCDK). This deficiency on BCDK complex results in the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, valine, and their corresponding α-keto acids. Epigenetic changes can negatively affect the metabolism of BCAA. These changes are catalyzed by the epigenetic regulatory enzymes, e.g., DNA methyltransferase (DNMT), histone deacetylases (HDAC), and histone acetyltransferases (HAT). However, the impacts of BCAA administration on the activity of epigenetic regulatory enzymes in the brain of MSUD patients are still unknown. In this study, we aimed to demonstrate the impact of BCAA administration on the activity of DNMT, HDAC, and HAT in the brain structures of infant rats, an animal model of MSUD. For that, we administered a BCAA pool to infant rats for 21 days. We demonstrated that BCAA administration significantly increased the DNMT and HDAC activities in the hippocampus and striatum, but not in the cerebral cortex of MSUD infant rats. A positive correlation was observed between HDAC and DNMT activities in the hippocampus and striatum of animals exposed to BCAA injections. Our results showed that the BCAA administration could modulate epigenetic regulatory enzymes, mainly DNMT and HDAC, in the brains of infant rats. Therefore, we suggest that the increase in the activity of DNMT and HDAC in the hippocampus and striatum could partially explain the neurological impairments presented in animal models of MSUD.
Collapse
Affiliation(s)
- Emilio L Streck
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil.
| | - Felipe P Bussular
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Leticia B Wessler
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Mariane B Duarte
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Victoria L Rezende
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Matheus S Rodrigues
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina A Torres
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Isabela S Lemos
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Gabriela Candiotto
- Laboratório de Doenças Neurometabólicas, Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, SC, Criciúma, 88806-000, Brazil
| | - Fernanda F Gava
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Jade de Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Porto Alegre, 90035-000, Brazil
| | - Samira S Valvassori
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
33
|
Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics 2021; 13:4. [PMID: 33407853 PMCID: PMC7789000 DOI: 10.1186/s13148-020-00993-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA.
| |
Collapse
|
34
|
Sakamoto H, Yamasaki T, Sumiyoshi T, Takeda M, Shibasaki N, Utsunomiya N, Arakaki R, Akamatsu S, Kobayashi T, Inoue T, Kamba T, Nakamura E, Ogawa O. Functional and genomic characterization of patient-derived xenograft model to study the adaptation to mTORC1 inhibitor in clear cell renal cell carcinoma. Cancer Med 2021; 10:119-134. [PMID: 33107222 PMCID: PMC7826464 DOI: 10.1002/cam4.3578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Resistance to the mechanistic target of rapamycin (mTOR) inhibitors, which are a standard treatment for advanced clear cell renal cell carcinoma (ccRCC), eventually develops in most cases. In this study, we established a patient-derived xenograft (PDX) model which acquired resistance to the mTOR inhibitor temsirolimus, and explored the underlying mechanisms of resistance acquisition. Temsirolimus was administered to PDX model mice, and one cohort of PDX models acquired resistance after repeated passages. PDX tumors were genetically analyzed by whole-exome sequencing and detected several genetic alterations specific to resistant tumors. Among them, mutations in ANKRD12 and DNMT1 were already identified in the early passage of a resistant PDX model, and we focused on a DNMT1 mutation as a potential candidate for developing the resistant phenotype. While DNMT1 expression in temsirolimus-resistant tumors was comparable with the control tumors, DNMT enzyme activity was decreased in resistant tumors compared with controls. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated heterozygous knockdown of DNMT1 in the temsirolimus-sensitive ccRCC (786-O) cell line was shown to result in a temsirolimus-resistant phenotype in vitro and in vivo. Integrated gene profiles using methylation and microarray analyses of PDX tumors suggested a global shift for the hypomethylation status including promotor regions, and showed the upregulation of several molecules that regulate the mTOR pathway in temsirolimus-resistant tumors. Present study showed the feasibility of PDX model to explore the mechanisms of mTOR resistance acquisition and suggested that genetic alterations, including that of DNMT1, which alter the methylation status in cancer cells, are one of the potential mechanisms of developing resistance to temsirolimus.
Collapse
Affiliation(s)
- Hiromasa Sakamoto
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Toshinari Yamasaki
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takayuki Sumiyoshi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Masashi Takeda
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Noboru Shibasaki
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Noriaki Utsunomiya
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Ryuichiro Arakaki
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Shusuke Akamatsu
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takashi Kobayashi
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| | - Takahiro Inoue
- Department of Nephro‐Urologic Surgery and AndrologyMie University Graduate School of MedicineTsuJapan
| | - Tomomi Kamba
- Department of UrologyKumamoto University Graduate School of Medical SciencesKumamotoJapan
| | - Eijiro Nakamura
- DSK Project, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Osamu Ogawa
- Department of UrologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
35
|
Lee HM, Kuijer MB, Ruiz Blanes N, Clark EP, Aita M, Galiano Arjona L, Kokot A, Sciaky N, Simon JM, Bhatnagar S, Philpot BD, Cerase A. A small-molecule screen reveals novel modulators of MeCP2 and X-chromosome inactivation maintenance. J Neurodev Disord 2020; 12:29. [PMID: 33172406 PMCID: PMC7657357 DOI: 10.1186/s11689-020-09332-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked methyl-CpG binding protein 2 (MeCP2) gene. While MeCP2 mutations are lethal in most males, females survive birth but show severe neurological defects. Because X-chromosome inactivation (XCI) is a random process, approximately 50% of the cells silence the wild-type (WT) copy of the MeCP2 gene. Thus, reactivating the silent WT copy of MeCP2 could provide therapeutic intervention for RTT. METHODS Toward this goal, we screened ~ 28,000 small-molecule compounds from several libraries using a MeCP2-luciferase reporter cell line and cortical neurons from a MeCP2-EGFP mouse model. We used gain/increase of luminescence or fluorescence as a readout of MeCP2 reactivation and tested the efficacy of these drugs under different drug regimens, conditions, and cellular contexts. RESULTS We identified inhibitors of the JAK/STAT pathway as XCI-reactivating agents, both by in vitro and ex vivo assays. In particular, we show that AG-490, a Janus Kinase 2 (JAK2) kinase inhibitor, and Jaki, a pan JAK/STAT inhibitor, are capable of reactivating MeCP2 from the inactive X chromosome, in different cellular contexts. CONCLUSIONS Our results suggest that inhibition of the JAK/STAT pathway is a new potential pathway to reinstate MeCP2 gene expression as an efficient RTT treatment.
Collapse
Affiliation(s)
- Hyeong-Min Lee
- Department of Cell Biology & Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Current Address: High-Throughput Bioscience Center, Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Bram Kuijer
- Department of Cell Biology & Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Ellen P Clark
- Department of Cell Biology & Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Megumi Aita
- Department of Cell Biology & Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Agnieszka Kokot
- Department of Biochemistry and Molecular Genetics, Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin D Philpot
- Department of Cell Biology & Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrea Cerase
- Blizard Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
36
|
Analysis of transcript levels of a few schizophrenia candidate genes in neurons from a transgenic mouse embryonic stem cell model overexpressing DNMT1. Gene 2020; 757:144934. [PMID: 32640307 DOI: 10.1016/j.gene.2020.144934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
Overexpression of DNA Methyltransferase I (DNMT1) is considered as one of the etiological factors for schizophrenia (SZ). However, information on genes subjected to dysregulation because of DNMT1 overexpression is limited. To test whether a larger group of SZ-associated genes are affected, we selected 15 genes reported to be dysregulated in patients (Gad1, Reln, Ank3, Cacna1c, Dkk3, As3mt, Ppp1r11, Smad5, Syn1, Wnt1, Pdgfra, Gsk3b, Cxcl12, Tcf4 and Fez1). Transcript levels of these genes were compared between neurons derived from Dnmt1tet/tet (Tet/Tet) mouse embryonic stem cells (ESCs) that overexpress DNMT1 with R1 (wild-type) neurons. Transcript levels of thirteen genes were significantly altered in Tet/Tet neurons of which, the dysregulation patterns of 11 were similar to patients. Transcript levels of eight out of these eleven were also significantly altered in Tet/Tet ESCs, but the dysregulation patterns of only five were similar to neurons. Comparative analyses among ESCs, embryoid bodies and neurons divided the 15 genes into four distinct groups with a majority showing developmental stage-specific patterns of dysregulation. Reduced Representational Bisulfite Sequencing data from neurons did not show any altered promoter DNA methylation for the dysregulated genes. Doxycycline treatment of Tet/Tet ESCs that eliminated DNMT1, reversed the direction of dysregulation of only four genes (Gad1, Dkk3, As3mt and Syn1). These results suggest that 1. Increased DNMT1 affected the levels of a majority of the transcripts studied, 2. Dysregulation appears to be independent of promoter methylation, 3. Effects of increased DNMT1 levels were reversible for only a subset of the genes studied, and 4. Increased DNMT1 levels may affect transcript levels of multiple schizophrenia-associated genes.
Collapse
|
37
|
Linde J, Zimmer-Bensch G. DNA Methylation-Dependent Dysregulation of GABAergic Interneuron Functionality in Neuropsychiatric Diseases. Front Neurosci 2020; 14:586133. [PMID: 33041771 PMCID: PMC7525021 DOI: 10.3389/fnins.2020.586133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric diseases, such as mood disorders, schizophrenia, and autism, represent multifactorial disorders, differing in causes, disease onset, severity, and symptoms. A common feature of numerous neuropsychiatric conditions are defects in the cortical inhibitory GABAergic system. The balance of excitation and inhibition is fundamental for proper and efficient information processing in the cerebral cortex. Thus, altered inhibition is suggested to account for pathological symptoms like cognitive impairments and dysfunctional multisensory integration. While it became apparent that most of these diseases have a clear genetic component, environmental influences emerged as an impact of disease manifestation, onset, and severity. Epigenetic mechanisms of transcriptional control, such as DNA methylation, are known to be responsive to external stimuli, and are suspected to be implicated in the functional impairments of GABAergic interneurons, and hence, the pathophysiology of neuropsychiatric diseases. Here, we provide an overview about the multifaceted functional implications of DNA methylation and DNA methyltransferases in cortical interneuron development and function in health and disease. Apart from the regulation of gamma-aminobutyric acid-related genes and genes relevant for interneuron development, we discuss the role of DNA methylation-dependent regulation of synaptic transmission by the modulation of endocytosis-related genes as potential pathophysiological mechanisms underlying neuropsychiatric conditions. Deciphering the hierarchy and mechanisms of changes in epigenetic signatures is crucial to develop effective strategies for treatment and prevention.
Collapse
Affiliation(s)
- Jenice Linde
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Division of Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Sivalingam K, Samikkannu T. Neuroprotective Effect of Piracetam against Cocaine-Induced Neuro Epigenetic Modification of DNA Methylation in Astrocytes. Brain Sci 2020; 10:E611. [PMID: 32899583 PMCID: PMC7565945 DOI: 10.3390/brainsci10090611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023] Open
Abstract
Cocaine abuse is known to alter mitochondrial biogenesis and induce epigenetic modification linked with neuronal dysfunction. Cocaine-induced epigenetic modification of DNA methylation and the mitochondrial genome may affect mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), as epigenetic DNA methylation is key to maintaining genomic integrity in the central nervous system (CNS). However, the impact of cocaine-mediated epigenetic changes in astrocytes has not yet been elucidated. In this study, we explored the neuroprotective effect of piracetam against cocaine-induced epigenetic changes in DNA methylation in astrocytes. To study our hypothesis, we exposed human astrocytes to cocaine alone or in combination with the nootropic drug piracetam. We examined the expression of the DNA methyltransferases (DNMTs) DNMT-1, DNMT-3A, and DNMT-3B; global DNA methylation levels of 5-methycytosine (5-mC); and induction of ten-eleven translocation (TET) enzymes in astrocytes. In addition, we analyzed mtDNA methylation by targeted next-generation bisulfite sequencing. Our data provide evidence that cocaine impairs DNMT activity and thereby has impacts on mtDNA, which might contribute to the neurodegeneration observed in cocaine users. These effects might be at least partially prevented by piracetam, allowing neuronal function to be maintained.
Collapse
Affiliation(s)
| | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, 1010 W Avenue B, Kingsville, TX 78363, USA;
| |
Collapse
|
39
|
Abstract
Adult stem cells undergo both replicative and chronological aging in their niches, with catastrophic declines in regenerative potential with age. Due to repeated environmental insults during aging, the chromatin landscape of stem cells erodes, with changes in both DNA and histone modifications, accumulation of damage, and altered transcriptional response. A body of work has shown that altered chromatin is a driver of cell fate changes and a regulator of self-renewal in stem cells and therefore a prime target for juvenescence therapeutics. This review focuses on chromatin changes in stem cell aging and provides a composite view of both common and unique epigenetic themes apparent from the studies of multiple stem cell types.
Collapse
Affiliation(s)
- Changyou Shi
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lin Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
40
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
41
|
Epigenomic Remodeling in Huntington's Disease-Master or Servant? EPIGENOMES 2020; 4:epigenomes4030015. [PMID: 34968288 PMCID: PMC8594700 DOI: 10.3390/epigenomes4030015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/03/2022] Open
Abstract
In light of our aging population, neurodegenerative disorders are becoming a tremendous challenge, that modern societies have to face. They represent incurable, progressive conditions with diverse and complex pathological features, followed by catastrophic occurrences of massive neuronal loss at the later stages of the diseases. Some of these disorders, like Huntington’s disease (HD), rely on defined genetic factors. HD, as an incurable, fatal hereditary neurodegenerative disorder characterized by its mid-life onset, is caused by the expansion of CAG trinucleotide repeats coding for glutamine (Q) in exon 1 of the huntingtin gene. Apart from the genetic defect, environmental factors are thought to influence the risk, onset and progression of HD. As epigenetic mechanisms are known to readily respond to environmental stimuli, they are proposed to play a key role in HD pathogenesis. Indeed, dynamic epigenomic remodeling is observed in HD patients and in brains of HD animal models. Epigenetic signatures, such as DNA methylation, histone variants and modifications, are known to influence gene expression and to orchestrate various aspects of neuronal physiology. Hence, deciphering their implication in HD pathogenesis might open up new paths for novel therapeutic concepts, which are discussed in this review.
Collapse
|
42
|
Pensold D, Reichard J, Van Loo KMJ, Ciganok N, Hahn A, Bayer C, Liebmann L, Groß J, Tittelmeier J, Lingner T, Salinas-Riester G, Symmank J, Halfmann C, González-Bermúdez L, Urbach A, Gehrmann J, Costa I, Pieler T, Hübner CA, Vatter H, Kampa B, Becker AJ, Zimmer-Bensch G. DNA Methylation-Mediated Modulation of Endocytosis as Potential Mechanism for Synaptic Function Regulation in Murine Inhibitory Cortical Interneurons. Cereb Cortex 2020; 30:3921-3937. [PMID: 32147726 PMCID: PMC7264686 DOI: 10.1093/cercor/bhaa009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten–eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.
Collapse
Affiliation(s)
- Daniel Pensold
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Reichard
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,Research Training Group 2416 Multi Senses-Multi Scales, RWTH Aachen University, 52074 Aachen, Germany
| | - Karen M J Van Loo
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Natalja Ciganok
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Hahn
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Cathrin Bayer
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Jonas Groß
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | | | - Thomas Lingner
- Department of Developmental Biochemistry, Transcriptome and Genome Analysis Laboratory (TAL), University of Goettingen, 37077 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, Transcriptome and Genome Analysis Laboratory (TAL), University of Goettingen, 37077 Goettingen, Germany
| | - Judit Symmank
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Claas Halfmann
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany
| | | | - Anja Urbach
- Clinic for Neurology, University Hospital Jena, 07743 Jena, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Tomas Pieler
- Department of Developmental Biochemistry, Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Goettingen, 37077 Goettingen, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Hartmut Vatter
- Clinic for Neurosurgery, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Björn Kampa
- Division of Systems Neurophysiology, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,JARA BRAIN, Institute for Neuroscience and Medicine, Forschungszentrum Jülich, 52425, Germany
| | - Albert J Becker
- Department of Neuropathology, Section for Translational Epilepsy Research, University of Bonn Medical Center, 53105 Bonn, Germany
| | - Geraldine Zimmer-Bensch
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany.,Division of Functional Epigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, 52074 Aachen, Germany.,Research Training Group 2416 Multi Senses-Multi Scales, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
43
|
Abstract
Depression is one of the most common psychiatric disorders affecting public health. Studies over the past years suggest that the methylations of some specific genes such as BDNF, SLC6A4, and NR3C1 play an important role in the development of depression. Recently, epigenetic evidences suggest that the expression levels of DNA methyltransferases differ in several brain areas including the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens in depression patients and animal models, but the potential link between the expression levels of DNA methylatransferases and the methylations of specific genes needs further investigation to clarify the pathogenesis of depression.
Collapse
Affiliation(s)
- Zhenghao Duan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
44
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Is an "Epigenetic Diet" for Migraines Justified? The Case of Folate and DNA Methylation. Nutrients 2019; 11:E2763. [PMID: 31739474 PMCID: PMC6893742 DOI: 10.3390/nu11112763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Migraines are a common disease with limited treatment options and some dietary factors are recognized to trigger headaches. Although migraine pathogenesis is not completely known, aberrant DNA methylation has been reported to be associated with its occurrence. Folate, an essential micronutrient involved in one-carbon metabolism and DNA methylation, was shown to have beneficial effects on migraines. Moreover, the variability of the methylenetetrahydrofolate reductase gene, important in both folate metabolism and migraine pathogenesis, modulates the beneficial effects of folate for migraines. Therefore, migraine could be targeted by a folate-rich, DNA methylation-directed diet, but there are no data showing that beneficial effects of folate consumption result from its epigenetic action. Furthermore, contrary to epigenetic drugs, epigenetic diets contain many compounds, some yet unidentified, with poorly known or completely unknown potential to interfere with the epigenetic action of the main dietary components. The application of epigenetic diets for migraines and other diseases requires its personalization to the epigenetic profile of a patient, which is largely unknown. Results obtained so far do not warrant the recommendation of any epigenetic diet as effective in migraine prevention and therapy. Further studies including a folate-rich diet fortified with valproic acid, another modifier of epigenetic profile effective in migraine prophylaxis, may help to clarify this issue.
Collapse
Affiliation(s)
- Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
45
|
Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019; 711:134403. [PMID: 31351091 PMCID: PMC6759378 DOI: 10.1016/j.neulet.2019.134403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Recent methylome-wide association studies (MWAS) in humans have solidified the concept that aberrant DNA methylation is associated with Alzheimer's disease (AD). We summarize these findings to improve the understanding of mechanisms governing DNA methylation pertinent to transcriptional regulation, with an emphasis of AD-associated promoter DNA hypermethylation, which establishes an epigenetic barrier for transcriptional activation. By considering brain cell type specific expression profiles that have been published only for non-demented individuals, we detail functional activities of selected neuron, microglia, and astrocyte-enriched genes (AGAP2, DUSP6 and GPR37L1, respectively), which are DNA hypermethylated at promoters in AD. We highlight future directions in MWAS including experimental confirmation, functional relevance to AD, cell type-specific temporal characterization, and mechanism investigation.
Collapse
Affiliation(s)
- Yiyuan Liu
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Edoardo M Marcora
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Alison M Goate
- Department of Neuroscience and Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
46
|
Malloy MA, Kochmanski JJ, Jones TR, Colacino JA, Goodrich JM, Dolinoy DC, Svoboda LK. Perinatal Bisphenol A Exposure and Reprogramming of Imprinted Gene Expression in the Adult Mouse Brain. Front Genet 2019; 10:951. [PMID: 31649729 PMCID: PMC6796247 DOI: 10.3389/fgene.2019.00951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic imprinting, a phenomenon by which genes are expressed in a monoallelic, parent-of-origin-dependent fashion, is critical for normal brain development. Expression of imprinted genes is regulated via epigenetic mechanisms, including DNA methylation (5-methylcytosine, 5mC), and disruptions in imprinting can lead to disease. Early-life exposure to the endocrine disrupting chemical bisphenol A (BPA) is associated with abnormalities in brain development and behavior, as well as with disruptions in epigenetic patterning, including 5mC and DNA hydroxymethylation (5-hydroxymethylcytosine, 5hmC). Using an established mouse model of perinatal environmental exposure, the objective of this study was to examine the effects of perinatal BPA exposure on epigenetic regulation of imprinted gene expression in adult mice. Two weeks prior to mating, dams were assigned to control chow or chow containing an environmentally relevant dose (50 µg/kg) of BPA. Exposure continued until offspring were weaned at post-natal day 21, and animals were followed until 10 months of age. Expression of three imprinted genes—Pde10a, Ppp1r9a, and Kcnq1, as well as three genes encoding proteins critical for regulation of 5mC and 5hmC—Dnmt1, Tet1, and Tet2, were evaluated in the right cortex and midbrain using qRT-PCR. Perinatal BPA exposure was associated with a significant increase in adult Kcnq1 (p = 0.04) and Dnmt1 (p = 0.02) expression in the right cortex, as well as increased expression of Tet2 in the midbrain (p = 0.03). Expression of Tet2 and Kcnq1 were positively correlated in the midbrain. Analysis of 5mC and 5hmC at the Kcnq1 locus was conducted in parallel samples using standard and oxidative bisulfite conversion followed by pyrosequencing. This analysis revealed enrichment of both 5mC and 5hmC at this locus in both brain regions. No significant changes in 5mC and 5hmC at Kcnq1 were observed with perinatal BPA exposure. Together, these data suggest that perinatal BPA exposure results in altered expression of Kcnq1, Dnmt1, and Tet2 in the adult mouse brain. Further studies with larger sample sizes are necessary to understand the mechanistic basis for these changes, as well as to determine the implications they have for brain development and function.
Collapse
Affiliation(s)
- Maureen A Malloy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Joseph J Kochmanski
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Tamara R Jones
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Laurie K Svoboda
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
47
|
Pritchard R, Chen H, Romoli B, Spitzer NC, Dulcis D. Photoperiod-induced neurotransmitter plasticity declines with aging: An epigenetic regulation? J Comp Neurol 2019; 528:199-210. [PMID: 31343079 DOI: 10.1002/cne.24747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Neuroplasticity has classically been understood to arise through changes in synaptic strength or synaptic connectivity. A newly discovered form of neuroplasticity, neurotransmitter switching, involves changes in neurotransmitter identity. Chronic exposure to different photoperiods alters the number of dopamine (tyrosine hydroxylase, TH+) and somatostatin (SST+) neurons in the paraventricular nucleus (PaVN) of the hypothalamus of adult rats and results in discrete behavioral changes. Here, we investigate whether photoperiod-induced neurotransmitter switching persists during aging and whether epigenetic mechanisms of histone acetylation and DNA methylation may contribute to this neurotransmitter plasticity. We show that this plasticity in rats is robust at 1 and at 3 months but reduced in TH+ neurons at 12 months and completely abolished in both TH+ and SST+ neurons by 18 months. De novo expression of DNMT3a catalyzing DNA methylation and anti-AcetylH3 assessing histone 3 acetylation were observed following short-day photoperiod exposure in both TH+ and SST+ neurons at 1 and 3 months while an overall increase in DNMT3a in SST+ neurons paralleled neuroplasticity reduction at 12 and 18 months. Histone acetylation increased in TH+ neurons and decreased in SST+ neurons following short-day exposure at 3 months while the total number of anti-AcetylH3+ PaVN neurons remained constant. Reciprocal histone acetylation in TH+ and SST+ neurons indicates the importance of studying epigenetic regulation at the circuit level for identified cell phenotypes. The findings may be useful for developing approaches for noninvasive treatment of disorders characterized by neurotransmitter dysfunction.
Collapse
Affiliation(s)
- Rory Pritchard
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California.,Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Helene Chen
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Ben Romoli
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California
| | - Davide Dulcis
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
48
|
Early life stress and the propensity to develop addictive behaviors. Int J Dev Neurosci 2019; 78:156-169. [PMID: 31255718 DOI: 10.1016/j.ijdevneu.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
There is a vast literature on effects of early life manipulations in rodents much of which is aimed at investigating the long-term consequences related to emotion and cognition in adulthood. Less is known about how these manipulations affect responses reflective of alcohol (AUD) and substance (SUD) use disorders. The purpose of this paper is to review the literature of studies that employed early life manipulations and assessed behavioral responses to psychoactive substances, specifically alcohol, opiates, and stimulants, in rodents. While the findings with alcohol are more limited and mixed, studies with opiates and stimulants show strong support for the ability of these manipulations to enhance behavioral responsivity to these substances in line with epidemiological data. Some outcomes show sex differences. The mechanisms that influence these enduring changes may reflect epigenetic alterations. Several studies support a role for altered DNA methylation (and other epigenetic mechanisms) as biological responses to early environmental insults. The chemical changes induced by DNA methylation affect transcriptional activity of DNA and thus can have a long-term impact on the individual's phenotype. Such effects are particularly robust when they occur during sensitive periods of brain development (e.g., first postnatal weeks in rodents). We review this emerging literature as it relates to the known neurobiology of AUDs and SUDs and suggest new avenues of research. Such findings will have implications for the treatment and prevention of AUDs and SUDs and could provide insight into factors that support resiliency.
Collapse
|
49
|
Albertini E, Barcaccia G, Carman JG, Pupilli F. Did apomixis evolve from sex or was it the other way around? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2951-2964. [PMID: 30854543 DOI: 10.1093/jxb/erz109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
In angiosperms, there are two pathways of reproduction through seeds: sexual, or amphimictic, and asexual, or apomictic. The essential feature of apomixis is that an embryo in an ovule is formed autonomously. It may form from a cell of the nucellus or integuments in an otherwise sexual ovule, a process referred to as adventitious embryony. Alternatively, the embryo may form by parthenogenesis from an unreduced egg that forms in an unreduced embryo sac. The latter may form from an ameiotic megasporocyte, in which case it is referred to as diplospory, or from a cell of the nucellus or integument, in which case it is referred to as apospory. Progeny of apomictic plants are generally identical to the mother plant. Apomixis has been seen over the years as either a gain- or loss-of-function over sexuality, implying that the latter is the default condition. Here, we consider an additional point of view, that apomixis may be anciently polyphenic with sex and that both reproductive phenisms involve anciently canalized components of complex molecular processes. This polyphenism viewpoint suggests that apomixis fails to occur in obligately sexual eukaryotes because genetic or epigenetic modifications have silenced the primitive sex apomixis switch and/or disrupted molecular capacities for apomixis. In eukaryotes where sex and apomixis are clearly polyphenic, apomixis exponentially drives clonal fecundity during reproductively favorable conditions, while stress induces sex for stress-tolerant spore or egg formation. The latter often guarantees species survival during environmentally harsh seasons.
Collapse
Affiliation(s)
- Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova Legnaro, PD, Italy
| | - John G Carman
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Perugia, Italy
| |
Collapse
|
50
|
Kular L, Needhamsen M, Adzemovic MZ, Kramarova T, Gomez-Cabrero D, Ewing E, Piket E, Tegnér J, Beck S, Piehl F, Brundin L, Jagodic M. Neuronal methylome reveals CREB-associated neuro-axonal impairment in multiple sclerosis. Clin Epigenetics 2019; 11:86. [PMID: 31146783 PMCID: PMC6543588 DOI: 10.1186/s13148-019-0678-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Background Due to limited access to brain tissue, the precise mechanisms underlying neuro-axonal dysfunction in neurological disorders such as multiple sclerosis (MS) are largely unknown. In that context, profiling DNA methylation, which is a stable and cell type-specific regulatory epigenetic mark of genome activity, offers a unique opportunity to characterize the molecular mechanisms underpinning brain pathology in situ. We examined DNA methylation patterns of neuronal nuclei isolated from post-mortem brain tissue to infer processes that occur in neurons of MS patients. Results We isolated subcortical neuronal nuclei from post-mortem white matter tissue of MS patients and non-neurological controls using flow cytometry. We examined bulk DNA methylation changes (total n = 29) and further disentangled true DNA methylation (5mC) from neuron-specific DNA hydroxymethylation (5hmC) (n = 17), using Illumina Infinium 450K arrays. We performed neuronal sub-type deconvolution using glutamate and GABA methylation profiles to further reduce neuronal sample heterogeneity. In total, we identified 2811 and 1534 significant (genome-wide adjusted P value < 0.05) differentially methylated and hydroxymethylated positions between MS patients and controls. We found striking hypo-5mC and hyper-5hmC changes occurring mainly within gene bodies, which correlated with reduced transcriptional activity, assessed using published RNAseq data from bulk brain tissue of MS patients and controls. Pathway analyses of the two cohorts implicated dysregulation of genes involved in axonal guidance and synaptic plasticity, with meta-analysis confirming CREB signalling as the most highly enriched pathway underlying these processes. We functionally investigated DNA methylation changes of CREB signalling-related genes by immunohistofluoresence of phosphorylated CREB in neurons from brain sections of a subcohort of MS patients and controls (n = 15). Notably, DNA methylation changes associated with a reduction of CREB activity in white matter neurons of MS patients compared to controls. Conclusions Our data demonstrate that investigating 5mC and 5hmC modifications separately allows the discovery of a substantial fraction of changes occurring in neurons, which can escape traditional bisulfite-based DNA methylation analysis. Collectively, our findings indicate that neurons of MS patients acquire sustained hypo-5mC and hyper-5hmC, which may impair CREB-mediated neuro-axonal integrity, in turn relating to clinical symptoms. Electronic supplementary material The online version of this article (10.1186/s13148-019-0678-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana Kramarova
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.,Mucosal and Salivary Biology Division, King's College London Dental Institute, London, SE1 9RT, UK.,Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eliane Piket
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Tegnér
- Department of Medicine, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden.,Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|