1
|
Abstract
The nodes of Ranvier have clustered Na+ and K+ channels necessary for rapid and efficient axonal action potential conduction. However, detailed mechanisms of channel clustering have only recently been identified: they include two independent axon-glia interactions that converge on distinct axonal cytoskeletons. Here, we discuss how glial cell adhesion molecules and the extracellular matrix molecules that bind them assemble combinations of ankyrins, spectrins and other cytoskeletal scaffolding proteins, which cluster ion channels. We present a detailed molecular model, incorporating these overlapping mechanisms, to explain how the nodes of Ranvier are assembled in both the peripheral and central nervous systems.
Collapse
|
2
|
Tomita Y, Horiuchi K, Kano K, Tatsukawa T, Matsuo R, Hayasaka T, Yoshida Y, Kabara M, Yasuda S, Nakajima K, Nakagawa N, Takehara N, Okizaki A, Hasebe N, Kawabe JI. Ninjurin 1 mediates peripheral nerve regeneration through Schwann cell maturation of NG2-positive cells. Biochem Biophys Res Commun 2019; 519:462-468. [DOI: 10.1016/j.bbrc.2019.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
|
3
|
NG2 Proteoglycan Enhances Brain Tumor Progression by Promoting Beta-1 Integrin Activation in both Cis and Trans Orientations. Cancers (Basel) 2017; 9:cancers9040031. [PMID: 28362324 PMCID: PMC5406706 DOI: 10.3390/cancers9040031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
By physically interacting with beta-1 integrins, the NG2 proteoglycan enhances activation of the integrin heterodimers. In glioma cells, co-localization of NG2 and 31 integrin in individual cells (cis interaction) can be demonstrated by immunolabeling, and the NG2-integrin interaction can be confirmed by co-immunoprecipitation. NG2-dependent integrin activation is detected via use of conformationally sensitive monoclonal antibodies that reveal the activated state of the beta-1 subunit in NG2-positive versus NG2-negative cells. NG2-dependent activation of beta-1 integrins triggers downstream activation of FAK and PI3K/Akt signaling, resulting in increased glioma cell proliferation, motility, and survival. Similar NG2-dependent cis activation of beta-1 integrins occurs in microvascular pericytes, leading to enhanced proliferation and motility of these vascular cells. Surprisingly, pericyte NG2 is also able to promote beta-1 integrin activation in closely apposed endothelial cells (trans interaction). Enhanced beta-1 signaling in endothelial cells promotes endothelial maturation by inducing the formation of endothelial junctions, resulting in increased barrier function of the endothelium and increased basal lamina assembly. NG2-dependent beta-1 integrin signaling is therefore important for tumor progression by virtue of its affects not only on the tumor cells themselves, but also on the maturation and function of tumor blood vessels.
Collapse
|
4
|
Serwanski DR, Jukkola P, Nishiyama A. Heterogeneity of astrocyte and NG2 cell insertion at the node of ranvier. J Comp Neurol 2016; 525:535-552. [PMID: 27448245 DOI: 10.1002/cne.24083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023]
Abstract
The node of Ranvier is a functionally important site on the myelinated axon where sodium channels are clustered and regeneration of action potentials occurs, allowing fast saltatory conduction of action potentials. Early ultrastructural studies have revealed the presence of "glia" or "astrocytes" at the nodes. NG2 cells, also known as oligodendrocyte precursor cells or polydendrocytes, which are a resident glial cell population in the mature mammalian central nervous system that is distinct from astrocytes, have also been shown to extend processes that contact the nodes. However, the prevalence of the two types of glia at the node has remained unknown. We have used specific cell surface markers to examine the association of NG2 cells and astrocytes with the nodes of Ranvier in the optic nerve, corpus callosum, and spinal cord of young adult mice or rats. We show that more than 95% of the nodes in all three regions contained astrocyte processes, while 33-49% of nodes contained NG2 cell processes. NG2 cell processes were associated more frequently with larger nodes. A few nodes were devoid of glial apposition. Electron microscopy and stimulated emission depletion (STED) super-resolution microscopy confirmed the presence of dual glial insertion at some nodes and further revealed that NG2 cell processes contacted the nodal membrane at discrete points, while astrocytes had broader processes that surrounded the nodes. The study provides the first systematic quantitative analysis of glial cell insertions at central nodes of Ranvier. J. Comp. Neurol. 525:535-552, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David R Serwanski
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Peter Jukkola
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| |
Collapse
|
5
|
Levine J. The reactions and role of NG2 glia in spinal cord injury. Brain Res 2016; 1638:199-208. [PMID: 26232070 PMCID: PMC4732922 DOI: 10.1016/j.brainres.2015.07.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 01/06/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) react rapidly to brain and spinal cord injuries. This reaction is characterized by the retraction of cell processes, cell body swelling and increased expression of the NG2 chondroitin sulfate proteoglycan. Reactive OPCs rapidly divide and accumulate surrounding the injury site where they become major cellular components of the glial scar. The glial reaction to injury is an attempt to restore normal homeostasis and re-establish the glia limitans but the exact role of reactive OPCs in these processes is not well understood. Traumatic injury results in extensive oligodendrocyte cell death and the proliferating OPCs generate the large number of precursor cells necessary for remyelination. Reactive OPCs, however, also are a source of axon-growth inhibitory proteoglycans and may interact with invading inflammatory cells in complex ways. Here, I discuss these and other properties of OPCs after spinal cord injury. Understanding the regulation of these disparate properties may lead to new therapeutic approaches to devastating injuries of the spinal cord. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Joel Levine
- Department of Neurobiology and Behavior, Stonybrook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
6
|
Dyck SM, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans: Key modulators in the developing and pathologic central nervous system. Exp Neurol 2015; 269:169-87. [PMID: 25900055 DOI: 10.1016/j.expneurol.2015.04.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Abstract
Chondroitin Sulfate Proteoglycans (CSPGs) are a major component of the extracellular matrix in the central nervous system (CNS) and play critical role in the development and pathophysiology of the brain and spinal cord. Developmentally, CSPGs provide guidance cues for growth cones and contribute to the formation of neuronal boundaries in the developing CNS. Their presence in perineuronal nets plays a crucial role in the maturation of synapses and closure of critical periods by limiting synaptic plasticity. Following injury to the CNS, CSPGs are dramatically upregulated by reactive glia which form a glial scar around the lesion site. Increased level of CSPGs is a hallmark of all CNS injuries and has been shown to limit axonal plasticity, regeneration, remyelination, and conduction after injury. Additionally, CSPGs create a non-permissive milieu for cell replacement activities by limiting cell migration, survival and differentiation. Mounting evidence is currently shedding light on the potential benefits of manipulating CSPGs in combination with other therapeutic strategies to promote spinal cord repair and regeneration. Moreover, the recent discovery of multiple receptors for CSPGs provides new therapeutic targets for targeted interventions in blocking the inhibitory properties of CSPGs following injury. Here, we will provide an in depth discussion on the impact of CSPGs in normal and pathological CNS. We will also review the recent preclinical therapies that have been developed to target CSPGs in the injured CNS.
Collapse
Affiliation(s)
- Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and the Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Colombelli C, Palmisano M, Eshed-Eisenbach Y, Zambroni D, Pavoni E, Ferri C, Saccucci S, Nicole S, Soininen R, McKee KK, Yurchenco PD, Peles E, Wrabetz L, Feltri ML. Perlecan is recruited by dystroglycan to nodes of Ranvier and binds the clustering molecule gliomedin. J Cell Biol 2015; 208:313-29. [PMID: 25646087 PMCID: PMC4315246 DOI: 10.1083/jcb.201403111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023] Open
Abstract
Fast neural conduction requires accumulation of Na(+) channels at nodes of Ranvier. Dedicated adhesion molecules on myelinating cells and axons govern node organization. Among those, specific laminins and dystroglycan complexes contribute to Na(+) channel clustering at peripheral nodes by unknown mechanisms. We show that in addition to facing the basal lamina, dystroglycan is found near the nodal matrix around axons, binds matrix components, and participates in initial events of nodogenesis. We identify the dystroglycan-ligand perlecan as a novel nodal component and show that dystroglycan is required for the selective accumulation of perlecan at nodes. Perlecan binds the clustering molecule gliomedin and enhances clustering of node of Ranvier components. These data show that proteoglycans have specific roles in peripheral nodes and indicate that peripheral and central axons use similar strategies but different molecules to form nodes of Ranvier. Further, our data indicate that dystroglycan binds free matrix that is not organized in a basal lamina.
Collapse
Affiliation(s)
- Cristina Colombelli
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Marilena Palmisano
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203 Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203
| | - Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Desirée Zambroni
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Ernesto Pavoni
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Stefania Saccucci
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy
| | - Sophie Nicole
- Institut du Cerveau et de la Moelle Épinière, 75013 Paris, France Institut National de la Santé et de la Recherche Médicale, U1127, 75019 Paris, France Sorbonne Universités, Université Pierre et Marie Currie, UMRS1127, 75252 Paris, France Centre National de la Recherche Scientifique, UMR 7225, 75013 Paris, France
| | - Raija Soininen
- Oulu Center for Cell-Extracellular Matrix Research, University of Oulu, 90014 Oulu, Finland
| | | | | | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lawrence Wrabetz
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203 Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203
| | - M Laura Feltri
- Division of Genetics and Cell Biology, San Raffaele Hospital, 20132 Milan, Italy Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203 Department of Biochemistry and Department of Neurology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203
| |
Collapse
|
8
|
Stathopoulos P, Alexopoulos H, Dalakas MC. Autoimmune antigenic targets at the node of Ranvier in demyelinating disorders. Nat Rev Neurol 2015; 11:143-56. [DOI: 10.1038/nrneurol.2014.260] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Nishihara T, Remacle AG, Angert M, Shubayev I, Shiryaev SA, Liu H, Dolkas J, Chernov AV, Strongin AY, Shubayev VI. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem 2014; 290:3693-707. [PMID: 25488667 DOI: 10.1074/jbc.m114.603431] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain.
Collapse
Affiliation(s)
- Tasuku Nishihara
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037, Department of Anesthesiology and Resuscitology, Ehime University, Toon, Ehime 791-0295, Japan
| | - Albert G Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Mila Angert
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Igor Shubayev
- Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Sergey A Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Huaqing Liu
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Jennifer Dolkas
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Andrei V Chernov
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Alex Y Strongin
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Veronica I Shubayev
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037,
| |
Collapse
|
10
|
Peripheral nerve proteins as potential autoantigens in acute and chronic inflammatory demyelinating polyneuropathies. Autoimmun Rev 2014; 13:1070-8. [DOI: 10.1016/j.autrev.2014.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
|
11
|
Richard L, Védrenne N, Vallat JM, Funalot B. Characterization of Endoneurial Fibroblast-like Cells from Human and Rat Peripheral Nerves. J Histochem Cytochem 2014; 62:424-435. [PMID: 24670794 DOI: 10.1369/0022155414530994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endoneurial fibroblast-like cells (EFLCs) are one of the cell populations present in the peripheral nervous system. The role and immunophenotypic characteristics of EFLCs are not well known and led us to perform a histological and cytological study of EFLCs in normal human and rat peripheral nerves. We found that all EFLCs express CD34, neural/glial antigen 2 (NG2), and prolyl-4-hydrolase-beta. In addition, half of the EFLCs in normal peripheral nerves express platelet-derived growth factor receptor-β (PDGFR-β) and some also express the intermediate filament nestin in vivo (at a lower level than Schwann cells, which express high levels of nestin). Using cell cultures of purified EFLCs, we characterized subpopulations of EFLCs expressing PDGFR-β alone or PDGFR-β and nestin. Experimental nerve lesions in rat resulted in an increase in nestin-positive EFLCs, which returned to normal levels after 8 days. This suggests that some EFLCs could have a different proliferative and/or regenerative potential than others, and these EFLCs may play a role in the initial phase of nerve repair. These "activated" EFLCs share some immunophenotypic similarities with pericytes and Interstitial cells of Cajal, which have progenitor cell potentials. This raises the questions as to whether a proportion of EFLCs have a possible role as endoneurial progenitor cells.
Collapse
Affiliation(s)
- Laurence Richard
- Faculté de Médecine, Université de Limoges, EA 6309 "Maintenance myélinique et Neuropathies Périphériques", (LR,NV,J-MV,BF)Service et Laboratoire de Neurologie, Centre de Référence "Neuropathies Périphériques Rares", CHU de Limoges (LR,J-MV,BF)Départements de Génétique, Biochimie et Génétique Moléculaire, CHU de Limoges, Limoges, France (BF)
| | - Nicolas Védrenne
- Faculté de Médecine, Université de Limoges, EA 6309 "Maintenance myélinique et Neuropathies Périphériques", (LR,NV,J-MV,BF)Service et Laboratoire de Neurologie, Centre de Référence "Neuropathies Périphériques Rares", CHU de Limoges (LR,J-MV,BF)Départements de Génétique, Biochimie et Génétique Moléculaire, CHU de Limoges, Limoges, France (BF)
| | - Jean-Michel Vallat
- Faculté de Médecine, Université de Limoges, EA 6309 "Maintenance myélinique et Neuropathies Périphériques", (LR,NV,J-MV,BF)Service et Laboratoire de Neurologie, Centre de Référence "Neuropathies Périphériques Rares", CHU de Limoges (LR,J-MV,BF)Départements de Génétique, Biochimie et Génétique Moléculaire, CHU de Limoges, Limoges, France (BF)
| | - Benoît Funalot
- Faculté de Médecine, Université de Limoges, EA 6309 "Maintenance myélinique et Neuropathies Périphériques", (LR,NV,J-MV,BF)Service et Laboratoire de Neurologie, Centre de Référence "Neuropathies Périphériques Rares", CHU de Limoges (LR,J-MV,BF)Départements de Génétique, Biochimie et Génétique Moléculaire, CHU de Limoges, Limoges, France (BF)
| |
Collapse
|
12
|
Frischknecht R, Chang KJ, Rasband MN, Seidenbecher CI. Neural ECM molecules in axonal and synaptic homeostatic plasticity. PROGRESS IN BRAIN RESEARCH 2014; 214:81-100. [PMID: 25410354 DOI: 10.1016/b978-0-444-63486-3.00004-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.
Collapse
Affiliation(s)
- Renato Frischknecht
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Germany
| | - Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Constanze I Seidenbecher
- Center for Behavioral Brain Sciences (CBBS) Magdeburg, Germany; Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
13
|
Eshed-Eisenbach Y, Peles E. The making of a node: a co-production of neurons and glia. Curr Opin Neurobiol 2013; 23:1049-56. [PMID: 23831261 DOI: 10.1016/j.conb.2013.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
Nodes of Ranvier are specialized axonal domains formed in response to a glial signal. Recent research advances have revealed that both CNS and PNS nodes form by several overlapping molecular mechanisms. However, the precise nature of these mechanisms and the hierarchy existing between them is considerably different in CNS versus PNS nodes. Namely, the Schwann cells of the PNS, which directly contact the nodal axolemma, secrete proteins that cluster axonodal components at the edges of the growing myelin segment. In contrast, the formation of CNS nodes, which are not contacted by the myelinating glia, is surprisingly similar to the assembly of the axon initial segment and depends largely on axonal diffusion barriers.
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
14
|
Abstract
Endoneurial fibroblast-like cells (EFLCs) have been described for more than 60 years, but the embryology, functions, and pathology of these cells are not well defined. Several hypotheses of their origin have been proposed. A previous study suggesting that they were of neural crest origin is supported by our data in humans. This lineage might account for EFLCs having multiple biologic functions and involvement in pathological processes. Here, we review what is known about the origin; functions in collagen synthesis, phagocytosis, inflammatory responses, and immune surveillance; and the pathological alterations of EFLCs based on the literature and on our personal observations.
Collapse
|
15
|
Chang KJ, Rasband MN. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. CURRENT TOPICS IN MEMBRANES 2013; 72:159-92. [PMID: 24210430 DOI: 10.1016/b978-0-12-417027-8.00005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurons are highly polarized cells. They can be subdivided into at least two structurally and functionally distinct domains: somatodendritic and axonal domains. The somatodendritic domain receives and integrates upstream input signals, and the axonal domain generates and relays outputs in the form of action potentials to the downstream target. Demand for quick response to the harsh surroundings prompted evolution to equip vertebrates' neurons with a remarkable glia-derived structure called myelin. Not only Insulating the axon, myelinating glia also rearrange the axonal components and elaborate functional subdomains along the axon. Proper functioning of all theses domains and subdomains is vital for a normal, efficient nervous system.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
16
|
Colognato H, Tzvetanova ID. Glia unglued: how signals from the extracellular matrix regulate the development of myelinating glia. Dev Neurobiol 2012; 71:924-55. [PMID: 21834081 DOI: 10.1002/dneu.20966] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The health and function of the nervous system relies on glial cells that ensheath neuronal axons with a specialized plasma membrane termed myelin. The molecular mechanisms by which glial cells target and enwrap axons with myelin are only beginning to be elucidated, yet several studies have implicated extracellular matrix proteins and their receptors as being important extrinsic regulators. This review provides an overview of the extracellular matrix proteins and their receptors that regulate multiple steps in the cellular development of Schwann cells and oligodendrocytes, the myelinating glia of the PNS and CNS, respectively, as well as in the construction and maintenance of the myelin sheath itself. The first part describes the relevant cellular events that are influenced by particular extracellular matrix proteins and receptors, including laminins, collagens, integrins, and dystroglycan. The second part describes the signaling pathways and effector molecules that have been demonstrated to be downstream of Schwann cell and oligodendroglial extracellular matrix receptors, including FAK, small Rho GTPases, ILK, and the PI3K/Akt pathway, and the roles that have been ascribed to these signaling mediators. Throughout, we emphasize the concept of extracellular matrix proteins as environmental sensors that act to integrate, or match, cellular responses, in particular to those downstream of growth factors, to appropriate matrix attachment.
Collapse
Affiliation(s)
- Holly Colognato
- Department of Pharmacology, Stony Brook University, Stony Brook, New York 11794, USA.
| | | |
Collapse
|
17
|
Sabatier MJ, To BN, Rose S, Nicolini J, English AW. Chondroitinase ABC reduces time to muscle reinnervation and improves functional recovery after sciatic nerve transection in rats. J Neurophysiol 2011; 107:747-57. [PMID: 22049333 DOI: 10.1152/jn.00887.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of chondroitinase ABC (ChABC) to injured peripheral nerves improves axon regeneration, but it is not known whether functional recovery is also improved. Recordings of EMG activity [soleus (Sol) M response and H reflexes] evoked by nerve stimulation and of Sol and tibialis anterior (TA) EMG activity and hindlimb and foot kinematics during slope walking were made to determine whether ChABC treatment of the sciatic nerve at the time of transection improves functional recovery. Recovery of evoked EMG responses began as multiple small responses with a wide range of latencies that eventually coalesced into one or two more distinctive and consistent responses (the putative M response and the putative H reflex) in both groups. Both the initial evoked responses and the time course of their maturation returned sooner in the ChABC group than in the untreated (UT) group. The reinnervated Sol and TA were coactivated during treadmill locomotion during downslope, level, and upslope walking throughout the study period in both UT and ChABC-treated rats. By 10 wk after nerve transection and repair, locomotor activity in Sol, but not TA, had returned to its pretransection pattern. There was an increased reliance on central control of Sol activation across slopes for both groups as interpreted from elevated prestance Sol EMG activity that was no longer modulated with slope. Limb length and orientation during locomotion were similar to those observed prior to nerve injury during upslope walking only in the ChABC-treated rats. Thus treatment of cut nerves with ChABC leads to improvements in functional recovery.
Collapse
Affiliation(s)
- Manning J Sabatier
- Department of Cell Biology, Emory University School of Medicine, Atlanta, USA.
| | | | | | | | | |
Collapse
|
18
|
Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol 2009; 223:102-11. [PMID: 19505459 DOI: 10.1016/j.expneurol.2009.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/29/2009] [Accepted: 05/30/2009] [Indexed: 01/09/2023]
Abstract
Traumatic injury to the nervous system often results in life changing loss of neurological function. Spontaneous neural regeneration occurs rarely and the outcome of therapeutic intervention is most often unacceptable. An intensive effort is underway to improve methods and technologies for nervous system repair. To date, the most success has been attained in the outcomes of peripheral nerve restoration. The importance of the peripheral nerve sheaths in successful nerve regeneration has been long recognized. In particular, Schwann cells and their basal laminae play a central role in axon development, maintenance, physiology, and response to injury. The endoneurial basal lamina is rich in components that promote axonal growth. It is now evident that the bioactivities of these components are counterbalanced by various factors that impede axonal growth. The growth-promoting potential of peripheral nerve is realized in the degenerative processes that occur distal to a lesion. This potentiation involves precise spatiotemporal alterations in the balance of antagonistic regulators of axonal growth. Experimental alteration of nerve sheath composition can also potentiate nerve and improve key features of nerve regeneration. For instance, enzymatic degradation of inhibitory chondroitin sulfate proteoglycan mimics endogenous processes that potentiate degenerated nerve and improves the outcome of direct nerve repair and grafting in animal models. This review provides a perspective of the essential role that peripheral nerve sheaths play in regulating axonal regeneration and focuses on discoveries leading to the inception and development of novel therapies for nerve repair.
Collapse
Affiliation(s)
- David Muir
- Department of Pediatrics, Neurology Division, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
19
|
Susuki K, Rasband MN. Molecular mechanisms of node of Ranvier formation. Curr Opin Cell Biol 2008; 20:616-23. [PMID: 18929652 DOI: 10.1016/j.ceb.2008.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Action potential propagation along myelinated nerve fibers requires high-density protein complexes that include voltage-gated Na(+) channels at the nodes of Ranvier. Several complementary mechanisms may be involved in node assembly including: (1) interaction of nodal cell adhesion molecules with the extracellular matrix; (2) restriction of membrane protein mobility by paranodal junctions; and (3) stabilization of ion channel clusters by axonal cytoskeletal scaffolds. In the peripheral nervous system, a secreted glial protein at the nodal extracellular matrix interacts with axonal cell adhesion molecules to initiate node formation. In the central nervous system, both glial soluble factors and paranodal axoglial junctions may function in a complementary manner to contribute to node formation.
Collapse
Affiliation(s)
- Keiichiro Susuki
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | | |
Collapse
|
20
|
Hossain-Ibrahim MK, Rezajooi K, Stallcup WB, Lieberman AR, Anderson PN. Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse. BMC Neurosci 2007; 8:80. [PMID: 17900358 PMCID: PMC2100060 DOI: 10.1186/1471-2202-8-80] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/27/2007] [Indexed: 11/19/2022] Open
Abstract
Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. Conclusion These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury.
Collapse
Affiliation(s)
- Mohammed K Hossain-Ibrahim
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Neurosurgery, Queen Elizabeth Hospital, Metchley Lane, Birmingham B15 2TH, UK
| | - Kia Rezajooi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Alexander R Lieberman
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Patrick N Anderson
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
21
|
Eshed Y, Feinberg K, Carey DJ, Peles E. Secreted gliomedin is a perinodal matrix component of peripheral nerves. ACTA ACUST UNITED AC 2007; 177:551-62. [PMID: 17485493 PMCID: PMC2064815 DOI: 10.1083/jcb.200612139] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction between gliomedin and the axonodal cell adhesion molecules (CAMs) neurofascin and NrCAM induces the clustering of Na+ channels at the nodes of Ranvier. We define new interactions of gliomedin that are essential for its clustering activity. We show that gliomedin exists as both transmembrane and secreted forms that are generated by proteolytic cleavage of the protein, and that only the latter is detected at the nodes of Ranvier. The secreted extracellular domain of gliomedin binds to Schwann cells and is incorporated into the extracellular matrix (ECM) in a heparin-dependent manner, suggesting the involvement of heparan sulfate proteoglycans (HSPGs). Furthermore, we show that the N-terminal region of gliomedin serves as an oligomerization domain that mediates self-association of the molecule, which is required for its binding to neurofascin and NrCAM. Our results indicate that the deposition of gliomedin multimers at the nodal gap by binding to HSPGs facilitates the clustering of the axonodal CAMs and Na+ channels.
Collapse
Affiliation(s)
- Yael Eshed
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
22
|
Akeda K, An HS, Pichika R, Patel K, Muehleman C, Nakagawa K, Uchida A, Masuda K. The expression of NG2 proteoglycan in the human intervertebral disc. Spine (Phila Pa 1976) 2007; 32:306-14. [PMID: 17268261 DOI: 10.1097/01.brs.0000254108.08507.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical and biochemical analyses of NG2 proteoglycan in the human intervertebral disc. OBJECTIVE To determine if the human intervertebral disc expresses NG2 proteoglycan. SUMMARY OF BACKGROUND DATA In the nervous system, NG2 has been reported to play an important role as an interactive extracellular matrix component and membrane receptor for growth factors. NG2 is also found in non-neuronal tissues, such as cartilage and bone; however, the expression of NG2 within the human intervertebral disc is unknown. METHODS NG2 expression in the intervertebral disc was examined through Western blotting, reverse transcriptase polymerase chain reaction, and immunohistochemistry. Confocal microscopy was used to assess the spatial association of NG2 with type VI collagen. To reveal changes in the content of NG2 with disc degeneration, Western blot analysis was used to assess the relative content of NG2 in human intervertebral disc tissues with varying degrees of degeneration. RESULTS NG2 was clearly identified in cells from both the anulus fibrosus and nucleus pulposus, and colocalized with both type VI collagen and beta-integrin, located in the inner area of the cell-associated matrix. Throughout the anterior and posterior regions of the disc tissues, most cells were confirmed to be NG2 positive. Cells expressed NG2 messenger ribonucleic acid, and Western blot confirmed the presence of the core protein of the NG2 protein, 250 kDa. A study comparing the different grades of disc degeneration showed that the content of NG2 was elevated in disc tissues in an advanced stage of degeneration compared to tissues in an early stage of degeneration. CONCLUSIONS Although the biologic role of NG2 remains to be elucidated, the colocalization of NG2 with type VI collagen in the pericellular area suggests that NG2 may play an important role in cell-matrix interactions. The high level of NG2 expression in advanced degeneration also suggests an important role of NG2 in the loss of disc integrity.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopedic Surgery, Rush Medical College at Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hannila SS, Siddiq MM, Filbin MT. Therapeutic Approaches to Promoting Axonal Regeneration in the Adult Mammalian Spinal Cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:57-105. [PMID: 17178472 DOI: 10.1016/s0074-7742(06)77003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sari S Hannila
- Department of Biological Sciences, Hunter College, City University of New York, New York 10021, USA
| | | | | |
Collapse
|
24
|
Pizzi MA, Crowe MJ. Matrix metalloproteinases and proteoglycans in axonal regeneration. Exp Neurol 2006; 204:496-511. [PMID: 17254568 DOI: 10.1016/j.expneurol.2006.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 12/13/2022]
Abstract
After an injury to the adult mammalian central nervous system (CNS), a variety of growth-inhibitory molecules are upregulated. A glial scar forms at the site of injury and is composed of numerous molecular substances, including chondroitin sulfate proteoglycans (CSPGs). These proteoglycans inhibit axonal growth in vitro and in vivo. Matrix metalloproteinases (MMPs) can degrade the core protein of some CSPGs as well as other growth-inhibitory molecules such as Nogo and tenascin-C. MMPs have been shown to facilitate axonal regeneration in the adult mammalian peripheral nervous system (PNS). This review will focus on the various roles of proteoglycans and MMPs within the injured nervous system. First, we will present a general background on the injured central nervous system and explore the roles that proteoglycans play in the injured PNS and CNS. Second, we will discuss the various functions of MMPs within the injured PNS and CNS. Special attention will be paid to the possibility of how MMPs might modify the growth-inhibitory extracellular environment of the injured adult mammalian spinal cord and facilitate axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Michael A Pizzi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA
| | | |
Collapse
|
25
|
Graham JB, Neubauer D, Xue QS, Muir D. Chondroitinase applied to peripheral nerve repair averts retrograde axonal regeneration. Exp Neurol 2006; 203:185-95. [PMID: 16970940 PMCID: PMC1851897 DOI: 10.1016/j.expneurol.2006.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/27/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
Antegrade, target-directed axonal regeneration is the explicit goal of nerve repair. However, aberrant and dysfunctional regrowth is commonly observed as well. At the site of surgical nerve coaptation, axonal sprouts encounter fibrotic connective tissue rich in growth-inhibiting chondroitin sulfate proteoglycan that may contribute to misdirection of axonal regrowth. In the present study, we tested the hypothesis that degradation of chondroitin sulfate proteoglycan by application of chondroitinase at the site of nerve repair can decrease aberrant axonal growth. Adult rats received bilateral sciatic nerve transection and end-to-end repair. One nerve was injected with chondroitinase ABC and the contralateral nerve treated with vehicle alone. After 28 weeks, retrograde axonal regeneration was assessed proximal to the repair by scoring neurofilament-immunopositive axons within the nerve (intrafascicular) and outside the nerve proper (extrafascicular). Intrafascicular retrograde axonal growth was equivalent in both control and chondroitinase treatment conditions. In contrast, chondroitinase treatment caused a pronounced (93%) reduction in extrafascicular retrograde axonal growth. The decrease in axon egress from the nerve was coincident with an increase in antegrade regeneration and improved recovery of motor function. Based on these findings, we conclude that chondroitinase applied at the site of nerve transection repair averts dysfunctional extrafascicular retrograde axonal growth.
Collapse
Affiliation(s)
| | | | | | - David Muir
- Corresponding author: Dr. David Muir, Pediatric Neurology, Box 100296, 1600 SW Archer Rd., Room RG-156, University of Florida College of Medicine, Gainesville, FL 32610 Tel: (352) 392-0312 Fax: (352) 392-9520
| |
Collapse
|
26
|
Toma JS, McPhail LT, Ramer MS. Comparative postnatal development of spinal, trigeminal and vagal sensory root entry zones. Int J Dev Neurosci 2006; 24:373-88. [PMID: 16911863 DOI: 10.1016/j.ijdevneu.2006.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/17/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022] Open
Abstract
Somatic and visceral sensory information enters the central nervous system (CNS) via root entry zones where sensory axons span an environment consisting of Schwann cells in the peripheral nervous system (PNS) and astrocytes and oligodendrocytes in the CNS. While the embryonic extension of these sensory axons into the CNS has been well-characterized, little is known about the subsequent, largely postnatal development of the glial elements of the root entry zones. Here we sought to establish a comparative developmental timecourse of the glial elements in the postnatal (P0, P3, P7, P14) and adult rat of three root entry zones: the spinal nerve dorsal root entry zone, the trigeminal root entry zone, and the vagal dorsal root entry zone. We compared entry zone development based on the expression of antigens known to be expressed in astrocytes, oligodendrocytes, oligodendrocyte precursor cells, Schwann cells, radial glial fibres and the PNS extracellular matrix. These studies revealed an unexpected distribution among glial cells of several antigens. In particular, antibodies used to label mature oligodendrocytes (RIP) transiently labelled immature Schwann cell cytoplasm, and a radial glial antigen (recognized by the 3CB2 antibody) initially decreased, and then increased in postnatal astrocytes. While all three root entry zones had reached morphological and antigenic maturity by P14, the glial elements comprising the PNS-CNS interface of cranial root entry zones (the trigeminal root entry zone and the vagal dorsal root entry zone) matured earlier than those of the spinal nerve dorsal root entry zone.
Collapse
Affiliation(s)
- Jeremy S Toma
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Rm 2465, 6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
27
|
McTigue DM, Tripathi R, Wei P. NG2 colocalizes with axons and is expressed by a mixed cell population in spinal cord lesions. J Neuropathol Exp Neurol 2006; 65:406-20. [PMID: 16691121 DOI: 10.1097/01.jnen.0000218447.32320.52] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The NG2 proteoglycan is of general interest after spinal cord injury because it is expressed by oligodendrocyte progenitors (OPCs), which contribute to central nervous system remyelination; however, NG2 may inhibit axon regeneration. We and others have examined the spatiotemporal expression of NG2 after spinal cord injury (SCI). Here, we extend those observations and provide a comprehensive analysis of the distribution, phenotype, and colocalization of NG2 cells with axons in a clinically relevant model of spinal contusion. Because contusion models mimic the majority of human SCI, this information is important for understanding endogenous processes that promote and/or prevent repair. The data demonstrate that NG2 levels rise significantly between 3 and 7 days postinjury (dpi) and remain elevated chronically throughout the lesions. NG2 within the lesions could be derived from an array of infiltrating cells; thus, a panel of antibodies was used to investigate NG2 cell phenotypes. First, platelet-derived growth factor-alpha receptor (PDGFalphaR) colocalization was examined because OPCs normally express both markers. PDGFalphaR cells were present in lesions at all times examined. However, only 37% of NG2 cells coexpressed PDGFalphaR at 14 dpi, which dropped to <1% by 70 dpi. This contrasts with the nearly complete overlap in spared tissue surrounding the lesion. In contrast, 40% to 60% of NG2 cells expressed p75 and approximately 84% expressed Sox10, suggesting that many NG2 cells were nonmyelinating Schwann cells. Despite rising levels of NG2, we noted robust and sustained axon growth into the lesions, many of which were located along NG2 profiles. Thus, spinal contusion produces an NG2-rich environment into which axons grow and in which the source of NG2 appears considerably different from that in surrounding spared tissue.
Collapse
Affiliation(s)
- Dana M McTigue
- From the Department of Neuroscience and Spinal Trauma and Repair (STAR) Laboratories, Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
28
|
Akeda K, Hirata H, Matsumoto M, Fukuda A, Tsujii M, Nagakura T, Ogawa S, Yoshida T, Uchida A. Regenerating Axons Emerge Far Proximal to the Coaptation Site in End-to-Side Nerve Coaptation without a Perineurial Window Using a T-Shaped Chamber. Plast Reconstr Surg 2006; 117:1194-203; discussion 1204-5. [PMID: 16582786 DOI: 10.1097/01.prs.0000201460.54187.d7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Considerable controversy exists concerning the mechanism of axonal regeneration in end-to-side neurorrhaphy. The authors studied the mode of axonal regeneration in end-to-side neurorrhaphy without a perineurial window using a rat sciatic nerve model. METHODS Twenty-seven rats were used. A 10-mm segment of peroneal nerve was harvested and coapted to the ipsilateral tibial nerve in end-to-side fashion using a T-shaped silicone chamber to minimize the tibial nerve damaged by surgery. To explain the role of nerve damage on axonal regeneration in end-to-side neurorrhaphy, we also used an isogenic nerve transplantation model in which the peroneal nerve remained intact. The mode of axonal regeneration was studied with electron microscopy, morphometric analysis, immunofluorescence, and immunohistochemistry. RESULTS Both morphometric analysis and immunolabeling of neurofilaments demonstrated that regenerating axons emerge at sites far proximal to the coaptation site, travel within the tibial nerve, traverse the perineurium circumferentially around the coaptation site, and then invade into the peroneal nerve. Electron microscopy and a double-labeled immunofluorescence study with antibodies against neurofilament and tenascin-C confirmed large-scale axonal penetration into the perineurium around the coaptation site. Immunofluorescence with antibody against NG2, a marker of axonal regeneration, prevented the possibility of collateral sprouting at the coaptation site. In addition, an end-to-side neurorrhaphy model with an isogenic peroneal nerve clearly demonstrated that nerve damage is a prerequisite for axonal regeneration through end-to-side neurorrhaphy. CONCLUSIONS The authors could not locate the site of axonal sprouting in end-to-side neurorrhaphy without a perineurial window; however, this study cast doubts on current hypothesis on the mode of axonal regeneration in end-to-side neurorrhaphy.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopedic Surgery, Mie University Faculty of Medicine, Tsu City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu J, Chau CH, Liu H, Jang BR, Li X, Chan YS, Chan YS, Shum DKY. Upregulation of chondroitin 6-sulphotransferase-1 facilitates Schwann cell migration during axonal growth. J Cell Sci 2006; 119:933-42. [PMID: 16495484 DOI: 10.1242/jcs.02796] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell migration is central to development and post-traumatic regeneration. The differential increase in 6-sulphated chondroitins during axonal growth in both crushed sciatic nerves and brain development suggests that chondroitin 6-sulphotransferase-1 (C6ST-1) is a key enzyme that mediates cell migration in the process. We have cloned the cDNA of the C6ST-1 gene (C6st1) (GenBank accession number AF178689) from crushed sciatic nerves of adult rats and produced ribonucleotide probes accordingly to track signs of 6-sulphated chondroitins at the site of injury. We found C6st1 mRNA expression in Schwann cells emigrating from explants of both sciatic nerve segments and embryonic dorsal root ganglia. Immunocytochemistry indicated pericellular 6-sulphated chondroitin products around C6ST-1-expressing frontier cells. Motility analysis of frontier cells in cultures subjected to staged treatment with chondroitinase ABC indicated that freshly produced 6-sulphated chondroitin moieties facilitated Schwann cell motility, unlike restrictions resulting from proteoglycan interaction with matrix components. Sciatic nerve crush provided further evidence of in vivo upregulation of the C6ST-1 gene in mobile Schwann cells that guided axonal regrowth 1-14 days post crush; downregulation then accompanied declining mobility of Schwann cells as they engaged in the myelination of re-growing axons. These findings are the first to identify upregulated C6st1 gene expression correlating with the motility of Schwann cells that guide growing axons through both developmental and injured environments.
Collapse
Affiliation(s)
- Jun Liu
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Petrini S, Tessa A, Stallcup WB, Sabatelli P, Pescatori M, Giusti B, Carrozzo R, Verardo M, Bergamin N, Columbaro M, Bernardini C, Merlini L, Pepe G, Bonaldo P, Bertini E. Altered expression of the MCSP/NG2 chondroitin sulfate proteoglycan in collagen VI deficiency. Mol Cell Neurosci 2006; 30:408-17. [PMID: 16169245 DOI: 10.1016/j.mcn.2005.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 06/09/2005] [Accepted: 08/10/2005] [Indexed: 01/27/2023] Open
Abstract
NG2, the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP), is a ligand for collagen VI (COL6). We have examined skeletal muscles of patients affected by Ullrich scleroatonic muscular dystrophy (UCMD), an inherited syndrome caused by COL6 genes mutations. A significant decrease of NG2 immunolabeling was found in UCMD myofibers, as well as in skeletal muscle and cornea of COL6 null-mice. In UCMD muscles, truncated NG2 core protein isoforms were detected. However, real-time RT-PCR analysis revealed marked increase in NG2 mRNA content in UCMD muscle compared to controls. We hypothesize that NG2 immunohistochemical and biochemical behavior may be compromised owing to the absence of its physiological ligand. MCSP/NG2 proteoglycan may be considered an important receptor mediating COL6-sarcolemma interactions, a relationship that is disrupted by the pathogenesis of UCMD muscle.
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Bambino Gesù Hospital IRCCS, P.zza S. Onofrio 4, 00165 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Melendez-Vasquez C, Carey DJ, Zanazzi G, Reizes O, Maurel P, Salzer JL. Differential expression of proteoglycans at central and peripheral nodes of Ranvier. Glia 2006; 52:301-8. [PMID: 16035076 DOI: 10.1002/glia.20245] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nodes of Ranvier are regularly spaced gaps between myelin sheaths that are markedly enriched in voltage-gated sodium channels and associated proteins. Myelinating glia play a key role in promoting node formation, although the requisite glial signals remain poorly understood. In this study, we have examined the expression of glial proteoglycans in the peripheral and central nodes. We report that the heparan sulfate proteoglycan, syndecan-3, becomes highly enriched with PNS node formation; its ligand, collagen V, is also concentrated at the PNS nodes and at lower levels along the abaxonal membrane. The V1 isoform of versican, a chondroitin sulfate proteoglycan, is also present in the nodal gap. By contrast, CNS nodes are enriched in versican isoform V2, but not syndecan-3. We have examined the molecular composition of the PNS nodes in syndecan-3 knockout mice. Nodal components are normally expressed in mice deficient in syndecan-3, suggesting that it has a nonessential role in the organization of nodes in the adult. These results indicate that the molecular composition and extracellular environment of the PNS and CNS nodes of Ranvier are significantly distinct.
Collapse
Affiliation(s)
- Carmen Melendez-Vasquez
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
32
|
Groves ML, McKeon R, Werner E, Nagarsheth M, Meador W, English AW. Axon regeneration in peripheral nerves is enhanced by proteoglycan degradation. Exp Neurol 2005; 195:278-92. [PMID: 15950970 DOI: 10.1016/j.expneurol.2005.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 04/08/2005] [Accepted: 04/13/2005] [Indexed: 01/29/2023]
Abstract
Regeneration of axons in the peripheral nervous system is enhanced by the removal of glycosaminoglycan side chains (GAGs) of chondroitin sulfate proteoglycans. However, some axons regenerate poorly despite such treatment, suggesting the existence of additional inhibitors. We compared the effects of enzymatic removal of GAGs from chondroitin sulfate proteoglycans versus two other proteoglycan species, heparan sulfate and keratan sulfate proteoglycans, on the regeneration of peripheral axons. Common fibular (CF) nerves of thy-1-YFP-H mice were cut and repaired using short segments of CF nerves harvested from wild-type littermates and pre-treated with a GAG-degrading enzyme for 1 h prior to nerve repair. Axonal regeneration was assayed by measuring the lengths of profiles of YFP+ axons in optical sections of the grafted nerves 1 week later. Except for grafts treated with keratanase, more and longer axon profiles were encountered in enzyme-treated grafts than in control grafts. Heparinase III treatments induced the greatest number of axons to enter into the graft. The proportions of axon profiles longer than 1000 microm were greater in grafts treated with chondroitinase ABC or heparinase I, but not with either keratanase or heparinase III. More regenerative sprouts were observed after treatment with heparinase I than any other enzymes. Treatment with a mixture of all four enzymes resulted in an enhancement of axon regeneration which was greater than that observed after treatment with any of the enzymes individually. The effects of chondroitinase ABC and heparinase III were correlated with specific GAG degradation. We believe that enzymatic removal of GAGs is especially effective in promoting the ability of regenerating axons to select their pathway in the distal stump (or nerve graft) and, in the case of chondroitinase ABC or heparinase I, it may also promote growth within that pathway.
Collapse
Affiliation(s)
- Mari L Groves
- Department of Cell Biology, 405P Whitehead Building, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
33
|
Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasisekharan R, Trock BJ, Lippman M, Calvert VS, Petricoin EF, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 2005. [PMID: 15841211 DOI: 10.1172/jci200523424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The interactions of transformed cells with the surrounding stromal cells are of importance for tumor progression and metastasis. The relevance of adipocyte-derived factors to breast cancer cell survival and growth is well established. However, it remains unknown which specific adipocyte-derived factors are most critical in this process. Collagen VI is abundantly expressed in adipocytes. Collagen(-/-) mice in the background of the mouse mammary tumor virus/polyoma virus middle T oncogene (MMTV-PyMT) mammary cancer model demonstrate dramatically reduced rates of early hyperplasia and primary tumor growth. Collagen VI promotes its growth-stimulatory and pro-survival effects in part by signaling through the NG2/chondroitin sulfate proteoglycan receptor expressed on the surface of malignant ductal epithelial cells to sequentially activate Akt and beta-catenin and stabilize cyclin D1. Levels of the carboxyterminal domain of collagen VIalpha3, a proteolytic product of the full-length molecule, are dramatically upregulated in murine and human breast cancer lesions. The same fragment exerts potent growth-stimulatory effects on MCF-7 cells in vitro. Therefore, adipocytes play a vital role in defining the ECM environment for normal and tumor-derived ductal epithelial cells and contribute significantly to tumor growth at early stages through secretion and processing of collagen VI.
Collapse
Affiliation(s)
- Puneeth Iyengar
- Department of Cell Biology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Trotter J. NG2-positive cells in CNS function and the pathological role of antibodies against NG2 in demyelinating diseases. J Neurol Sci 2005; 233:37-42. [PMID: 15949494 DOI: 10.1016/j.jns.2005.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NG2 is expressed by a variety of immature glia in the CNS including oligodendrocyte progenitor cells, paranodal astrocytes and perisynaptic glia. The protein has a large extracellular domain with two LNS/Lam G domains at the N-terminus and a short intracellular tail with a PDZ-recognition domain at the C-terminus. Experiments suggest that the protein plays a role in migration. The PDZ protein GRIP was identified as an intracellular binding partner of NG2 in immature glial cells. A complex is formed between GRIP, NG2 and the AMPA class of glutamate receptors: this may position these glial receptors towards sites of neuronal glutamate release at synapses and during myelination. Identification of neuronal receptors and links to the cytoskeleton of NG2 is of critical importance. Some Multiple Sclerosis patients have autoantibodies to NG2 in the cerebral spinal fluid: such antibodies could interfere with remyelination by lysing oligodendrocyte progenitor cells or blocking their migration but may also cause pathology by disrupting glial-neuronal signalling at synapses and paranodes.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Unit of Molecular Cell Biology, Institute of Zoology, Department of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz, Germany.
| |
Collapse
|
35
|
Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasisekharan R, Trock BJ, Lippman M, Calvert VS, Petricoin EF, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 2005; 115:1163-76. [PMID: 15841211 PMCID: PMC1077173 DOI: 10.1172/jci23424] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 03/01/2005] [Indexed: 12/24/2022] Open
Abstract
The interactions of transformed cells with the surrounding stromal cells are of importance for tumor progression and metastasis. The relevance of adipocyte-derived factors to breast cancer cell survival and growth is well established. However, it remains unknown which specific adipocyte-derived factors are most critical in this process. Collagen VI is abundantly expressed in adipocytes. Collagen(-/-) mice in the background of the mouse mammary tumor virus/polyoma virus middle T oncogene (MMTV-PyMT) mammary cancer model demonstrate dramatically reduced rates of early hyperplasia and primary tumor growth. Collagen VI promotes its growth-stimulatory and pro-survival effects in part by signaling through the NG2/chondroitin sulfate proteoglycan receptor expressed on the surface of malignant ductal epithelial cells to sequentially activate Akt and beta-catenin and stabilize cyclin D1. Levels of the carboxyterminal domain of collagen VIalpha3, a proteolytic product of the full-length molecule, are dramatically upregulated in murine and human breast cancer lesions. The same fragment exerts potent growth-stimulatory effects on MCF-7 cells in vitro. Therefore, adipocytes play a vital role in defining the ECM environment for normal and tumor-derived ductal epithelial cells and contribute significantly to tumor growth at early stages through secretion and processing of collagen VI.
Collapse
Affiliation(s)
- Puneeth Iyengar
- Department of Cell Biology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Higashi K, Higuchi I, Niiyama T, Uchida Y, Shiraishi T, Hashiguchi A, Saito A, Horikiri T, Suehara M, Arimura K, Osame M. Abnormal expression of proteoglycans in Ullrich's disease with collagen VI deficiency. Muscle Nerve 2005; 33:120-6. [PMID: 16258947 DOI: 10.1002/mus.20449] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patients with Ullrich's disease have generalized muscle weakness, multiple contractures of the proximal joints, and hyperextensibility of the distal joints. Recently we found a marked reduction of fibronectin receptors in the skin and cultured fibroblasts of two patients with Ullrich's disease with collagen VI deficiency, and speculated that an abnormality of cell adhesion may be involved in the pathogenesis of the disease. In this study, we investigated the expression of proteoglycans and adhesion molecules in Ullrich's disease and other muscle diseases. We found a reduction of NG2 proteoglycan in the membrane of skeletal muscle but not in the skin in Ullrich's disease. By contrast, we found the upregulation of tenascin C in the extracellular matrix of skeletal muscle in Ullrich's disease. Our findings suggest that abnormal expression of proteoglycans and adhesion molecules may be involved in the pathogenesis of the dystrophic muscle changes in Ullrich's disease.
Collapse
Affiliation(s)
- Keiko Higashi
- Department of Neurology and Geriatrics, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rezajooi K, Pavlides M, Winterbottom J, Stallcup WB, Hamlyn PJ, Lieberman AR, Anderson PN. NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions. Mol Cell Neurosci 2004; 25:572-84. [PMID: 15080887 DOI: 10.1016/j.mcn.2003.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 09/26/2003] [Accepted: 10/07/2003] [Indexed: 11/23/2022] Open
Abstract
The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and thus may be able to inhibit axonal regeneration in the CNS. We have used immunohistochemistry to compare the expression of NG2 in the PNS, where axons regenerate, and the spinal cord, where regeneration fails. NG2 is expressed by satellite cells in dorsal root ganglia (DRG) and in the perineurium and endoneurium of intact sciatic nerves of adult rats. Endoneurial NG2-positive cells were S100-negative. Injury to dorsal roots, ventral rami or sciatic nerves had no effect on NG2 expression in DRG but sciatic nerve section or crush caused an upregulation of NG2 in the damaged nerve. Strongly NG2-positive cells in damaged nerves were S100-negative. The proximal stump of severed nerves was capped by dense NG2, which surrounded bundles of regenerating axons. The distal stump, into which axons regenerated, also contained many NG2-positive/S100-negative cells. Immunoelectron microscopy revealed that most NG2-positive cells in distal stumps had perineurial or fibroblast-like morphologies, with NG2 being concentrated at the poles of the cells in regions exhibiting microvillus-like protrusions or caveolae. Compression and partial transection injuries to the spinal cord also caused an upregulation of NG2, and NG2-positive cells and processes invaded the lesion sites. Transganglionically labelled ascending dorsal column fibres, stimulated to sprout by a conditioning sciatic nerve injury, ended in the borders of lesions among many NG2-positive processes. Thus, NG2 upregulation is a feature of the response to injury in peripheral nerves and in the spinal cord, but it does not appear to limit regeneration in the sciatic nerve.
Collapse
Affiliation(s)
- Kia Rezajooi
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, Baba H. Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 2004; 46:274-83. [PMID: 15048850 DOI: 10.1002/glia.20008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In myelinated axons, voltage-gated sodium channels specifically cluster at the nodes of Ranvier, while voltage-gated potassium channels are located at the juxtaparanodes. These characteristic localizations are influenced by myelination. During development, Nav1.2 first appears in the predicted nodes during myelination, and Nav1.6 replaces it in the mature nodes. Such replacements may be important physiologically. We examined the influence of the paranodal junction on switching of sodium channel subunits using the sulfatide-deficient mouse. This mutant displayed disruption of paranodal axoglial junctions and altered nodal lengths and channel distributions. The initial switching of Nav1.2 to Nav1.6 occurred in the mutant optic nerves; however, the number of Nav1.2-positive clusters was significantly higher than in wild-type mice. Although no signs of demyelination were observed at least up to 36 weeks of age, sodium channel clusters decreased markedly with age. Interestingly, Nav1.2 stayed in some of the nodal regions, especially where the nodal lengths were elongated, while Nav1.6 tended to remain in the normal-length nodes. The results in the mutant optic nerves suggested that paranodal junction formation may be necessary for complete replacement of nodal Nav1.2 to Nav1.6 during development as well as maintenance of Nav1.6 clusters at the nodes. Such subtype abnormality was not observed in the sciatic nerve, where paranodal disruption was observed. Thus, the paranodal junction significantly influences the retention of Nav1.6 in the node, which is followed by disorganization of nodal structures. However, its importance may differ between the central and peripheral nervous system.
Collapse
Affiliation(s)
- Ayaka Suzuki
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Efficient and rapid propagation of action potentials in myelinated axons depends on the molecular specialization of the nodes of Ranvier. The nodal region is organized into several distinct domains, each of which contains a unique set of ion channels, cell-adhesion molecules and cytoplasmic adaptor proteins. Voltage-gated Na+ channels - which are concentrated at the nodes - are separated from K+ channels - which are clustered at the juxtaparanodal region - by a specialized axoglial contact that is formed between the axon and the myelinating cell at the paranodes. This local differentiation of myelinated axons is tightly regulated by oligodendrocytes and myelinating Schwann cells, and is achieved through complex mechanisms that are used by another specialized cell-cell contact - the synapse.
Collapse
Affiliation(s)
- Sebastian Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
40
|
Abstract
The entire length of myelinated axons is organized into a series of polarized domains that center around nodes of Ranvier. These domains, which are crucial for normal saltatory conduction, consist of distinct multiprotein complexes of cell adhesion molecules, ion channels, and scaffolding molecules; they also differ in their diameter, organelle content, and rates of axonal transport. Juxtacrine signals from myelinating glia direct their sequential assembly. The composition, mechanisms of assembly, and function of these molecular domains will be reviewed. I also discuss similarities of this domain organization to that of polarized epithelia and present emerging evidence that disorders of domain organization and function contribute to the axonopathies of myelin and other neurologic disorders.
Collapse
Affiliation(s)
- James L Salzer
- Department of Cell Biology and Neurology, Program in Molecular Neurobiology, Skirball Institute of Biomedical Research, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
41
|
Morgenstern DA, Asher RA, Naidu M, Carlstedt T, Levine JM, Fawcett JW. Expression and glycanation of the NG2 proteoglycan in developing, adult, and damaged peripheral nerve. Mol Cell Neurosci 2003; 24:787-802. [PMID: 14664826 DOI: 10.1016/s1044-7431(03)00245-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We have investigated expression of the axon growth-inhibitory proteoglycan NG2 in peripheral nerve. In the adult, NG2 was present on endoneurial and perineurial fibroblasts, but not on Schwann cells. At birth, peripheral nerve NG2 was heavily glycanated, but was much less so in the adult. In vitro, sciatic nerve fibroblasts also produced heavily glycanated NG2. After peripheral nerve injury in rats and humans, an accumulation of NG2-positive cells was observed at the injury site. In the rat, there was an increase in NG2 glycanation for at least 2 weeks following injury. In mixed cultures of Schwann cells and peripheral nerve fibroblasts, the axons preferred to grow on the Schwann cells and seldom crossed onto the fibroblasts. Three-dimensional cultures of sciatic nerve fibroblasts were inhibitory to the growth of dorsal root ganglion axons. Inhibition of proteoglycan synthesis made the cells more permissive. NG2 may play a part in blocking axon regeneration through scar tissue in injured human peripheral nerve.
Collapse
Affiliation(s)
- Daniel A Morgenstern
- Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | | | | | |
Collapse
|
42
|
Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci 2003; 23:9276-88. [PMID: 14561854 PMCID: PMC6740563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Increased expression of certain extracellular matrix (ECM) molecules after CNS injury is believed to restrict axonal regeneration. The chondroitin sulfate proteoglycans (CSPGs) are one such class of ECM molecules that inhibit neurite outgrowth in vitro and are upregulated after CNS injury. We examined growth responses of several classes of axons to this inhibitory environment in the presence of a cellular fibroblast bridge in a spinal cord lesion site and after a growth factor stimulus at the lesion site (fibroblasts genetically modified to secrete NGF). Immunohistochemical analysis showed dense labeling of the CSPGs NG2, brevican, neurocan, versican, and phosphacan at the host-lesion interface after spinal cord injury (SCI). Furthermore, robust expression of NG2, and to a lesser extent versican, was also observed throughout grafts of control and NGF-secreting fibroblasts. Despite this inhibitory milieu, several axonal classes penetrated control fibroblast grafts, including dorsal column sensory, rubrospinal, and nociceptive axons. Axon growth was amplified more in the presence of NGF-secreting grafts. Confocal microscopy demonstrated that axon growth was, paradoxically, preferentially associated with NG2-rich substrates in both graft types. NG2 expression also increased after sciatic nerve injury, wherein axons successfully regenerate. Cellular sources of NG2 in SCI and peripheral nerve lesion sites included Schwann cells and endothelial cells. Notably, these same cellular sources in lesion sites produced the cell adhesion molecules L1 and laminin, and these molecules all colocalized. Thus, axons grow along substrates coexpressing both inhibitory and permissive molecules, suggesting that regeneration is successful when local permissive signals balance and exceed inhibitory signals.
Collapse
Affiliation(s)
- Leonard L Jones
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
43
|
Petrini S, Tessa A, Carrozzo R, Verardo M, Pierini R, Rizza T, Bertini E. Human melanoma/NG2 chondroitin sulfate proteoglycan is expressed in the sarcolemma of postnatal human skeletal myofibers. Abnormal expression in merosin-negative and Duchenne muscular dystrophies. Mol Cell Neurosci 2003; 23:219-31. [PMID: 12812755 DOI: 10.1016/s1044-7431(03)00033-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
NG2 is the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP) preferentially expressed in dividing progenitor cells of the glial and mesenchymal lineage but downregulated after differentiation. It has recently been demonstrated that MCSP/NG2 expression is not restricted to mitotic or malignant cells. We show that MCSP/NG2 expression is detectable in the sarcolemma, and in the neuromuscular junction of human postnatal skeletal muscle, and it gradually reduces with advancing age. In human and murine myogenic cell lines, we found no clear differences in MCSP/NG2 expression between myoblasts and myotubes. Reduced levels of the core protein were found in merosin-negative congenital muscular dystrophy (MDC1A). Duchenne muscular dystrophy patients muscles exhibited an overexpression of the MCSP/NG2 core protein. In gamma-sarcoglycanopathy and calpainopathy, MCSP/NG2 upregulation was restricted to regenerating myofibers. We demonstrate that MCSP/NG2 is expressed in differentiated myofibers, and appears to have a role in the pathogenesis of MDC1A and severe dystrophinopathies.
Collapse
MESH Headings
- Adolescent
- Adult
- Aging/genetics
- Aging/metabolism
- Animals
- Antigens/genetics
- Antigens/metabolism
- Calpain/deficiency
- Calpain/genetics
- Cell Differentiation/genetics
- Child
- Child, Preschool
- Chondroitin Sulfate Proteoglycans/genetics
- Chondroitin Sulfate Proteoglycans/metabolism
- Cytoskeletal Proteins/deficiency
- Cytoskeletal Proteins/genetics
- Down-Regulation/genetics
- Gene Expression Regulation, Developmental/genetics
- Humans
- Infant
- Infant, Newborn
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Middle Aged
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Myoblasts/cytology
- Myoblasts/metabolism
- Neuromuscular Junction/cytology
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/metabolism
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Sarcoglycans
- Sarcolemma/metabolism
- Sarcolemma/ultrastructure
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Bambino Gesù Hospital IRCCS, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Stegmüller J, Werner H, Nave KA, Trotter J. The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling. J Biol Chem 2003; 278:3590-8. [PMID: 12458226 DOI: 10.1074/jbc.m210010200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycan NG2 is expressed by immature glial cells in the developing and adult central nervous system. Using the COOH-terminal region of NG2 as bait in a yeast two-hybrid screen, we identified the glutamate receptor interaction protein GRIP1, a multi-PDZ domain protein, as an interacting partner. NG2 exhibits a PDZ binding motif at the extreme COOH terminus which binds to the seventh PDZ domain of GRIP1. In addition to the published expression in neurons, GRIP1 is expressed by immature glial cells. GRIP1 is known to bind to the GluRB subunit of the AMPA glutamate receptor expressed by subpopulations of neurons and immature glial cells. In cultures of primary oligodendrocytes, cells coexpress GluRB and NG2. A complex of NG2, GRIP1, and GluRB can be precipitated from transfected mammalian cells and from cultures of primary oligodendrocytes. Furthermore, NG2 and GRIP can be coprecipitated from developing brain tissue. These data suggest that GRIP1 acts as a scaffolding molecule clustering NG2 and AMPA receptors in immature glia. In view of the presence of synaptic contacts between neurons and NG2-positive glial cells in the hippocampus and the close association of NG2-expressing glial cells with axons, we suggest a role for the NG2.AMPA receptor complex in glial-neuronal recognition and signaling.
Collapse
Affiliation(s)
- Judith Stegmüller
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, Germany
| | | | | | | |
Collapse
|
45
|
Tang X, Davies JE, Davies SJA. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res 2003; 71:427-44. [PMID: 12526031 DOI: 10.1002/jnr.10523] [Citation(s) in RCA: 296] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies have correlated the failure of axon regeneration after spinal cord injury with axons contacting scar tissue rich in chondroitin sulfate proteoglycans (CSPGs; Davies et al., 1999). In the present study, we have conducted immunohistochemical and quantitative Western blot analysis of five axon-growth-inhibitory CSPGs and tenascin-C within stab injuries of adult rat spinal cord at time points ranging from 24 hr to 6 months post injury. Quantitative Western blot analysis showed robust increases in neurocan, tenascin-C, and NG2 levels by 24 hr, suggesting that these molecules play a role in preventing axon regeneration across acutely forming scar tissue. Peak levels of 245/130 kD neurocan, NG2, and 250/200 kD tenascin-C were reached at 8 days, with maximum levels of phosphacan and 140/80 kD brevican attained later, at 1 month post injury. Versican V2 protein levels, however, displayed an opposite trend, dropping below unlesioned spinal cord values at all time points studied. Confocal microscopy at 8 days post injury revealed heightened immunoreactivity for phosphacan, NG2, and tenascin-C, particularly within fibronectin(+) scar tissue at lesion centers. In contrast, neurocan was displayed within lesion margins on the processes of stellate NG2(+) cells and, to a much lesser extent, by astrocytes. At 6 months post injury, 130 kD neurocan, brevican, and NG2 levels within chronic scar tissue remained significantly above control. Our results show novel expression patterns and cell associations of inhibitory CSPGs and tenascin-C that have important implications for axon regeneration across acute and chronic spinal cord scar tissue.
Collapse
Affiliation(s)
- Xiufeng Tang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
46
|
Ughrin YM, Chen ZJ, Levine JM. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J Neurosci 2003; 23:175-86. [PMID: 12514214 PMCID: PMC6742139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The NG2 chondroitin sulfate proteoglycan, an integral membrane proteoglycan, inhibits axon growth from cerebellar granule neurons and dorsal root ganglia (DRG) neurons in vitro. The extracellular domain of the NG2 core protein contains three subdomains: an N-terminal globular domain (domain 1), a central extended domain that has the sites for glycosaminoglycan (GAG) attachment (domain 2), and a juxtamembrane domain (domain 3). Here, we used domain-specific fusion proteins and antibodies to map the inhibitory activity within the NG2 core protein. Fusion proteins encoding domain 1 (D1-Fc) or domain 3 (D3-Fc) of NG2 inhibited axon growth from cerebellar granule neurons when the proteins were substrate-bound. These proteins also induced growth cone collapse from newborn DRG neurons when added to the culture medium. Domain 2 only inhibited axon growth when the GAG chains were present. Neutralizing antibodies directed against domain 1 or 3 blocked completely the inhibition from substrates coated with D1-Fc or D3-Fc. When the entire extracellular domain of NG2 was used as a substrate, however, both neutralizing antibodies were needed to reverse completely the inhibition. When NG2 was expressed on the surface of HEK293 cells, the neutralizing anti-D1 antibody was sufficient to block the inhibition, whereas the anti-D3 antibody had no effect. These results suggest that domains 1 and 3 of NG2 can inhibit neurite growth independently. These inhibitory domains may be differentially exposed depending on whether NG2 is presented as an integral membrane protein or as a secreted protein associated with the extracellular matrix.
Collapse
Affiliation(s)
- Yvonne M Ughrin
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
47
|
Abstract
The architecture and function of the nodes of Ranvier depend on several specialized cell contacts between the axon and myelinating glial cells. These sites contain highly organized multimolecular complexes of ion channels and cell adhesion molecules, closely connected with the cytoskeleton. Recent findings are beginning to reveal how this organization is achieved during the development of myelinated nerves. The role of membrane proteins involved in axoglial interactions and of associated cytoplasmic molecules is being elucidated, while studies of mutant mice have underlined the importance of glial cells and the specific role of axonal proteins in the organization of axonal domains.
Collapse
Affiliation(s)
- Jean-Antoine Girault
- INSERM U 536, Institut du Fer à Moulin, 17 rue du Fer à Moulin, 75005 Paris, France.
| | | |
Collapse
|