1
|
Lukomska A, Rheaume BA, Frost MP, Theune WC, Xing J, Damania A, Trakhtenberg EF. Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo. Exp Neurol 2024; 379:114877. [PMID: 38944331 PMCID: PMC11283980 DOI: 10.1016/j.expneurol.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
In an attempt to repair injured central nervous system (CNS) nerves/tracts, immune cells are recruited into the injury site, but endogenous response in adult mammals is insufficient for promoting regeneration of severed axons. Here, we found that a portion of retinal ganglion cell (RGC) CNS projection neurons that survive after optic nerve crush (ONC) injury are enriched for and upregulate fibronectin (Fn)-interacting integrins Itga5 and ItgaV, and that Fn promotes long-term survival and long-distance axon regeneration of a portion of axotomized adult RGCs in culture. We then show that, Fn is developmentally downregulated in the axonal tracts of optic nerve and spinal cord, but injury-activated macrophages/microglia upregulate Fn while axon regeneration-promoting zymosan augments their recruitment (and thereby increases Fn levels) in the injured optic nerve. Finally, we found that Fn's RGD motif, established to interact with Itga5 and ItgaV, promotes long-term survival and long-distance axon regeneration of adult RGCs after ONC in vivo, with some axons reaching the optic chiasm when co-treated with Rpl7a gene therapy. Thus, experimentally augmenting Fn levels in the injured CNS is a promising approach for therapeutic neuroprotection and axon regeneration of at least a portion of neurons.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Bruce A Rheaume
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA..
| |
Collapse
|
2
|
Ge X, Xu X, Cai Q, Xiong H, Xie C, Hong Y, Gao X, Yao Y, Bachoo R, Qin Z. Live Mapping of the Brain Extracellular Matrix and Remodeling in Neurological Disorders. SMALL METHODS 2024; 8:e2301117. [PMID: 37922523 PMCID: PMC10842100 DOI: 10.1002/smtd.202301117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third-harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan-ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan-ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan-ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan-ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan-ECM has the potential to advance the understanding of ECM in brain function and neurological diseases.
Collapse
Affiliation(s)
- Xiaoqian Ge
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Qi Cai
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Chen Xie
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Xiaofei Gao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33612, USA
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
3
|
Rodriguez-Duboc A, Basille-Dugay M, Debonne A, Rivière MA, Vaudry D, Burel D. Apnea of prematurity induces short and long-term development-related transcriptional changes in the murine cerebellum. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100113. [PMID: 38020806 PMCID: PMC10663136 DOI: 10.1016/j.crneur.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Apnea of prematurity (AOP) affects more than 50% of preterm infants and leads to perinatal intermittent hypoxia (IH) which is a major cause of morbimortality worldwide. At birth, the human cerebellar cortex is still immature, making it vulnerable to perinatal events. Additionally, studies have shown a correlation between cerebellar functions and the deficits observed in children who have experienced AOP. Yet, the cerebellar alterations underpinning this link remain poorly understood. To gain insight into the involvement of the cerebellum in perinatal hypoxia-related consequences, we developed a mouse model of AOP. Our previous research has revealed that IH induces oxidative stress in the developing cerebellum, as evidenced by the over-expression of genes involved in reactive oxygen species production and the under-expression of genes encoding antioxidant enzymes. These changes suggest a failure of the defense system against oxidative stress and could be responsible for neuronal death in the cerebellum. Building upon these findings, we conducted a transcriptomic study of the genes involved in the processes that occur during cerebellar development. Using real-time PCR, we analyzed the expression of these genes at different developmental stages and in various cell types. This enabled us to pinpoint a timeframe of vulnerability at P8, which represents the age with the highest number of downregulated genes in the cerebellum. Furthermore, we discovered that our IH protocol affects several molecular pathways, including proliferation, migration, and differentiation. This indicates that IH can impact the development of different cell types, potentially contributing to the histological and behavioral deficits observed in this model. Overall, our data strongly suggest that the cerebellum is highly sensitive to IH, and provide valuable insights into the cellular and molecular mechanisms underlying AOP. In the long term, these findings may contribute to the identification of novel therapeutic targets for improving the clinical management of this prevalent pathology.
Collapse
Affiliation(s)
- A. Rodriguez-Duboc
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
| | - M. Basille-Dugay
- Univ Rouen Normandie, Inserm, U1239, Normandie Univ, F-76000, Rouen, France
| | - A. Debonne
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - M.-A. Rivière
- Univ Rouen Normandie, UR 4108, LITIS Lab, INSA Rouen, NormaSTIC, CNRS 3638, Normandie Univ, F-76000, Rouen, France
| | - D. Vaudry
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| | - D. Burel
- Univ Rouen Normandie, Inserm, U1245, Normandie Univ, F-76000, Rouen, France
- Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, Normandie Univ, F-76000, Rouen, France
| |
Collapse
|
4
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Ahmed RR, Medhat AM, Hamdy GM, Effat LK, Abdel-Hamid MS, Abdel-Salam GM. X-Linked Hydrocephalus with New L1CAM Pathogenic Variants: Review of the Most Prevalent Molecular and Phenotypic Features. Mol Syndromol 2023; 14:283-292. [PMID: 37766829 PMCID: PMC10521243 DOI: 10.1159/000529545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The underlying molecular defects of congenital hydrocephalus are heterogeneous and many isolated forms of hydrocephalus remain unsolved at the molecular level. Congenital hydrocephalus in males associated with agenesis of the corpus callosum is a notable characteristic of L1CAM gene which is by far the most common genetic etiology of congenital hydrocephalus. Methods and Results Sequencing of the L1CAM gene on 25 male patients/fetuses who had been presented with hydrocephalus revealed 6 patients and two fetuses with different hemizygous pathogenic variants. Our study identified 4 novel variants and 4 previously reported. The detection rate was 32%, and all the variants were shown to be maternally inherited. Nonsense variants were detected in 3 patients, while missense variants were detected in 2 patients. Frameshift, silent, and splicing variant, each was detected in 1 patient. The clinical manifestations of the patients are in line with those frequently observed including communicating hydrocephalus and agenesis of the corpus callosum. Moreover, rippled ventricles with subdural collection and asymmetry of ventricles after shunt operation were seen in 1 patient and 2 patients, respectively. In addition, abnormal basal ganglia were found in 4 patients which seems to be an additional distinct new finding. We also describe a patient with novel nonsense variant with the rare association of Hirschsprung's disease. This patient displayed additionally multiple porencephalic cysts and encephalomalacia secondary to hemorrhage due to repeated infections after shunt operation. The patients with the missense variants showed long survival, while those with truncating variants showed poor prognosis. Conclusion This report adds knowledge of novel pathogenic variants to the L1CAM variant database. Furthermore, we evaluated the clinical and imaging data of these patients.
Collapse
Affiliation(s)
- Rania R. Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Amina M. Medhat
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Germine M. Hamdy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Laila K.E. Effat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Paşcalău R, Badea TC. Signaling - transcription interactions in mouse retinal ganglion cells early axon pathfinding -a literature review. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1180142. [PMID: 38983012 PMCID: PMC11182120 DOI: 10.3389/fopht.2023.1180142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2024]
Abstract
Sending an axon out of the eye and into the target brain nuclei is the defining feature of retinal ganglion cells (RGCs). The literature on RGC axon pathfinding is vast, but it focuses mostly on decision making events such as midline crossing at the optic chiasm or retinotopic mapping at the target nuclei. In comparison, the exit of RGC axons out of the eye is much less explored. The first checkpoint on the RGC axons' path is the optic cup - optic stalk junction (OC-OS). OC-OS development and the exit of the RGC pioneer axons out of the eye are coordinated spatially and temporally. By the time the optic nerve head domain is specified, the optic fissure margins are in contact and the fusion process is ongoing, the first RGCs are born in its proximity and send pioneer axons in the optic stalk. RGC differentiation continues in centrifugal waves. Later born RGC axons fasciculate with the more mature axons. Growth cones at the end of the axons respond to guidance cues to adopt a centripetal direction, maintain nerve fiber layer restriction and to leave the optic cup. Although there is extensive information on OC-OS development, we still have important unanswered questions regarding its contribution to the exit of the RGC axons out of the eye. We are still to distinguish the morphogens of the OC-OS from the axon guidance molecules which are expressed in the same place at the same time. The early RGC transcription programs responsible for axon emergence and pathfinding are also unknown. This review summarizes the molecular mechanisms for early RGC axon guidance by contextualizing mouse knock-out studies on OC-OS development with the recent transcriptomic studies on developing RGCs in an attempt to contribute to the understanding of human optic nerve developmental anomalies. The published data summarized here suggests that the developing optic nerve head provides a physical channel (the closing optic fissure) as well as molecular guidance cues for the pioneer RGC axons to exit the eye.
Collapse
Affiliation(s)
- Raluca Paşcalău
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- Ophthalmology Clinic, Cluj County Emergency Hospital, Cluj-Napoca, Romania
| | - Tudor Constantin Badea
- Research and Development Institute, Transilvania University of Braşov, Braşov, Romania
- National Center for Brain Research, Institutul de Cercetări pentru Inteligență Artificială, Romanian Academy, Bucharest, Romania
| |
Collapse
|
7
|
Sokolova A, Galic M. Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors. Biol Chem 2023; 404:417-425. [PMID: 36626681 DOI: 10.1515/hsz-2022-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Mechanical forces exerted to the plasma membrane induce cell shape changes. These transient shape changes trigger, among others, enrichment of curvature-sensitive molecules at deforming membrane sites. Strikingly, some curvature-sensing molecules not only detect membrane deformation but can also alter the amplitude of forces that caused to shape changes in the first place. This dual ability of sensing and inducing membrane deformation leads to the formation of curvature-dependent self-organizing signaling circuits. How these cell-autonomous circuits are affected by auxiliary parameters from inside and outside of the cell has remained largely elusive. Here, we explore how such factors modulate self-organization at the micro-scale and its emerging properties at the macroscale.
Collapse
Affiliation(s)
- Anastasiia Sokolova
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany.,CiM-IMRPS Graduate Program, Schlossplatz 5, 48149 Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany.,'Cells in Motion' Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
| |
Collapse
|
8
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
9
|
Kleene R, Lutz D, Loers G, Bork U, Borgmeyer U, Hermans-Borgmeyer I, Schachner M. Revisiting the proteolytic processing of cell adhesion molecule L1. J Neurochem 2020; 157:1102-1117. [PMID: 32986867 DOI: 10.1111/jnc.15201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023]
Abstract
The important functions of cell adhesion molecule L1 in the nervous system depend on diverse proteolytic enzymes which generate different L1 fragments. It has been reported that cleavage in the third fibronectin type III (FNIII) homologous domain generates the fragments L1-80 and L1-140, while cleavage in the first FNIII domain yields the fragments L1-70 and L1-135. These results raised questions concerning the L1 cleavage sites. We thus generated gene-edited mice expressing L1 with mutations of the cleavage sites either in the first or third FNIII domain. By immunoprecipitations and immunoblot analyses using brain homogenates and different L1 antibodies, we show that L1-70 and L1-135 are generated in wild-type mice, but not or only to a low extent in L1 mutant mice. L1-80 and L1-140 were not detected in wild-type or mutant mice. Mass spectrometry confirmed the results from immunoprecipitations and immunoblot analyses. Based on these observations, we propose that L1-70 and L1-135 are the predominant fragments in the mouse nervous system and that the third FNIII domain is decisive for generating these fragments. Treatment of cultured cerebellar neurons with trypsin or plasmin, which were both proposed to generate L1-80 and L1-140 by cleaving in the third FNIII domain, showed by immunoprecipitations and immunoblot analyses that both proteases lead to the generation of L1-70 and L1-135, but not L1-80 and L1-140. We discuss previous observations on the basis of our new results and propose a novel view on the molecular features that render previous and present observations compatible.
Collapse
Affiliation(s)
- Ralf Kleene
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Institute for Structural Neurobiology, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department for Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | - Gabriele Loers
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Bork
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Borgmeyer
- Scientific Service Group for Transgenic Animals, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Scientific Service Group for Transgenic Animals, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
10
|
Guo D, Shi Y, Jian W, Fu Y, Yang H, Guo M, Yong W, Chen G, Deng H, Qin Y, Liao W, Yao R. A novel nonsense mutation in the L1CAM gene responsible for X-linked congenital hydrocephalus. J Gene Med 2020; 22:e3180. [PMID: 32128973 DOI: 10.1002/jgm.3180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Congenital hydrocephalus is a descriptive diagnosis of symptoms, that are present for numerous reasons, including chromosomal disorders, genetic mutations, intrauterine infection and hemorrhage, amongst other factors. Mutation of L1CAM gene is the most frequent cause of congenital hydrocephalus, contributing to approximately 30% of X-linked congenital hydrocephalus. METHODS In the present study, we used whole-exome sequencing and Sanger sequencing to investigate an aborted male fetus present with severe congenital hydrocephalus at 24 weeks of gestation, whose mother had a history of two previous voluntary terminations of pregnancies as a result of hydrocephalus. Magnetic resonance imaging, an autopsy and electron microscopy were performed and the phenotypic changes were described. RESULTS Whole-exome sequencing in the fetus, as well as variant segregation analysis, revealed a novel maternally derived hemizygous nonsense mutation (c.2865G>A; p. Y955*) in exon 21 of the L1CAM gene (NM_000425.4). Severe hydrocephalus was observed along with marked dilatation of lateral ventricles. An electron micrograph of the surface of lateral ventricle walls revealed a lack of ependymal cilia. CONCLUSION The present study suggests that L1CAM mutation screening should be considered for a male fetus with isolated hydrocephalus, especially with a family history, which could facilitate prenatal diagnosis in a subsequent pregnancy.
Collapse
Affiliation(s)
- Dewei Guo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyan Jian
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yimei Fu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Obstetrical & Gynecological Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Obstetrical & Gynecological Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manhui Guo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Obstetrical & Gynecological Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjing Yong
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Chen
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Deng
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Qin
- Department of Medical Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Liao
- Department of Medical Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruojin Yao
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Loss of Neogenin1 in human colorectal carcinoma cells causes a partial EMT and wound-healing response. Sci Rep 2019; 9:4110. [PMID: 30858446 PMCID: PMC6411945 DOI: 10.1038/s41598-019-40886-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/15/2019] [Indexed: 02/07/2023] Open
Abstract
Neogenin1 (NEO1) is a receptor of the Deleted in Colorectal Carcinoma (DCC)/Frazzled/UNC-40 family, which regulates axon guidance but can also stabilize epithelial adherens junctions. NEO1 and DCC are also tumor suppressors that can inhibit metastasis by acting as dependence receptors. Given the role of NEO1 in maintaining adherens junctions we tested whether loss of NEO1 also promoted metastasis via an epithelial mesenchymal transition (EMT). Loss of NEO1 disrupted zonula adherens but tight junctions were unaffected. Neo1-depleted epithelial cells exhibited a more migratory morphology, had reduced F-actin rich stress-fibres and more basal lamellipodia. Microtubule density was decreased while microtubule outgrowth was faster. Live imaging showed that Neo1-depleted epithelial islands had increased lateral movement. Western blots and immunostaining revealed increased expression of mesenchymal markers such as Fibronectin and MMP1. Furthermore, RNA-seq analysis showed a striking decrease in expression of genes associated with oxidative phosphorylation, and increased expression of genes associated with EMT, locomotion, and wound-healing. In summary, loss of NEO1 in intestinal epithelial cells produces a partial EMT response, based on gene expression, cellular morphology and behaviour and cytoskeletal distribution. These results suggest that loss of NEO1 in carcinomas may contribute to metastasis by promoting a partial EMT and increased motility.
Collapse
|
12
|
Tsui C, Koss K, Churchward MA, Todd KG. Biomaterials and glia: Progress on designs to modulate neuroinflammation. Acta Biomater 2019; 83:13-28. [PMID: 30414483 DOI: 10.1016/j.actbio.2018.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Microglia are multi-functional cells that play a vital role in establishing and maintaining the function of the nervous system and determining the fate of neurons following injury or neuropathology. The roles of microglia are diverse and essential to the capacity of the nervous system to recover from injury, however sustained inflammation can limit recovery and drive chronic disease processes such as neurodegenerative disorders. When assessing implantable therapeutic devices in the central nervous system, an improved lifetime of the implant is considered achievable through the attenuation of microglial inflammation. Consequently, there is a tremendous underexplored potential in biomaterial and engineered design to modulate neuroinflammation for therapeutic benefit. Several strategies for improving device compatibility reviewed here include: biocompatible coatings, improved designs in finer and flexible shapes to reduce tissue shear-related scarring, and loading of anti-inflammatory drugs. Studies about microglial cell cultures in 3D hydrogels and nanoscaffolds to assess various injuries and disorders are also discussed. A variety of other microglia-targeting treatments are also reviewed, including nanoparticulate systems, cellular backpacks, and gold plinths, with the intention of delivering anti-inflammatory drugs by targeting the phagocytic nature of microglia. Overall, this review highlights recent advances in biomaterials targeting microglia and inflammatory function with the potential for improving implant rejection and biocompatibility studies. STATEMENT OF SIGNIFICANCE: Microglia are the resident immune cells of the central nervous system, and thus play a central role in the neuroinflammatory response against conditions than span acute injuries, neuropsychiatric disorders, and neurodegenerative disorders. This review article presents a summary of biomaterials research that target microglia and other glial cells in order to attenuate neuroinflammation, including but not limited to: design of mechanically compliant and biocompatible stimulation electrodes, hydrogels for high-throughput 3D modelling of nervous tissue, and uptake of nanoparticle drug delivery systems. The goal of this paper is to identify strengths and gaps in the relevant literature, and to promote further consideration of microglia behaviour and neuroinflammation in biomaterial design.
Collapse
Affiliation(s)
- C Tsui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K Koss
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
13
|
Ou M, Wang S, Sun M, An J, Lv H, Zeng X, Hou SX, Xie W. The PDZ-GEF Gef26 regulates synapse development and function via FasII and Rap1 at the Drosophila neuromuscular junction. Exp Cell Res 2018; 374:342-352. [PMID: 30553967 DOI: 10.1016/j.yexcr.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.
Collapse
Affiliation(s)
- Mengzhu Ou
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Mingkuan Sun
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Jinsong An
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Huihui Lv
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xiankun Zeng
- Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA
| | - Steven X Hou
- Basic Research Laboratory, National Cancer Institute at Frederick, NIH, Frederick, MD 21702, USA.
| | - Wei Xie
- The Key Laboratory of Development Genes and Human Diseases, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.
| |
Collapse
|
14
|
Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, Griscom B, Rosenblum M, Boire A, Brogi E, Giancotti FG, Schachner M, Malladi S, Massagué J. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 2018; 20:966-978. [PMID: 30038252 PMCID: PMC6467203 DOI: 10.1038/s41556-018-0138-8] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Metastatic seeding by disseminated cancer cells principally occurs in perivascular niches. Here, we show that mechanotransduction signalling triggered by the pericyte-like spreading of disseminated cancer cells on host tissue capillaries is critical for metastatic colonization. Disseminated cancer cells employ L1CAM (cell adhesion molecule L1) to spread on capillaries and activate the mechanotransduction effectors YAP (Yes-associated protein) and MRTF (myocardin-related transcription factor). This spreading is robust enough to displace resident pericytes, which also use L1CAM for perivascular spreading. L1CAM activates YAP by engaging β1 integrin and ILK (integrin-linked kinase). L1CAM and YAP signalling enables the outgrowth of metastasis-initiating cells both immediately following their infiltration of target organs and after they exit from a period of latency. Our results identify an important step in the initiation of metastatic colonization, define its molecular constituents and provide an explanation for the widespread association of L1CAM with metastatic relapse in the clinic.
Collapse
Affiliation(s)
- Ekrem Emrah Er
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manuel Valiente
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Karuna Ganesh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saloni Agrawal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Hu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bailey Griscom
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filippo G Giancotti
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Biology and David E. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Srinivas Malladi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
16
|
Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, Bossard C, Boudin H, Louarn G, Neunlist M, Van Landeghem L. Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System. Cell Mol Gastroenterol Hepatol 2017; 5:31-49. [PMID: 29188232 PMCID: PMC5696385 DOI: 10.1016/j.jcmgh.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In several types of cancers, tumor cells invade adjacent tissues by migrating along the resident nerves of the tumor microenvironment. This process, called perineural invasion, typically occurs along extrinsic nerves, with Schwann cells providing physical guidance for the tumor cells. However, in the colorectal cancer microenvironment, the most abundant nervous structures belong to the nonmyelinated intrinsic enteric nervous system (ENS). In this study, we investigated whether colon cancer cells interact with the ENS. METHODS Tumor epithelial cells (TECs) from human primary colon adenocarcinomas and cell lines were cocultured with primary cultures of ENS and cultures of human ENS plexus explants. By combining confocal and atomic force microscopy, as well as video microscopy, we assessed tumor cell adhesion and migration on the ENS. We identified the adhesion proteins involved using a proteomics approach based on biotin/streptavidin interaction, and their implication was confirmed further using selective blocking antibodies. RESULTS TEC adhered preferentially and with stronger adhesion forces to enteric nervous structures than to mesenchymal cells. TEC adhesion to ENS involved direct interactions with enteric neurons. Enteric neuron removal from ENS cultures led to a significant decrease in tumor cell adhesion. TECs migrated significantly longer and further when adherent on ENS compared with on mesenchymal cells, and their trajectory faithfully followed ENS structures. Blocking N-cadherin and L1CAM decreased TEC migration along ENS structures. CONCLUSIONS Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.
Collapse
Key Words
- AFM, atomic force microscope
- Adhesion
- Colorectal Cancer
- DMEM, Dulbecco's modified Eagle medium
- ENS, enteric nervous system
- Enteric Neurons
- GFP, green fluorescent protein
- MCS, multiple cloning site
- Migration
- PBS, phosphate-buffered saline
- TEC, tumor epithelial cell
- Tuj, tubulin III
- pcENS, primary culture enteric nervous system
- α-SMA, α–smooth muscle actin
Collapse
Affiliation(s)
- Emilie Duchalais
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Clinique de Chirurgie Digestive et Endocrinienne, Centre Hospitalier Universitaire de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Correspondence Address correspondence to: Emilie Duchalais, MD, Inserm U1235, 1 Rue Gaston Veil, 44000 Nantes, France. fax: +33 2 40 41 11 10.Inserm U12351 Rue Gaston VeilNantes44000France
| | | | - Steven Nedellec
- Université de Nantes, Nantes, France
- Micropicell, Nantes, France
| | - Melissa Touvron
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Anne Bessard
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Yann Touchefeu
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Céline Bossard
- Université de Nantes, Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire de Nantes, France
| | - Hélène Boudin
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Guy Louarn
- Université de Nantes, Nantes, France
- Institut des Matériaux Jean Rouxel, Centre National de la Recherche Scientifique, Nantes, France
| | - Michel Neunlist
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Laurianne Van Landeghem
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
17
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
18
|
Koss K, Unsworth L. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater 2016; 44:2-15. [PMID: 27544809 DOI: 10.1016/j.actbio.2016.08.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. STATEMENT OF SIGNIFICANCE Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering.
Collapse
|
19
|
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol 2016; 77:75-92. [PMID: 27328461 DOI: 10.1002/dneu.22412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.
Collapse
Affiliation(s)
- Alessia Usardi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Keerthana Iyer
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Séverine M Sigoillot
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Antoine Dusonchet
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Fekrije Selimi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| |
Collapse
|
20
|
Yu X, Yang F, Fu DL, Jin C. L1 cell adhesion molecule as a therapeutic target in cancer. Expert Rev Anticancer Ther 2016; 16:359-71. [PMID: 26781307 DOI: 10.1586/14737140.2016.1143363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy.
Collapse
Affiliation(s)
- Xinzhe Yu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Feng Yang
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - De-Liang Fu
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| | - Chen Jin
- a Department of Pancreatic Surgery, Huashan Hospital , Fudan University , Shanghai , China
| |
Collapse
|
21
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
22
|
Wójtowicz T, Brzdąk P, Mozrzymas JW. Diverse impact of acute and long-term extracellular proteolytic activity on plasticity of neuronal excitability. Front Cell Neurosci 2015; 9:313. [PMID: 26321914 PMCID: PMC4530619 DOI: 10.3389/fncel.2015.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Learning and memory require alteration in number and strength of existing synaptic connections. Extracellular proteolysis within the synapses has been shown to play a pivotal role in synaptic plasticity by determining synapse structure, function, and number. Although synaptic plasticity of excitatory synapses is generally acknowledged to play a crucial role in formation of memory traces, some components of neural plasticity are reflected by nonsynaptic changes. Since information in neural networks is ultimately conveyed with action potentials, scaling of neuronal excitability could significantly enhance or dampen the outcome of dendritic integration, boost neuronal information storage capacity and ultimately learning. However, the underlying mechanism is poorly understood. With this regard, several lines of evidence and our most recent study support a view that activity of extracellular proteases might affect information processing in neuronal networks by affecting targets beyond synapses. Here, we review the most recent studies addressing the impact of extracellular proteolysis on plasticity of neuronal excitability and discuss how enzymatic activity may alter input-output/transfer function of neurons, supporting cognitive processes. Interestingly, extracellular proteolysis may alter intrinsic neuronal excitability and excitation/inhibition balance both rapidly (time of minutes to hours) and in long-term window. Moreover, it appears that by cleavage of extracellular matrix (ECM) constituents, proteases may modulate function of ion channels or alter inhibitory drive and hence facilitate active participation of dendrites and axon initial segments (AISs) in adjusting neuronal input/output function. Altogether, a picture emerges whereby both rapid and long-term extracellular proteolysis may influence some aspects of information processing in neurons, such as initiation of action potential, spike frequency adaptation, properties of action potential and dendritic backpropagation.
Collapse
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland ; Department of Animal Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland
| |
Collapse
|
23
|
Ren T, Yu S, Mao Z, Gao C. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells. Biomaterials 2015; 56:58-67. [DOI: 10.1016/j.biomaterials.2015.03.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
|
24
|
Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int 2015; 65:58-66. [DOI: 10.1111/pin.12245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Kyoko Itoh
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
25
|
Romano NH, Madl CM, Heilshorn SC. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth. Acta Biomater 2015; 11:48-57. [PMID: 25308870 DOI: 10.1016/j.actbio.2014.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/26/2022]
Abstract
The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schwann cell-neurite dynamics required for regeneration of neural architectures. We present an engineered extracellular matrix (eECM) microenvironment with tailored cell-matrix and cell-cell interactions to study their individual and combined effects on neurite outgrowth. This eECM regulates cell-matrix interactions by presenting integrin-binding RGD (Arg-Gly-Asp) ligands at specified densities. Simultaneously, the addition or exclusion of nerve growth factor (NGF) is used to modulate L1CAM-mediated Schwann cell-neurite interactions. Individually, increasing the RGD ligand density from 0.16 to 3.2mM resulted in increasing neurite lengths. In matrices presenting higher RGD ligand densities, neurite outgrowth was synergistically enhanced in the presence of soluble NGF. Analysis of Schwann cell migration and co-localization with neurites revealed that NGF enhanced cooperative outgrowth between the two cell types. Interestingly, neurites in NGF-supplemented conditions were unable to extend on the surrounding eECM without the assistance of Schwann cells. Blocking studies revealed that L1CAM is primarily responsible for these Schwann cell-neurite interactions. Without NGF supplementation, neurite outgrowth was unaffected by L1CAM blocking or the depletion of Schwann cells. These results underscore the synergistic interplay between cell-matrix and cell-cell interactions in enhancing neurite outgrowth for peripheral nerve regeneration.
Collapse
|
26
|
Cherry JF, Bennett NK, Schachner M, Moghe PV. Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells. Acta Biomater 2014; 10:4113-26. [PMID: 24914828 DOI: 10.1016/j.actbio.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 02/05/2023]
Abstract
We investigated the design of neurotrophic biomaterial constructs for human neural stem cells, guided by neural developmental cues of N-cadherin and L1 adhesion molecules. Polymer substrates fabricated either as two-dimensional (2-D) films or three-dimensional (3-D) microfibrous scaffolds were functionalized with fusion chimeras of N-cadherin-Fc alone and in combination with L1-Fc, and the effects on differentiation, neurite extension and survival of H9 human-embryonic-stem-cell-derived neural stem cells (H9-NSCs) were quantified. Combinations of N-cadherin and L1-Fc co-operatively enhanced neuronal differentiation profiles, indicating the critical nature of the two complementary developmental cues. Notably, substrates presenting low levels of N-cadherin-Fc concentrations, combined with proportionately higher L1-Fc concentration, most enhanced neurite outgrowth and the degree of MAP2+ and neurofilament-M+ H9-NSCs. Low N-cadherin-Fc alone promoted improved cell survival following oxidative stress, compared to higher concentrations of N-cadherin-Fc alone or combinations with L1-Fc. Pharmacological and antibody blockage studies revealed that substrates presenting low levels of N-cadherin are functionally competent so long as they elicit a threshold signal mediated by homophilic N-cadherin and fibroblast growth factor signaling. Overall, these studies highlight the ability of optimal combinations of N-cadherin and L1 to recapitulate a "neurotrophic" microenvironment that enhances human neural stem cell differentiation and neurite outgrowth. Additionally, 3-D fibrous scaffolds presenting low N-cadherin-Fc further enhanced the survival of H9-NSCs compared to equivalent 2-D films. This indicates that similar biofunctionalization approaches based on N-cadherin and L1 can be translated to 3-D "transplantable" scaffolds with enhanced neurotrophic behaviors. Thus, the insights from this study have fundamental and translational impacts for neural-stem-cell-based regenerative medicine.
Collapse
Affiliation(s)
- Jocie F Cherry
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Melitta Schachner
- W.M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, People's Republic of China
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
27
|
Rath AK, Kellermann SJ, Rentmeister A. Programmable Design of Functional Ribonucleoprotein Complexes. Chem Asian J 2014; 9:2045-51. [DOI: 10.1002/asia.201402220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/14/2014] [Indexed: 12/26/2022]
|
28
|
Abstract
Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and ectopic expression of L1 in fibroblastic cells induces metastasis-associated gene expression. Previous studies on L1 homologs indicated that four N-terminal immunoglobulin-like domains form a horseshoe-like structure that mediates homophilic interactions. Various models including the zipper, domain-swap, and symmetry-related models are proposed to be involved in structural mechanism of homophilic interaction of the L1 family members. Recently, cryo-electron tomography of L1 and crystal structure studies of neurofascin, an L1 family protein, have been performed. This review focuses on recent discoveries of different models and describes the possible structural mechanisms of homophilic interactions of L1 family members. Understanding structural mechanisms of homophilic interactions in various cell adhesion proteins should aid the development of therapeutic strategies for L1 family cell adhesion molecule-associated diseases.
Collapse
Affiliation(s)
- Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea
| | | |
Collapse
|
29
|
Wang Y, Loers G, Pan HC, Gouveia R, Zhao WJ, Shen YQ, Kleene R, Costa J, Schachner M. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function. PLoS One 2012; 7:e52404. [PMID: 23272240 PMCID: PMC3525558 DOI: 10.1371/journal.pone.0052404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/16/2012] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2)O(2) by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Hong-Chao Pan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ricardo Gouveia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Julia Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
30
|
Abstract
Cell adhesion molecules of the immunoglobulin-super-family (IgSF-CAMs) do not only have a physical effect, mediating merely attachment between cell surfaces. For navigating axons, IgSF-CAMs also exert an instructive impact: Upon activation, they elicit intracellular signalling cascades in the tip of the axon, the growth cone, which regulate in a spatio-temporally concerted action both speed and direction of the axon. Density and distribution of IgSF-CAMs in the growth cone plasma membrane play important roles for the activation of IgSF-CAMs, their clustering, and the adhesive forces they acquire, as well as for the local restriction and effective propagation of their intracellular signals.
Collapse
|
31
|
Bajor M, Michaluk P, Gulyassy P, Kekesi AK, Juhasz G, Kaczmarek L. Synaptic cell adhesion molecule-2 and collapsin response mediator protein-2 are novel members of the matrix metalloproteinase-9 degradome. J Neurochem 2012; 122:775-88. [DOI: 10.1111/j.1471-4159.2012.07829.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Kiefel H, Bondong S, Pfeifer M, Schirmer U, Erbe-Hoffmann N, Schäfer H, Sebens S, Altevogt P. EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-κB activation. Carcinogenesis 2012; 33:1919-29. [PMID: 22764136 DOI: 10.1093/carcin/bgs220] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of L1 cell adhesion molecule (L1CAM) is associated with poor prognosis in a variety of human carcinomas including breast, ovarian and pancreatic ductal adenocarcinoma (PDAC). Recently we reported that L1CAM induces sustained nuclear factor kappa B (NF-κB) activation by augmenting the autocrine production of interleukin 1 beta (IL-1β), a process dependent on interaction of L1CAM with integrins. In the present study, we demonstrate that transforming growth factor β1 (TGF-β1) treatment of breast carcinoma (MDA-MB231) and PDAC (BxPc3) cell lines induces an EMT (epithelial to mesenchymal transition)-like phenotype and leads to the expression of L1CAM. In MDA-MB231 cells, up-regulation of L1CAM augmented expression of IL-1β and NF-κB activation, which was reversed by depletion of L1CAM, L1CAM-binding membrane cytoskeleton linker protein ezrin, β1-integrin or focal adhesion kinase (FAK). Over-expression of L1CAM not only induced NF-κB activation but also mediated the phosphorylation of FAK and Src. Phosphorylation was not induced in cells expressing a mutant form of L1CAM (L1-RGE) devoid of the integrin-binding site. FAK- and Src-phosphorylation were inhibited by knock-down of various components of the integrin signalling pathway such as β1- and α5-integrins, integrin-linked kinase (ILK), FAK and the phosphoinositide 3-kinase (PI3K) subunit p110β. In summary, these results reveal that during EMT, L1CAM promotes IL-1β expression through a process dependent on integrin signalling and supports a motile and invasive tumour cell phenotype. We also identify important novel downstream effector molecules of the L1CAM-integrin signalling crosstalk that help to understand the molecular mechanisms underlying L1CAM-promoted tumour progression.
Collapse
Affiliation(s)
- Helena Kiefel
- German Cancer Research CenterIm Neuenheimer Feld 280, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, Altevogt P. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr 2012; 6:374-84. [PMID: 22796939 DOI: 10.4161/cam.20832] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.
Collapse
Affiliation(s)
- Helena Kiefel
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
He Q, Man L, Ji Y, Zhang S, Jiang M, Ding F, Gu X. Comparative Proteomic Analysis of Differentially Expressed Proteins between Peripheral Sensory and Motor Nerves. J Proteome Res 2012; 11:3077-89. [DOI: 10.1021/pr300186t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qianru He
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| | - Lili Man
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| | - Yuhua Ji
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| | - Shuqiang Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| | - Maorong Jiang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001,
P. R. China
| |
Collapse
|
35
|
Abstract
Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell-type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia, 409 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
36
|
Kim KS, Min JK, Liang ZL, Lee K, Lee JU, Bae KH, Lee MH, Lee SE, Ryu MJ, Kim SJ, Kim YK, Choi MJ, Jo YS, Kim JM, Shong M. Aberrant l1 cell adhesion molecule affects tumor behavior and chemosensitivity in anaplastic thyroid carcinoma. Clin Cancer Res 2012; 18:3071-8. [PMID: 22472175 DOI: 10.1158/1078-0432.ccr-11-2757] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Anaplastic thyroid carcinoma (ATC) is one of the most invasive human cancers and has a poor prognosis. Molecular targets of ATC that determine its highly aggressive nature remain unidentified. This study investigated L1 cell adhesion molecule (L1CAM) expression and its role in tumorigenesis of ATCs. EXPERIMENTAL DESIGN Expression of L1CAM in thyroid cancer was evaluated by immunohistochemical analyses of tumor samples from patients with thyroid cancer. We investigated the role of L1CAM in proliferation, migration, invasion, and chemoresistance using short hairpin RNA (shRNA) knockdown experiments in human ATC cell lines. Finally, we evaluated the role of L1CAM on tumorigenesis with ATC xenograft assay in a nude mouse model. RESULTS L1CAM expression was not detectable in normal follicular epithelial cells of the thyroid or in differentiated thyroid carcinoma. In contrast, analysis of ATC samples showed specifically higher expression of L1CAM in the invasive area of the tumor. Specific knockdown of L1CAM in the ATC cell lines, FRO and 8505C, caused a significant decrease in the proliferative, migratory, and invasive capabilities of the cells. Suppression of L1CAM expression in ATC cell lines increased chemosensitivity to gemcitabine or paclitaxel. Finally, in an ATC xenograft model, depletion of L1CAM markedly reduced tumor growth and increased the survival of tumor-bearing mice. CONCLUSIONS We report that L1CAM is highly expressed in the samples taken from patients with ATCs. L1CAM plays an important role in determining tumor behavior and chemosensitivity in cell lines derived from ATCs. Therefore, we suggest that L1CAM may be an important therapeutic target in patients with ATCs.
Collapse
Affiliation(s)
- Koon Soon Kim
- Research Center for Endocrinology and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bondong S, Kiefel H, Hielscher T, Zeimet AG, Zeillinger R, Pils D, Schuster E, Castillo-Tong DC, Cadron I, Vergote I, Braicu I, Sehouli J, Mahner S, Fogel M, Altevogt P. Prognostic significance of L1CAM in ovarian cancer and its role in constitutive NF-κB activation. Ann Oncol 2012; 23:1795-802. [PMID: 22228447 DOI: 10.1093/annonc/mdr568] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Overexpression of L1-cell adhesion molecule (L1CAM) has been observed for various carcinomas and correlates with poor prognosis and late-stage disease. In vitro, L1CAM enhances proliferation, cell migration, adhesion and chemoresistance. We tested L1CAM and interleukin-1 beta (IL-1β) expression in tumor samples and ascitic fluid from ovarian carcinoma patients to examine its role as a prognostic marker. PATIENTS AND METHODS We investigated tumor samples and ascitic fluid from 232 serous ovarian carcinoma patients for L1CAM by enzyme-linked immunosorbent assay. L1CAM expression was correlated with pathoclinical parameters and patients' outcome. IL-1β levels were measured in tumor cell lysates. Ovarian cancer cell lines were analyzed for the contribution of L1CAM to IL-1β production and nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) activation. RESULTS We observed that L1CAM-expressing tumors show a highly invasive phenotype associated with restricted tumor resectability at primary debulking surgery and increased lymphogenic spread. Soluble L1CAM proved to be a marker for poor progression-free survival and chemoresistance. In ovarian carcinoma cell lines, the specific knock-down of L1CAM reduces IL-1β expression and NF-κB activity. CONCLUSIONS L1CAM expression contributes to the invasive and metastatic phenotype of serous ovarian carcinoma. L1CAM expression and shedding in the tumor microenvironment could contribute to enhanced invasion and tumor progression through increased IL-1β production and NF-κB activation.
Collapse
Affiliation(s)
- S Bondong
- Department of Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu X, Reddy DS. Integrins as receptor targets for neurological disorders. Pharmacol Ther 2011; 134:68-81. [PMID: 22233753 DOI: 10.1016/j.pharmthera.2011.12.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
This review focuses on the neurobiology of integrins, pathophysiological roles of integrins in neuroplasticity and nervous system disorders, and therapeutic implications of integrins as potential drug targets and possible delivery pathways. Neuroplasticity is a central phenomenon in many neurological conditions such as seizures, trauma, and traumatic brain injury. During the course of many brain diseases, in addition to intracellular compartment changes, alterations in non-cell compartments such as extracellular matrix (ECM) are recognized as an essential process in forming and reorganizing neural connections. Integrins are heterodimeric transmembrane receptors that mediate cell-ECM and cell-cell adhesion events. Although the mechanisms of neuroplasticity remain unclear, it has been suggested that integrins undergo plasticity including clustering through interactions with ECM proteins, modulating ion channels, intracellular Ca(2+) and protein kinase signaling, and reorganization of cytoskeletal filaments. As cell surface receptors, integrins are central to the pathophysiology of many brain diseases, such as epilepsy, and are potential targets for the development of new drugs for neurological disorders.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807, USA
| | | |
Collapse
|
39
|
Shieh JC, Schaar BT, Srinivasan K, Brodsky FM, McConnell SK. Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. PLoS One 2011; 6:e17802. [PMID: 21445347 PMCID: PMC3062553 DOI: 10.1371/journal.pone.0017802] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/14/2011] [Indexed: 11/21/2022] Open
Abstract
Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons.
Collapse
Affiliation(s)
- Jennifer C. Shieh
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program in Neuroscience, Stanford University, Stanford, California, United States of America
| | - Bruce T. Schaar
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Karpagam Srinivasan
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Frances M. Brodsky
- Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Susan K. McConnell
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Tsutsumi S, Morohashi S, Kudo Y, Akasaka H, Ogasawara H, Ono M, Takasugi K, Ishido K, Hakamada K, Kijima H. L1 Cell adhesion molecule (L1CAM) expression at the cancer invasive front is a novel prognostic marker of pancreatic ductal adenocarcinoma. J Surg Oncol 2011; 103:669-73. [PMID: 21360711 DOI: 10.1002/jso.21880] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 01/06/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is one of the most extremely aggressive cancers with a poor prognosis after curative resection. L1 cell adhesion molecule (L1CAM) is a 200-220 kDa type I transmembrane glycoprotein of the immunoglobulin superfamily, which has been shown to affect the prognosis of several cancers. No clinicopathological significance of L1CAM expression has been examined at the invasive front of PDAC. In this study, we examined the relationship between L1CAM expression and clinicopathological features in PDAC by immunohistochemistry. METHODS One hundred seven surgically resected specimens of PDAC were immunohistochemically examined using a monoclonal antibody against L1CAM. RESULTS Positive expression of L1CAM was found in 23 of 107 cases with PDAC. In most cases (21/23), L1CAM expression was localized at the invasive front of the tumor tissue. Positive expression of L1CAM was significantly correlated with the histological grade, lymph node involvement, and distant metastasis. In univariate analysis, a positive expression of L1CAM was associated with short overall survival (P = 0.0002), and this was significant in multivariate analysis (P = 0.009). CONCLUSIONS L1CAM could play an important role in the invasive process in vivo, and is thought to be a good indicator of prognosis in PDAC.
Collapse
Affiliation(s)
- Shinji Tsutsumi
- Department of Pathology Hirosaki University School of Medicine, Hirosaki, Aomori, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Linking L1CAM-mediated signaling to NF-κB activation. Trends Mol Med 2010; 17:178-87. [PMID: 21195665 DOI: 10.1016/j.molmed.2010.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 01/13/2023]
Abstract
The cell adhesion molecule L1 (L1CAM) was originally identified as a neural adhesion molecule essential for neurite outgrowth and axon guidance. Many studies have now shown that L1CAM is overexpressed in human carcinomas and associated with poor prognosis. So far, L1CAM-mediated cellular signaling has been largely attributed to an association with growth factor receptors, referred to as L1CAM-'assisted' signaling. New data demonstrate that L1CAM can signal via two additional mechanisms: 'forward' signaling via regulated intramembrane proteolysis and 'reverse' signaling via the activation of the transcription factor nuclear factor (NF)-κB. Taken together, these findings lead to a new understanding of L1CAM downstream signaling that is fundamental for the development of anti-L1CAM antibody-mediated therapeutics in human tumor cells.
Collapse
|
42
|
Identification of subtilase cytotoxin (SubAB) receptors whose signaling, in association with SubAB-induced BiP cleavage, is responsible for apoptosis in HeLa cells. Infect Immun 2010; 79:617-27. [PMID: 21098100 DOI: 10.1128/iai.01020-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Subtilase cytotoxin (SubAB), which is produced by certain strains of Shiga-toxigenic Escherichia coli (STEC), causes the 78-kDa glucose-regulated protein (GRP78/BiP) cleavage, followed by induction of endoplasmic reticulum (ER) stress, leading to caspase-dependent apoptosis via mitochondrial membrane damage by Bax/Bak activation. The purpose of the present study was to identify SubAB receptors responsible for HeLa cell death. Four proteins, NG2, α2β1 integrin (ITG), L1 cell adhesion molecule (L1CAM), and hepatocyte growth factor receptor (Met), were identified to be SubAB-binding proteins by immunoprecipitation and purification, followed by liquid chromatography-tandem mass spectrometry analysis. SubAB-induced Bax conformational change, Bax/Bak complex formation, caspase activation, and cell death were decreased in β1 ITG, NG2, and L1CAM small interfering RNA-transfected cells, but unexpectedly, BiP cleavage was still observed. Pretreatment of cells with a function-blocking β1 ITG antibody (monoclonal antibody [MAb] P5D2) enhanced SubAB-induced caspase activation; MAb P5D2 alone had no effect on caspase activation. Furthermore, we found that SubAB induced focal adhesion kinase fragmentation, which was mediated by a proteasome-dependent pathway, and caspase activation was suppressed in the presence of proteasome inhibitor. Thus, β1 ITG serves as a SubAB-binding protein and may interact with SubAB-signaling pathways, leading to cell death. Our results raise the possibility that although BiP cleavage is necessary for SubAB-induced apoptotic cell death, signaling pathways associated with functional SubAB receptors may be required for activation of SubAB-dependent apoptotic pathways.
Collapse
|
43
|
Gaillard C, Duval M, Dumortier H, Bianco A. Carbon nanotube-coupled cell adhesion peptides are non-immunogenic: a promising step toward new biomedical devices. J Pept Sci 2010; 17:139-42. [PMID: 20853522 DOI: 10.1002/psc.1290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 11/11/2022]
Abstract
Carbon nanotubes functionalized with cell adhesion peptides can be considered as novel, promising candidates for the development of advanced drug delivery systems or for designing new generation of self-assembling nerve 'bridges'. An important step toward the integration of these types of conjugates in living bodies is the assessment of their impact on the immune system. In this direction, an integrin-derived peptide has been covalently conjugated to carbon nanotubes. Following intraperitoneal administration, peptide-carbon nanotubes do not trigger an anti-peptide antibody production. Demonstration of the immune neutrality of peptide-carbon nanotubes reinforces their potential use as substrates for neuronal regeneration in vivo.
Collapse
Affiliation(s)
- Claire Gaillard
- CNRS, Institut de Biologie Moléculaire et Cellulaire, UPR 9021, Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
44
|
Schäfer MKE, Altevogt P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 2010; 67:2425-37. [PMID: 20237819 PMCID: PMC11115577 DOI: 10.1007/s00018-010-0339-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/30/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
Abstract
Research over the last 25 years on the cell adhesion molecule L1 has revealed its pivotal role in nervous system function. Mutations of the human L1CAM gene have been shown to cause neurodevelopmental disorders such as X-linked hydrocephalus, spastic paraplegia and mental retardation. Impaired L1 function has been also implicated in the aetiology of fetal alcohol spectrum disorders, defective enteric nervous system development and malformations of the renal system. Importantly, aberrant expression of L1 has emerged as a critical factor in the development of human carcinomas, where it enhances cell proliferation, motility and chemoresistance. This discovery promoted collaborative work between tumour biologists and neurobiologists, which has led to a substantial expansion of the basic knowledge about L1 function and regulation. Here we provide an overview of the pathological conditions caused by L1 malfunction. We further discuss how the available data on gene regulation, molecular interactions and posttranslational processing of L1 may contribute to a better understanding of associated neurological and cancerous diseases.
Collapse
Affiliation(s)
- Michael K E Schäfer
- Center for Neurosciences, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
45
|
L1CAM-integrin interaction induces constitutive NF-kappaB activation in pancreatic adenocarcinoma cells by enhancing IL-1beta expression. Oncogene 2010; 29:4766-78. [PMID: 20543863 DOI: 10.1038/onc.2010.230] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
L1 cell adhesion molecule (L1CAM) overexpression is often associated with bad prognosis in various human carcinomas. Recent studies also suggest a role of L1CAM in pancreatic ductal adenocarcinomas (PDAC). To further address its contribution, we expressed functional domains of L1CAM in PT45-P1 PDAC cells. We found that L1CAM that is full length (L1-FL), but neither the soluble ectodomain (L1ecto) nor the cytoplasmic part (L1cyt), could enhance cell proliferation or tumour growth in mice. Expression of L1-FL resulted in constitutive activation of NF-kappaB, which was abolished by L1CAM knockdown. We showed that the expression of IL-1beta was selectively upregulated by L1-FL, and increased IL-1beta levels were instrumental for sustained NF-kappaB activation. IL-1beta production and NF-kappaB activation were abolished by knockdown of alpha5-integrin and integrin-linked kinase, but insensitive to depletion of L1CAM cleavage proteinases. Supporting these data, PT45-P1 cells transduced with an L1CAM mutant deficient in integrin binding (L1-RGE) did not support the described L1-FL functions. Our results suggest that membranous L1CAM interacts with RGD-binding integrins, leading to sustained NF-kappaB activation by IL-1beta production and autocrine/paracrine signalling. The unravelling of this novel mechanism sheds new light on the important role of L1CAM expression in PDAC cells.
Collapse
|
46
|
Chen MM, Lee CY, Leland HA, Lin GY, Montgomery AM, Silletti S. Inside-out regulation of L1 conformation, integrin binding, proteolysis, and concomitant cell migration. Mol Biol Cell 2010; 21:1671-85. [PMID: 20335502 PMCID: PMC2869374 DOI: 10.1091/mbc.e09-10-0900] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The ectodomain structure and function of the neural cell adhesion molecule L1 is shown to be regulated by the intracellular phosphorylation of a novel threonine, T1172. In pancreatic cancer cells, T1172 exhibits steady-state saturated phosphorylation, an event regulated by CKII and PKC, and which further regulates cell migration. Previous reports on the expression of the cell adhesion molecule L1 in pancreatic ductal adenocarcinoma (PDAC) cells range from absent to high. Our data demonstrate that L1 is expressed in poorly differentiated PDAC cells in situ and that threonine-1172 (T1172) in the L1 cytoplasmic domain exhibits steady-state saturated phosphorylation in PDAC cells in vitro and in situ. In vitro studies support roles for casein kinase II and PKC in this modification, consistent with our prior studies using recombinant proteins. Importantly, T1172 phosphorylation drives, or is associated with, a change in the extracellular structure of L1, consistent with a potential role in regulating the shift between the closed conformation and the open, multimerized conformation of L1. We further demonstrate that these distinct conformations exhibit differential binding to integrins αvβ3 and αvβ5 and that T1172 regulates cell migration in a matrix-specific manner and is required for a disintegrin and metalloproteinase-mediated shedding of the L1 ectodomain that has been shown to regulate cell migration. These data define a specific role for T1172 of L1 in regulating aspects of pancreatic adenocarcinoma cell phenotype and suggest the need for further studies to elucidate the specific ramifications of L1 expression and T1172 phosphorylation in the pathobiology of pancreatic cancer.
Collapse
Affiliation(s)
- Maxine M Chen
- Moores Cancer Center and Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010; 35:147-68. [PMID: 19794405 PMCID: PMC3055433 DOI: 10.1038/npp.2009.115] [Citation(s) in RCA: 834] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/05/2023]
Abstract
Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs.
Collapse
Affiliation(s)
- Gregory Z Tau
- Division of Child and Adolescent Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
48
|
Huszar M, Pfeifer M, Schirmer U, Kiefel H, Konecny GE, Ben-Arie A, Edler L, Münch M, Müller-Holzner E, Jerabek-Klestil S, Abdel-Azim S, Marth C, Zeimet AG, Altevogt P, Fogel M. Up-regulation of L1CAM is linked to loss of hormone receptors and E-cadherin in aggressive subtypes of endometrial carcinomas. J Pathol 2009; 220:551-61. [DOI: 10.1002/path.2673] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons. NANO LETTERS 2009; 9:4115-4121. [PMID: 19694460 DOI: 10.1021/nl9023325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The density/spacing of plasma membrane proteins is thought to be crucial for their function; clear-cut experimental evidence, however, is still rare. We examined nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP with respect to their impact on neuron attachment and neurite growth. Data analysis/modeling revealed that these cellular responses improve with increasing DM-GRASP density, with the exception of one spacing which does not allow for the anchorage of a cytoskeletal protein (spectrin) to three DM-GRASP molecules.
Collapse
Affiliation(s)
- Steffen Jaehrling
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|
50
|
Li S, Jo YS, Lee JH, Min JK, Lee ES, Park T, Kim JM, Hong HJ. L1 cell adhesion molecule is a novel independent poor prognostic factor of extrahepatic cholangiocarcinoma. Clin Cancer Res 2009; 15:7345-51. [PMID: 19920102 DOI: 10.1158/1078-0432.ccr-09-0959] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cholangiocarcinomas (CC) are associated with poor survival, but diagnostic markers and therapeutic targets have not yet been elucidated. We previously found aberrant expression of L1 cell adhesion molecule in intrahepatic CC and a role for L1 in the progression of intrahepatic CC. Here, we analyzed L1 expression in extrahepatic CC (ECC) and evaluated its prognostic significance. EXPERIMENTAL DESIGN We examined L1 expression in tumors from 75 ECC patients by immunohistochemistry. We analyzed the correlations between L1 expression and clinicopathologic factors as well as patient survival. RESULTS L1 was not expressed in normal extrahepatic bile duct epithelium but was aberrantly expressed in 42.7% of ECC tumors. High expression of L1 was detected at the invasive front of tumors and was significantly associated with perineural invasion (P < 0.01). Univariate analysis indicated that various prognostic factors such as histologic grade 3, advanced pathologic T stage and clinical stage, perineural invasion, nodal metastasis, and high expression of L1 were risk factors predicting patient survival. Multivariate analyses done by Cox's proportional hazards model showed that high expression of L1 (hazard ratio, 2.171; 95% confidence interval, 1.162-4.055; P = 0.015) and nodal metastasis (hazard ratio, 2.088; 95% confidence interval, 1.159-3.764; P = 0.014) were independent risk factors for patient death. CONCLUSIONS L1 was highly expressed in 42.7% of ECC and its expression was significantly associated with perineural invasion. High expression of L1 and nodal metastasis were independent poor prognostic factors predicting overall survival in patients with ECC.
Collapse
Affiliation(s)
- Shengjin Li
- Department of Pathology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|