1
|
Bogard AT, Hembree TG, Pollet AK, Smith AC, Ryder SC, Marzloff GE, Tan AQ. Intermittent hypoxia-induced enhancements in corticospinal excitability predict gains in motor learning and metabolic efficiency. Sci Rep 2025; 15:6614. [PMID: 39994358 PMCID: PMC11850928 DOI: 10.1038/s41598-025-90890-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Acute intermittent hypoxia (AIH) enhances human motor function after incomplete spinal cord injury. Although the underlying mechanisms in humans are unknown, emerging evidence indicates that AIH facilitates corticospinal excitability to the upper limb. However, the functional relevance of this plasticity remains unexplored, and it is unclear whether similar plasticity can be induced for lower limb motor areas. We recently demonstrated that AIH improves motor adaptation, motor savings, and metabolic efficiency during split-belt walking. Thus, we hypothesized that AIH increases lower limb excitability and that these enhancements would predict the magnitude of motor learning and the corresponding reductions in net metabolic power. We assessed tibialis anterior (TA) excitability using transcranial magnetic stimulation and quantified changes in spatiotemporal asymmetries and net metabolic power in response to split-belt speed perturbations. We show that AIH enhances TA excitability, and that the magnitude of this facilitation positively correlates with greater spatiotemporal adaptation. Notably, we demonstrate a novel association between increased excitability and reduced net metabolic power during motor adaptation and motor savings. Together, our results suggest that AIH-induced gains in excitability predict both the magnitude of motor learning and the associated metabolic efficiency. Determining indices of AIH-induced improvements in motor performance is critical for optimizing its therapeutic reach.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab, Department of Integrative Physiology, University of Colorado, Boulder, 80309, USA
| | - Thomas G Hembree
- Sensorimotor Recovery and Neuroplasticity Lab, Department of Integrative Physiology, University of Colorado, Boulder, 80309, USA
| | - Aviva K Pollet
- Sensorimotor Recovery and Neuroplasticity Lab, Department of Integrative Physiology, University of Colorado, Boulder, 80309, USA
| | - Andrew C Smith
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, 80045, USA
| | - Stephanie C Ryder
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA
| | - George E Marzloff
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab, Department of Integrative Physiology, University of Colorado, Boulder, 80309, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA.
- Center for Neuroscience, University of Colorado, Boulder, 80309, USA.
| |
Collapse
|
2
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
3
|
Michel-Flutot P, Mansart A, Vinit S. Glycolytic metabolism modulation on spinal neuroinflammation and vital functions following cervical spinal cord injury. Respir Physiol Neurobiol 2025; 332:104383. [PMID: 39645172 DOI: 10.1016/j.resp.2024.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
High spinal cord injuries (SCIs) often result in persistent diaphragm paralysis and respiratory dysfunction. Chronic neuroinflammation within the damaged spinal cord after injury plays a prominent role in limiting functional recovery by impeding neuroplasticity. In this study, we aimed to reduce glucose metabolism that supports neuroinflammatory processes in an acute preclinical model of C2 spinal cord lateral hemisection in rats. We administered 2-deoxy-D-glucose (2-DG; 200 mg/kg/day s.c., for 7 days) and evaluated the effect on respiratory function and chondroitin sulfate proteoglycans (CSPGs) production around spinal phrenic motoneurons. Contrary to our initial hypothesis, our 2-DG treatment did not have any effect on diaphragm activity and CSPGs production in injured rats, although slight increases in tidal volume were observed. Unexpectedly, it led to deleterious effects in uninjured (sham) animals, characterized by increased ventilation and CSPGs production. Ultimately, our results seem to indicate that this 2-DG treatment paradigm may create a neuroinflammatory state in healthy animals, without affecting the already established spinal inflammation in injured rats.
Collapse
Affiliation(s)
| | - Arnaud Mansart
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation (2I), Versailles 78000, France
| | - Stéphane Vinit
- Université Paris-Saclay, UVSQ, Inserm U1179, END-ICAP, Versailles 78000, France
| |
Collapse
|
4
|
Welch JF, Dale EA, Nair J, Davenport PW, Fox EJ, Mitchell GS. A case report of long-latency evoked diaphragm potentials after exposure to acute intermittent hypoxia in post-West Nile virus meningoencephalitis. J Neurophysiol 2025; 133:522-529. [PMID: 39852952 DOI: 10.1152/jn.00406.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
We present a case report of a 42-year-old female with post-West Nile virus meningoencephalitis who exhibited unique, long-latency diaphragm potentials evoked by transcranial and cervical magnetic stimulation after exposure to acute intermittent hypoxia (AIH). The subject was recruited for a study investigating AIH effects on respiratory motor function in healthy individuals. She had contracted West Nile virus infection 5 years before assessment that resulted in hospitalization and persistent allodynia but was not reported to the research team. During the study, transcranial (TMS) and cervical (CMS) magnetic stimulation were performed before and 30-60 min after a single presentation of AIH [15, 1-min hypoxic episodes (∼9% inspired O2), with 1-min normoxic intervals]. Diaphragm EMG was recorded using chest wall surface electrodes. At baseline, evoked diaphragm potentials were within normal ranges for both TMS (onset latency = 17.0 ± 1.1 ms; peak-to-peak amplitude = 220 ± 27 µV) and CMS (onset latency = 7.8 ± 0.6 ms; peak-to-peak amplitude = 336 ± 8 µV). However, long-latency TMS- and CMS-evoked potentials were observed 30-60 min post-AIH that were not present at baseline nor in healthy subjects. The onset of long-latency potentials ranged from 50 to 808 ms. While AIH is a potentially useful therapeutic strategy to enhance motor function after neurological disease or injury, it may elicit distinct effects in individuals with a history of neuroinfectious disease. Possible explanations for these unusual responses are discussed.NEW & NOTEWORTHY A 42-year-old female with post-West Nile virus meningoencephalitis demonstrated long-latency diaphragmatic potentials evoked by transcranial and cervical magnetic stimulation following exposure to acute intermittent hypoxia that were not present at baseline nor in healthy subjects. Although the cause of long-latency responses is unknown, we discuss possible mechanisms whereby acute intermittent hypoxia could create unique effects on the diaphragm/phrenic motor system in individuals with a history of neuroinfectious disease.
Collapse
Affiliation(s)
- Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Erica A Dale
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, United States
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- Brooks Rehabilitation, Jacksonville, Florida, United States
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
5
|
Jones AA, Oberto JR, Ciesla MC, Seven YB, Allen LL, Gonzalez-Rothi EJ, Mitchell GS. Enhanced phrenic motor neuron BDNF expression elicited by daily acute intermittent hypoxia is undermined in rats with chronic cervical spinal cord injury. Respir Physiol Neurobiol 2025; 332:104369. [PMID: 39536925 DOI: 10.1016/j.resp.2024.104369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Acute intermittent hypoxia (AIH) elicits spinal neuroplasticity and is emerging as a potential therapeutic modality to improve respiratory and non-respiratory motor function in people with chronic incomplete spinal cord injury (SCI). Brain-derived neurotrophic factor (BDNF) is necessary and sufficient for moderate AIH-induced phrenic long-term facilitation, a well-studied form of respiratory motor plasticity. Repetitive daily AIH (dAIH) enhances BDNF expression within the phrenic motor neurons of normal rats, but its effects on BDNF after chronic cervical spinal cord injury (cSCI) are unknown. In contrast to AIH, chronic intermittent hypoxia (CIH), simulating that experienced during sleep apnea, elicits neuropathology and undermines plasticity. Here, we tested the hypothesis that daily AIH vs CIH differentially regulate phrenic motor neuron BDNF expression in spinally intact and injured rats. Rats with and without C2 hemisection (C2Hx; 8 weeks post-injury) were exposed to 28 days of: 1) sham normoxia (Nx, 21 % O2); 2) daily AIH (dAIH: 10, 5 min episodes of 10.5 % O2 per day; 5 min normoxic intervals); 3) mild CIH (CIH5/5: 5 min of 10.5 % O2, 5 min intervals, 8 hrs/day); or 4) moderate CIH (CIH2/2: 2 min of 10.5 % O2, 2 min intervals, 8 hrs/day). After 28 days of daily exposure (i.e., 12 weeks post-injury), BDNF immunoreactivity was assessed within phrenic motor neurons identified via retrograde cholera toxin B fragment labeling. In intact rats, daily AIH increased BDNF protein levels in phrenic motor neurons (∼31 %) but not in rats with C2Hx. CIH had no effects on phrenic motor neuron BDNF levels in intact rats, although there was a trend towards increased phrenic motor neuron BDNF after C2Hx, suggesting the need for further study. Since dAIH effects on phrenic motor neuron BDNF are not observed in rats with chronic cervical SCI, the potential of dAIH to enhance BDNF-dependent phrenic motor plasticity may be suppressed by conditions prevailing with chronic cSCI.
Collapse
Affiliation(s)
- Aaron A Jones
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA
| | - Jose R Oberto
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, FL 32610, USA.
| |
Collapse
|
6
|
Serebrovska Z, Xi L, Fedoriuk M, Dosenko V, Shysh A, Khetsuriani M, Porkhalo D, Savchenko A, Goncharov S, Utko N, Virko S, Kholin V, Egorov E, Koval R, Maksymchuk O. Intermittent hypoxia-hyperoxia training ameliorates cognitive impairment and neuroinflammation in a rat model of Alzheimer's disease. Brain Res 2025; 1847:149301. [PMID: 39476996 DOI: 10.1016/j.brainres.2024.149301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/02/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Alzheimer's disease (AD), characterized by severe and progressive cognitive decline, stands as one of the most prevalent and devastating forms of dementia. Based on our recent findings showing intermittent hypoxic conditioning improved neuronal function in patients with mild cognitive impairment, the present study aimed at investigating whether the neuroprotective effects of intermittent hypoxia can be replicated in a rat model of AD, which allows us to explore the underlying cellular mechanisms involving neuroinflammation, hypoxia inducible factor 1α (HIF1α), and cytochrome P450 family 2 subfamily E member 1 (CYP2E1). Forty-one adult male Wistar rats were randomly assigned to three groups: 1) Control group: received intracerebroventricular (ICV) injection of saline; 2) STZ group: received ICV injection of streptozotocin (STZ) to induce AD-like pathology; and 3) STZ + IHHT group received ICV injection of STZ as well as 15 daily sessions of intermittent hypoxia-hyperoxia training (IHHT). We observed that ICV injection of STZ inhibited spatial learning and memory in the rats assessed with Morris Water Maze test. The cognitive function declines were accompanied by increased expression of amyloid β peptide (Aβ), HIF1α, CYP2E1, and TNFα in hippocampus. Interestingly, IHHT significantly restored the STZ-induced cognitive dysfunction, while reduced expression of Aβ, CYP2E1, HIF1α and TNFα. We conclude that IHHT with mild hypoxia-hyperoxia can enhance spatial learning and memory and reduce the AD-like pathologic changes in rats. The neuroprotective outcome of IHHT may be related to anti-inflammatory effects in hippocampus.
Collapse
Affiliation(s)
- Zoya Serebrovska
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine.
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| | - Mykhailo Fedoriuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Victor Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Angela Shysh
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Michael Khetsuriani
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Denys Porkhalo
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Anton Savchenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Serhii Goncharov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
| | - Natalie Utko
- Chebotarev Institute of Gerontology, National Academy of Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Sergii Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, Kyiv 02000, Ukraine
| | - Victor Kholin
- Chebotarev Institute of Gerontology, National Academy of Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Egor Egorov
- Institute for Preventive and Antiaging Medicine, Berlin 10789, Germany
| | - Roman Koval
- National Cancer Institute, Kyiv 03022, Ukraine
| | - Oksana Maksymchuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| |
Collapse
|
7
|
Alhashimi A, Kamarova M, Baig SS, Nair KPS, Wang T, Redgrave J, Majid A, Ali AN. Remote ischaemic conditioning for neurological disorders-a systematic review and narrative synthesis. Syst Rev 2024; 13:308. [PMID: 39702489 DOI: 10.1186/s13643-024-02725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Remote ischaemic conditioning (RIC) refers to the use of controlled transient ischemic and reperfusion cycles, commonly of the upper or lower limb, to mitigate cellular damage from ischaemic injury. Preclinical studies demonstrate that RIC may have a neuroprotective effect and therefore could represent a novel therapeutic option in the management of neurological disorders. The aim of this review is to comprehensively describe the current clinical evidence of RIC in neurological disorders. METHODS A computerised search of EMBASE and OVID MEDLINE was conducted from 2002 to October 2023 for randomised controlled trials (RCTs) investigating RIC in neurological diseases. RESULTS A total of 46 different RCTs in 12 different neurological disorders (n = 7544) were included in the analysis. Conditions included acute ischaemic stroke, symptomatic intracranial stenosis and vascular cognitive impairment. The most commonly used RIC protocol parameters in the selected studies were as follows: cuff pressure at 200 mmHg (27 trials), 5-min cycle length (42 trials), 5 cycles of ischaemia and reperfusion (24 trials) and the application to the upper limb unilaterally (23 trials). CONCLUSIONS The comprehensive analysis of the included studies reveals promising results regarding the safety and therapeutic effect of RIC as an option for managing neurological diseases. Particularly, the strongest evidence supports its potential use in chronic stroke patients and vascular cognitive impairment. The neuroprotective effects of RIC, as demonstrated in preclinical studies, suggest that this therapeutic approach could extend its benefits to various other diseases affecting the nervous system. However, to establish the efficacy of RIC across different neurological disorders, further trials with larger sample sizes and more diverse patient populations are warranted. Upcoming trials are expected to provide valuable evidence that will not only confirm the efficacy of RIC in neurological disease management but also help identify the most optimal RIC regimen for specific conditions.
Collapse
Affiliation(s)
| | - Marharyta Kamarova
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Sheharyar S Baig
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | | | - Tao Wang
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Jessica Redgrave
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK
| | - Ali N Ali
- Department of Neuroscience, Geriatrics and Stroke, Sheffield Institute for Translational Neurosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
8
|
Janssen Daalen JM, Straatsma IR, van Hees JWH, Weevers A, van de Wetering-van Dongen VA, Nijkrake MJ, Meinders MJ, Bosch FH, Kox M, Ainslie PN, Bloem BR, Thijssen DHJ. Respiratory Dysfunction and Abnormal Hypoxic Ventilatory Response in Mild to Moderate Parkinson's Disease. Mov Disord Clin Pract 2024; 11:1550-1558. [PMID: 39498807 DOI: 10.1002/mdc3.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Respiratory dysfunction is an important contributor to morbidity and mortality in advanced Parkinson's disease (PD), but it is unclear what parameters are sensitive to diagnose and monitor respiratory dysfunction across disease phases. OBJECTIVES We aimed to characterize respiratory dysfunction in mild to moderate PD. METHODS In 20 individuals without cardiopulmonary comorbidity, pulmonary and inspiratory muscle function testing were performed ON-medication. Subsequently, the acute ventilatory response to hypoxia (HVR) was assessed by gradually decreasing FIO2 from 0.209 (room air) to 0.127, which was compared to eight age- and sex-matched healthy controls under arterial blood gas monitoring. Lastly, on different days, the same 20 individuals with PD underwent six blinded exposures to 45-min normobaric hypoxia at FiO2 0.163 and 0.127 or placebo OFF-medication to assess breathing responses. RESULTS At rest, individuals with greatest PD severity had a lower tidal volume (pairwise comparisons: 0.59 vs. 0.74, P = 0.038-0.050) and tended to have a higher breathing frequency (17.7 vs. 14.4, P = 0.076), despite normal pulmonary function. A 45-min exposure to hypoxia induced a significantly lower acute HVR in individuals with PD compared to controls (-0.0489 vs. 0.133 L.min/%, P = 0.0038). Acute HVR was reduced regardless of disease severity. Subacute HVR in individuals with milder disease tended to be higher compared to those with more advanced disease (P = 0.079). CONCLUSIONS Respiratory dysfunction is present in individuals with PD, including those with relatively mild disease severity, and is characterized by altered breathing patterns at rest, as well as a lower HVR, despite normal pulmonary and inspiratory muscle function testing.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Department of Medical BioSciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Isabel R Straatsma
- Department of Medical BioSciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen W H van Hees
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amber Weevers
- Department of Medical BioSciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Maarten J Nijkrake
- Department of Rehabilitation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
- Radboud University Medical Center, Radboud Institute for Health Sciences, IQ Healthcare, Nijmegen, The Netherlands
| | - Frank H Bosch
- Rijnstate Hospital, Department of Internal Medicine, Arnhem, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip N Ainslie
- University of British Columbia, Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Kelowna, Canada
| | - Bastiaan R Bloem
- Radboud University Medical Center, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson & Movement Disorders, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Medical BioSciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Bogard AT, Pollet AK, Tan AQ. Intermittent hypoxia enhances voluntary activation and reduces performance fatigability during repeated lower limb contractions. J Neurophysiol 2024; 132:1717-1728. [PMID: 39441213 PMCID: PMC11687831 DOI: 10.1152/jn.00385.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Prior research has highlighted the therapeutic benefits of acute intermittent hypoxia (AIH) in enhancing motor performance after motor incomplete spinal cord injury and in able-bodied individuals. Although studies in rodents and humans indicate that AIH may facilitate motor excitability, the relationship between excitability changes and functional performance remains unclear. In addition, discrepancies in the effects of AIH on excitability in able-bodied individuals merit further investigation. Understanding the concurrent impact of repetitive AIH on voluntary activation and spinal reflex excitability may clarify the functional implications of AIH for muscle force production. High voluntary activation is vital for sustaining torque production during activities that require repeated muscle contractions. We hypothesized that repetitive AIH would attenuate decreases in both voluntary activation and maximum torque production typically observed during fatiguing contractions. To test this hypothesis, we examined the effects of four consecutive days of AIH on voluntary activation and torque generation during repeated maximal plantar flexion contractions. We assessed changes in voluntary activation using the central activation ratio by calculating the ratio of voluntary torque to the torque produced with supramaximal electrical stimulation. Consistent with our hypothesis, we show that repetitive AIH significantly increases both voluntary activation and peak torque during fatiguing contractions. We did not observe any changes in resting spinal reflex excitability or antagonist muscle coactivation during fatiguing contractions post-AIH. Together, these findings suggest that repetitive AIH reduces performance fatigability through enhanced descending neural drive. Optimizing voluntary activation is critical for facilitating the recovery of functional walking skills after neurological injury.NEW & NOTEWORTHY This study shows that repetitive acute intermittent hypoxia (AIH) significantly increases both voluntary activation and peak torque during fatiguing lower limb contractions. However, resting spinal reflex excitability and antagonist muscle coactivation during fatiguing contractions did not change following repetitive AIH. Together, these observations indicate that repetitive AIH reduces performance fatigability through enhanced descending neural drive. These findings underscore the therapeutic potential of AIH for promoting motor recovery after neurological injury.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Aviva K Pollet
- Sensorimotor Recovery and Neuroplasticity Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, United States
- Center for Neuroscience, University of Colorado, Boulder, Colorado, United States
| |
Collapse
|
10
|
Pearcey GEP, Afsharipour B, Holobar A, Sandhu MS, Rymer WZ. Acute intermittent hypoxia increases maximal motor unit discharge rates in people with chronic incomplete spinal cord injury. J Physiol 2024; 602:5699-5711. [PMID: 39058666 DOI: 10.1113/jp285049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Acute intermittent hypoxia (AIH) is an emerging technique for enhancing neuroplasticity and motor function in respiratory and limb musculature. Thus far, AIH-induced improvements in strength have been reported for upper and lower limb muscles after chronic incomplete cervical spinal cord injury (iSCI), but the underlying mechanisms have been elusive. We used high-density surface EMG (HDsEMG) to determine if motor unit discharge behaviour is altered after 15 × 60 s exposures to 9% inspired oxygen, interspersed with 21% inspired oxygen (AIH), compared to breathing only 21% air (SHAM). We recorded HDsEMG from the biceps and triceps brachii of seven individuals with iSCI during maximal elbow flexion and extension contractions, and motor unit spike trains were identified using convolutive blind source separation. After AIH, elbow flexion and extension torque increased by 54% and 59% from baseline (P = 0.003), respectively, whereas there was no change after SHAM. Across muscles, motor unit discharge rates increased by ∼4 pulses per second (P = 0.002) during maximal efforts, from before to after AIH. These results suggest that excitability and/or activation of spinal motoneurons is augmented after AIH, providing a mechanism to explain AIH-induced increases in voluntary strength. Pending validation, AIH may be helpful in conjunction with other therapies to enhance rehabilitation outcomes after incomplete spinal cord injury, due to these enhancements in motor unit function and strength. KEY POINTS: Acute intermittent hypoxia (AIH) causes increases in muscular strength and neuroplasticity in people living with chronic incomplete spinal cord injury (SCI), but how it affects motor unit discharge rates is unknown. Motor unit spike times were identified from high-density surface electromyograms during maximal voluntary contractions and tracked from before to after AIH. Motor unit discharge rates were increased following AIH. These findings suggest that AIH can facilitate motoneuron function in people with incomplete SCI.
Collapse
Affiliation(s)
- Gregory E P Pearcey
- School of Human Kinetics and Recreation, and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Babak Afsharipour
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aleš Holobar
- Institute of Computer Science, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Milap S Sandhu
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - W Zev Rymer
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
11
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
12
|
Berra L, Medeiros KJ, Marrazzo F, Patel S, Imber D, Rezoagli E, Yu B, Sonny A, Bittner EA, Fisher D, Chipman D, Sharma R, Shah H, Gray BE, Harris NS, Ichinose F, Mootha VK. Feasibility of Delivering 5-Day Normobaric Hypoxia Breathing in a Hospital Setting. Respir Care 2024; 69:1400-1408. [PMID: 39079724 PMCID: PMC11549621 DOI: 10.4187/respcare.11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
BACKGROUND Beneficial effects of breathing at [Formula: see text] < 0.21 on disease outcomes have been reported in previous preclinical and clinical studies. However, the safety and intra-hospital feasibility of breathing hypoxic gas for 5 d have not been established. In this study, we examined the physiologic effects of breathing a gas mixture with [Formula: see text] as low as 0.11 in 5 healthy volunteers. METHODS All 5 subjects completed the study, spending 5 consecutive days in a hypoxic tent, where the ambient oxygen level was lowered in a stepwise manner over 5 d, from [Formula: see text] of 0.16 on the first day to [Formula: see text] of 0.11 on the fifth day of the study. All the subjects returned to an environment at room air on the sixth day. The subjects' [Formula: see text], heart rate, and breathing frequency were continuously recorded, along with daily blood sampling, neurologic evaluations, transthoracic echocardiography, and mental status assessments. RESULTS Breathing hypoxia concentration dependently caused profound physiologic changes, including decreased [Formula: see text] and increased heart rate. At [Formula: see text] of 0.14, the mean [Formula: see text] was 92%; at [Formula: see text] of 0.13, the mean [Formula: see text] was 93%; at [Formula: see text] of 0.12, the mean [Formula: see text] was 88%; at [Formula: see text] of 0.11, the mean [Formula: see text] was 85%; and, finally, at an [Formula: see text] of 0.21, the mean [Formula: see text] was 98%. These changes were accompanied by increased erythropoietin levels and reticulocyte counts in blood. All 5 subjects concluded the study with no adverse events. No subjects exhibited signs of mental status changes or pulmonary hypertension. CONCLUSIONS Results of the current physiologic study suggests that, within a hospital setting, delivering [Formula: see text] as low as 0.11 is feasible and safe in healthy subjects, and provides the foundation for future studies in which therapeutic effects of hypoxia breathing are tested.
Collapse
Affiliation(s)
- Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| | - Kyle J Medeiros
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Francesco Marrazzo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Sarvagna Patel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - David Imber
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Emanuele Rezoagli
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Binglan Yu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Abraham Sonny
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Daniel Fisher
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel Chipman
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Rohit Sharma
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Hardik Shah
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts. Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| | - Brianna E Gray
- Translational and Clinical Research Centers, Massachusetts General Hospital, Boston, Massachusetts
| | - N Stuart Harris
- Harvard Medical School, Boston, Massachusetts. Division of Wilderness Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Vamsi K Mootha
- Harvard Medical School, Boston, Massachusetts. Department of Systems Biology, Massachusetts General Hospital, Boston, Massachusetts. Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
McKenzie K, Veit N, Aalla S, Yang C, Giffhorn M, Lynott A, Buchler K, Kishta A, Barry A, Sandhu M, Moon Y, Rymer WZ, Jayaraman A. Combining Neuromodulation Strategies in Spinal Cord Injury Gait Rehabilitation: A Proof of Concept, Randomized, Crossover Trial. Arch Phys Med Rehabil 2024; 105:1930-1937. [PMID: 38969255 DOI: 10.1016/j.apmr.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVES To evaluate if acute intermittent hypoxia (AIH) coupled with transcutaneous spinal cord stimulation (tSCS) enhances task-specific training and leads to superior and more sustained gait improvements as compared with each of these strategies used in isolation in persons with chronic, incomplete spinal cord injury. DESIGN Proof of concept, randomized crossover trial. SETTING Outpatient, rehabilitation hospital. INTERVENTIONS Ten participants completed 3 intervention arms: (1) AIH, tSCS, and gait training (AIH + tSCS); (2) tSCS plus gait training (SHAM AIH + tSCS); and (3) gait training alone (SHAM + SHAM). Each arm consisted of 5 consecutive days of intervention with a minimum of a 4-week washout between arms. The order of arms was randomized. The study took place from December 3, 2020, to January 4, 2023. MAIN OUTCOME MEASURES 10-meter walk test at self-selected velocity (SSV) and fast velocity, 6-minute walk test, timed Up and Go (TUG) and secondary outcome measures included isometric ankle plantarflexion and dorsiflexion torque RESULTS: TUG improvements were 3.44 seconds (95% CI: 1.24-5.65) significantly greater in the AIH + tSCS arm than the SHAM AIH + tSCS arm at post-intervention (POST), and 3.31 seconds (95% CI: 1.03-5.58) greater than the SHAM + SHAM arm at 1-week follow up (1WK). SSV was 0.08 m/s (95% CI: 0.02-0.14) significantly greater following the AIH + tSCS arm than the SHAM AIH + tSCS at POST. Although not significant, the AIH + tSCS arm also demonstrated the greatest average improvements compared with the other 2 arms at POST and 1WK for the 6-minute walk test, fast velocity, and ankle plantarflexion torque. CONCLUSIONS This pilot study is the first to demonstrate that combining these 3 neuromodulation strategies leads to superior improvements in the TUG and SSV for individuals with chronic incomplete spinal cord injury and warrants further investigation.
Collapse
Affiliation(s)
| | - Nicole Veit
- Shirley Ryan AbilityLab, Chicago; Department of Biomedical Engineering, Northwestern University, Evanston
| | | | - Chen Yang
- Shirley Ryan AbilityLab, Chicago; Feinberg School of Medicine, Northwestern University, Chicago
| | | | | | | | | | | | - Milap Sandhu
- Shirley Ryan AbilityLab, Chicago; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago
| | - Yaejin Moon
- Shirley Ryan AbilityLab, Chicago; Feinberg School of Medicine, Northwestern University, Chicago
| | - William Zev Rymer
- Shirley Ryan AbilityLab, Chicago; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, Chicago; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago.
| |
Collapse
|
14
|
Smith CM, Salmon OF. Safety and effectiveness of acute intermittent hypoxia during a single treatment at different hypoxic severities. Respir Physiol Neurobiol 2024; 331:104358. [PMID: 39349270 DOI: 10.1016/j.resp.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE Examine the cardiovascular, muscular function, cognitive, and neural plastic responses to determine the safety and effectiveness of acute Intermittent hypoxia (AIH) at a low, high, and control fractional inspired oxygen (FiO2) dosage METHODS: Thirteen human participants performed 30-min of AIH in 60-s intervals at FiO2's of 0.21 (AIH21), 0.15 (AIH15), and 0.09 (AIH9). Heart rate variability (root mean squared of successive differences; RMSSD), heart rate, oxygen saturation (SpO2), blood pressure, muscular strength, neuromuscular activation, cerebral hemodynamic responses, cognition, symptomology, and brain-derived neurotrophic factor (BDNF) responses were measured before (Pre-AIH), after (post-AIH), and at 20-min of recovery (Recovery-AIH) RESULTS: There were no differences between AIH protocols for heart rate, RMSSD, blood pressure, or SpO2. Muscular strength improved Post-AIH for AIH15 (10 %) and AIH9 (14 %) and remained elevated (6 %) at Recovery-AIH. Neuromuscular activation increased Pre-AIH to Post-AIH for AIH15 (10 %) and AIH9 (11 %). Cerebral hemodynamic responses were not impacted between conditions. Both AIH15 and AIH9 increased BDNF Post-AIH (62 %) and Recovery-AIH (63 %) CONCLUSION: Acute intermittent hypoxia is generally safe and effective at producing neural plastic responses, but further examination of co-occurring cardiovascular diseases is needed. This study provides safety focused findings which will widen the adoption and refinement of AIH protocols.
Collapse
Affiliation(s)
- Cory M Smith
- Robbins College of Health and Human Sciences, Human & Environmental Physiology Laboratory, Baylor University, Waco, TX, USA.
| | - Owen F Salmon
- Robbins College of Health and Human Sciences, Human & Environmental Physiology Laboratory, Baylor University, Waco, TX, USA
| |
Collapse
|
15
|
Gonzalez-Rothi EJ, Allen LL, Seven YB, Ciesla MC, Holland AE, Santiago JV, Mitchell GS. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury. Exp Neurol 2024; 378:114808. [PMID: 38750949 DOI: 10.1016/j.expneurol.2024.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Low-dose (< 2 h/day), acute intermittent hypoxia (AIH) elicits multiple forms of serotonin-dependent phrenic motor plasticity and is emerging as a promising therapeutic strategy to restore respiratory and non-respiratory motor function after spinal cord injury (SCI). In contrast, high-dose (> 8 h/day), chronic intermittent hypoxia (CIH) undermines some forms of serotonin-dependent phrenic motor plasticity and elicits pathology. CIH is a hallmark of sleep disordered breathing, which is highly prevalent in individuals with cervical SCI. Interestingly, AIH and CIH preconditioning differentially impact phrenic motor plasticity. Although mechanisms of AIH-induced plasticity in the phrenic motor system are well-described in naïve rats, we know little concerning how these mechanisms are affected by chronic SCI or intermittent hypoxia preconditioning. Thus, in a rat model of chronic, incomplete cervical SCI (lateral spinal hemisection at C2 (C2Hx), we assessed serotonin type 2A, 2B and 7 receptor expression in and near phrenic motor neurons and compared: 1) intact vs. chronically injured rats; and 2) the impact of preconditioning with varied "doses" of intermittent hypoxia (IH). While there were no effects of chronic injury or intermittent hypoxia alone, CIH affected multiple receptors in rats with chronic C2Hx. Specifically, CIH preconditioning (8 h/day; 28 days) increased serotonin 2A and 7 receptor expression exclusively in rats with chronic C2Hx. Understanding the complex, context-specific interactions between chronic SCI and CIH and how this ultimately impacts phrenic motor plasticity is important as we leverage AIH-induced motor plasticity to restore breathing and other non-respiratory motor functions in people with chronic SCI.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Holmes TC, Popp NM, Hintz CF, Dobrzycki I, Schmitz CJ, Schwichtenberg KA, Gonzalez-Rothi EJ, Sundberg CW, Streeter KA. Sex differences in spontaneous respiratory recovery following chronic C2 hemisection. J Appl Physiol (1985) 2024; 137:166-180. [PMID: 38867665 PMCID: PMC11381122 DOI: 10.1152/japplphysiol.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Respiratory deficits after C2 hemisection (C2Hx) have been well documented through single-sex investigations. Although ovarian sex hormones enable enhanced respiratory recovery observed in females 2 wk post-C2Hx, it remains unknown if sex impacts spontaneous respiratory recovery at chronic time points. We conducted a longitudinal study to provide a comprehensive sex-based characterization of respiratory neuromuscular recovery for 8 wk after C2Hx. We recorded ventilation and chronic diaphragm electromyography (EMG) output in awake, behaving animals, phrenic motor output in anesthetized animals, and performed diaphragm muscle histology in chronically injured male and female rodents. Our results show that females expressed a greater recovery of tidal volume and minute ventilation compared with males during subacute and chronic time points. Eupneic diaphragm EMG amplitude during wakefulness and phrenic motor amplitude are similar between sexes at all time points after injury. Our data also suggest that females have a greater reduction in ipsilateral diaphragm EMG amplitude during spontaneous deep breaths (e.g., sighs) compared with males. Finally, we show evidence for atrophy and remodeling of the fast, fatigable fibers ipsilateral to injury in females, but not in males. To our knowledge, the data presented here represent the first study to report sex-dependent differences in spontaneous respiratory recovery and diaphragm muscle morphology following chronic C2Hx. These data highlight the need to study both sexes to inform evidence-based therapeutic interventions in respiratory recovery after spinal cord injury (SCI).NEW & NOTEWORTHY In response to chronic C2 hemisection, female rodents display increased tidal volume during eupneic breathing compared with males. Females show a greater reduction in diaphragm electromyography (EMG) amplitude during spontaneous deep breaths (e.g., sighs) and atrophy and remodeling of fast, fatigable diaphragm fibers. Given that most rehabilitative interventions occur in the subacute to chronic stages of injury, these results highlight the importance of considering sex when developing and evaluating therapeutics after spinal cord injury.
Collapse
Affiliation(s)
- Taylor C Holmes
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Nicole M Popp
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Carley F Hintz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Isabell Dobrzycki
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Carolyn J Schmitz
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Kaylyn A Schwichtenberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| | - Elisa J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States
| | - Christopher W Sundberg
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
- Athletic and Human Performance Research Center, Marquette University, Milwaukee, Wisconsin, United States
| | - Kristi A Streeter
- Exercise and Rehabilitation Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States
| |
Collapse
|
17
|
Hornby TG, Plawecki A, Lotter JK, Shoger LH, Voigtmann CJ, Inks E, Henderson CE. Acute Intermittent Hypoxia With High-Intensity Gait Training in Chronic Stroke: A Phase II Randomized Crossover Trial. Stroke 2024; 55:1748-1757. [PMID: 38860389 PMCID: PMC11196200 DOI: 10.1161/strokeaha.124.047261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Studies in individuals with chronic stroke indicate high-intensity training (HIT) focused on walking improves locomotor function, which may be due to repeated activation of locomotor circuits and serotonin-dependent modulation of motor output. Separate studies in animals and individuals with spinal cord injury suggest acute intermittent hypoxia (AIH) can augment the effects of locomotor interventions through similar serotonin-dependent mechanisms, although no studies have coupled AIH with HIT in individuals poststroke. The goal of this study was to evaluate the safety and efficacy of AIH+HIT versus HIT alone in individuals with chronic stroke. METHODS This phase II double-blind randomized, crossover trial recruited individuals between 18 and 85 years old, >6 months poststroke, and self-selected speeds <1.0 m/s. Participants received up to 15 sessions of AIH for 30 minutes using 15 cycles of hypoxia (60-90 seconds; 8%-9% O2) and normoxia (30-60 seconds; 21% O2), followed by 1 hour of HIT targeting >75% heart rate reserve. The control condition received normoxia for 30 minutes before HIT. Following the first training phase, participants performed the second phase >1 month later. The primary outcomes were self-selected speed and fastest speed, a 6-minute walk test, and peak treadmill speed. A 3-way mixed-model ANOVA assessed the effects of time, training, and order of interventions. RESULTS Of 55 individuals screened, 35 were randomized to AIH+HIT or normoxia+HIT first, and 28 individuals completed both interventions, revealing greater gains in self-selected speeds (0.14 [0.08-0.18] versus 0.05 [0.01-0.10] m/s), fastest speed (0.16 [0.10-0.21] versus 0.06 [0.02-0.10] m/s), and peak treadmill speed (0.21 [0.14-0.29] versus 0.11 [0.06-0.16] m/s) following AIH+HIT versus normoxia+HIT (P<0.01) with no order effects. Greater gains in spatiotemporal symmetry were observed with AIH+HIT, with worse outcomes for those prescribed serotonin-mediated antidepressant medications. CONCLUSIONS AIH+HIT resulted in greater gains in locomotor function than normoxia+HIT. Subsequent phase III trials should further evaluate the efficacy of this intervention. REGISTRATION URL: https://clinicaltrials.gov/; Unique identifier: NCT04472442.
Collapse
Affiliation(s)
- T. George Hornby
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis IN
- Rehabilitation Hospital of Indiana, Indianapolis, IN
| | - Abbey Plawecki
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis IN
- Rehabilitation Hospital of Indiana, Indianapolis, IN
| | | | | | | | - Erin Inks
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis IN
- Rehabilitation Hospital of Indiana, Indianapolis, IN
| | - Christopher E. Henderson
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis IN
- Rehabilitation Hospital of Indiana, Indianapolis, IN
| |
Collapse
|
18
|
Bogard AT, Hembree TG, Pollet AK, Smith AC, Ryder SC, Marzloff G, Tan AQ. Intermittent Hypoxia-Induced Enhancements in Corticospinal Excitability Predict Gains in Motor Learning and Metabolic Efficiency. RESEARCH SQUARE 2024:rs.3.rs-4259378. [PMID: 38746438 PMCID: PMC11092812 DOI: 10.21203/rs.3.rs-4259378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acute intermittent hypoxia (AIH) enhances human motor function after incomplete spinal cord injury. Although the underlying mechanisms in humans are unknown, emerging evidence indicates that AIH facilitates corticospinal excitability to the upper limb. However, the functional relevance of this plasticity remains unexplored, and it is unclear whether similar plasticity can be induced for lower limb motor areas. We recently demonstrated that AIH improves motor learning and metabolic efficiency during split-belt walking. Thus, we hypothesized that AIH increases lower limb excitability and that these enhancements would predict the magnitude of motor learning and the corresponding reductions in net metabolic power. We assessed tibialis anterior (TA) excitability using transcranial magnetic stimulation and quantified changes in spatiotemporal asymmetries and net metabolic power in response to split-belt speed perturbations. We show that AIH enhances TA excitability, and that the magnitude of this facilitation positively correlates with greater spatiotemporal adaptation. Notably, we demonstrate a novel association between increased excitability and reduced net metabolic power during motor learning and savings. Together, our results suggest that AIH-induced gains in excitability predict both the magnitude of motor learning and the associated metabolic efficiency. Determining indices of AIH-induced improvements in motor performance is critical for optimizing its therapeutic reach.
Collapse
Affiliation(s)
- Alysha T. Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
| | - Thomas G. Hembree
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
| | - Aviva K. Pollet
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
| | - Andrew C. Smith
- University of Colorado School of Medicine, Dept. of Physical Medicine and Rehabilitation, Aurora, 80045, USA
| | | | - George Marzloff
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA
| | - Andrew Q. Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA
- Center for Neuroscience, University of Colorado, Boulder, 80309, USA
| |
Collapse
|
19
|
Tan AQ, Tuthill C, Corsten AN, Barth S, Trumbower RD. A single sequence of intermittent hypoxia does not alter stretch reflex excitability in able-bodied individuals. Exp Physiol 2024; 109:576-587. [PMID: 38356241 PMCID: PMC10988685 DOI: 10.1113/ep091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Department of Integrative PhysiologyUniversity of ColoradoBoulderColoradoUSA
| | - Christopher Tuthill
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Anthony N. Corsten
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Stella Barth
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| | - Randy D. Trumbower
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
- Department of Physical Medicine and RehabilitationINSPIRE LaboratorySpaulding Rehabilitation HospitalBostonMassachusettsUSA
| |
Collapse
|
20
|
George SZ, Horn ME. Acute Intermittent Hypoxia Did Not Alter Pain Sensitivity or Pain Intensity Ratings for Individuals with Chronic Low Back Pain: A Pilot Study. J Pain Res 2024; 17:421-429. [PMID: 38328018 PMCID: PMC10848823 DOI: 10.2147/jpr.s433685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Aims and Objective The purpose of this pilot study was to explore whether AIH produces changes in pain sensitivity or in reports of self-reported pain intensity for individuals with low back pain. Methods In a quasi-experimental, cross-over design we compared participants (n = 9) exposed to normal room air and hypoxia using a commercially available gas blender. The treatment period consisted of 5 consecutive days of randomly assigned to AIH or room air. For the participants initially randomized to AIH there was cross-over to receive 5 more consecutive days of room air. Therefore, this design allowed for between group and within subject assessment of AIH effects. Pain sensitivity was assessed with quantitative sensory testing (QST) for posterior superior iliac spine pressure threshold, plantar thermal threshold, and peak pain ratings. Self-reported pain intensity for low back pain was assessed via the Brief Pain Inventory. Results There were no between group differences for AIH and room air in pain sensitivity or self-reported pain intensity. In the within subject analyses larger effect sizes favoring AIH were detected for plantar measures of pain sensitivity but not for self-reported pain intensity. Conclusion This study, while presenting null findings, describes an initial step in determining whether AIH can be used to increase pain relief. Based on this pilot study we offer guidance for future research including study design, AIH dosage, participant selection, and using AIH in combination with non-pharmacologic treatments.
Collapse
Affiliation(s)
- Steven Z George
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
- Departments of Orthopaedic Surgery and Population Health Science, Duke University, Durham, NC, USA
| | - Maggie E Horn
- Departments of Orthopaedic Surgery and Population Health Science, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Muter WM, Mansson L, Tuthill C, Aalla S, Barth S, Evans E, McKenzie K, Prokup S, Yang C, Sandhu M, Rymer WZ, Edgerton VR, Gad P, Mitchell GS, Wu SS, Shan G, Jayaraman A, Trumbower RD. A Research Protocol to Study the Priming Effects of Breathing Low Oxygen on Enhancing Training-Related Gains in Walking Function for Persons With Spinal Cord Injury: The BO 2ST Trial. Neurotrauma Rep 2023; 4:736-750. [PMID: 38028272 PMCID: PMC10659019 DOI: 10.1089/neur.2023.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Brief episodes of low oxygen breathing (therapeutic acute intermittent hypoxia; tAIH) may serve as an effective plasticity-promoting primer to enhance the effects of transcutaneous spinal stimulation-enhanced walking therapy (WALKtSTIM) in persons with chronic (>1 year) spinal cord injury (SCI). Pre-clinical studies in rodents with SCI show that tAIH and WALKtSTIM therapies harness complementary mechanisms of plasticity to maximize walking recovery. Here, we present a multi-site clinical trial protocol designed to examine the influence of tAIH + WALKtSTIM on walking recovery in persons with chronic SCI. We hypothesize that daily (eight sessions, 2 weeks) tAIH + WALKtSTIM will elicit faster, more persistent improvements in walking recovery than either treatment alone. To test our hypothesis, we are conducting a placebo-controlled clinical trial on 60 SCI participants who randomly receive one of three interventions: tAIH + WALKtSTIM; Placebo + WALKtSTIM; and tAIH + WALKtSHAM. Participants receive daily tAIH (fifteen 90-sec episodes at 10% O2 with 60-sec intervals at 21% O2) or daily placebo (fifteen 90-sec episodes at 21% O2 with 60-sec intervals at 21% O2) before a 45-min session of WALKtSTIM or WALKtSHAM. Our primary outcome measures assess walking speed (10-Meter Walk Test), endurance (6-Minute Walk Test), and balance (Timed Up and Go Test). For safety, we also measure pain levels, spasticity, sleep behavior, cognition, and rates of systemic hypertension and autonomic dysreflexia. Assessments occur before, during, and after sessions, as well as at 1, 4, and 8 weeks post-intervention. Results from this study extend our understanding of the functional benefits of tAIH priming by investigating its capacity to boost the neuromodulatory effects of transcutaneous spinal stimulation on restoring walking after SCI. Given that there is no known cure for SCI and no single treatment is sufficient to overcome walking deficits, there is a critical need for combinatorial treatments that accelerate and anchor walking gains in persons with lifelong SCI. Trial Registration ClinicalTrials.gov, NCT05563103.
Collapse
Affiliation(s)
- William M. Muter
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Linda Mansson
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Tuthill
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Shreya Aalla
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - Stella Barth
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- UMass Chan Medical School, University of Massachusetts, Worcester, Massachusetts, USA
| | - Emily Evans
- Department of Physical Therapy, Boston University, Boston, Massachusetts, USA
| | - Kelly McKenzie
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - Sara Prokup
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - Chen Yang
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - Milap Sandhu
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - W. Zev Rymer
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - Victor R. Edgerton
- Department of Integrative Biology and Physiology, University of California–Los Angeles, Los Angeles, California, USA
- SpineX Inc., Northridge, California, USA
| | - Parag Gad
- Department of Integrative Biology and Physiology, University of California–Los Angeles, Los Angeles, California, USA
- SpineX Inc., Northridge, California, USA
| | - Gordon S. Mitchell
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Samuel S. Wu
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Guogen Shan
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, Max Nader Center for Rehabilitation Technologies and Outcomes Research, Chicago, Illinois, USA
| | - Randy D. Trumbower
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Perim RR, Vinit S, Mitchell GS. Cervical spinal hemisection effects on spinal tissue oxygenation and long-term facilitation of phrenic, renal and splanchnic sympathetic nerve activity. Exp Neurol 2023; 368:114478. [PMID: 37451584 DOI: 10.1016/j.expneurol.2023.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
HYPOTHESES Moderate acute intermittent hypoxia (mAIH) elicits plasticity in both respiratory (phrenic long-term facilitation; pLTF) and sympathetic nerve activity (sympLTF) in rats. Although mAIH produces pLTF in normal rats, inconsistent results are reported after cervical spinal cord injury (cSCI), possibly due to greater spinal tissue hypoxia below the injury site. There are no reports concerning cSCI effects on sympLTF. Since mAIH is being explored as a therapeutic modality to restore respiratory and non-respiratory movements in humans with chronic SCI, both effects are important. To understand cSCI effects on mAIH-induced pLTF and sympLTF, partial or complete C2 spinal hemisections (C2Hx) were performed and, 2 weeks later, we assessed: 1) ipsilateral cervical spinal tissue oxygen tension; 2) ipsilateral & contralateral pLTF; and 3) ipsilateral sympLTF in splanchnic and renal sympathetic nerves. METHODS Male Sprague-Dawley rats were studied intact, or after partial (single slice) or complete C2Hx (slice with ∼1 mm aspiration). Two weeks post-C2Hx, rats were anesthetized and prepared for recordings of bilateral phrenic nerve activity and spinal tissue oxygen pressure (PtO2). Splanchnic and renal sympathetic nerve activity was recorded in intact and complete C2Hx rats. RESULTS Spinal PtO2 near phrenic motor neurons was decreased after C2Hx, an effect most prominent with complete vs. partial injuries; baseline PtO2 was positively correlated with mean arterial pressure. Complete C2Hx impaired ipsilateral but not contralateral pLTF; with partial C2Hx, ipsilateral pLTF was unaffected. In intact rats, mAIH elicited splanchnic and renal sympLTF. Complete C2Hx had minimal impact on baseline ipsilateral splanchnic or renal sympathetic nerve activity and renal, but not splanchnic, sympLTF remained intact. CONCLUSION Greater tissue hypoxia likely impairs pLTF and splanchnic sympLTF post-C2Hx, although renal sympLTF remains intact. Increased sympathetic nerve activity post-mAIH may have therapeutic benefits in individuals living with chronic SCI since anticipated elevations in systemic blood pressure may mitigate hypotension characteristic of people living with SCI.
Collapse
Affiliation(s)
- Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Stéphane Vinit
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Afsharipour B, Pearcey GEP, Rymer WZ, Sandhu MS. Acute intermittent hypoxia enhances strength, and modulates spatial distribution of muscle activation in persons with chronic incomplete spinal cord injury. Exp Neurol 2023; 367:114452. [PMID: 37271217 DOI: 10.1016/j.expneurol.2023.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Acute intermittent hypoxia (AIH) is an emerging technique for facilitating neural plasticity in individuals with chronic incomplete spinal cord injury (iSCI). A single sequence of AIH enhances hand grip strength and ankle plantarflexion torque, but underlying mechanisms are not yet clear. We sought to examine how AIH-induced changes in magnitude and spatial distribution of the electromyogram (EMG) of the biceps and triceps brachii contributes to improved strength. Seven individuals with iSCI visited the laboratory on two occasions, and received either AIH or Sham AIH intervention in a randomized order. AIH consisted of 15 brief (∼60s) periods of low oxygen (fraction of inspired O2 = 0.09) alternating with 60s of normoxia, whereas Sham AIH consisted of repeated exposures to normoxic air. High-density surface EMG of biceps and triceps brachii was recorded during maximal elbow flexion and extension. We then generated spatial maps which distinguished active muscle regions prior to and 60 min after AIH or Sham AIH. After an AIH sequence, elbow flexion and extension forces increased by 91.7 ± 88.4% and 51.7 ± 57.8% from baseline, respectively, whereas there was no difference after Sham AIH. Changes in strength were associated with an altered spatial distribution of EMG and increased root mean squared EMG amplitude in both biceps and triceps brachii muscles. These data suggest that altered motor unit activation profiles may underlie improved volitional strength after a single dose of AIH and warrant further investigation using single motor unit analysis techniques to further elucidate mechanisms of AIH-induced plasticity.
Collapse
Affiliation(s)
- Babak Afsharipour
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Canada; Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Gregory E P Pearcey
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - W Zev Rymer
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Milap S Sandhu
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Lv L, Cheng X, Yang J, Chen X, Ni J. Novel role for non-invasive neuromodulation techniques in central respiratory dysfunction. Front Neurosci 2023; 17:1226660. [PMID: 37680969 PMCID: PMC10480838 DOI: 10.3389/fnins.2023.1226660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Respiration is a crucial steady-state function of human life. Central nervous system injury can damage the central respiratory pattern generator (CRPG) or interrupt its outflow, leading to central respiratory paralysis and dysfunction, which can endanger the patient's life. At present, there is no effective means to reverse this process. Commonly used non-invasive neuromodulation techniques include repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and so forth, which have been widely applied in nervous system diseases and their various secondary symptoms, but rarely in respiratory function. Clinical and animal studies have confirmed that TMS is also suitable for investigating the excitability and plasticity of ascending corticospinal respiratory pathways. In addition, although rTMS and tDCS differ in their respective mechanisms, both can regulate respiratory networks in healthy individuals and in diseased states. In this review, we provide an overview of the physiology of respiration, the use of TMS to assess the excitability of corticophrenic pathways in healthy individuals and in central respiratory disorders, followed by an overview of the animal and clinical studies of rTMS, tDCS and so forth in regulating respiratory circuits and the possible mechanisms behind them. It was found that the supplementary motor area (SMA) and the phrenic motor neuron (PMN) may be key regulatory areas. Finally, the challenges and future research directions of neuroregulation in respiratory function are proposed. Through understanding how neuromodulation affects the respiratory neural circuit non-invasively, we can further explore the therapeutic potential of this neuromodulation strategy, so as to promote the recovery of respiratory function after central nervous system diseases or injury.
Collapse
Affiliation(s)
- Lan Lv
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jiaying Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Tokarska N, Naniong JMA, Johnston JM, Salapa HE, Muir GD, Levin MC, Popescu BF, Verge VMK. Acute intermittent hypoxia alters disease course and promotes CNS repair including resolution of inflammation and remyelination in the experimental autoimmune encephalomyelitis model of MS. Glia 2023; 71:2045-2066. [PMID: 37132422 DOI: 10.1002/glia.24381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.
Collapse
Affiliation(s)
- Nataliya Tokarska
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Justin M A Naniong
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jayne M Johnston
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hannah E Salapa
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gillian D Muir
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael C Levin
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bogdan F Popescu
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Cameco MS Neuroscience Research Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Michel-Flutot P, Lane MA, Lepore AC, Vinit S. Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation. Cells 2023; 12:1519. [PMID: 37296640 PMCID: PMC10252981 DOI: 10.3390/cells12111519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
High spinal cord injuries (SCIs) lead to permanent functional deficits, including respiratory dysfunction. Patients living with such conditions often rely on ventilatory assistance to survive, and even those that can be weaned continue to suffer life-threatening impairments. There is currently no treatment for SCI that is capable of providing complete recovery of diaphragm activity and respiratory function. The diaphragm is the main inspiratory muscle, and its activity is controlled by phrenic motoneurons (phMNs) located in the cervical (C3-C5) spinal cord. Preserving and/or restoring phMN activity following a high SCI is essential for achieving voluntary control of breathing. In this review, we will highlight (1) the current knowledge of inflammatory and spontaneous pro-regenerative processes occurring after SCI, (2) key therapeutics developed to date, and (3) how these can be harnessed to drive respiratory recovery following SCIs. These therapeutic approaches are typically first developed and tested in relevant preclinical models, with some of them having been translated into clinical studies. A better understanding of inflammatory and pro-regenerative processes, as well as how they can be therapeutically manipulated, will be the key to achieving optimal functional recovery following SCIs.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Michael A. Lane
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Angelo C. Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
27
|
Rogers RS, Wang H, Durham TJ, Stefely JA, Owiti NA, Markhard AL, Sandler L, To TL, Mootha VK. Hypoxia extends lifespan and neurological function in a mouse model of aging. PLoS Biol 2023; 21:e3002117. [PMID: 37220109 PMCID: PMC10204955 DOI: 10.1371/journal.pbio.3002117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.
Collapse
Affiliation(s)
- Robert S Rogers
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Wang
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A Stefely
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lev Sandler
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Gabryelska A, Turkiewicz S, Ditmer M, Sochal M. Neurotrophins in the Neuropathophysiology, Course, and Complications of Obstructive Sleep Apnea-A Narrative Review. Int J Mol Sci 2023; 24:1808. [PMID: 36768132 PMCID: PMC9916304 DOI: 10.3390/ijms24031808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a disorder characterized by chronic intermittent hypoxia and sleep fragmentation due to recurring airway collapse during sleep. It is highly prevalent in modern societies, and due to its pleiotropic influence on the organism and numerous sequelae, it burdens patients and physicians. Neurotrophins (NTs), proteins that modulate the functioning and development of the central nervous system, such as brain-derived neurotrophic factor (BDNF), have been associated with OSA, primarily due to their probable involvement in offsetting the decline in cognitive functions which accompanies OSA. However, NTs influence multiple aspects of biological functioning, such as immunity. Thus, extensive evaluation of their role in OSA might enlighten the mechanism behind some of its elusive features, such as the increased risk of developing an immune-mediated disease or the association of OSA with cardiovascular diseases. In this review, we examine the interactions between NTs and OSA and discuss their contribution to OSA pathophysiology, complications, as well as comorbidities.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| | | | | | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
29
|
Sales de Campos P, Olsen WL, Wymer JP, Smith BK. Respiratory therapies for Amyotrophic Lateral Sclerosis: A state of the art review. Chron Respir Dis 2023; 20:14799731231175915. [PMID: 37219417 PMCID: PMC10214054 DOI: 10.1177/14799731231175915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition noteworthy for upper and lower motor neuron death. Involvement of respiratory motor neuron pools leads to progressive pathology. These impairments include decreases in neural activation and muscle coordination, progressive airway obstruction, weakened airway defenses, restrictive lung disease, increased risk of pulmonary infections, and weakness and atrophy of respiratory muscles. These neural, airway, pulmonary, and neuromuscular changes deteriorate integrated respiratory-related functions including sleep, cough, swallowing, and breathing. Ultimately, respiratory complications account for a large portion of morbidity and mortality in ALS. This state-of-the-art review highlights applications of respiratory therapies for ALS, including lung volume recruitment, mechanical insufflation-exsufflation, non-invasive ventilation, and respiratory strength training. Therapeutic acute intermittent hypoxia, an emerging therapeutic tool for inducing respiratory plasticity will also be introduced. A focus on emerging evidence and future work underscores the common goal to continue to improve survival for patients living with ALS.
Collapse
Affiliation(s)
- Priscila Sales de Campos
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Wendy L Olsen
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Electrical and
Computer Engineering, University of Florida, Gainesville, FL, USA
| | - James P Wymer
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Breathing Research and Therapeutics
Center, University of Florida, Gainesville, FL, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Initiating daily acute intermittent hypoxia (dAIH) therapy at 1-week after contusion spinal cord injury (SCI) improves lower urinary tract function in rat. Exp Neurol 2023; 359:114242. [PMID: 36240880 DOI: 10.1016/j.expneurol.2022.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Spinal cord injury (SCI) above the level of the lumbosacral spinal cord produces lower urinary tract (LUT) dysfunction, resulting in impairment of urine storage and elimination (voiding). While spontaneous functional recovery occurs due to remodeling of spinal reflex micturition pathways, it is incomplete, indicating that additional strategies to further augment neural plasticity following SCI are essential. To this end, acute intermittent hypoxia (AIH) exposure has been proposed as a therapeutic strategy for improving recovery of respiratory and other somatic motor function following SCI; however, the impact of AIH as a therapeutic intervention to improve LUT dysfunction remains to be determined. Therefore, we examined the effects of daily AIH (dAIH) on both spontaneous micturition patterns and reflex micturition event (rME) behaviors in adult female Sprague-Dawley rats with mid-thoracic moderate contusion SCI. For these experiments, dAIH gas exposures (five alternating 3 min 12% O2 and 21% O2 episodes) were delivered for 7 consecutive days beginning at 1-week after SCI, with awake micturition patterns being evaluated weekly for 2-3 sessions before and for 4 weeks after SCI and rME behaviors elicited by continuous infusion of saline into the bladder being evaluated under urethane anesthesia at 4-weeks after SCI; daily normoxia (dNx; 21% O2 episodes) served as a control. At 1-week post-SCI, both an areflexic phenotype (i.e., no effective voiding events) and a functional voiding phenotype (i.e., infrequent voiding events with large volumes) were observed in spontaneous micturition patterns (as expected), and subsequent dAIH, but not dNx, treatment led to recovery of spontaneous void frequency pattern to pre-SCI levels; both dAIH- and dNx-treated rats exhibited slightly increased void volumes. At 4-weeks post-SCI, rME behaviors showed increased effectiveness in voiding in dAIH-treated (compared to dNx-treated) rats that included an increase in both bladder contraction pressure (delta BP; P = 0.014) and dynamic voiding efficiency (P = 0.018). Based on the voiding and non-voiding bladder contraction behaviors (VC and NVC, respectively) observed in the BP records, bladder dysfunction severity was classified into mild, moderate, and severe phenotypes, and while rats in both treatment groups included each severity phenotype, the primary phenotype observed in dAIH-treated rats was mild and that in dNx-treated rats was moderate (P = 0.044). Taken together, these findings suggest that 7-day dAIH treatment produces beneficial improvements in LUT function that include recovery of micturition pattern, more efficient voiding, and decreased NVCs, and extend support to the use of dAIH therapy to treat SCI-induced LUT dysfunction.
Collapse
|
31
|
Vinit S, Michel-Flutot P, Mansart A, Fayssoil A. Effects of C2 hemisection on respiratory and cardiovascular functions in rats. Neural Regen Res 2023; 18:428-433. [PMID: 35900441 PMCID: PMC9396504 DOI: 10.4103/1673-5374.346469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High cervical spinal cord injuries induce permanent neuromotor and autonomic deficits. These injuries impact both central respiratory and cardiovascular functions through modulation of the sympathetic nervous system. So far, cardiovascular studies have focused on models of complete contusion or transection at the lower cervical and thoracic levels and diaphragm activity evaluations using invasive methods. The present study aimed to evaluate the impact of C2 hemisection on different parameters representing vital functions (i.e., respiratory function, cardiovascular, and renal filtration parameters) at the moment of injury and 7 days post-injury in rats. No ventilatory parameters evaluated by plethysmography were impacted during quiet breathing after 7 days post-injury, whereas permanent diaphragm hemiplegia was observed by ultrasound and confirmed by diaphragmatic electromyography in anesthetized rats. Interestingly, the mean arterial pressure was reduced immediately after C2 hemisection, with complete compensation at 7 days post-injury. Renal filtration was unaffected at 7 days post-injury; however, remnant systolic dysfunction characterized by a reduced left ventricular ejection fraction persisted at 7 days post-injury. Taken together, these results demonstrated that following C2 hemisection, diaphragm activity and systolic function are impacted up to 7 days post-injury, whereas the respiratory and cardiovascular systems display vast adaptation to maintain ventilatory parameters and blood pressure homeostasis, with the latter likely sustained by the remaining descending sympathetic inputs spared by the initial injury. A better broad characterization of the physiopathology of high cervical spinal cord injuries covering a longer time period post-injury could be beneficial for understanding evaluations of putative therapeutics to further increase cardiorespiratory recovery.
Collapse
|
32
|
Song R, Broytman O, Liang N, Setzke J, Setzke C, Wojdyla G, Pegelow DF, Osman F, Sorkness RL, Watters JJ, Teodorescu M. Four weeks of repetitive acute hypoxic preconditioning did not alleviate allergen-induced airway dysfunction in rats. Respir Physiol Neurobiol 2023; 307:103982. [PMID: 36332748 DOI: 10.1016/j.resp.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Clinical case series suggest beneficial effects of low-dose intermittent hypoxia in asthma. We tested cardiopulmonary effects of repetitive acute hypoxic preconditioning (RAHP) during allergic inflammation. Brown Norway rats were sensitized to house dust mites (HDM) and exposed to 4-week RAHP or normoxia (SHAM), concurrent with weekly HDM or saline (SAL) challenges. We assessed methacholine responses and lung HIF-1α expression at endpoint, and weekly blood pressure (BP). RAHP relative to SHAM: 1) in HDM-challenged rats, showed no protection against HDM-induced airway dysfunction and did not significantly impact BP (week 4 mean BP difference = 10.51 mmHg, p = 0.09) or HIF-1α expression; 2) in SAL-challenged rats, attenuated airway responses to methacholine, reduced BP (week 4 mean BP average difference = -8.72 mmHg, p = 0.04) and amplified HIF-1α expression (p = 0.0086). Four weeks of RAHP did not mitigate the allergen-induced lower airway dysfunction and may detrimentally affect BP. However, it elicited beneficial cardiopulmonary responses in SAL-challenged rats, concurrent with increased HIF-1α expression.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Oleg Broytman
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Nicole Liang
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Jonathan Setzke
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Gabriela Wojdyla
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - David F Pegelow
- Department of Pediatrics, School of Medicine and Public Health,University of Wisconsin, Madison, WI, USA
| | - Fauzia Osman
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Ronald L Sorkness
- Department of Medicine, University of Wisconsin, Madison, WI, USA; School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Mihaela Teodorescu
- Department of Medicine, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial VA Medical Center, Madison, WI, USA.
| |
Collapse
|
33
|
Anderson MA, Squair JW, Gautier M, Hutson TH, Kathe C, Barraud Q, Bloch J, Courtine G. Natural and targeted circuit reorganization after spinal cord injury. Nat Neurosci 2022; 25:1584-1596. [PMID: 36396975 DOI: 10.1038/s41593-022-01196-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/05/2022] [Indexed: 11/18/2022]
Abstract
A spinal cord injury disrupts communication between the brain and the circuits in the spinal cord that regulate neurological functions. The consequences are permanent paralysis, loss of sensation and debilitating dysautonomia. However, the majority of circuits located above and below the injury remain anatomically intact, and these circuits can reorganize naturally to improve function. In addition, various neuromodulation therapies have tapped into these processes to further augment recovery. Emerging research is illuminating the requirements to reconstitute damaged circuits. Here, we summarize these natural and targeted reorganizations of circuits after a spinal cord injury. We also advocate for new concepts of reorganizing circuits informed by multi-omic single-cell atlases of recovery from injury. These atlases will uncover the molecular logic that governs the selection of 'recovery-organizing' neuronal subpopulations, and are poised to herald a new era in spinal cord medicine.
Collapse
Affiliation(s)
- Mark A Anderson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Jordan W Squair
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Matthieu Gautier
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Thomas H Hutson
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.,Wyss Center for Bio and Neuroengineering, Geneva, Switzerland
| | - Claudia Kathe
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Quentin Barraud
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Jocelyne Bloch
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Grégoire Courtine
- NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland. .,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.
| |
Collapse
|
34
|
Seven YB, Allen LL, Ciesla MC, Smith KN, Zwick A, Simon AK, Holland AE, Santiago JV, Stefan K, Ross A, Gonzalez-Rothi EJ, Mitchell GS. Intermittent Hypoxia Differentially Regulates Adenosine Receptors in Phrenic Motor Neurons with Spinal Cord Injury. Neuroscience 2022; 506:38-50. [PMID: 36273657 DOI: 10.1016/j.neuroscience.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Cervical spinal cord injury (cSCI) impairs neural drive to the respiratory muscles, causing life- threatening complications such as respiratory insufficiency and diminished airway protection. Repetitive "low dose" acute intermittent hypoxia (AIH) is a promising strategy to restore motor function in people with chronic SCI. Conversely, "high dose" chronic intermittent hypoxia (CIH; ∼8 h/night), such as experienced during sleep apnea, causes pathology. Sleep apnea, spinal ischemia, hypoxia and neuroinflammation associated with cSCI increase extracellular adenosine concentrations and activate spinal adenosine receptors which in turn constrains the functional benefits of therapeutic AIH. Adenosine 1 and 2A receptors (A1, A2A) compete to determine net cAMP signaling and likely the tAIH efficacy with chronic cSCI. Since cSCI and intermittent hypoxia may regulate adenosine receptor expression in phrenic motor neurons, we tested the hypotheses that: 1) daily AIH (28 days) downregulates A2A and upregulates A1 receptor expression; 2) CIH (28 days) upregulates A2A and downregulates A1 receptor expression; and 3) cSCI alters the impact of CIH on adenosine receptor expression. Daily AIH had no effect on either adenosine receptor in intact or injured rats. However, CIH exerted complex effects depending on injury status. Whereas CIH increased A1 receptor expression in intact (not injured) rats, it increased A2A receptor expression in spinally injured (not intact) rats. The differential impact of CIH reinforces the concept that the injured spinal cord behaves in distinct ways from intact spinal cords, and that these differences should be considered in the design of experiments and/or new treatments for chronic cSCI.
Collapse
Affiliation(s)
- Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kristin N Smith
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Amanda Zwick
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Alec K Simon
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Kelsey Stefan
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley Ross
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Trumbower RD, Barth S, Tuthill C, Slocum C, Shan G, Zafonte R, Mitchell GS. Caffeine Enhances Intermittent Hypoxia-Induced Gains in Walking Function for People with Chronic Spinal Cord Injury. J Neurotrauma 2022; 39:1756-1763. [PMID: 35686460 PMCID: PMC9734018 DOI: 10.1089/neu.2022.0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Incomplete spinal cord injury (iSCI) often results in lifelong walking impairments that limit functional independence. Thus, treatments that trigger enduring improvement in walking after iSCI are in high demand. Breathing brief episodes of low oxygen (i.e., acute intermittent hypoxia, AIH) enhances breathing and walking function in rodents and humans with chronic iSCI. Pre-clinical studies found that AIH also causes the accumulation of extracellular adenosine that undermines AIH-induced functional plasticity. Pharmacologically blocking adenosine A2a receptors (A2aR) prior to AIH resulted in a dramatic improvement in motor facilitation in rodents with iSCI; however, a similar beneficial effect in humans is unclear. Thus, we conducted a double-blind, placebo-controlled, crossover randomized study to test the hypothesis that a non-selective A2aR antagonist (i.e., caffeine) enhances AIH-induced effects on walking function in people with chronic (≥1yr) iSCI. We enrolled 12 participants to receive daily (5 days) caffeine or placebo (4 mg/kg) 30 min before breathing 15, 1.5-min low oxygen (AIH; FIO2 = 0.10) or SHAM (FIO2 = 0.21) episodes with 1-min intervals. We quantified walking function as the change in the 10-meter walk test (speed) and 6-min walk test (endurance) relative to baseline, on Day 5 post-intervention, and on follow-up Days 12 and 19. Participants walked faster (Day 19; p < 0.001) and farther (Day 19; p = 0.012) after caffeine+AIH and the boost in speed persisted more than after placebo+AIH or caffeine+SHAM (Day 19; p < 0.05). These results support our hypothesis that a caffeine pre-treatment to AIH training shows promise as a strategy to augment walking speed in persons with chronic iSCI.
Collapse
Affiliation(s)
- Randy D. Trumbower
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA.,Address correspondence to: Randy D. Trumbower, PT, PhD, Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, 1575 Cambridge Street, Cambridge, MA 02138, USA
| | - Stella Barth
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Christopher Tuthill
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Chloe Slocum
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Guogen Shan
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA.,Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
McRae J, Morgan S, Wallace E, Miles A. Oropharyngeal Dysphagia in Acute Cervical Spinal Cord Injury: A Literature Review. Dysphagia 2022:10.1007/s00455-022-10535-0. [DOI: 10.1007/s00455-022-10535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
AbstractDysphagia (swallowing impairment) is a frequent complication of cervical spinal cord injury (cSCI). Recently published national guidance in the UK on rehabilitation after traumatic injury confirmed that people with cSCI are at risk for dysphagia and require early evaluation while remaining nil by mouth [National Institute for Health and Care Excellence. Rehabilitation after traumatic injury (NG211), 2022, https://www.nice.org.uk/guidance/ng21]. While the pathogenesis and pathophysiology of dysphagia in cSCI remains unclear, numerous risk factors have been identified in the literature. This review aims to summarize the literature on the risk factors, presentation, assessment, and management of dysphagia in patients with cSCI. A bespoke approach to dysphagia management, that accounts for the multiple system impairment in cSCI, is presented; the overarching aim of which is to support effective management of dysphagia in patients with cSCI to prevent adverse clinical consequences.
Collapse
|
37
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Zhan S, Zheng B, Li M, Xu L, Chen C, Huang P. Ultrasound Analysis of Respiration-Related Muscles in Rats. Front Genet 2022; 13:900168. [DOI: 10.3389/fgene.2022.900168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to evaluate the effectiveness of ultrasound techniques in the analysis of respiratory-related muscles in rats. Respiratory parameters, including diaphragm end-expiratory thickness, mean rectus abdominis (RA) thickness, and RA area, were measured by ultrasound and compared with histological findings. Spearman’s correlation and Logistic regression analysis were used to detect the differences in the correlation between ultrasound results and histological examinations, and Student’s t test was used to compare the differences between ultrasound results and histological examination data. The results showed that there was no significant difference between the end-expiratory thickness of the diaphragm, the average thickness of RA, and the area of RA in the right RA and histological values under ultrasound detection (p > 0.05), but there was a significant positive correlation between ultrasound, and histological values (p < 0.05).); in addition, tidal volume was significantly positively correlated with total RA area, rapid shallow breathing index (RSBI) was significantly negatively correlated with total RA area, and mean diaphragm TF was significantly positively correlated with tidal volume. In conclusion, ultrasound imaging has a high degree of accuracy and reproducibility and can be used to assess the structure and function of the rat diaphragm and RA.
Collapse
|
39
|
Locke KC, Randelman ML, Hoh DJ, Zholudeva LV, Lane MA. Respiratory plasticity following spinal cord injury: perspectives from mouse to man. Neural Regen Res 2022; 17:2141-2148. [PMID: 35259820 PMCID: PMC9083159 DOI: 10.4103/1673-5374.335839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury. This field of research is highly clinically relevant. People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation. Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy. Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials. Despite how widely researched this injury is in animal models, relatively few treatments have broken through the preclinical barrier. The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury, discuss plasticity models of spinal cord injury used in research, and explore the shift from preclinical to clinical research. By investigating current targets of respiratory plasticity research, we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.
Collapse
Affiliation(s)
- Katherine C. Locke
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Margo L. Randelman
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Daniel J. Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lyandysha V. Zholudeva
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
- Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Michael A. Lane
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| |
Collapse
|
40
|
KILIÇ T, SENGOR M, ÜSTÜNOVA S, KILIC A, DAŞKAYA H, ÖZER AY. The Effects of Therapeutic Intermittent Hypoxia Implementation on Complete Blood Count Parameters: An Experimental Animal Model. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022; 12:746-752. [DOI: 10.33808/clinexphealthsci.1018541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Objective: Intermittent hypoxia (IH) implementation is a method performed by intermittently decreasing oxygen concentration in inhaled air at specific rate. This method varies between studies in terms of its application. This study aims to examine the changes in Complete Blood Count (CBC) parameters caused by IH implementation at therapeutic dose ranges with a single model.
Methods: Ten Sprague Dawley type adult male rats were divided into two groups. In the study group, FiO2 level of inhaled air, was reduced to 10% in hypoxic cycle. 5 minutes normoxia-hypoxia cycle was used in each 30 minutes experiment period for study group. Control group remained in normoxic air for 30 minutes. 1 cc of blood was taken from mandibular vein from all rats at the end of 6th day. CBC analyzes were performed and differences between two groups were investigated.
Results: Significant differences were detected in some CBC parameters between the two groups. It was determined that significant increase in MONO (p
Collapse
Affiliation(s)
- Talha KILIÇ
- MARMARA UNIVERSITY, FACULTY OF HEALTH SCIENCES
| | | | | | | | | | | |
Collapse
|
41
|
Marciante AB, Howard J, Kelly MN, Santiago Moreno J, Allen LL, Gonzalez-Rothi EJ, Mitchell GS. Dose-dependent phosphorylation of endogenous Tau by intermittent hypoxia in rat brain. J Appl Physiol (1985) 2022; 133:561-571. [PMID: 35861520 PMCID: PMC9448341 DOI: 10.1152/japplphysiol.00332.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia, or intermittent low oxygen interspersed with normal oxygen levels, has differential effects that depend on the "dose" of hypoxic episodes (duration, severity, number per day, and number of days). Whereas "low dose" daily acute intermittent hypoxia (dAIH) elicits neuroprotection and neuroplasticity, "high dose" chronic intermittent hypoxia (CIH) similar to that experienced during sleep apnea elicits neuropathology. Sleep apnea is comorbid in >50% of patients with Alzheimer's disease-a progressive, neurodegenerative disease associated with brain amyloid and chronic Tau dysregulation (pathology). Although patients with sleep apnea present with higher Tau levels, it is unknown if sleep apnea through attendant CIH contributes to onset of Tau pathology. We hypothesized CIH characteristic of moderate sleep apnea would increase dysregulation of phosphorylated Tau (phospho-Tau) species in Sprague-Dawley rat hippocampus and prefrontal cortex. Conversely, we hypothesized that dAIH, a promising neurotherapeutic, has minimal impact on Tau phosphorylation. We report a dose-dependent intermittent hypoxia effect, with region-specific increases in 1) phospho-Tau species associated with human Tauopathies in the soluble form and 2) accumulated phospho-Tau in the insoluble fraction. The latter observation was particularly evident with higher CIH intensities. This important and novel finding is consistent with the idea that sleep apnea and attendant CIH have the potential to accelerate the progression of Alzheimer's disease and/or other Tauopathies.NEW & NOTEWORTHY Sleep apnea is highly prevalent in people with Alzheimer's disease, suggesting the potential to accelerate disease onset and/or progression. These studies demonstrate that intermittent hypoxia (IH) induces dose-dependent, region-specific Tau phosphorylation, and are the first to indicate that higher IH "doses" elicit both endogenous, (rat) Tau hyperphosphorylation and accumulation in the hippocampus. These findings are essential for development and implementation of new treatment strategies that minimize sleep apnea and its adverse impact on neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - John Howard
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, Florida
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Juan Santiago Moreno
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
42
|
Effects of acute intermittent hypoxia on corticospinal excitability within the primary motor cortex. Eur J Appl Physiol 2022; 122:2111-2123. [PMID: 35752660 PMCID: PMC9381468 DOI: 10.1007/s00421-022-04982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Purpose Acute intermittent hypoxia (AIH) is a safe and non-invasive treatment approach that uses brief, repetitive periods of breathing reduced oxygen air alternated with normoxia. While AIH is known to affect spinal circuit excitability, the effects of AIH on cortical excitability remain largely unknown. We investigated the effects of AIH on cortical excitability within the primary motor cortex. Methods Eleven healthy, right-handed participants completed two testing sessions: (1) AIH (comprising 3 min in hypoxia [fraction of inspired oxygen ~ 10%] and 2 min in normoxia repeated over five cycles) and (2) normoxia (NOR) (equivalent duration to AIH). Single- and paired-pulse transcranial magnetic stimulations were delivered to the primary motor cortex, before and 0, 25, and 50 min after AIH and normoxia. Results The mean nadir in arterial oxygen saturation was lower (p < 0.001) during the cycles of AIH (82.5 ± 4.9%) than NOR (97.8 ± 0.6%). There was no significant difference in corticospinal excitability, intracortical facilitation, or intracortical inhibition between AIH and normoxia conditions at any time point (all p > 0.05). There was no association between arterial oxygen saturation and changes in corticospinal excitability after AIH (r = 0.05, p = 0.87). Conclusion Overall, AIH did not modify either corticospinal excitability or excitability of intracortical facilitatory and inhibitory circuits within the primary motor cortex. Future research should explore whether a more severe or individualised AIH dose would induce consistent, measurable changes in corticospinal excitability. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04982-8.
Collapse
|
43
|
Finn HT, Bogdanovski O, Hudson AL, McCaughey EJ, Crawford MR, Taylor JL, Butler JE, Gandevia SC. The effect of acute intermittent hypoxia on human limb motoneurone output. Exp Physiol 2022; 107:615-630. [PMID: 35338753 DOI: 10.1113/ep090099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does a single session of repeated bouts of acute intermittent hypoxic breathing enhance the motoneuronal output of the limb muscles of healthy able-bodied participants? What is the main finding and its importance? Compared to breathing room air, there were some increases in motoneuronal output following acute intermittent hypoxia, but the increases were variable across participants, in time after the intervention and depended on which neurophysiological measure was checked. ABSTRACT Acute intermittent hypoxia (AIH) induces persistent increases in output from rat phrenic motoneurones. Studies in people with spinal cord injury suggest AIH improves limb performance, perhaps via postsynaptic changes at cortico-motoneuronal synapses. We assessed whether limb motoneurone output in response to reflex and descending synaptic activation is facilitated after one session of AIH in healthy able-bodied volunteers. Fourteen participants completed two experimental days, either AIH or a sham intervention (randomised crossover design). We measured H-reflex recruitment curves and homosynaptic post-activation depression (HPAD) of the H reflex in soleus, and motor evoked potentials (MEPs) evoked by transcranial magnetic stimulation (TMS) and their recruitment curves, in first dorsal interosseous. All measurements were performed at rest and occurred at baseline, 0, 20, 40, and 60 minutes post-intervention. The intervention was 30 minutes of either normoxia (sham, FiO2 ≈ 0.21) or AIH (alternate 1-minute hypoxia [FiO2 ≈ 0.09], 1-minute normoxia). After AIH the H-reflex recruitment curve shifted leftward. Lower stimulation intensities were needed to evoke 5%, 50%, and 99% of the maximal H reflex at 40 and 60 minutes after AIH (P<0.04). The maximal H reflex, recruitment slope and HPAD, were unchanged after AIH. MEPs evoked by constant intensity TMS were larger 40 minutes after AIH (P = 0.027). There was no change in MEP recruitment or the maximal MEP. In conclusion, some measures of the evoked responses from limb motoneurones increased after a single AIH session, but only at discrete time points. It is unclear to what extent these changes alter functional performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Harrison T Finn
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Oliver Bogdanovski
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anna L Hudson
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Euan J McCaughey
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Janet L Taylor
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,Edith Cowan University, Perth, WA, 6027, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia.,University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
44
|
Zheng Y, Zhao D, Xue DD, Mao YR, Cao LY, Zhang Y, Zhu GY, Yang Q, Xu DS. Nerve root magnetic stimulation improves locomotor function following spinal cord injury with electrophysiological improvements and cortical synaptic reconstruction. Neural Regen Res 2022; 17:2036-2042. [PMID: 35142694 PMCID: PMC8848603 DOI: 10.4103/1673-5374.335161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Following a spinal cord injury, there are usually a number of neural pathways that remain intact in the spinal cord. These residual nerve fibers are important, as they could be used to reconstruct the neural circuits that enable motor function. Our group previously designed a novel magnetic stimulation protocol, targeting the motor cortex and the spinal nerve roots, that led to significant improvements in locomotor function in patients with a chronic incomplete spinal cord injury. Here, we investigated how nerve root magnetic stimulation contributes to improved locomotor function using a rat model of spinal cord injury. Rats underwent surgery to clamp the spinal cord at T10; three days later, the rats were treated with repetitive magnetic stimulation (5 Hz, 25 pulses/train, 20 pulse trains) targeting the nerve roots at the L5–L6 vertebrae. The treatment was repeated five times a week over a period of three weeks. We found that the nerve root magnetic stimulation improved the locomotor function and enhanced nerve conduction in the injured spinal cord. In addition, the nerve root magnetic stimulation promoted the recovery of synaptic ultrastructure in the sensorimotor cortex. Overall, the results suggest that nerve root magnetic stimulation may be an effective, noninvasive method for mobilizing the residual spinal cord pathways to promote the recovery of locomotor function.
Collapse
Affiliation(s)
- Ya Zheng
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Zhao
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Ye-Ran Mao
- Department of Rehabilitation, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yun Cao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Zhang
- Department of Rehabilitation, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Yue Zhu
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Yang
- Department of Rehabilitation, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong-Sheng Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine; Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; Rehabilitation Engineering Research Center for Integrated Traditional Chinese and Western Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
45
|
Sajjadi E, Seven YB, Ehrbar JG, Wymer JP, Mitchell GS, Smith BK. Acute intermittent hypoxia and respiratory muscle recruitment in people with amyotrophic lateral sclerosis: A preliminary study. Exp Neurol 2022; 347:113890. [PMID: 34624328 PMCID: PMC9488543 DOI: 10.1016/j.expneurol.2021.113890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
Respiratory failure is the main cause of death in amyotrophic lateral sclerosis (ALS). Since no effective treatments to preserve independent breathing are available, there is a critical need for new therapies to preserve or restore breathing ability. Since acute intermittent hypoxia (AIH) elicits spinal respiratory motor plasticity in rodent ALS models, and may restore breathing ability in people with ALS, we performed a proof-of-principle study to investigate this possibility in ALS patients. Quiet breathing, sniff nasal inspiratory pressure (SNIP) and maximal inspiratory pressure (MIP) were tested in 13 persons with ALS and 10 age-matched controls, before and 60 min post-AIH (15, 1 min episodes of 10% O2, 2 min normoxic intervals) or sham AIH (continuous normoxia). The root mean square (RMS) of the right and left diaphragm, 2nd parasternal, scalene and sternocleidomastoid muscles were monitored. A vector analysis was used to calculate summated vector magnitude (Mag) and similarity index (SI) of collective EMG activity during quiet breathing, SNIP and MIP maneuvers. AIH facilitated tidal volume and minute ventilation (treatment main effects: p < 0.05), and Mag (ie. collective respiratory muscle activity; p < 0.001) during quiet breathing in ALS and control subjects, but there was no effect on SI during quiet breathing. SNIP SI decreased in both groups post-AIH (p < 0.005), whereas Mag was unchanged (p = 0.09). No differences were observed in SNIP or MIP post AIH in either group. Discomfort was not reported during AIH by any subject, nor were adverse events observed. Thus, AIH may be a safe way to increase collective inspiratory muscle activity during quiet breathing in ALS patients, although a single AIH presentation was not sufficient to significantly increase peak inspiratory pressure generation. These preliminary results provide evidence that AIH may improve breathing function in people with ALS, and that future studies of prolonged, repetitive AIH protocols are warranted.
Collapse
Affiliation(s)
- Elaheh Sajjadi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - Yasin B. Seven
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - Jessica G Ehrbar
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - James P. Wymer
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Neurology, University of Florida, Gainesville, FL, USA, 32610
| | - Gordon S. Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,McKnight Brain Institute, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610
| | - Barbara K. Smith
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA, 32610,Department of Physical Therapy, University of Florida, Gainesville, FL, USA, 32610,Pediatrics, University of Florida, Gainesville, FL, USA, 32610
| |
Collapse
|
46
|
Vose AK, Welch JF, Nair J, Dale EA, Fox EJ, Muir GD, Trumbower RD, Mitchell GS. Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Exp Neurol 2022; 347:113891. [PMID: 34637802 PMCID: PMC8820239 DOI: 10.1016/j.expneurol.2021.113891] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
We review progress towards greater mechanistic understanding and clinical translation of a strategy to improve respiratory and non-respiratory motor function in people with neuromuscular disorders, therapeutic acute intermittent hypoxia (tAIH). In 2016 and 2020, workshops to create and update a "road map to clinical translation" were held to help guide future research and development of tAIH to restore movement in people living with chronic, incomplete spinal cord injuries. After briefly discussing the pioneering, non-targeted basic research inspiring this novel therapeutic approach, we then summarize workshop recommendations, emphasizing critical knowledge gaps, priorities for future research effort, and steps needed to accelerate progress as we evaluate the potential of tAIH for routine clinical use. Highlighted areas include: 1) greater mechanistic understanding, particularly in non-respiratory motor systems; 2) optimization of tAIH protocols to maximize benefits; 3) identification of combinatorial treatments that amplify plasticity or remove plasticity constraints, including task-specific training; 4) identification of biomarkers for individuals most/least likely to benefit from tAIH; 5) assessment of long-term tAIH safety; and 6) development of a simple, safe and effective device to administer tAIH in clinical and home settings. Finally, we update ongoing clinical trials and recent investigations of tAIH in SCI and other clinical disorders that compromise motor function, including ALS, multiple sclerosis, and stroke.
Collapse
Affiliation(s)
- Alicia K Vose
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Erica A Dale
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Gillian D Muir
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Randy D Trumbower
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
47
|
Mitchell GS, Baker TL. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:409-432. [PMID: 35965036 DOI: 10.1016/b978-0-323-91534-2.00016-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Widespread appreciation that neuroplasticity is an essential feature of the neural system controlling breathing has emerged only in recent years. In this chapter, we focus on respiratory motor plasticity, with emphasis on the phrenic motor system. First, we define related but distinct concepts: neuromodulation and neuroplasticity. We then focus on mechanisms underlying two well-studied models of phrenic motor plasticity: (1) phrenic long-term facilitation following brief exposure to acute intermittent hypoxia; and (2) phrenic motor facilitation after prolonged or recurrent bouts of diminished respiratory neural activity. Advances in our understanding of these novel and important forms of plasticity have been rapid and have already inspired translation in multiple respects: (1) development of novel therapeutic strategies to preserve/restore breathing function in humans with severe neurological disorders, such as spinal cord injury and amyotrophic lateral sclerosis; and (2) the discovery that similar plasticity also occurs in nonrespiratory motor systems. Indeed, the realization that similar plasticity occurs in respiratory and nonrespiratory motor neurons inspired clinical trials to restore leg/walking and hand/arm function in people living with chronic, incomplete spinal cord injury. Similar application may be possible to other clinical disorders that compromise respiratory and non-respiratory movements.
Collapse
Affiliation(s)
- Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
48
|
Sandhu MS, Rymer WZ. Brief exposure to systemic hypoxia enhances plasticity of the central nervous system in spinal cord injured animals and man. Curr Opin Neurol 2021; 34:819-824. [PMID: 34545014 DOI: 10.1097/wco.0000000000000990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We have known for many decades that animals that sustain injuries to the neuraxis, which result in respiratory impairment, are able to develop rapid neural compensation for these injuries. This compensation, which is linked to the systemic hypoxia resulting from damage to the respiratory apparatus, is a potent manifestation of neural plasticity. Hypoxia-induced plasticity is also applicable to somatic neural systems that regulate motor activity in extremity muscles. We report on recent developments in our understanding of the mechanisms underlying this seemingly beneficial action of acute intermittent hypoxia (AIH). RECENT FINDINGS AIH improves breathing in animal models of spinal cord injury, and increases strength and endurance in individuals with incomplete spinal injuries. The role of AIH as a therapeutic intervention remains to be confirmed but it has proved to be well tolerated for use in humans with no adverse effects reported to date. The effects of AIH emerge rapidly and persist for several hours raising the possibility that the intervention may serve as a priming mechanism for facilitating rehabilitation and promoting recovery after neurologic injury in man. SUMMARY AIH is emerging as a potent and relatively inexpensive modality for inducing neuroplasticity, so it may prove feasible to use AIH in a clinical setting.
Collapse
Affiliation(s)
- Milap S Sandhu
- Shirley Ryan AbilityLab
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - William Z Rymer
- Shirley Ryan AbilityLab
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
49
|
Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021; 346:113832. [PMID: 34363808 PMCID: PMC9065093 DOI: 10.1016/j.expneurol.2021.113832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Cervical spinal cord injury (cSCI) severs bulbospinal projections to respiratory motor neurons, paralyzing respiratory muscles below the injury. C2 spinal hemisection (C2Hx) is a model of cSCI often used to study spontaneous and induced plasticity and breathing recovery post-injury. One key assumption is that C2Hx dennervates motor neurons below the injury, but does not affect their survival. However, a recent study reported substantial bilateral motor neuron death caudal to C2Hx. Since phrenic motor neuron (PMN) death following C2Hx would have profound implications for therapeutic strategies designed to target spared neural circuits, we tested the hypothesis that C2Hx minimally impacts PMN survival. Using improved retrograde tracing methods, we observed no loss of PMNs at 2- or 8-weeks post-C2Hx. We also observed no injury-related differences in ChAT or NeuN immunolabeling within labelled PMNs. Although we found no evidence of PMN loss following C2Hx, we cannot rule out neuronal loss in other motor pools. These findings address an essential prerequisite for studies that utilize C2Hx as a model to explore strategies for inducing plasticity and/or regeneration within the phrenic motor system, as they provide important insights into the viability of phrenic motor neurons as therapeutic targets after high cervical injury.
Collapse
Affiliation(s)
- Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zachary A Asa
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
50
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|