1
|
Allam A, Allam V, Reddy S, Rohren EM, Sheth SA, Froudarakis E, Papageorgiou TD. Individualized functional magnetic resonance imaging neuromodulation enhances visuospatial perception: a proof-of-concept study. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230083. [PMID: 39428879 PMCID: PMC11491853 DOI: 10.1098/rstb.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
This proof-of-concept study uses individualized functional magnetic resonance imaging neuromodulation (iNM) to explore the mechanisms that enhance BOLD signals in visuospatial perception (VP) networks that are crucial for navigation. Healthy participants (n = 8) performed a VP up- and down-direction discrimination task at full and subthreshold coherence through peripheral vision, and superimposed direction through visual imagery (VI) at central space under iNM and control conditions. iNM targets individualized anatomical and functional middle- and medial-superior temporal (MST) networks that control VP. We found that iNM engaged selective exteroceptive and interoceptive attention (SEIA) and motor planning (MP) networks. Specifically, iNM increased overall: (i) area under the curve of the BOLD magnitude: 100% in VP (but decreased for weak coherences), 21-47% in VI, 26-59% in MP and 48-76% in SEIA through encoding; and (ii) classification performance for each direction, coherence and network through decoding, predicting stimuli from brain maps. Our findings, derived from encoding and decoding models, suggest that mechanisms induced by iNM are causally linked in enhancing visuospatial networks and demonstrate iNM as a feasibility treatment for low-vision patients with cortical blindness or visuospatial impairments that precede cognitive decline.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Anthony Allam
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Vincent Allam
- Department of Computer Science, University of Texas at Austin, Austin, TX, USA
| | - Sandy Reddy
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eric M. Rohren
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Sameer A. Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Emmanouil Froudarakis
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - T. Dorina Papageorgiou
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, USA
| |
Collapse
|
2
|
Jiang Y, Palaniyappan L, Luo C, Chang X, Zhang J, Tang Y, Zhang T, Li C, Zhou E, Yu X, Li W, An D, Zhou D, Huang CC, Tsai SJ, Lin CP, Cheng J, Wang J, Yao D, Cheng W, Feng J. Neuroimaging epicenters as potential sites of onset of the neuroanatomical pathology in schizophrenia. SCIENCE ADVANCES 2024; 10:eadk6063. [PMID: 38865456 PMCID: PMC11168466 DOI: 10.1126/sciadv.adk6063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Schizophrenia lacks a clear definition at the neuroanatomical level, capturing the sites of origin and progress of this disorder. Using a network-theory approach called epicenter mapping on cross-sectional magnetic resonance imaging from 1124 individuals with schizophrenia, we identified the most likely "source of origin" of the structural pathology. Our results suggest that the Broca's area and adjacent frontoinsular cortex may be the epicenters of neuroanatomical pathophysiology in schizophrenia. These epicenters can predict an individual's response to treatment for psychosis. In addition, cross-diagnostic similarities based on epicenter mapping over of 4000 individuals diagnosed with neurological, neurodevelopmental, or psychiatric disorders appear to be limited. When present, these similarities are restricted to bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. We provide a comprehensive framework linking schizophrenia-specific epicenters to multiple levels of neurobiology, including cognitive processes, neurotransmitter receptors and transporters, and human brain gene expression. Epicenter mapping may be a reliable tool for identifying the potential onset sites of neural pathophysiology in schizophrenia.
Collapse
Affiliation(s)
- Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Quebec, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Enpeng Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, PR China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
- Shanghai Changning Mental Health Center, Shanghai, PR China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
- Research Unit of NeuroInformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu, PR China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, PR China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, PR China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, PR China
- Zhangjiang Fudan International Innovation Center, Shanghai, PR China
- School of Data Science, Fudan University, Shanghai, PR China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
3
|
Manuello J, Min J, McCarthy P, Alfaro-Almagro F, Lee S, Smith S, Elliott LT, Winkler AM, Douaud G. The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease. Nat Commun 2024; 15:2576. [PMID: 38538590 PMCID: PMC10973379 DOI: 10.1038/s41467-024-46344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2024] [Indexed: 11/03/2024] Open
Abstract
We have previously identified a network of higher-order brain regions particularly vulnerable to the ageing process, schizophrenia and Alzheimer's disease. However, it remains unknown what the genetic influences on this fragile brain network are, and whether it can be altered by the most common modifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we first show significant genome-wide associations between this brain network and seven genetic clusters implicated in cardiovascular deaths, schizophrenia, Alzheimer's and Parkinson's disease, and with the two antigens of the XG blood group located in the pseudoautosomal region of the sex chromosomes. We further reveal that the most deleterious modifiable risk factors for this vulnerable brain network are diabetes, nitrogen dioxide - a proxy for traffic-related air pollution - and alcohol intake frequency. The extent of these associations was uncovered by examining these modifiable risk factors in a single model to assess the unique contribution of each on the vulnerable brain network, above and beyond the dominating effects of age and sex. These results provide a comprehensive picture of the role played by genetic and modifiable risk factors on these fragile parts of the brain.
Collapse
Affiliation(s)
- Jordi Manuello
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Joosung Min
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Paul McCarthy
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fidel Alfaro-Almagro
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Soojin Lee
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Pacific Parkinson's Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Stephen Smith
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Anderson M Winkler
- National Institutes of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Gwenaëlle Douaud
- FMRIB Centre, Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Pedersen R, Johansson J, Nordin K, Rieckmann A, Wåhlin A, Nyberg L, Bäckman L, Salami A. Dopamine D1-Receptor Organization Contributes to Functional Brain Architecture. J Neurosci 2024; 44:e0621232024. [PMID: 38302439 PMCID: PMC10941071 DOI: 10.1523/jneurosci.0621-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/01/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
Recent work has recognized a gradient-like organization in cortical function, spanning from primary sensory to transmodal cortices. It has been suggested that this axis is aligned with regional differences in neurotransmitter expression. Given the abundance of dopamine D1-receptors (D1DR), and its importance for modulation and neural gain, we tested the hypothesis that D1DR organization is aligned with functional architecture, and that inter-regional relationships in D1DR co-expression modulate functional cross talk. Using the world's largest dopamine D1DR-PET and MRI database (N = 180%, 50% female), we demonstrate that D1DR organization follows a unimodal-transmodal hierarchy, expressing a high spatial correspondence to the principal gradient of functional connectivity. We also demonstrate that individual differences in D1DR density between unimodal and transmodal regions are associated with functional differentiation of the apices in the cortical hierarchy. Finally, we show that spatial co-expression of D1DR primarily modulates couplings within, but not between, functional networks. Together, our results show that D1DR co-expression provides a biomolecular layer to the functional organization of the brain.
Collapse
Affiliation(s)
- Robin Pedersen
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Jarkko Johansson
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Kristin Nordin
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
- Max-Planck-Institut für Sozialrecht und Sozialpolitik, Munich 80799, Germany
| | - Anders Wåhlin
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Department of Radiation Sciences, Umeå University, Umeå S-90197, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| | - Alireza Salami
- Department of Integrative Medical Biology, Umeå University, Umeå S-90197, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå S-90197, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå S-90197, Sweden
- Aging Research Center, Karolinska Institutet & Stockholm University, Stockholm S-17165, Sweden
| |
Collapse
|
5
|
Borgheai SB, Zisk AH, McLinden J, Mcintyre J, Sadjadi R, Shahriari Y. Multimodal pre-screening can predict BCI performance variability: A novel subject-specific experimental scheme. Comput Biol Med 2024; 168:107658. [PMID: 37984201 DOI: 10.1016/j.compbiomed.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Brain-computer interface (BCI) systems currently lack the required robustness for long-term daily use due to inter- and intra-subject performance variability. In this study, we propose a novel personalized scheme for a multimodal BCI system, primarily using functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG), to identify, predict, and compensate for factors affecting competence-related and interfering factors associated with performance. METHOD 11 (out of 13 recruited) participants, including five participants with motor deficits, completed four sessions on average. During the training sessions, the subjects performed a short pre-screening phase, followed by three variations of a novel visou-mental (VM) protocol. Features extracted from the pre-screening phase were used to construct predictive platforms using stepwise multivariate linear regression (MLR) models. In the test sessions, we employed a task-correction phase where our predictive models were used to predict the ideal task variation to maximize performance, followed by an interference-correction phase. We then investigated the associations between predicted and actual performances and evaluated the outcome of correction strategies. RESULT The predictive models resulted in respective adjusted R-squared values of 0.942, 0.724, and 0.939 for the first, second, and third variation of the task, respectively. The statistical analyses showed significant associations between the performances predicted by predictive models and the actual performances for the first two task variations, with rhos of 0.7289 (p-value = 0.011) and 0.6970 (p-value = 0.017), respectively. For 81.82 % of the subjects, the task/workload correction stage correctly determined which task variation provided the highest accuracy, with an average performance gain of 5.18 % when applying the correction strategies. CONCLUSION Our proposed method can lead to an integrated multimodal predictive framework to compensate for BCI performance variability, particularly, for people with severe motor deficits.
Collapse
Affiliation(s)
- Seyyed Bahram Borgheai
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States; Neurology Department, Emory University, Atlanta, GA, United States
| | - Alyssa Hillary Zisk
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, United States
| | - John McLinden
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - James Mcintyre
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Reza Sadjadi
- Neurology Department, Massachusetts General Hospital, Boston, MA, United States
| | - Yalda Shahriari
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States; Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, United States.
| |
Collapse
|
6
|
Carrión-Castillo A, Paz-Alonso PM, Carreiras M. Brain structure, phenotypic and genetic correlates of reading performance. Nat Hum Behav 2023; 7:1120-1134. [PMID: 37037991 DOI: 10.1038/s41562-023-01583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Reading is an evolutionarily recent development that recruits and tunes brain circuitry connecting primary- and language-processing regions. We investigated whether metrics of the brain's physical structure correlate with reading performance and whether genetic variants affect this relationship. To this aim, we used the Adolescent Brain Cognitive Development dataset (n = 9,013) of 9-10-year-olds and focused on 150 measures of cortical surface area (CSA) and thickness. Our results reveal that reading performance is associated with nine measures of brain structure including relevant regions of the reading network. Furthermore, we show that this relationship is partially mediated by genetic factors for two of these measures: the CSA of the entire left hemisphere and, specifically, of the left superior temporal gyrus CSA. These effects emphasize the complex and subtle interplay between genes, brain and reading, which is a partly heritable polygenic skill that relies on a distributed network.
Collapse
Affiliation(s)
| | - Pedro M Paz-Alonso
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Manuel Carreiras
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- University of the Basque Country, Bilbao, Spain.
| |
Collapse
|
7
|
Dulyan L, Talozzi L, Pacella V, Corbetta M, Forkel SJ, Thiebaut de Schotten M. Longitudinal prediction of motor dysfunction after stroke: a disconnectome study. Brain Struct Funct 2022; 227:3085-3098. [PMID: 36334132 PMCID: PMC9653357 DOI: 10.1007/s00429-022-02589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that while some neuroplasticity mechanisms exist changing the structure-function relationship, disconnection patterns prevail when predicting motor impairment at different time points after stroke.
Collapse
Affiliation(s)
- Lilit Dulyan
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Lia Talozzi
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Valentina Pacella
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padua, Italy
| | - Stephanie J Forkel
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Donders Centre for Brain Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
- Department of Neurosurgery, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
| |
Collapse
|
8
|
Huang Z, Gao W, Wu Z, Li G, Nie J. Functional brain activity is highly associated with cortical myelination in neonates. Cereb Cortex 2022; 33:3985-3995. [PMID: 36030387 DOI: 10.1093/cercor/bhac321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/12/2022] Open
Abstract
Functional organization of the human cerebral cortex is highly constrained by underlying brain structures, but how functional activity is associated with different brain structures during development is not clear, especially at the neonatal stage. Since long-range functional connectivity is far from mature in the dynamically developing neonatal brain, it is of great scientific significance to investigate the relationship between different structural and functional features at the local level. To this end, for the first time, correlation and regression analyses were performed to examine the relationship between cortical morphology, cortical myelination, age, and local brain functional activity, as well as functional connectivity strength using high-resolution structural and resting-state functional MRI data of 177 neonates (29-44 postmenopausal weeks, 98 male and 79 female) from both static and dynamic perspectives. We found that cortical myelination was most strongly associated with local brain functional activity across the cerebral cortex than other cortical structural features while controlling the age effect. These findings suggest the crucial role of cortical myelination in local brain functional development at birth, providing valuable insights into the fundamental biological basis of functional activity at this early developmental stage.
Collapse
Affiliation(s)
- Ziyi Huang
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Wenjian Gao
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University,Guangzhou 510631, China
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jingxin Nie
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
9
|
Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces. Neural Netw 2022; 151:111-120. [DOI: 10.1016/j.neunet.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
|
10
|
Hassanzadeh R, Silva RF, Abrol A, Salman M, Bonkhoff A, Du Y, Fu Z, DeRamus T, Damaraju E, Baker B, Calhoun VD. Individualized spatial network predictions using Siamese convolutional neural networks: A resting-state fMRI study of over 11,000 unaffected individuals. PLoS One 2022; 17:e0249502. [PMID: 35061657 PMCID: PMC8782493 DOI: 10.1371/journal.pone.0249502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Individuals can be characterized in a population according to their brain measurements and activity, given the inter-subject variability in brain anatomy, structure-function relationships, or life experience. Many neuroimaging studies have demonstrated the potential of functional network connectivity patterns estimated from resting functional magnetic resonance imaging (fMRI) to discriminate groups and predict information about individual subjects. However, the predictive signal present in the spatial heterogeneity of brain connectivity networks is yet to be extensively studied. In this study, we investigate, for the first time, the use of pairwise-relationships between resting-state independent spatial maps to characterize individuals. To do this, we develop a deep Siamese framework comprising three-dimensional convolution neural networks for contrastive learning based on individual-level spatial maps estimated via a fully automated fMRI independent component analysis approach. The proposed framework evaluates whether pairs of spatial networks (e.g., visual network and auditory network) are capable of subject identification and assesses the spatial variability in different network pairs' predictive power in an extensive whole-brain analysis. Our analysis on nearly 12,000 unaffected individuals from the UK Biobank study demonstrates that the proposed approach can discriminate subjects with an accuracy of up to 88% for a single network pair on the test set (best model, after several runs), and 82% average accuracy at the subcortical domain level, notably the highest average domain level accuracy attained. Further investigation of our network's learned features revealed a higher spatial variability in predictive accuracy among younger brains and significantly higher discriminative power among males. In sum, the relationship among spatial networks appears to be both informative and discriminative of individuals and should be studied further as putative brain-based biomarkers.
Collapse
Affiliation(s)
- Reihaneh Hassanzadeh
- Department of Computer Science, Georgia State University, Atlanta, GA, United States of America
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Rogers F. Silva
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Anees Abrol
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Mustafa Salman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Anna Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yuhui Du
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Thomas DeRamus
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Eswar Damaraju
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
| | - Bradley Baker
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Vince D. Calhoun
- Department of Computer Science, Georgia State University, Atlanta, GA, United States of America
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States of America
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
11
|
Ge R, Hassel S, Arnott SR, Davis AD, Harris JK, Zamyadi M, Milev R, Frey BN, Strother SC, Müller DJ, Rotzinger S, MacQueen GM, Kennedy SH, Lam RW, Vila-Rodriguez F. Structural covariance pattern abnormalities of insula in major depressive disorder: A CAN-BIND study report. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110194. [PMID: 33296696 DOI: 10.1016/j.pnpbp.2020.110194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/25/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND METHODS Investigation of the insula may inform understanding of the etiopathogenesis of major depressive disorder (MDD). In the present study, we introduced a novel gray matter volume (GMV) based structural covariance technique, and applied it to a multi-centre study of insular subregions of 157 patients with MDD and 93 healthy controls from the Canadian Biomarker Integration Network in Depression (CAN-BIND, https://www.canbind.ca/). Specifically, we divided the unilateral insula into three subregions, and investigated their coupling with whole-brain GMV-based structural brain networks (SBNs). We compared between-group difference of the structural coupling patterns between the insular subregions and SBNs. RESULTS The insula was divided into three subregions, including an anterior one, a superior-posterior one and an inferior-posterior one. In the comparison between MDD patients and controls we found that patients' right anterior insula showed increased inter-network coupling with the default mode network, and it showed decreased inter-network coupling with the central executive network; whereas patients' right ventral-posterior insula showed decreased inter-network coupling with the default mode network, and it showed increased inter-network coupling with the central executive network. We also demonstrated that patients' loading parameters of the right ventral-posterior insular structural covariance negatively correlated with their suicidal ideation scores; and controls' loading parameters of the right ventral-posterior insular structural covariance positively correlated with their motor and psychomotor speed scores, whereas these phenomena were not found in patients. Additionally, we did not find significant inter-network coupling between the whole-brain SBNs, including salience network, default mode network, and central executive network. CONCLUSIONS Our work proposed a novel technique to investigate the structural covariance coupling between large-scale structural covariance networks, and provided further evidence that MDD is a system-level disorder that shows disrupted structural coupling between brain networks.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Stefanie Hassel
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | | | - Andrew D Davis
- Department of Psychology, Neuroscience & Behaviour, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | | | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Roumen Milev
- Department of Psychiatry, Queen's University and Providence Care Hospital, Kingston, ON, Canada; Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada
| | | | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Susan Rotzinger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Salvan P, Lazari A, Vidaurre D, Mandino F, Johansen-Berg H, Grandjean J. Frequency modulation of entorhinal cortex neuronal activity drives distinct frequency-dependent states of brain-wide dynamics. Cell Rep 2021; 37:109954. [PMID: 34731612 PMCID: PMC8609366 DOI: 10.1016/j.celrep.2021.109954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/26/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
Human neuroimaging studies have shown that, during cognitive processing, the brain undergoes dynamic transitions between multiple, frequency-tuned states of activity. Although different states may emerge from distinct sources of neural activity, it remains unclear whether single-area neuronal spiking can also drive multiple dynamic states. In mice, we ask whether frequency modulation of the entorhinal cortex activity causes dynamic states to emerge and whether these states respond to distinct stimulation frequencies. Using hidden Markov modeling, we perform unsupervised detection of transient states in mouse brain-wide fMRI fluctuations induced via optogenetic frequency modulation of excitatory neurons. We unveil the existence of multiple, frequency-dependent dynamic states, invisible through standard static fMRI analyses. These states are linked to different anatomical circuits and disrupted in a frequency-dependent fashion in a transgenic model of cognitive disease directly related to entorhinal cortex dysfunction. These findings provide cross-scale insight into basic neuronal mechanisms that may underpin flexibility in brain-wide dynamics.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Diego Vidaurre
- Wellcome Centre for Integrative Neuroimaging, OHBA, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; Department of Clinical Medicine, Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Joanes Grandjean
- Department of Medical Imaging and Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Centre, PO Box 9101, 6500HB Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
14
|
Interindividual variability of functional connectome in schizophrenia. Schizophr Res 2021; 235:65-73. [PMID: 34329851 DOI: 10.1016/j.schres.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a complex psychiatric disorder that displays an outstanding interindividual variability in clinical manifestation and neurobiological substrates. A better characterization and quantification of this heterogeneity could guide the search for both common abnormalities (linked to lower intersubject variability) and the presence of biological subtypes (leading to a greater heterogeneity across subjects). In the current study, we address interindividual variability in functional connectome by means of resting-state fMRI in a large sample of patients with schizophrenia and healthy controls. Among the different metrics of distance/dissimilarity used to assess variability, geodesic distance showed robust results to head motion. The main findings of the current study point to (i) a higher between subject heterogeneity in the functional connectome of patients, (ii) variable levels of heterogeneity throughout the cortex, with greater variability in frontoparietal and default mode networks, and lower variability in the salience network, and (iii) an association of whole-brain variability with levels of clinical symptom severity and with topological properties of brain networks, suggesting that the average functional connectome overrepresents those patients with lower functional integration and with more severe clinical symptoms. Moreover, after performing a graph theoretical analysis of brain networks, we found that patients with more severe clinical symptoms had decreased connectivity at both whole-brain level and within the salience network, and that patients with higher negative symptoms had large-scale functional integration deficits.
Collapse
|
15
|
Lashgari E, Ott J, Connelly A, Baldi P, Maoz U. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task. J Neural Eng 2021; 18. [PMID: 34352734 DOI: 10.1088/1741-2552/ac1ade] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/05/2021] [Indexed: 11/12/2022]
Abstract
Objective.Motor-imagery (MI) classification base on electroencephalography (EEG) has been long studied in neuroscience and more recently widely used in healthcare applications such as mobile assistive robots and neurorehabilitation. In particular, EEG-based MI classification methods that rely on convolutional neural networks (CNNs) have achieved relatively high classification accuracy. However, naively training CNNs to classify raw EEG data from all channels, especially for high-density EEG, is computationally demanding and requires huge training sets. It often also introduces many irrelevant input features, making it difficult for the CNN to extract the informative ones. This problem is compounded by a dearth of training data, which is particularly acute for MI tasks, because these are cognitively demanding and thus fatigue inducing.Approach.To address these issues, we proposed an end-to-end CNN-based neural network with attentional mechanism together with different data augmentation (DA) techniques. We tested it on two benchmark MI datasets, brain-computer interface (BCI) competition IV 2a and 2b. In addition, we collected a new dataset, recorded using high-density EEG, and containing both MI and motor execution (ME) tasks, which we share with the community.Main results.Our proposed neural-network architecture outperformed all state-of-the-art methods that we found in the literature, with and without DA, reaching an average classification accuracy of 93.6% and 87.83% on BCI 2a and 2b, respectively. We also directly compare decoding of MI and ME tasks. Focusing on MI classification, we find optimal channel configurations and the best DA techniques as well as investigate combining data across participants and the role of transfer learning.Significance.Our proposed approach improves the classification accuracy for MI in the benchmark datasets. In addition, collecting our own dataset enables us to compare MI and ME and investigate various aspects of EEG decoding critical for neuroscience and BCI.
Collapse
Affiliation(s)
- Elnaz Lashgari
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, United States of America
| | - Jordan Ott
- Department of Computer Science, University of California, Irvine, CA, United States of America
| | - Akima Connelly
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, United States of America
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, CA, United States of America.,Center for Machine Learning and Intelligent Systems, University of California Irvine, Irvine, CA, United States of America.,Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, CA, United States of America
| | - Uri Maoz
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States of America.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University, Orange, CA, United States of America.,Computational Neuroscience and Psychology, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA, United States of America.,Fowler School of Engineering, Chapman University, Orange, CA, United States of America.,Anderson School of Management, University of California Los Angeles, Los Angeles, CA, United States of America.,Biology and Bioengineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
16
|
Woodburn M, Bricken CL, Wu Z, Li G, Wang L, Lin W, Sheridan MA, Cohen JR. The maturation and cognitive relevance of structural brain network organization from early infancy to childhood. Neuroimage 2021; 238:118232. [PMID: 34091033 PMCID: PMC8372198 DOI: 10.1016/j.neuroimage.2021.118232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
The interactions of brain regions with other regions at the network level likely provide the infrastructure necessary for cognitive processes to develop. Specifically, it has been theorized that in infancy brain networks become more modular, or segregated, to support early cognitive specialization, before integration across networks increases to support the emergence of higher-order cognition. The present study examined the maturation of structural covariance networks (SCNs) derived from longitudinal cortical thickness data collected between infancy and childhood (0–6 years). We assessed modularity as a measure of network segregation and global efficiency as a measure of network integration. At the group level, we observed trajectories of increasing modularity and decreasing global efficiency between early infancy and six years. We further examined subject-based maturational coupling networks (sbMCNs) in a subset of this cohort with cognitive outcome data at 8–10 years, which allowed us to relate the network organization of longitudinal cortical thickness maturation to cognitive outcomes in middle childhood. We found that lower global efficiency of sbMCNs throughout early development (across the first year) related to greater motor learning at 8–10 years. Together, these results provide novel evidence characterizing the maturation of brain network segregation and integration across the first six years of life, and suggest that specific trajectories of brain network maturation contribute to later cognitive outcomes.
Collapse
Affiliation(s)
- Mackenzie Woodburn
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States.
| | - Cheyenne L Bricken
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States
| | - Zhengwang Wu
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Gang Li
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Li Wang
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Department of Radiology, University of North Carolina, Chapel Hill, United States
| | - Margaret A Sheridan
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Carolina Institute of Developmental Disabilities, University of North Carolina, Chapel Hill, United States
| | - Jessica R Cohen
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, United States; Carolina Institute of Developmental Disabilities, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
17
|
Vanasse TJ, Fox PT, Fox PM, Cauda F, Costa T, Smith SM, Eickhoff SB, Lancaster JL. Brain pathology recapitulates physiology: A network meta-analysis. Commun Biol 2021; 4:301. [PMID: 33686216 PMCID: PMC7940476 DOI: 10.1038/s42003-021-01832-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Network architecture is a brain-organizational motif present across spatial scales from cell assemblies to distributed systems. Structural pathology in some neurodegenerative disorders selectively afflicts a subset of functional networks, motivating the network degeneration hypothesis (NDH). Recent evidence suggests that structural pathology recapitulating physiology may be a general property of neuropsychiatric disorders. To test this possibility, we compared functional and structural network meta-analyses drawing upon the BrainMap database. The functional meta-analysis included results from >7,000 experiments of subjects performing >100 task paradigms; the structural meta-analysis included >2,000 experiments of patients with >40 brain disorders. Structure-function network concordance was high: 68% of networks matched (pFWE < 0.01), confirming the broader scope of NDH. This correspondence persisted across higher model orders. A positive linear association between disease and behavioral entropy (p = 0.0006;R2 = 0.53) suggests nodal stress as a common mechanism. Corroborating this interpretation with independent data, we show that metabolic 'cost' significantly differs along this transdiagnostic/multimodal gradient.
Collapse
Affiliation(s)
- Thomas J Vanasse
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - P Mickle Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Franco Cauda
- FocusLab and GCS-fMRI, University of Turin and Koelliker Hospital, Turin, Italy
| | - Tommaso Costa
- FocusLab and GCS-fMRI, University of Turin and Koelliker Hospital, Turin, Italy
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, UK
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jack L Lancaster
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
18
|
Muller AM, Pennington DL, Meyerhoff DJ. Substance-Specific and Shared Gray Matter Signatures in Alcohol, Opioid, and Polysubstance Use Disorder. Front Psychiatry 2021; 12:795299. [PMID: 35115969 PMCID: PMC8803650 DOI: 10.3389/fpsyt.2021.795299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Substance use disorders (SUD) have been shown to be associated with gray matter (GM) loss, particularly in the frontal cortex. However, unclear is to what degree these regional GM alterations are substance-specific or shared across different substances, and if these regional GM alterations are independent of each other or the result of system-level processes at the intrinsic connectivity network level. The T1 weighted MRI data of 65 treated patients with alcohol use disorder (AUD), 27 patients with opioid use disorder (OUD) on maintenance therapy, 21 treated patients with stimulant use disorder comorbid with alcohol use disorder (polysubstance use disorder patients, PSU), and 21 healthy controls were examined via data-driven vertex-wise and voxel-wise GM analyses. Then, structural covariance analyses and open-access fMRI database analyses were used to map the cortical thinning patterns found in the three SUD groups onto intrinsic functional systems. Among AUD and OUD, we identified both common cortical thinning in right anterior brain regions as well as SUD-specific regional GM alterations that were not present in the PSU group. Furthermore, AUD patients had not only the most extended regional thinning but also significantly smaller subcortical structures and cerebellum relative to controls, OUD and PSU individuals. The system-level analyses revealed that AUD and OUD showed cortical thinning in several functional systems. In the AUD group the default mode network was clearly most affected, followed by the salience and executive control networks, whereas the salience and somatomotor network were highlighted as critical for understanding OUD. Structural brain alterations in groups with different SUDs are largely unique in their spatial extent and functional network correlates.
Collapse
Affiliation(s)
- Angela M Muller
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center (VAARC), San Francisco VA Medical Center, San Francisco, CA, United States
| | - David L Pennington
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States.,San Francisco Veterans Affairs Health Care System (SFVAHCS), San Francisco, CA, United States
| | - Dieter J Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.,VA Advanced Imaging Research Center (VAARC), San Francisco VA Medical Center, San Francisco, CA, United States
| |
Collapse
|
19
|
Eichert N, Watkins KE, Mars RB, Petrides M. Morphological and functional variability in central and subcentral motor cortex of the human brain. Brain Struct Funct 2020; 226:263-279. [PMID: 33355695 PMCID: PMC7817568 DOI: 10.1007/s00429-020-02180-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
There is a long-established link between anatomy and function in the somatomotor system in the mammalian cerebral cortex. The morphology of the central sulcus is predictive of the location of functional activation peaks relating to movement of different effectors in individuals. By contrast, morphological variation in the subcentral region and its relationship to function is, as yet, unknown. Investigating the subcentral region is particularly important in the context of speech, since control of the larynx during human speech production is related to activity in this region. Here, we examined the relationship between morphology in the central and subcentral region and the location of functional activity during movement of the hand, lips, tongue, and larynx at the individual participant level. We provide a systematic description of the sulcal patterns of the subcentral and adjacent opercular cortex, including the inter-individual variability in sulcal morphology. We show that, in the majority of participants, the anterior subcentral sulcus is not continuous, but consists of two distinct segments. A robust relationship between morphology of the central and subcentral sulcal segments and movement of different effectors is demonstrated. Inter-individual variability of underlying anatomy might thus explain previous inconsistent findings, in particular regarding the ventral larynx area in subcentral cortex. A surface registration based on sulcal labels indicated that such anatomical information can improve the alignment of functional data for group studies.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
20
|
Ge R, Ding S, Keeling T, Honer WG, Frangou S, Vila-Rodriguez F. SS-Detect: Development and Validation of a New Strategy for Source-Based Morphometry in Multiscanner Studies. J Neuroimaging 2020; 31:261-271. [PMID: 33270962 DOI: 10.1111/jon.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Source-based morphometry(SBM) has been used in multicenter studies pooling magnetic resonance imaging data across different scanners to advance the reproducibility of neuroscience research. In the present study, we developed an analysis strategy for Scanner-Specific Detection (SS-Detect) of SBPs in multiscanner studies, and evaluated its performance relative to a conventional strategy. METHODS In the first experiment, the SimTB toolbox was used to generate simulated datasets mimicking 20 different scanners with common and scanner-specific SBPs. In the second experiment, we generated one simulated SBP from empirical gray matter volume (GMV) datasets from two different scanners. Moreover, we applied two strategies to compare SBPs between schizophrenia patients' and healthy controls' GMV from two scanners. RESULTS The outputs of the conventional strategy were limited to whole-sample-level results across all scanners; the outputs of SS-Detect included whole-sample-level and scanner-specific results. In the first simulation experiment, SS-Detect successfully estimated all simulated SBPs, including the common and scanner-specific SBPs, whereas the conventional strategy detected only some of the whole-sample SBPs. The second simulation experiment showed that both strategies could detect the simulated SBP. Quantitative evaluations of both experiments demonstrated greater accuracy of the SS-Detect in estimating spatial SBPs and subject-specific loading parameters. In the third experiment, SS-Detect detected more significant between-group SBPs, and these SBPs corresponded with the results from voxel-based morphometry analysis, suggesting that SS-Detect has higher sensitivity in detecting between-group differences. CONCLUSIONS SS-Detect outperformed the conventional strategy and can be considered advantageous when SBM is applied to a multiscanner study.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shiqing Ding
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tyler Keeling
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophia Frangou
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, New York, US
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Bijsterbosch J, Harrison SJ, Jbabdi S, Woolrich M, Beckmann C, Smith S, Duff EP. Challenges and future directions for representations of functional brain organization. Nat Neurosci 2020; 23:1484-1495. [PMID: 33106677 DOI: 10.1038/s41593-020-00726-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
A key principle of brain organization is the functional integration of brain regions into interconnected networks. Functional MRI scans acquired at rest offer insights into functional integration via patterns of coherent fluctuations in spontaneous activity, known as functional connectivity. These patterns have been studied intensively and have been linked to cognition and disease. However, the field is fractionated. Diverging analysis approaches have segregated the community into research silos, limiting the replication and clinical translation of findings. A primary source of this fractionation is the diversity of approaches used to reduce complex brain data into a lower-dimensional set of features for analysis and interpretation, which we refer to as brain representations. In this Primer, we provide an overview of different brain representations, lay out the challenges that have led to the fractionation of the field and that continue to form obstacles for convergence, and propose concrete guidelines to unite the field.
Collapse
Affiliation(s)
- Janine Bijsterbosch
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA. .,Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford. John Radcliffe Hospital, Oxford, UK.
| | - Samuel J Harrison
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford. John Radcliffe Hospital, Oxford, UK.,Translational Neuromodeling Unit, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Saad Jbabdi
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford. John Radcliffe Hospital, Oxford, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Christian Beckmann
- Donders Institute and Department of Cognitive Neurosciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stephen Smith
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford. John Radcliffe Hospital, Oxford, UK
| | - Eugene P Duff
- Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford. John Radcliffe Hospital, Oxford, UK. .,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
22
|
Cacciaglia R, Molinuevo JL, Falcón C, Arenaza-Urquijo EM, Sánchez-Benavides G, Brugulat-Serrat A, Blennow K, Zetterberg H, Gispert JD. APOE-ε4 Shapes the Cerebral Organization in Cognitively Intact Individuals as Reflected by Structural Gray Matter Networks. Cereb Cortex 2020; 30:4110-4120. [PMID: 32163130 PMCID: PMC7264689 DOI: 10.1093/cercor/bhaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Gray matter networks (GMn) provide essential information on the intrinsic organization of the brain and appear to be disrupted in Alzheimer’s disease (AD). Apolipoprotein E (APOE)-ε4 represents the major genetic risk factor for AD, yet the association between APOE-ε4 and GMn has remained unexplored. Here, we determine the impact of APOE-ε4 on GMn in a large sample of cognitively unimpaired individuals, which was enriched for the genetic risk of AD. We used independent component analysis to retrieve sources of structural covariance and analyzed APOE group differences within and between networks. Analyses were repeated in a subsample of amyloid-negative subjects. Compared with noncarriers and heterozygotes, APOE-ε4 homozygotes showed increased covariance in one network including primarily right-lateralized, parietal, inferior frontal, as well as inferior and middle temporal regions, which mirrored the formerly described AD-signature. This result was confirmed in a subsample of amyloid-negative individuals. APOE-ε4 carriers showed reduced covariance between two networks encompassing frontal and temporal regions, which constitute preferential target of amyloid deposition. Our data indicate that, in asymptomatic individuals, APOE-ε4 shapes the cerebral organization in a way that recapitulates focal morphometric alterations observed in AD patients, even in absence of amyloid pathology. This suggests that structural vulnerability in neuronal networks associated with APOE-ε4 may be an early event in AD pathogenesis, possibly upstream of amyloid deposition.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 28089 Madrid, Spain.,Global Brain Health Institute, University of California San Francisco, San Francisco, CA 94115, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 41390 Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 41390 Mölndal, Sweden.,UK Dementia Research Institute at UCL, WC1E 6BT London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), 08005 Barcelona, Spain.,Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), 28089 Madrid, Spain
| | | |
Collapse
|
23
|
Saha S, Baumert M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front Comput Neurosci 2020; 13:87. [PMID: 32038208 PMCID: PMC6985367 DOI: 10.3389/fncom.2019.00087] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 12/05/2022] Open
Abstract
Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
24
|
Ousdal OT, Kaufmann T, Kolskår K, Vik A, Wehling E, Lundervold AJ, Lundervold A, Westlye LT. Longitudinal stability of the brain functional connectome is associated with episodic memory performance in aging. Hum Brain Mapp 2019; 41:697-709. [PMID: 31652017 PMCID: PMC7268077 DOI: 10.1002/hbm.24833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
The brain functional connectome forms a relatively stable and idiosyncratic backbone that can be used for identification or “fingerprinting” of individuals with a high level of accuracy. While previous cross‐sectional evidence has demonstrated increased stability and distinctiveness of the brain connectome during the course of childhood and adolescence, less is known regarding the longitudinal stability in middle and older age. Here, we collected structural and resting‐state functional MRI data at two time points separated by 2–3 years in 75 middle‐aged and older adults (age 49–80, SD = 6.91 years) which allowed us to assess the long‐term stability of the functional connectome. We show that the connectome backbone generally remains stable over a 2–3 years period in middle and older age. Independent of age, cortical volume was associated with the connectome stability of several canonical resting‐state networks, suggesting that the connectome backbone relates to structural properties of the cortex. Moreover, the individual longitudinal stability of subcortical and default mode networks was associated with individual differences in cross‐sectional and longitudinal measures of episodic memory performance, providing new evidence for the importance of these networks in maintaining mnemonic processing in middle and old age. Together, the findings encourage the use of within‐subject connectome stability analyses for understanding individual differences in brain function and cognition in aging.
Collapse
Affiliation(s)
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Alexandra Vik
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Eike Wehling
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of physical medicine and rehabilitation, Haukeland University Hospital, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Arvid Lundervold
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|