1
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2024:S1933-0219(24)00135-1. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Bae SH, Park HR, Lim H, Kim HY, Cheon T, Jung J, Hyun YM. The functional and biological effects of systemic dexamethasone on mice with facial nerve crushing injury. Head Neck 2024; 46:2945-2954. [PMID: 38924195 DOI: 10.1002/hed.27855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Corticosteroid therapy is commonly recommended for acute facial nerve weakness; however, its effectiveness in treating traumatic nerve injuries remains controversial. This study investigated the functional recovery and cellular effects of systemic dexamethasone administration after facial nerve injury. METHODS C57BL/6 mice were assigned to two groups by intraperitoneal injection: the phosphate-buffered saline group and the dexamethasone group. Facial nerve crush injury was induced, followed by the functional grading of recovery. Cellular effects were investigated using transmission electron microscopy, flow cytometry, immunofluorescence, and intravital imaging. RESULTS Macrophage infiltration into the facial nerves was significantly inhibited by systemic dexamethasone administration. However, dexamethasone group slightly delayed the functional recovery of the facial nerve compared to the PBS group. In addition, the morphological changes in the nerve were not significantly different between the two groups at 14 days post-injury. Macrophage migration analysis in the intravital imaging also showed no difference between groups. CONCLUSIONS In summary, systemic dexamethasone successfully inhibited leukocyte infiltration; however, functional recovery was delayed compared to the PBS control group. Clinically, these findings indicate that more evidence and research are required to use steroid pulse therapy for the treatment of traumatic facial nerve injuries.
Collapse
Affiliation(s)
- Seong Hoon Bae
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunseo Lim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Yeol Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Taeuk Cheon
- Department of Otorhinolaryngology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinsei Jung
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Balog BM, Niemi JP, Disabato T, Hashim F, Zigmond RE. CXCR2 mediated trafficking of neutrophils and neutrophil extracellular traps are required for myelin clearance after a peripheral nerve injury. Exp Neurol 2024; 382:114985. [PMID: 39368532 PMCID: PMC11526632 DOI: 10.1016/j.expneurol.2024.114985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Neutrophils are a vital part of the innate immune system. Many of their functions eliminate bacteria & viruses, like neutrophil extracellular traps (NETs), which trap bacteria, enhancing macrophage phagocytosis. It was surprising when it was demonstrated that neutrophils are a part of Wallerian degeneration, a process that is essential for nerve regeneration after a nerve injury. It is not known what signals attract neutrophils into the nerve and how they aid Wallerian degeneration. Neutrophils accumulate in the distal nerve within one day after an injury and are found in the nerve from one to three days. We demonstrate that CXCR2 mediates the trafficking of neutrophils into the distal nerve, and without CXCR2 Wallerian degeneration, as indicated by luxol fast blue staining, was reduced seven days after a sciatic nerve crush or transection injury. NETs were detected in the distal nerve after a sciatic nerve transection. NET formation has been shown to require protein arginine deiminase 4 (PAD4), which citrullinates histone 3. Inhibiting PAD4 reduced NET formation significantly in the distal nerve at two days and myelin clearance at seven days indicating that NETs aid myelin clearance. These results demonstrate another function for NETs other than clearing pathogens. Neutrophils have been detected after injuries to the central nervous system and diseases in humans and animal models. Our results demonstrate neutrophils aid myelin clearance, suggesting a role for their presence in central nervous system injuries and diseases.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Thomas Disabato
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Faye Hashim
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
4
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Zhao L, Jiang C, Yu B, Zhu J, Sun Y, Yi S. Single-cell profiling of cellular changes in the somatic peripheral nerves following nerve injury. Front Pharmacol 2024; 15:1448253. [PMID: 39415832 PMCID: PMC11479879 DOI: 10.3389/fphar.2024.1448253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Injury to the peripheral nervous system disconnects targets to the central nervous system, disrupts signal transmission, and results in functional disability. Although surgical and therapeutic treatments improve nerve regeneration, it is generally hard to achieve fully functional recovery after severe peripheral nerve injury. A better understanding of pathological changes after peripheral nerve injury helps the development of promising treatments for nerve regeneration. Single-cell analyses of the peripheral nervous system under physiological and injury conditions define the diversity of cells in peripheral nerves and reveal cell-specific injury responses. Herein, we review recent findings on the single-cell transcriptome status in the dorsal root ganglia and peripheral nerves following peripheral nerve injury, identify the cell heterogeneity of peripheral nerves, and delineate changes in injured peripheral nerves, especially molecular changes in neurons, glial cells, and immune cells. Cell-cell interactions in peripheral nerves are also characterized based on ligand-receptor pairs from coordinated gene expressions. The understanding of cellular changes following peripheral nerve injury at a single-cell resolution offers a comprehensive and insightful view for the peripheral nerve repair process, provides an important basis for the exploration of the key regulators of neuronal growth and microenvironment reconstruction, and benefits the development of novel therapeutic drugs for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedic, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
6
|
Gaire S, An J, Yang H, Lee KA, Dumre M, Lee EJ, Park SM, Joe EH. Systemic inflammation attenuates the repair of damaged brains through reduced phagocytic activity of monocytes infiltrating the brain. Mol Brain 2024; 17:47. [PMID: 39075534 PMCID: PMC11288066 DOI: 10.1186/s13041-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/19/2024] [Indexed: 07/31/2024] Open
Abstract
In this study, we examined how systemic inflammation affects repair of brain injury. To this end, we created a brain-injury model by stereotaxic injection of ATP, a damage-associated molecular pattern component, into the striatum of mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS-ip). An analysis of magnetic resonance images showed that LPS-ip reduced the initial brain injury but slowed injury repair. An immunostaining analysis using the neuronal marker, NeuN, showed that LPS-ip delayed removal of dead/dying neurons, despite the fact that LPS-ip enhanced infiltration of monocytes, which serve to phagocytize dead cells/debris. Notably, infiltrating monocytes showed a widely scattered distribution. Bulk RNAseq analyses showed that LPS-ip decreased expression of genes associated with phagocytosis, with PCR and immunostaining of injured brains confirming reduced levels of Cd68 and Clec7a, markers of phagocytic activity, in monocytes. Collectively, these results suggest that systemic inflammation affects properties of blood monocytes as well as brain cells, resulting in delay in clearing damaged cells and activating repair processes.
Collapse
Affiliation(s)
- Sushil Gaire
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Jiawei An
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Haijie Yang
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Keon Ah Lee
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Manisha Dumre
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun Jeong Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Brain Science, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Sang-Myun Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
- Department of Pharmacology, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Worldcup-ro 164, Suwon, Kyunggi-do, 16499, South Korea.
| |
Collapse
|
7
|
Minegishi Y, Ozone K, Oka Y, Kano T, Murata K, Kanemura N. Effect of repeated sciatic nerve crush on the conditioning lesion response: Generating an experimental animal model to prolong the denervation period while maintaining peripheral nerve continuity. Neurosci Lett 2024; 836:137879. [PMID: 38880353 DOI: 10.1016/j.neulet.2024.137879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Peripheral nerves exhibit long-term residual motor dysfunction following injury. The length of the denervation period before nerve and muscle reconnection is an important factor in motor function recovery. We aimed to investigate whether repeated nerve crush injuries to the same site every 7 days would preserve the conditioning lesion (CL) response and to determine the number of nerve crush injuries required to create an experimental animal model that would prolong the denervation period while maintaining peripheral nerve continuity. Rats were grouped according to the number of sciatic nerve crushes. A significant decrease in the soleus muscle fiber cross-sectional area was observed with increased crushes. After a single crush, macrophage accumulation and macrophage chemotaxis factor CCL2 expression in dorsal root ganglia were markedly increased, which aligned with the gene expression of Ccl2 and its receptor Ccr2. Macrophage numbers, histological CCL2 expression, and Ccl2 and Ccr2 gene expression levels decreased, depending on the number of repeated crushes. Histological analysis and gene expression analysis in the group with four repeated crushes did not differ significantly when compared with uninjured animals. Our findings indicated that repeated nerve crushes at the same site every 7 days sustained innervation loss and caused a loss of the CL response. The experimental model did not require nerve stump suturing and is useful for exploring factors causing prolonged denervation-induced motor dysfunction. SIGNIFICANCE STATEMENT: This study elucidates the effects of repeated nerve crush injury to the same site on innervation and conditioning lesion responses and demonstrates the utility of an experimental animal model that recapitulates the persistent residual motor deficits owing to prolonged denervation without requiring nerve transection and transection suturing.
Collapse
Affiliation(s)
- Yuki Minegishi
- Physical Therapy Course, Department of Rehabilitation, Faculty of Health Sciences, Nihon Institute of Medical Science, Irumagun 350-0435, Japan; Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan
| | - Kaichi Ozone
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; Department of Rehabilitation, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Yuichiro Oka
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takuma Kano
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, Koshigaya 343-8540, Japan; Soka Orthopedic Internal Medicine, Soka 340-0016, Japan
| | - Kenji Murata
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Koshigaya 343-8540, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Koshigaya 343-8540, Japan.
| |
Collapse
|
8
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Berberine inhibits NLRP3 inflammasome activation and proinflammatory macrophage M1 polarization to accelerate peripheral nerve regeneration. Neurotherapeutics 2024; 21:e00347. [PMID: 38570276 PMCID: PMC11067341 DOI: 10.1016/j.neurot.2024.e00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Berberine (BBR) has demonstrated potent anti-inflammatory effects by modulating macrophage polarization. Nevertheless, the precise mechanisms through which berberine regulates post-injury inflammation within the peripheral nerve system remain elusive. This study seeks to elucidate the role of BBR and its underlying mechanisms in inflammation following peripheral nerve injury (PNI). Adult male C57BL/6J mice subjected to PNI were administered daily doses of berberine (0, 60, 120, 180, 240 mg/kg) via gavage from day 1 through day 28. Evaluation of the sciatic function index (SFI) and paw withdrawal threshold revealed that BBR dose-dependently enhanced both motor and sensory functions. Immunofluorescent staining for anti-myelin basic protein (anti-MBP) and anti-neurofilament-200 (anti-NF-200), along with histological staining comprising hematoxylin-eosin (HE), luxol fast blue (LFB), and Masson staining, demonstrated that BBR dose-dependently promoted structural regeneration. Molecular analyses including qRT-PCR, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence confirmed that inactivation of the NLRP3 inflammasome by MCC950 shifted macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, while also impeding macrophage infiltration. Furthermore, BBR significantly downregulated the expression of the NLRP3 inflammasome and its associated molecules in macrophages, thereby mitigating NLRP3 inflammasome activation-induced macrophage M1 polarization and inflammation. In summary, BBR's neuroprotective effects were concomitant with the suppression of inflammation after PNI, achieved through the inhibition of NLRP3 inflammasome activation-induced macrophage M1 polarization.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
9
|
Smail SW, Abdulqadir SZ, Alalem LSS, Rasheed TK, Khudhur ZO, Mzury AFA, Awla HK, Ghayour MB, Abdolmaleki A. Enhancing sciatic nerve regeneration with osteopontin-loaded acellular nerve allografts in rats: Effects on macrophage polarization. Tissue Cell 2024; 88:102379. [PMID: 38678741 DOI: 10.1016/j.tice.2024.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Osteopontin (OPN) is a multifunctional matrix glycoprotein with neuroprotective and immunomodulatory properties. This study explored the potential of OPN-loaded acellular nerve allografts (ANAs) to repair sciatic nerves in male Wistar rats. The research also delved into the impact of OPN on macrophage phenotypes. We reconstructed a 10 mm nerve gap with ANAs containing OPN at 2 nM and 4 nM. The sciatic functional index (SFI) and paw withdrawal reflex latency (WRL) showed the significant efficacy of ANA/OPN (2 nM) in enhancement of target organ reinnervation and subsequent sensorimotor recovery compared to other groups. Electrophysiological and histomorphometric analyses further supported the regenerative properties of ANA/OPN (2 nM). Additionally, ANA/OPN (2 nM) promoted macrophage polarization towards an M2 phenotype and reduced proinflammatory cytokines at the injury site. In conclusion, the study suggested that ANA loaded with 2 nM OPN effectively repaired transected sciatic nerves in rats, potentially through enhancing axonal sprouting and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq; Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq.
| | | | | | - Taban Kamal Rasheed
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | | | | | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
10
|
Talsma AD, Niemi JP, Zigmond RE. Neither injury induced macrophages within the nerve, nor the environment created by Wallerian degeneration is necessary for enhanced in vivo axon regeneration after peripheral nerve injury. J Neuroinflammation 2024; 21:134. [PMID: 38802868 PMCID: PMC11131297 DOI: 10.1186/s12974-024-03132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.
Collapse
Affiliation(s)
- Aaron D Talsma
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA.
| |
Collapse
|
11
|
Jiang S, Li W, Song M, Liang J, Liu G, Du Q, Wang L, Meng H, Tang L, Yang Y, Zhang B. CXCL1-CXCR2 axis mediates inflammatory response after sciatic nerve injury by regulating macrophage infiltration. Mol Immunol 2024; 169:50-65. [PMID: 38493581 DOI: 10.1016/j.molimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1β) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
12
|
Schmitd LB, Hafner H, Ward A, Asghari Adib E, Biscola NP, Kohen R, Patel M, Williamson RE, Desai E, Bennett J, Saxman G, Athaiya M, Wilborn D, Shumpert J, Zhao XF, Kawaguchi R, Geschwind DH, Hoke A, Shrager P, Collins CA, Havton LA, Kalinski AL, Giger RJ. Sarm1 is not necessary for activation of neuron-intrinsic growth programs yet required for the Schwann cell repair response and peripheral nerve regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583374. [PMID: 38496662 PMCID: PMC10942360 DOI: 10.1101/2024.03.04.583374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that Sarm1 is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve, Sarm1 is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In Sarm1-/- mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of Sarm1-/- distal nerve tissue was demonstrated by grafting of Sarm1-/- nerve into WT recipients. SC lineage tracing in injured WT and Sarm1-/- mice revealed morphological differences. In the Sarm1-/- distal nerve, the appearance of p75NTR+, c-Jun+ SCs is significantly delayed. Ex vivo, p75NTR and c-Jun upregulation in Sarm1-/- nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that Sarm1 is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Ayobami Ward
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Manav Patel
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Emily Desai
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Grace Saxman
- Department of Biology, Ball State University, Muncie IN, USA
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - David Wilborn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jaisha Shumpert
- Department of Biology, Ball State University, Muncie IN, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leif A. Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx, NY, USA
| | - Ashley L. Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Biology, Ball State University, Muncie IN, USA
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
13
|
Goode DJ. Immunotherapy, a new approach for the treatment of human pain. Pain 2024; 165:725-726. [PMID: 37975869 DOI: 10.1097/j.pain.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Diana J Goode
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
14
|
Xue R, Xie M, Wu Z, Wang S, Zhang Y, Han Z, Li C, Tang Q, Wang L, Li D, Wang S, Yang H, Zhao RC. Mesenchymal Stem Cell-Derived Exosomes Promote Recovery of The Facial Nerve Injury through Regulating Macrophage M1 and M2 Polarization by Targeting the P38 MAPK/NF-Κb Pathway. Aging Dis 2024; 15:851-868. [PMID: 37548941 PMCID: PMC10917525 DOI: 10.14336/ad.2023.0719-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Facial nerve (FN) injury seriously affects human social viability and causes a heavy economic and social burden. Although mesenchymal stem cell-derived exosomes (MSC-Exos) promise therapeutic benefits for injury repair, there has been no evaluation of the impact of MSC-Exos administration on FN repair. Herein, we explore the function of MSC-Exos in the immunomodulation of macrophages and their effects in repairing FN injury. An ultracentrifugation technique was used to separate exosomes from the MSC supernatant. Administrating MSC-Exos to SD rats via local injection after FN injury promoted axon regeneration and myelination and alleviated local and systemic inflammation. MSC-Exos facilitated M2 polarization and reduced the M1-M2 polarization ratio. miRNA sequencing of MSC-Exos and previous literature showed that the MAPK/NF-κb pathway was a downstream target of macrophage polarization. We confirmed this hypothesis both in vivo and in vitro. Our findings show that MSC-Exos are a potential candidate for treating FN injury because they may have superior benefits for FN injury recovery and can decrease inflammation by controlling the heterogeneity of macrophages, which is regulated by the p38 MAPK/NF-κb pathway.
Collapse
Affiliation(s)
- Ruoyan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Mengyao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyuan Wu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhijin Han
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chen Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liping Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Di Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Shihua Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
15
|
O'Brien JA, Karrasch JF, Huang Y, Vine EE, Cunningham AL, Harman AN, Austin PJ. Nerve-myeloid cell interactions in persistent human pain: a reappraisal using updated cell subset classifications. Pain 2024; 165:753-771. [PMID: 37975868 DOI: 10.1097/j.pain.0000000000003106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023]
Abstract
ABSTRACT The past 20 years have seen a dramatic shift in our understanding of the role of the immune system in initiating and maintaining pain. Myeloid cells, including macrophages, dendritic cells, Langerhans cells, and mast cells, are increasingly implicated in bidirectional interactions with nerve fibres in rodent pain models. However, our understanding of the human setting is still poor. High-dimensional functional analyses have substantially changed myeloid cell classifications, with recently described subsets such as epidermal dendritic cells and DC3s unveiling new insight into how myeloid cells interact with nerve fibres. However, it is unclear whether this new understanding has informed the study of human chronic pain. In this article, we perform a scoping review investigating neuroimmune interactions between myeloid cells and peripheral nerve fibres in human chronic pain conditions. We found 37 papers from multiple pain states addressing this aim in skin, cornea, peripheral nerve, endometrium, and tumour, with macrophages, Langerhans cells, and mast cells the most investigated. The directionality of results between studies was inconsistent, although the clearest pattern was an increase in macrophage frequency across conditions, phases, and tissues. Myeloid cell definitions were often outdated and lacked correspondence with the stated cell types of interest; overreliance on morphology and traditional structural markers gave limited insight into the functional characteristics of investigated cells. We therefore critically reappraise the existing literature considering contemporary myeloid cell biology and advocate for the application of established and emerging high-dimensional proteomic and transcriptomic single-cell technologies to clarify the role of specific neuroimmune interactions in chronic pain.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jackson F Karrasch
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Yun Huang
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erica E Vine
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Anthony L Cunningham
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Andrew N Harman
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| | - Paul J Austin
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia
| |
Collapse
|
16
|
Bhat K, Hanke L, Helmholz H, Quandt E, Pixley S, Willumeit-Römer R. Influence of Magnesium Degradation on Schwannoma Cell Responses to Nerve Injury Using an In Vitro Injury Model. J Funct Biomater 2024; 15:88. [PMID: 38667545 PMCID: PMC11050989 DOI: 10.3390/jfb15040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Nerve guidance conduits for peripheral nerve injuries can be improved using bioactive materials such as magnesium (Mg) and its alloys, which could provide both structural and trophic support. Therefore, we investigated whether exposure to Mg and Mg-1.6wt%Li thin films (Mg/Mg-1.6Li) would alter acute Schwann cell responses to injury. Using the RT4-D6P2T Schwannoma cell line (SCs), we tested extracts from freeze-killed cells (FKC) and nerves (FKN) as in vitro injury stimulants. Both FKC and FKN induced SC release of the macrophage chemoattractant protein 1 (MCP-1), a marker of the repair SC phenotype after injury. Next, FKC-stimulated cells exposed to Mg/Mg-1.6Li reduced MCP-1 release by 30%, suggesting that these materials could have anti-inflammatory effects. Exposing FKC-treated cells to Mg/Mg-1.6Li reduced the gene expression of the nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), and myelin protein zero (MPZ), but not the p75 neurotrophin receptor. In the absence of FKC, Mg/Mg-1.6Li treatment increased the expression of NGF, p75, and MPZ, which can be beneficial to nerve regeneration. Thus, the presence of Mg can differentially alter SCs, depending on the microenvironment. These results demonstrate the applicability of this in vitro nerve injury model, and that Mg has wide-ranging effects on the repair SC phenotype.
Collapse
Affiliation(s)
- Krathika Bhat
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, 21502 Geesthacht, Germany
| | - Lisa Hanke
- Institute of Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, 21502 Geesthacht, Germany
| | - Eckhard Quandt
- Institute of Materials Science, University of Kiel, 24143 Kiel, Germany
| | - Sarah Pixley
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0576, USA
| | | |
Collapse
|
17
|
Huang Y, Wu L, Zhao Y, Guo J, Li R, Ma S, Ying Z. Schwann cell promotes macrophage recruitment through IL-17B/IL-17RB pathway in injured peripheral nerves. Cell Rep 2024; 43:113753. [PMID: 38341853 DOI: 10.1016/j.celrep.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
Macrophage recruitment to the injured nerve initiates a cascade of events, including myelin debris clearance and nerve trophic factor secretion, which contribute to proper nerve tissue repair. However, the mechanism of macrophage recruitment is still unclear. Here, by comparing wild-type with Mlkl-/- and Sarm1-/- mice, two mouse strains with impaired myelin debris clearance after peripheral nerve injury, we identify interleukin-17B (IL-17B) as a key regulator of macrophage recruitment. Schwann-cell-secreted IL-17B acts in an autocrine manner and binds to IL-17 receptor B to promote macrophage recruitment, and global or Schwann-cell-specific IL-17B deletion reduces macrophage infiltration, myelin clearance, and axon regeneration. We also show that the IL-17B signaling pathway is defective in the injured central nerves. These results reveal an important role for Schwann cell autocrine signaling during Wallerian degeneration and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.
Collapse
Affiliation(s)
- Yanju Huang
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liwen Wu
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yueshan Zhao
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jia Guo
- National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Ruoyi Li
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Suchen Ma
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhengxin Ying
- State Key Laboratory of Animal Biotech Breeding, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Chinese Institute for Brain Research, Beijing, No. 26 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.
| |
Collapse
|
18
|
Lund H, Hunt MA, Kurtović Z, Sandor K, Kägy PB, Fereydouni N, Julien A, Göritz C, Vazquez-Liebanas E, Andaloussi Mäe M, Jurczak A, Han J, Zhu K, Harris RA, Lampa J, Graversen JH, Etzerodt A, Haglund L, Yaksh TL, Svensson CI. CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier. J Exp Med 2024; 221:e20230675. [PMID: 38117255 PMCID: PMC10733632 DOI: 10.1084/jem.20230675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/04/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
Collapse
Affiliation(s)
- Harald Lund
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew A. Hunt
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zerina Kurtović
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paul B. Kägy
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Noah Fereydouni
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Vazquez-Liebanas
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Keying Zhu
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Rheumatology Unit, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of Surgery, McGill University, Montreal, Canada
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
20
|
Krishnan A, Verge VMK, Zochodne DW. Hallmarks of peripheral nerve injury and regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:1-17. [PMID: 38697733 DOI: 10.1016/b978-0-323-90108-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK, Canada.
| | - Valerie M K Verge
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Centre (CMSNRC), Saskatoon, SK, Canada.
| | - Douglas W Zochodne
- Neuroscience and Mental Health Institute and Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
21
|
Zhao Q, Jiang C, Zhao L, Dai X, Yi S. Unleashing Axonal Regeneration Capacities: Neuronal and Non-neuronal Changes After Injuries to Dorsal Root Ganglion Neuron Central and Peripheral Axonal Branches. Mol Neurobiol 2024; 61:423-433. [PMID: 37620687 DOI: 10.1007/s12035-023-03590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Peripheral nerves obtain remarkable regenerative capacity while central nerves can hardly regenerate following nerve injury. Sensory neurons in the dorsal root ganglion (DRG) are widely used to decipher the dissimilarity between central and peripheral axonal regeneration as axons of DRG neurons bifurcate into the regeneration-incompetent central projections and the regeneration-competent peripheral projections. A conditioning peripheral branch injury facilitates central axonal regeneration and enables the growth and elongation of central axons. Peripheral axonal injury stimulates neuronal calcium influx, alters the start-point chromatin states, increases chromatin accessibility, upregulates the expressions of regeneration-promoting genes and the synthesis of proteins, and supports axonal regeneration. Following central axonal injury, the responses of DRG neurons are modest, resulting in poor intrinsic growth ability. Some non-neuronal cells in DRGs, for instance satellite glial cells, also exhibit diminished injury responses to central axon injury as compared with peripheral axon injury. Moreover, DRG central and peripheral axonal branches are respectively surrounded by inhibitory glial scars generated by central glial cells and a permissive microenvironment generated by Schwann cells and macrophages. The aim of this review is to look at changes of DRG neurons and non-neuronal cells after peripheral and central axon injuries and summarize the contributing roles of both neuronal intrinsic regenerative capacities and surrounding microenvironments in axonal regeneration.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
22
|
Cui Y, Wang X, Xu Y, Cao Y, Luo G, Zhao Z, Zhang J. Ropivacaine Promotes Axon Regeneration by Regulating Nav1.8-mediated Macrophage Signaling after Sciatic Nerve Injury in Rats. Anesthesiology 2023; 139:782-800. [PMID: 37669448 PMCID: PMC10723771 DOI: 10.1097/aln.0000000000004761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/08/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Continuous nerve block with ropivacaine is commonly performed after repair surgery for traumatic peripheral nerve injuries. After peripheral nerve injury, tetrodotoxin-resistant voltage-gated sodium channel Nav1.8 is upregulated and contributes to macrophage inflammation. This study investigated whether ropivacaine promotes peripheral nerve regeneration through Nav1.8-mediated macrophage signaling. METHODS A sciatic nerve transection-repair (SNT) model was established in adult Sprague-Dawley rats of both sexes. The rats received 0.2% ropivacaine or 10 μM Nav1.8-selective inhibitor A-803467 around the injured site or near the sacrum for 3 days. Nerve regeneration was evaluated using behavioral, electrophysiologic, and morphological examinations. Moreover, myelin debris removal, macrophage phenotype, Nav1.8 expression, and neuropeptide expression were assessed using immunostaining, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Compared to the SNT-plus-vehicle group, the sensory, motor, and sensory-motor coordination functions of the two ropivacaine groups were significantly improved. Electrophysiologic (mean ± SD: recovery index of amplitude, vehicle 0.43 ± 0.17 vs. ropivacaine 0.83 ± 0.25, n = 11, P < 0.001) and histological analysis collectively indicated that ropivacaine significantly promoted axonal regrowth (percentage of neurofilament 200 [NF-200]-positive area: vehicle 19.88 ± 2.81 vs. ropivacaine 31.07 ± 2.62, n = 6, P < 0.001). The authors also found that, compared to the SNT-plus-vehicle group, the SNT-plus-ropivacaine group showed faster clearance of myelin debris, accompanied by significantly increased macrophage infiltration and transition from the M1 to M2 phenotype. Moreover, ropivacaine significantly attenuated Nav1.8 upregulation at 9 days after sciatic nerve transection (vehicle 4.12 ± 0.30-fold vs. ropivacaine 2.75 ± 0.36-fold, n = 5, P < 0.001), which coincided with the increased expression of chemokine ligand 2 and substance P. Similar changes were observed when using the selective Nav1.8 channel inhibitor A-803467. CONCLUSIONS Continuous nerve block with ropivacaine promotes the structural and functional recovery of injured sciatic nerves, possibly by regulating Nav1.8-mediated macrophage signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yongchen Cui
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Cao
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Anesthesiology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
24
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
25
|
Benowitz LI, Xie L, Yin Y. Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15359. [PMID: 37895039 PMCID: PMC10607492 DOI: 10.3390/ijms242015359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although most pathways in the mature central nervous system cannot regenerate when injured, research beginning in the late 20th century has led to discoveries that may help reverse this situation. Here, we highlight research in recent years from our laboratory identifying oncomodulin (Ocm), stromal cell-derived factor (SDF)-1, and chemokine CCL5 as growth factors expressed by cells of the innate immune system that promote axon regeneration in the injured optic nerve and elsewhere in the central and peripheral nervous systems. We also review the role of ArmC10, a newly discovered Ocm receptor, in mediating many of these effects, and the synergy between inflammation-derived growth factors and complementary strategies to promote regeneration, including deleting genes encoding cell-intrinsic suppressors of axon growth, manipulating transcription factors that suppress or promote the expression of growth-related genes, and manipulating cell-extrinsic suppressors of axon growth. In some cases, combinatorial strategies have led to unprecedented levels of nerve regeneration. The identification of some similar mechanisms in human neurons offers hope that key discoveries made in animal models may eventually lead to treatments to improve outcomes after neurological damage in patients.
Collapse
Affiliation(s)
- Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Feng R, Zhang P. The significance of M1 macrophage should be highlighted in peripheral nerve regeneration. Histol Histopathol 2023; 38:975-987. [PMID: 36734334 DOI: 10.14670/hh-18-591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Macrophage influences peripheral nerve regeneration. According to the classical M1/M2 paradigm, the M1 macrophage is an inhibitor of regeneration, while the M2 macrophage is a promoter. However, several studies have shown that M1 macrophages are indispensable for peripheral nerve repair and facilitate many critical processes in axonal regeneration. In this review, we summarized the information on macrophage polarization and focused on the activities of M1 macrophages in regeneration. We also provided some examples where the macrophage phenotypes were regulated to help regeneration. We argued that the coordination of both macrophage phenotypes might be effective in peripheral nerve repair, and a more comprehensive view of macrophages might contribute to macrophage-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Ruiqin Feng
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Ministry of Education and National Center for Trauma Medicine, Beijing, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Ministry of Education and National Center for Trauma Medicine, Beijing, China.
| |
Collapse
|
27
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
28
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Xie L, Yin Y, Jayakar S, Kawaguchi R, Wang Q, Peterson S, Shi C, Turnes BL, Zhang Z, Oses-Prieto J, Li J, Burlingame A, Woolf CJ, Geschwind D, Rasband M, Benowitz LI. The oncomodulin receptor ArmC10 enables axon regeneration in mice after nerve injury and neurite outgrowth in human iPSC-derived sensory neurons. Sci Transl Med 2023; 15:eadg6241. [PMID: 37556559 DOI: 10.1126/scitranslmed.adg6241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Oncomodulin (Ocm) is a myeloid cell-derived growth factor that enables axon regeneration in mice and rats after optic nerve injury or peripheral nerve injury, yet the mechanisms underlying its activity are unknown. Using proximity biotinylation, coimmunoprecipitation, surface plasmon resonance, and ectopic expression, we have identified armadillo-repeat protein C10 (ArmC10) as a high-affinity receptor for Ocm. ArmC10 deletion suppressed inflammation-induced axon regeneration in the injured optic nerves of mice. ArmC10 deletion also suppressed the ability of lesioned sensory neurons to regenerate peripheral axons rapidly after a second injury and to regenerate their central axons after spinal cord injury in mice (the conditioning lesion effect). Conversely, Ocm acted through ArmC10 to accelerate optic nerve and peripheral nerve regeneration and to enable spinal cord axon regeneration in these mouse nerve injury models. We showed that ArmC10 is highly expressed in human-induced pluripotent stem cell-derived sensory neurons and that exposure to Ocm altered gene expression and enhanced neurite outgrowth. ArmC10 was also expressed in human monocytes, and Ocm increased the expression of immune modulatory genes in these cells. These findings suggest that Ocm acting through its receptor ArmC10 may be a useful therapeutic target for nerve repair and immune modulation.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Riki Kawaguchi
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Qing Wang
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Sheri Peterson
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caleb Shi
- Harvard College, Cambridge, MA 02138, USA
| | - Bruna Lenfers Turnes
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zihe Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, UCSF, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, UCSF, Mission Bay Campus, San Francisco, CA, 94158, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Geschwind
- Departments of Neurology, Psychiatry and Human Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Matthew Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larry I Benowitz
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Nmezi B, Bey GR, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Alcocer EL, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold M, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551473. [PMID: 37609196 PMCID: PMC10441294 DOI: 10.1101/2023.08.03.551473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
Collapse
|
31
|
Down-regulation miR-146a-5p in Schwann cell-derived exosomes induced macrophage M1 polarization by impairing the inhibition on TRAF6/NF-κB pathway after peripheral nerve injury. Exp Neurol 2023; 362:114295. [PMID: 36493861 DOI: 10.1016/j.expneurol.2022.114295] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Both Schwann cell-derived exosomes (SC-Exos) and macrophagic sub-phenotypes are closely related to the regeneration and repair after peripheral nerve injury (PNI). However, the crosstalk between them is less clear. OBJECTIVE We aim to investigate the roles and underlying mechanisms of exosomes from normoxia-condition Schwann cell (Nor-SC-Exos) and from post-injury oxygen-glucose-deprivation-condition Schwann cell in regulating macrophagic sub-phenotypes and peripheral nerve injury repair. METHOD Both Nor-SC-Exos and OGD-SC-Exos were extracted through ultracentrifugation, identified by transmission electron microscopy (TEM), Nanosight tracking analysis (NTA) and western blotting. High-throughput sequencing was performed to explore the differential expression of microRNAs in both SC-Exos. In vitro, RAW264.7 macrophage was treated with two types of SC-Exos, M1 macrophagic markers (IL-10, Arg-1, TGF-β1) and M2 macrophagic markers (IL-6, IL-1β, TNF-α) were detected by enzyme-linked Immunosorbent Assay (ELISA) or qRT-PCR, and the expression of CD206, iNOS were detected via cellular immunofluorescence (IF) to judge macrophage sub-phenotypes. Dorsal root ganglion neurons (DRGns) were co-cultured with RAW264.7 cells treated with Nor-SC-Exos and OGD-SC-Exos, respectively, to explore their effect on neuron growth. In vivo, we established a sciatic nerve crush injury rat model. Nor-SC-Exos and OGD-SC-Exos were locally injected into the injury site. The mRNA expression of M1 macrophagic markers (IL-10, Arg-1, TGF-β1) and M2 macrophagic markers (IL-6, IL-1β, TNF-α) were detected by qRT-PCR to determine the sub-phenotype of macrophages in the injury site. IF was used to detect the expression of MBP and NF200, reflecting the myelin sheath and axon regeneration, and sciatic nerve function index (SFI) was measured to evaluate function repair. RESULT In vitro, Nor-SC-Exos promoted macrophage M2 polarization, increased anti-inflammation factors secretion, and facilitated axon elongation of DRGns. OGD-SC-Exos promoted M1 polarization, increased pro-inflammation factors secretion, and restrained axon elongation of DRGns. High-throughput sequencing and qRT-PCR results found that compared with Nor-SC-Exos, a shift from anti-inflammatory (pro-M2) to pro-inflammatory (pro-M1) of OGD-SC-Exos was closely related to the down-regulation of miR-146a-5p and its decreasing inhibition on TRAF6/NF-κB pathway after OGD injury. In vivo, we found Nor-SC-Exos and miR-146a-5p mimic promoted regeneration of myelin sheath and axon, and facilitated sciatic function repair via targeting TRAF6, while OGD-SC-Exos and miR-146a-5p inhibitor restrained them. CONCLUSION Our study confirmed that miR-146a-5p was significantly decreased in SC-Exos under the ischemia-hypoxic microenvironment of the injury site after PNI, which mediated its shift from promoting macrophage M2 polarization (anti-inflammation) to promoting M1 polarization (pro-inflammation), thereby limiting axonal regeneration and functional recovery.
Collapse
|
32
|
Feng R, Muraleedharan Saraswathy V, Mokalled MH, Cavalli V. Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc Natl Acad Sci U S A 2023; 120:e2215906120. [PMID: 36763532 PMCID: PMC9963351 DOI: 10.1073/pnas.2215906120] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/07/2023] [Indexed: 02/11/2023] Open
Abstract
Sensory neurons located in dorsal root ganglia (DRG) convey sensory information from peripheral tissue to the brain. After peripheral nerve injury, sensory neurons switch to a regenerative state to enable axon regeneration and functional recovery. This process is not cell autonomous and requires glial and immune cells. Macrophages in the DRG (DRGMacs) accumulate in response to nerve injury, but their origin and function remain unclear. Here, we mapped the fate and response of DRGMacs to nerve injury using macrophage depletion, fate-mapping, and single-cell transcriptomics. We identified three subtypes of DRGMacs after nerve injury in addition to a small population of circulating bone-marrow-derived precursors. Self-renewing macrophages, which proliferate from local resident macrophages, represent the largest population of DRGMacs. The other two subtypes include microglia-like cells and macrophage-like satellite glial cells (SGCs) (Imoonglia). We show that self-renewing DRGMacs contribute to promote axon regeneration. Using single-cell transcriptomics data and CellChat to simulate intercellular communication, we reveal that macrophages express the neuroprotective and glioprotective ligand prosaposin and communicate with SGCs via the prosaposin receptor GPR37L1. These data highlight that DRGMacs have the capacity to self-renew, similarly to microglia in the Central nervous system (CNS) and contribute to promote axon regeneration. These data also reveal the heterogeneity of DRGMacs and their potential neuro- and glioprotective roles, which may inform future therapeutic approaches to treat nerve injury.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
| | - Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO63110
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
33
|
Huang J, Zhang G, Li S, Li J, Wang W, Xue J, Wang Y, Fang M, Zhou N. Endothelial cell-derived exosomes boost and maintain repair-related phenotypes of Schwann cells via miR199-5p to promote nerve regeneration. J Nanobiotechnology 2023; 21:10. [PMID: 36624511 PMCID: PMC9827708 DOI: 10.1186/s12951-023-01767-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) respond to nerve injury by transforming into the repair-related cell phenotype, which can provide the essential signals and spatial cues to promote axonal regeneration and induce target reinnervation. Endothelial cells (ECs) contribute to intraneural angiogenesis contributing to creating a permissive microenvironment. The coordination between ECs and SCs within injury sites is crucial in the regeneration process, however, it still unclear. As the intercellular vital information mediators in the nervous system, exosomes have been proposed to take a significant role in regulating regeneration. Thus, the main purpose of this study is to determine the facilitative effect of ECs-derived exosomes on SCs and to seek the underlying mechanism. RESULTS In the present study, we collected exosomes from media of ECs. We demonstrated that exosomes derived from ECs possessed the favorable neuronal affinity both in vitro and in vivo. Further research indicated that EC-exosomes (EC-EXO) could boost and maintain repair-related phenotypes of SCs, thereby enhancing axonal regeneration, myelination of regenerated axons and neurologically functional recovery of the injured nerve. MiRNA sequencing in EXO-treated SCs and control SCs indicated that EC-EXO significantly up-regulated expression of miR199-5p. Furthermore, this study demonstrated that EC-EXO drove the conversion of SC phenotypes in a PI3K/AKT/PTEN-dependent manner. CONCLUSION In conclusion, our research indicates that the internalization of EC-EXO in SCs can promote nerve regeneration by boosting and maintaining the repair-related phenotypes of SCs. And the mechanism may be relevant to the up-regulated expression of miR199-5p and activation of PI3K/AKT/PTEN signaling pathway.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Geyi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Senrui Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center For Spine and Spinal Cord Injury, 1 Xinmin St, Changchun, 130021, China.
| | - Mengyuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
34
|
Piñero G, Vence M, Aranda ML, Cercato MC, Soto PA, Usach V, Setton-Avruj PC. All the PNS is a Stage: Transplanted Bone Marrow Cells Play an Immunomodulatory Role in Peripheral Nerve Regeneration. ASN Neuro 2023; 15:17590914231167281. [PMID: 37654230 PMCID: PMC10475269 DOI: 10.1177/17590914231167281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 09/02/2023] Open
Abstract
SUMMARY STATEMENT Bone marrow cell transplant has proven to be an effective therapeutic approach to treat peripheral nervous system injuries as it not only promoted regeneration and remyelination of the injured nerve but also had a potent effect on neuropathic pain.
Collapse
Affiliation(s)
- Gonzalo Piñero
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Pathology, Mount Sinai Hospital, New York, NY, USA
| | - Marianela Vence
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcos L. Aranda
- Universidad de Buenos Aires-CONICET, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Magalí C. Cercato
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula A. Soto
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina Usach
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia C. Setton-Avruj
- Departamento de Química Biológica, Cátedra de Química Biológica Patalógica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
35
|
Juckett L, Saffari TM, Ormseth B, Senger JL, Moore AM. The Effect of Electrical Stimulation on Nerve Regeneration Following Peripheral Nerve Injury. Biomolecules 2022; 12:biom12121856. [PMID: 36551285 PMCID: PMC9775635 DOI: 10.3390/biom12121856] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries (PNI) are common and often result in lifelong disability. The peripheral nervous system has an inherent ability to regenerate following injury, yet complete functional recovery is rare. Despite advances in the diagnosis and repair of PNIs, many patients suffer from chronic pain, and sensory and motor dysfunction. One promising surgical adjunct is the application of intraoperative electrical stimulation (ES) to peripheral nerves. ES acts through second messenger cyclic AMP to augment the intrinsic molecular pathways of regeneration. Decades of animal studies have demonstrated that 20 Hz ES delivered post-surgically accelerates axonal outgrowth and end organ reinnervation. This work has been translated clinically in a series of randomized clinical trials, which suggest that ES can be used as an efficacious therapy to improve patient outcomes following PNIs. The aim of this review is to discuss the cellular physiology and the limitations of regeneration after peripheral nerve injuries. The proposed mechanisms of ES protocols and how they facilitate nerve regeneration depending on timing of administration are outlined. Finally, future directions of research that may provide new perspectives on the optimal delivery of ES following PNI are discussed.
Collapse
|
36
|
Avraham O, Le J, Leahy K, Li T, Zhao G, Cavalli V. Analysis of neuronal injury transcriptional response identifies CTCF and YY1 as co-operating factors regulating axon regeneration. Front Mol Neurosci 2022; 15:967472. [PMID: 36081575 PMCID: PMC9446241 DOI: 10.3389/fnmol.2022.967472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Injured sensory neurons activate a transcriptional program necessary for robust axon regeneration and eventual target reinnervation. Understanding the transcriptional regulators that govern this axon regenerative response may guide therapeutic strategies to promote axon regeneration in the injured nervous system. Here, we used cultured dorsal root ganglia neurons to identify pro-regenerative transcription factors. Using RNA sequencing, we first characterized this neuronal culture and determined that embryonic day 13.5 DRG (eDRG) neurons cultured for 7 days are similar to e15.5 DRG neurons in vivo and that all neuronal subtypes are represented. This eDRG neuronal culture does not contain other non-neuronal cell types. Next, we performed RNA sequencing at different time points after in vitro axotomy. Analysis of differentially expressed genes revealed upregulation of known regeneration associated transcription factors, including Jun, Atf3 and Rest, paralleling the axon injury response in vivo. Analysis of transcription factor binding sites in differentially expressed genes revealed other known transcription factors promoting axon regeneration, such as Myc, Hif1α, Pparγ, Ascl1a, Srf, and Ctcf, as well as other transcription factors not yet characterized in axon regeneration. We next tested if overexpression of novel candidate transcription factors alone or in combination promotes axon regeneration in vitro. Our results demonstrate that expression of Ctcf with Yy1 or E2f2 enhances in vitro axon regeneration. Our analysis highlights that transcription factor interaction and chromatin architecture play important roles as a regulator of axon regeneration.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Jimmy Le
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Kathleen Leahy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Valeria Cavalli,
| |
Collapse
|
37
|
Kwon MJ, Seo Y, Cho H, Kim HS, Oh YJ, Genişcan S, Kim M, Park HH, Joe EH, Kwon MH, Kang HC, Kim BG. Nanogel-mediated delivery of oncomodulin secreted from regeneration-associated macrophages promotes sensory axon regeneration in the spinal cord. Theranostics 2022; 12:5856-5876. [PMID: 35966584 PMCID: PMC9373827 DOI: 10.7150/thno.73386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Preconditioning nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these macrophages influence the neuronal capacity of axon regeneration remains elusive. We report that oncomodulin (ONCM) is produced from the regeneration-associated macrophages and strongly influences regeneration of DRG sensory axons. We also attempted to promote sensory axon regeneration by nanogel-mediated delivery of ONCM to DRGs. Methods:In vitro neuron-macrophage interaction model and preconditioning sciatic nerve injury were used to verify the necessity of ONCM in preconditioning injury-induced neurite outgrowth. We developed a nanogel-mediated delivery system in which electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) enabled a controlled release of ONCM. Results: Sciatic nerve injury upregulated ONCM in DRG macrophages. ONCM in macrophages was necessary to produce pro-regenerative macrophages in the in vitro model of neuron-macrophage interaction and played an essential role in preconditioning-induced neurite outgrowth. ONCM increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. Increasing extracellularly secreted ONCM in DRGs sufficiently enhanced the capacity of neurite outgrowth. Intraganglionic injection of REPL-NG/ONCM complex allowed sustained ONCM activity in DRG tissue and achieved a remarkable long-range regeneration of dorsal column sensory axons beyond spinal cord lesion. Conclusion: NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Min Jung Kwon
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyung Soon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Young Joo Oh
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Simay Genişcan
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun-Hye Joe
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| |
Collapse
|
38
|
Talsma AD, Niemi JP, Pachter JS, Zigmond RE. The primary macrophage chemokine, CCL2, is not necessary after a peripheral nerve injury for macrophage recruitment and activation or for conditioning lesion enhanced peripheral regeneration. J Neuroinflammation 2022; 19:179. [PMID: 35820932 PMCID: PMC9277969 DOI: 10.1186/s12974-022-02497-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries stimulate the regenerative capacity of injured neurons through a neuroimmune phenomenon termed the conditioning lesion (CL) response. This response depends on macrophage accumulation in affected dorsal root ganglia (DRGs) and peripheral nerves. The macrophage chemokine CCL2 is upregulated after injury and is allegedly required for stimulating macrophage recruitment and pro-regenerative signaling through its receptor, CCR2. In these tissues, CCL2 is putatively produced by neurons in the DRG and Schwann cells in the distal nerve. METHODS Ccl2fl/fl mice were crossed with Advillin-Cre, P0-Cre, or both to create conditional Ccl2 knockouts (CKOs) in sensory neurons, Schwann cells, or both to hypothetically remove CCL2 and macrophages from DRGs, nerves or both. CCL2 was localized using Ccl2-RFPfl/fl mice. CCL2-CCR2 signaling was further examined using global Ccl2 KOs and Ccr2gfp knock-in/knock-outs. Unilateral sciatic nerve transection was used as the injury model, and at various timepoints, chemokine expression, macrophage accumulation and function, and in vivo regeneration were examined using qPCR, immunohistochemistry, and luxol fast blue staining. RESULTS Surprisingly, in all CKOs, DRG Ccl2 gene expression was decreased, while nerve Ccl2 was not. CCL2-RFP reporter mice revealed CCL2 expression in several cell types beyond the expected neurons and Schwann cells. Furthermore, macrophage accumulation, myelin clearance, and in vivo regeneration were unaffected in all CKOs, suggesting CCL2 may not be necessary for the CL response. Indeed, Ccl2 global knockout mice showed normal macrophage accumulation, myelin clearance, and in vivo regeneration, indicating these responses do not require CCL2. CCR2 ligands, Ccl7 and Ccl12, were upregulated after nerve injury and perhaps could compensate for the absence of Ccl2. Finally, Ccr2gfp knock-in/knock-out animals were used to differentiate resident and recruited macrophages in the injured tissues. Ccr2gfp/gfp KOs showed a 50% decrease in macrophages in the distal nerve compared to controls with a relative increase in resident macrophages. In the DRG there was a small but insignificant decrease in macrophages. CONCLUSIONS CCL2 is not necessary for macrophage accumulation, myelin clearance, and axon regeneration in the peripheral nervous system. Without CCL2, other CCR2 chemokines, resident macrophage proliferation, and CCR2-independent monocyte recruitment can compensate and allow for normal macrophage accumulation.
Collapse
Affiliation(s)
- Aaron D Talsma
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Jon P Niemi
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA
| | - Joel S Pachter
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, 06030-6125, USA
| | - Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4975, USA.
| |
Collapse
|
39
|
Matsui Y, Kadoya K, Nagano Y, Endo T, Hara M, Matsumae G, Suzuki T, Yamamoto Y, Terkawi MA, Iwasaki N. IL4 stimulated macrophages promote axon regeneration after peripheral nerve injury by secreting uPA to stimulate uPAR upregulated in injured axons. Cell Mol Life Sci 2022; 79:289. [PMID: 35536429 PMCID: PMC11072050 DOI: 10.1007/s00018-022-04310-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
Abstract
Accumulating evidences suggest that M2 macrophages are involved with repair processes in the nervous system. However, whether M2 macrophages can promote axon regeneration by directly stimulating axons nor its precise molecular mechanism remains elusive. Here, the current study demonstrated that typical M2 macrophages, which were generated by IL4 simulation, had the capacity to stimulate axonal growth by their direct effect on axons and that the graft of IL4 stimulated macrophages into the region of Wallerian degeneration enhanced axon regeneration and improved functional recovery after PNI. Importantly, uPA (urokinase plasminogen activator)-uPA receptor (uPAR) was identified as the central axis underlying the axon regeneration effect of IL4 stimulated macrophages. IL4 stimulated macrophages secreted uPA, and its inhibition abolished their axon regeneration effect. Injured but not intact axons expressed uPAR to be sensitive to uPA. These results unveil a cellular and molecular mechanism underlying the macrophage related axon regeneration and provide a basis of a novel therapy for PNI.
Collapse
Affiliation(s)
- Yuki Matsui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yusuke Nagano
- Department of Orthopaedic Surgery, National Hospital Organization, Hokkaido Medical Center, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masato Hara
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuhiro Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
40
|
Li J, Yao Y, Wang Y, Xu J, Zhao D, Liu M, Shi S, Lin Y. Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202513. [PMID: 35483031 DOI: 10.1002/adma.202202513] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Indexed: 02/05/2023]
Abstract
Peripheral nerve injury (PNI) is currently recognized as one of the most significant public health issues and affects the general well-being of millions of individuals worldwide. Despite advances in nerve tissue engineering, nerve repair still cannot guarantee complete functional recovery. In the present study, an innovative approach is adopted to establish a multifunctional tetrahedral framework nucleic acids (tFNAs) system, denoted as MiDs, which can integrate the powerful programmability, permeability, and structural stability of tFNAs, with the nerve regeneration potential of microRNA-22 to enhance the communication between Schwann cells (SCs) and macrophages for more effective functional rehabilitation of peripheral nerves. Relevant results demonstrate that MiDs can amplify the ability of SCs to recruit macrophages and facilitate their polarization into the pro-healing M2 phenotype to reconstruct the post-injury microenvironment. Furthermore, MiDs can initiate the adaptive intracellular reprogramming of SCs within a short period to further promote axon regeneration and remyelination. MiDs represent a new possibility for enhancing nerve repair and may have critical clinical applications in the future.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jiangshan Xu
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
41
|
Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C, Stavarache MA, Ma M, Wang Y, Cui Q, Kaplitt MG, Zack DJ, Benowitz LI, Yin Y. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proc Natl Acad Sci U S A 2022; 119:e2113751119. [PMID: 35394873 PMCID: PMC9169637 DOI: 10.1073/pnas.2113751119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell–derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Ling-Ping Cen
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Yiqing Li
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510085, China
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Oleksandr Strelko
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mihaela A. Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Madeline Ma
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Yongting Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Cui
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
42
|
Hu B, Zhang H, Xu M, Li L, Wu M, Zhang S, Liu X, Xia W, Xu K, Xiao J, Zhang H, Ni L. Delivery of Basic Fibroblast Growth Factor Through an In Situ Forming Smart Hydrogel Activates Autophagy in Schwann Cells and Improves Facial Nerves Generation via the PAK-1 Signaling Pathway. Front Pharmacol 2022; 13:778680. [PMID: 35431972 PMCID: PMC9011134 DOI: 10.3389/fphar.2022.778680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Although studies have shown that basic fibroblast growth factor (bFGF) can activate autophagy and promote peripheral nerve repair, the role and the molecular mechanism of action of bFGF in the facial nerve are not clear. In this study, a thermosensitive in situ forming poloxamer hydrogel was used as a vehicle to deliver bFGF for treating facial nerve injury (FNI) in the rat model. Using H&E and Masson’s staining, we found that bFGF hydrogel can promote the functional recovery and regeneration of the facial nerve. Furthermore, studies on the mechanism showed that bFGF can promote FNI recovery by promoting autophagy and inhibiting apoptosis. Additionally, this study demonstrated that the role of hydrogel binding bFGF in nerve repair was mediated through the activation of the PAK1 signaling pathway in Schwann cells (SCs). These results indicated that poloxamer thermosensitive hydrogel loaded with bFGF can significantly restore the morphology and function of the injured facial nerve by promoting autophagy and inhibiting apoptosis by activating the PAK1 pathway, which can provide a promising strategy for FNI recovery.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Hanbo Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Menglu Xu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Lei Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Man Wu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Susu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Xuejun Liu
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weidong Xia
- Department of Burn, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| | - Liyan Ni
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jian Xiao, ; Hongyu Zhang, ; Liyan Ni,
| |
Collapse
|
43
|
Liu T, Wang Y, Lu L, Liu Y. SPIONs mediated magnetic actuation promotes nerve regeneration by inducing and maintaining repair-supportive phenotypes in Schwann cells. J Nanobiotechnology 2022; 20:159. [PMID: 35351151 PMCID: PMC8966266 DOI: 10.1186/s12951-022-01337-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022] Open
Abstract
Background Schwann cells, the glial cells in the peripheral nervous system, are highly plastic. In response to nerve injury, Schwann cells are reprogrammed to a series of specialized repair-promoting phenotypes, known as repair Schwann cells, which play a pivotal role in nerve regeneration. However, repair Schwann cells represent a transient and unstable cell state, and these cells progressively lose their repair phenotypes and repair‐supportive capacity; the transience of this state is one of the key reasons for regeneration failure in humans. Therefore, the ability to control the phenotypic stability of repair Schwann cells is of great practical importance as well as biological interest. Results We designed and prepared a type of fluorescent–magnetic bifunctional superparamagnetic iron oxide nanoparticles (SPIONs). In the present study, we established rat sciatic nerve injury models, then applied SPIONs to Schwann cells and established an effective SPION-mediated magnetic actuation system targeting the sciatic nerves. Our results demonstrate that magnetic actuation mediated by SPIONs can induce and maintain repair-supportive phenotypes of Schwann cells, thereby promoting regeneration and functional recovery of the sciatic nerve after crush injury. Conclusions Our research indicate that Schwann cells can sense these external, magnetically driven mechanical forces and transduce them to intracellular biochemical signals that promote nerve regeneration by inducing and maintaining the repair phenotypes of Schwann cells. We hope that this study will provide a new therapeutic strategy to promote the regeneration and repair of injured peripheral nerves. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01337-5.
Collapse
Affiliation(s)
- Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
44
|
Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain 2022; 163:e106-e120. [PMID: 33941753 PMCID: PMC8556407 DOI: 10.1097/j.pain.0000000000002321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Peripheral nerve regeneration is associated with pain in several preclinical models of neuropathic pain. Some neuropathic pain conditions and preclinical neuropathic pain behaviors are improved by sympathetic blockade. In this study, we examined the effect of a localized "microsympathectomy," ie, cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, which is more analogous to clinically used sympathetic blockade compared with chemical or surgical sympathectomy. We also examined manipulations of CCL2 (monocyte chemoattractant protein 1), a key player in both regeneration and pain. We used rat tibial nerve crush as a neuropathic pain model in which peripheral nerve regeneration can occur successfully. CCL2 in the sensory ganglia was increased by tibial nerve crush and reduced by microsympathectomy. Microsympathectomy and localized siRNA-mediated knockdown of CCL2 in the lumbar dorsal root ganglion had very similar effects: partial improvement of mechanical hypersensitivity and guarding behavior, reduction of regeneration markers growth-associated protein 43 and activating transcription factor 3, and reduction of macrophage density in the sensory ganglia and regenerating nerve. Microsympathectomy reduced functional regeneration as measured by myelinated action potential propagation through the injury site and denervation-induced atrophy of the tibial-innervated gastrocnemius muscle at day 10. Microsympathectomy plus CCL2 knockdown had behavioral effects similar to microsympathectomy alone. The results show that local sympathetic effects on neuropathic pain may be mediated in a large part by the effects on expression of CCL2, which in turn regulates the regeneration process.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
45
|
Wofford KL, Shultz RB, Burrell JC, Cullen DK. Neuroimmune interactions and immunoengineering strategies in peripheral nerve repair. Prog Neurobiol 2022; 208:102172. [PMID: 34492307 PMCID: PMC8712351 DOI: 10.1016/j.pneurobio.2021.102172] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023]
Abstract
Peripheral nerve injuries result in disrupted cellular communication between the central nervous system and somatic distal end targets. The peripheral nervous system is capable of independent and extensive regeneration; however, meaningful target muscle reinnervation and functional recovery remain limited and may result in chronic neuropathic pain and diminished quality of life. Macrophages, the primary innate immune cells of the body, are critical contributors to regeneration of the injured peripheral nervous system. However, in some clinical scenarios, macrophages may fail to provide adequate support with optimal timing, duration, and location. Here, we review the history of immunosuppressive and immunomodulatory strategies to treat nerve injuries. Thereafter, we enumerate the ways in which macrophages contribute to successful nerve regeneration. We argue that implementing macrophage-based immunomodulatory therapies is a promising treatment strategy for nerve injuries across a wide range of clinical presentations.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States
| | - Robert B Shultz
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States; Axonova Medical, LLC, Philadelphia, PA, 19104, United States
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, United States; Axonova Medical, LLC, Philadelphia, PA, 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
46
|
The Conditioning Lesion Response in Dorsal Root Ganglion Neurons Is Inhibited in Oncomodulin Knock-Out Mice. eNeuro 2022; 9:ENEURO.0477-21.2022. [PMID: 35131866 PMCID: PMC8874952 DOI: 10.1523/eneuro.0477-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Regeneration can occur in peripheral neurons after injury, but the mechanisms involved are not fully delineated. Macrophages in dorsal root ganglia (DRGs) are involved in the enhanced regeneration that occurs after a conditioning lesion (CL), but how macrophages stimulate this response is not known. Oncomodulin (Ocm) has been proposed as a proregenerative molecule secreted by macrophages and neutrophils, is expressed in the DRG after axotomy, and stimulates neurite outgrowth by DRG neurons in culture. Wild-type (WT) and Ocm knock-out (KO) mice were used to investigate whether Ocm plays a role in the CL response in DRG neurons after sciatic nerve transection. Neurite outgrowth was measured after 24 and 48 h in explant culture 7 d after a CL. Sciatic nerve regeneration was also measured in vivo 7 d after a CL and 2 d after a subsequent sciatic nerve crush. The magnitude of the increased neurite outgrowth following a CL was significantly smaller in explants from Ocm KO mice than in explants from WT mice. In vivo after a CL, increased regeneration was found in WT animals but not in KO animals. Macrophage accumulation and levels of interleukin-6 (IL-6) mRNA were measured in axotomized DRG from WT and Ocm KO animals, and both were significantly higher than in sham-operated ganglia. At 6 h after axotomy, Il-6 mRNA was higher in WT than in Ocm KO mice. Our data support the hypothesis that Ocm plays a necessary role in producing a normal CL response and that its effects possibly result in part from stimulation of the expression of proregenerative macrophage cytokines such as IL-6.
Collapse
|
47
|
Iwai H, Ataka K, Suzuki H, Dhar A, Kuramoto E, Yamanaka A, Goto T. Tissue-resident M2 macrophages directly contact primary sensory neurons in the sensory ganglia after nerve injury. J Neuroinflammation 2021; 18:227. [PMID: 34645458 PMCID: PMC8513227 DOI: 10.1186/s12974-021-02283-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/27/2021] [Indexed: 05/13/2023] Open
Abstract
Background Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. Methods After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. Results The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. Conclusion Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02283-z.
Collapse
Affiliation(s)
- Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.
| | - Koji Ataka
- Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan.,Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Ashis Dhar
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
48
|
Avraham O, Feng R, Ewan EE, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. eLife 2021; 10:e68457. [PMID: 34586065 PMCID: PMC8480984 DOI: 10.7554/elife.68457] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Rui Feng
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Eric Edward Ewan
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Justin Rustenhoven
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- Center for Brain Immunology and Glia (BIG), Washington University School of MedicineSt LouisUnited States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
49
|
Du YL, Sergeeva EG, Stein DG. Visual recovery following optic nerve crush in male and female wild-type and TRIF-deficient mice. Restor Neurol Neurosci 2021; 38:355-368. [PMID: 32986632 DOI: 10.3233/rnn-201019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is growing evidence that the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway is implicated in the modulation of neuroinflammation following injuries to the brain and retina. After exposure to injury or to excitotoxic pathogens, toll-like receptors (TLR) activate the innate immune system signaling cascade and stimulate the release of inflammatory cytokines. Inhibition of the TLR4 receptor has been shown to enhance retinal ganglion cell (RGC) survival in optic nerve crush (ONC) and in ischemic injury to other parts of the brain. OBJECTIVE Based on this evidence, we tested the hypothesis that mice with the TRIF gene knocked out (TKO) will demonstrate decreased inflammatory responses and greater functional recovery after ONC. METHODS Four experimental groups -TKO ONC (12 males and 8 females), WT ONC (10 males and 8 females), TKO sham (9 males and 5 females), and WT sham (7 males and 5 females) -were used as subjects. Visual evoked potentials (VEP) were recorded in the left and right primary visual cortices and optomotor response were assessed in all mice at 14, 30, and 80 days after ONC. GFAP and Iba-1 were used as markers for astrocytes and microglial cells respectively at 7 days after ONC, along with NF-kB to measure inflammatory effects downstream of TRIF activation; RMPBS marker was used to visualize RGC survival and GAP-43 was used as a marker of regenerating optic nerve axons at 30 days after ONC. RESULTS We found reduced inflammatory response in the retina at 7 days post-ONC, less RGC loss and greater axonal regeneration 30 days post-ONC, and better recovery of visual function 80 days post-ONC in TKO mice compared to WT mice. CONCLUSIONS Our study showed that the TRIF pathway is involved in post-ONC inflammatory response and gliosis and that deletion of TRIF induces better RGC survival and regeneration and better functional recovery in mice. Our results suggest the TRIF pathway as a potential therapeutic target for reducing the inflammatory damage caused by nervous system injury.
Collapse
Affiliation(s)
- Yimeng Lina Du
- Emory University College of Arts and Sciences, Neuroscience and Behavioral Biology Program, GA, USA
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald G Stein
- Emory University College of Arts and Sciences, Neuroscience and Behavioral Biology Program, GA, USA.,Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
50
|
Kuo PJ, Rau CS, Wu SC, Lin CW, Huang LH, Lu TH, Wu YC, Wu CJ, Tsai CW, Hsieh CH. Exosomes Secreted by Adipose-Derived Stem Cells Following FK506 Stimulation Reduce Autophagy of Macrophages in Spine after Nerve Crush Injury. Int J Mol Sci 2021; 22:9628. [PMID: 34502537 PMCID: PMC8431814 DOI: 10.3390/ijms22179628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages emerge in the milieu around innervated neurons after nerve injuries. Following nerve injury, autophagy is induced in macrophages and affects the regulation of inflammatory responses. It is closely linked to neuroinflammation, while the immunosuppressive drug tacrolimus (FK506) enhances nerve regeneration following nerve crush injury and nerve allotransplantation with additional neuroprotective and neurotrophic functions. The combined use of FK506 and adipose-derived stem cells (ADSCs) was employed in cell therapy for organ transplantation and vascularized composite allotransplantation. This study aimed to investigate the topical application of exosomes secreted by ADSCs following FK506 treatment (ADSC-F-exo) to the injured nerve in a mouse model of sciatic nerve crush injury. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) were used to profile the potential exosomal proteins involved in autophagy. Immunohistochemical analysis revealed that nerve crush injuries significantly induced autophagy in the dorsal root ganglia and dorsal horn of the spinal segments. Locally applied ADSC-F-exo significantly reduced autophagy of macrophages in the spinal segments after nerve crush injury. Proteomic analysis showed that of the 22 abundant exosomal proteins detected in ADSC-F-exo, heat shock protein family A member 8 (HSPA8) and eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) are involved in exosome-mediated autophagy reduction.
Collapse
Affiliation(s)
- Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chia-Wei Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (C.-S.R.); (L.-H.H.)
| | - Tsu-Hsiang Lu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Jung Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Chia-Wen Tsai
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (P.-J.K.); (C.-W.L.); (T.-H.L.); (Y.-C.W.); (C.-J.W.); (C.-W.T.)
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, LinKou 33333, Taiwan
| |
Collapse
|