1
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Sun Y, Jiang W, Liao X, Wang D. Hallmarks of perineural invasion in pancreatic ductal adenocarcinoma: new biological dimensions. Front Oncol 2024; 14:1421067. [PMID: 39119085 PMCID: PMC11307098 DOI: 10.3389/fonc.2024.1421067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant tumor with a high metastatic potential. Perineural invasion (PNI) occurs in the early stages of PDAC with a high incidence rate and is directly associated with a poor prognosis. It involves close interaction among PDAC cells, nerves and the tumor microenvironment. In this review, we detailed discuss PNI-related pain, six specific steps of PNI, and treatment of PDAC with PNI and emphasize the importance of novel technologies for further investigation.
Collapse
Affiliation(s)
- Yaquan Sun
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
4
|
Dhanapalaratnam R, Issar T, Poynten AM, Milner KL, Kwai NCG, Krishnan AV. Progression of axonal excitability abnormalities with increasing clinical severity of diabetic peripheral neuropathy. Clin Neurophysiol 2024; 160:12-18. [PMID: 38367309 DOI: 10.1016/j.clinph.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Diabetic peripheral neuropathy (DPN) is a frequent complication for persons with type 2 diabetes. Previous studies have failed to demonstrate any significant impact of treatment for DPN. The present study assessed the role of axonal ion channel dysfunction in DPN and explored the hypothesis that there may be a progressive change in ion channel abnormalities that varied with disease stage. METHODS Neurophysiological studies were conducted using axonal excitability techniques, a clinical method of assessing ion channel dysfunction. Studies were conducted in 178 persons with type 2 diabetes, with participants allocated into four groups according to clinical severity of neuropathy, assessed using the Total Neuropathy Grade. RESULTS Analysis of excitability data demonstrated a progressive and stepwise reduction in two parameters that are related to the activity of Kv1.1 channels, namely superexcitability and depolarizing threshold electrotonus at 10-20 ms (p < 0.001), and mathematical modelling of axonal excitability findings supported progressive upregulation of Kv1.1 conductances with increasing greater disease severity. CONCLUSION The findings are consistent with a progressive upregulation of juxtaparanodal Kv1.1 conductances with increasing clinical severity of diabetic peripheral neuropathy. SIGNIFICANCE From a translational perspective, the study suggests that blockade of Kv1.1 channels using 4-aminopyridine derivatives such as fampridine may be a potential treatment for DPN.
Collapse
Affiliation(s)
- Roshan Dhanapalaratnam
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Neurology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Tushar Issar
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia
| | - Ann M Poynten
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Kerry-Lee Milner
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Natalie C G Kwai
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, UNSW Sydney, NSW 2031, Australia; Department of Neurology, Prince of Wales Hospital, Sydney, NSW 2031, Australia.
| |
Collapse
|
5
|
Xu JW, Tang SQ, Lin J, Li YJ, Shen D, Ding GH, Shen XY, Wang LN. NTPDase1-ATP-P2Y2Rs axis in the sciatic nerve contributes to acupuncture at "Zusanli" (ST36)-induced analgesia in ankle arthritis rats. Brain Res Bull 2024; 209:110909. [PMID: 38402994 DOI: 10.1016/j.brainresbull.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The efficacy of acupuncture at Zusanli (ST36) in alleviating lower-limb pain is widely acknowledged in clinical practice, while its underlying mechanism remains incompletely elucidated. Our previous research had revealed that the prompt analgesia induced by needling-ST36 was accompanied by expression alterations in certain exco-nucleotidases within the sciatic nerve. Building upon this finding, the current work focused on NTPDase1, the primary ecto-nucleotidase in the human body, which converts ATP into AMP. METHODS A 20-min acupuncture was administered unilaterally at the ST36 on rats with acute ankle arthritis. The pain thresholds of the injured hind paws were determined. Pharmacological interference was carried out by introducing the corresponding reagents to the sciatic nerve. ATP levels around the excised nerve were measured using a luciferase-luciferin assay. Live calcium imaging, utilizing the Fura 2-related-F340/F380 ratio, was conducted on Schwann cells in excised nerves and cultured rat SCs line, RSC96 cells. RESULTS The analgesic effect induced by needling-ST36 was impaired when preventing ATP degradation via inhibiting NTPDase1 activities with ARL67156 or Ticlopidine. Conversely, increasing NTPDase1 activities with Apyrase duplicated the acupuncture effect. Similarly, preventing the conversion of AMP to adenosine via suppression of NT5E with AMP-CP hindered the acupuncture effect. Unexpectedly, impeded ATP hydrolysis ability and diminished NTPDase1 expression were observed in the treated group. Agonism at P2Y2Rs with ATP, UTP, or INS365 resulted in anti-nociception. Contrarily, antagonism at P2Y2Rs with Suramin or AR-C 118925xx prevented acupuncture analgesia. Immunofluorescent labeling demonstrated that the treated rats expressed more P2Y2Rs that were predominant in Schwann cells. Suppression of Schwann cells by inhibiting ErbB receptors also prevented acupuncture analgesia. Finally, living imaging on the excised nerves or RSC96 cells showed that agonism at P2Y2Rs indeed led to [Ca2+]i rise. CONCLUSION These findings strongly suggest that the analgesic mechanism of needling-ST36 on the hypersensation in the lower limb partially relies on NTPDase1 activities in the sciatic nerve. In addition to facilitating adenosine signaling in conjunction with NT5E, most importantly, NTPDase1 may provide an appropriate low-level ATP milieu for the activation of P2Y2R in the sciatic nerve, particularly in Schwann cells.
Collapse
Affiliation(s)
- Jing-Wen Xu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Si-Qi Tang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jie Lin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu-Jia Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Dan Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Guang-Hong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (21DZ2271800), Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xue-Yong Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Research Center for Acupuncture and Meridians, Shanghai 201203, China
| | - Li-Na Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
6
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
7
|
Gupta DP, Bhusal A, Rahman MH, Kim JH, Choe Y, Jang J, Jung HJ, Kim UK, Park JS, Maeng LS, Suk K, Song GJ. EBP50 is a key molecule for the Schwann cell-axon interaction in peripheral nerves. Prog Neurobiol 2023; 231:102544. [PMID: 37940033 DOI: 10.1016/j.pneurobio.2023.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Peripheral nerve injury disrupts the Schwann cell-axon interaction and the cellular communication between them. The peripheral nervous system has immense potential for regeneration extensively due to the innate plastic potential of Schwann cells (SCs) that allows SCs to interact with the injured axons and exert specific repair functions essential for peripheral nerve regeneration. In this study, we show that EBP50 is essential for the repair function of SCs and regeneration following nerve injury. The increased expression of EBP50 in the injured sciatic nerve of control mice suggested a significant role in regeneration. The ablation of EBP50 in mice resulted in delayed nerve repair, recovery of behavioral function, and remyelination following nerve injury. EBP50 deficiency led to deficits in SC functions, including proliferation, migration, cytoskeleton dynamics, and axon interactions. The adeno-associated virus (AAV)-mediated local expression of EBP50 improved SCs migration, functional recovery, and remyelination. ErbB2-related proteins were not differentially expressed in EBP50-deficient sciatic nerves following injury. EBP50 binds and stabilizes ErbB2 and activates the repair functions to promote regeneration. Thus, we identified EBP50 as a potent SC protein that can enhance the regeneration and functional recovery driven by NRG1-ErbB2 signaling, as well as a novel regeneration modulator capable of potential therapeutic effects.
Collapse
Affiliation(s)
- Deepak Prasad Gupta
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Anup Bhusal
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jaemyung Jang
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Lee-So Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea; Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Republic of Korea.
| |
Collapse
|
8
|
Itson-Zoske B, Gani U, Mikesell A, Qiu C, Fan F, Stucky C, Hogan Q, Shin SM, Yu H. Selective RNAi-silencing of Schwann cell Piezo1 alleviates mechanical hypersensitization following peripheral nerve injury. RESEARCH SQUARE 2023:rs.3.rs-3405016. [PMID: 37886453 PMCID: PMC10602140 DOI: 10.21203/rs.3.rs-3405016/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We previously reported functional Piezo1 expression in Schwann cells of the peripheral nervous system. This study is designed to further investigate the role of Schwann cell Piezo1 in peripheral nociception. We first developed an adeno-associated viral (AAV) vector that has primary Schwann cell tropism after delivery into the sciatic nerve. This was achieved by packing AAV-GFP transcribed by a hybrid CMV enhancer/chicken β-actin (CBA) promoter using a capsid AAVolig001 to generate AAVolig001-CBA-GFP. Five weeks after intrasciatic injection of AAVolig001-CBA-GFP in naïve rats, GFP expression was detected selectively in the Schwann cells of the sciatic nerve. A short hairpin RNA against rat Piezo1 (PZ1shRNA) was designed that showed efficient physical and functional knockdown of Piezo1 in NG108 neuronal cells. A dual promoter and bidirectional AAV encoding a U6-driven PZ1shRNA and CBA-transcribed GFP was packed with capsid olig001 (AAVolig001-PZ1shRNA), and AAV was injected into unilateral sciatic nerve immediately after induction of common peroneal nerve injury (CPNI). Results showed that the development of mechanical hypersensitivity in the CPNI rats injected with AAVolig001-PZ1shRNA was mitigated, compared to rats subjected with AAVolig001-scramble. Selective in vivo Schwann cell transduction and functional block of Piezo1 channel activity of primary cultured Schwann cells was confirmed. Together, our data demonstrate that 1) AAVolig001 has unique and selective primary tropism to Schwann cells via intrasciatic delivery and 2) Schwann cell Piezo1 contributes to mechanical hypersensitivity following nerve injury.
Collapse
|
9
|
Bennet BM, Pardo ID, Assaf BT, Buza E, Cramer SD, Crawford LK, Engelhardt JA, Galbreath EJ, Grubor B, Morrison JP, Osborne TS, Sharma AK, Bolon B. Scientific and Regulatory Policy Committee Technical Review: Biology and Pathology of Ganglia in Animal Species Used for Nonclinical Safety Testing. Toxicol Pathol 2023; 51:278-305. [PMID: 38047294 DOI: 10.1177/01926233231213851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dorsal root ganglia (DRG), trigeminal ganglia (TG), other sensory ganglia, and autonomic ganglia may be injured by some test article classes, including anti-neoplastic chemotherapeutics, adeno-associated virus-based gene therapies, antisense oligonucleotides, nerve growth factor inhibitors, and aminoglycoside antibiotics. This article reviews ganglion anatomy, cytology, and pathology (emphasizing sensory ganglia) among common nonclinical species used in assessing product safety for such test articles (TAs). Principal histopathologic findings associated with sensory ganglion injury include neuron degeneration, necrosis, and/or loss; increased satellite glial cell and/or Schwann cell numbers; and leukocyte infiltration and/or inflammation. Secondary nerve fiber degeneration and/or glial reactions may occur in nerves, dorsal spinal nerve roots, spinal cord (dorsal and occasionally lateral funiculi), and sometimes the brainstem. Ganglion findings related to TA administration may result from TA exposure and/or trauma related to direct TA delivery into the central nervous system or ganglia. In some cases, TA-related effects may need to be differentiated from a spectrum of artifactual and/or spontaneous background changes.
Collapse
Affiliation(s)
| | | | | | - Elizabeth Buza
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - James P Morrison
- Charles River Laboratories, Inc., Shrewsbury, Massachusetts, USA
| | | | | | | |
Collapse
|
10
|
Jiang C, Kumar A, Yu Z, Shipman T, Wang Y, McKay RM, Xing C, Le LQ. Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor. J Clin Invest 2023; 133:e168227. [PMID: 37140985 PMCID: PMC10266775 DOI: 10.1172/jci168227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall downregulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as biomarkers for disease diagnosis and treatment response.
Collapse
Affiliation(s)
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Ze Yu
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Lyda Hill Department of Bioinformatics
| | - Lu Q. Le
- Department of Dermatology
- Simmons Comprehensive Cancer Center
- UTSW Comprehensive Neurofibromatosis Clinic
- Hamon Center for Regenerative Science and Medicine, and
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
11
|
Golshadi M, Claffey EF, Grenier JK, Miller A, Willand M, Edwards MG, Moore TP, Sledziona M, Gordon T, Borschel GH, Cheetham J. Delay modulates the immune response to nerve repair. NPJ Regen Med 2023; 8:12. [PMID: 36849720 PMCID: PMC9970988 DOI: 10.1038/s41536-023-00285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Effective regeneration after peripheral nerve injury requires macrophage recruitment. We investigated the activation of remodeling pathways within the macrophage population when repair is delayed and identified alteration of key upstream regulators of the inflammatory response. We then targeted one of these regulators, using exogenous IL10 to manipulate the response to injury at the repair site. We demonstrate that this approach alters macrophage polarization, promotes macrophage recruitment, axon extension, neuromuscular junction formation, and increases the number of regenerating motor units reaching their target. We also demonstrate that this approach can rescue the effects of delayed nerve graft.
Collapse
Affiliation(s)
- Masoud Golshadi
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Elaine F Claffey
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Jennifer K Grenier
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Andrew Miller
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Willand
- Epineuron Technologies Inc, 5100 Orbitor Dr., Mississauga, ON, L4W 5R8, Canada
| | | | - Tim P Moore
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Michael Sledziona
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Tessa Gordon
- Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1×8, Canada
| | | | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Chen Z, Fang Y, Jiang W. Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion. Cancers (Basel) 2023; 15:1360. [PMID: 36900158 PMCID: PMC10000249 DOI: 10.3390/cancers15051360] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Perineural invasion (PNI) as the fourth way for solid tumors metastasis and invasion has attracted a lot of attention, recent research reported a new point that PNI starts to include axon growth and possible nerve "invasion" to tumors as the component. More and more tumor-nerve crosstalk has been explored to explain the internal mechanism for tumor microenvironment (TME) of some types of tumors tends to observe nerve infiltration. As is well known, the interaction of tumor cells, peripheral blood vessels, extracellular matrix, other non-malignant cells, and signal molecules in TME plays a key role in the occurrence, development, and metastasis of cancer, as to the occurrence and development of PNI. We aim to summarize the current theories on the molecular mediators and pathogenesis of PNI, add the latest scientific research progress, and explore the use of single-cell spatial transcriptomics in this invasion way. A better understanding of PNI may help to understand tumor metastasis and recurrence and will be beneficial for improving staging strategies, new treatment methods, and even paradigm shifts in our treatment of patients.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Fang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihong Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
14
|
Ronchi G, Fregnan F, Muratori L, Gambarotta G, Raimondo S. Morphological Methods to Evaluate Peripheral Nerve Fiber Regeneration: A Comprehensive Review. Int J Mol Sci 2023; 24:1818. [PMID: 36768142 PMCID: PMC9915436 DOI: 10.3390/ijms24031818] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients' life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, 10043 Torino, TO, Italy
| |
Collapse
|
15
|
Kalashnikova TP, Satyukova MO, Anisimov GV, Karakulova YV. [Genetic background of dyslexia and dysgraphy in children]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:48-52. [PMID: 37315241 DOI: 10.17116/jnevro202312305148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The review is devoted to one of the current problems of pediatric neurology - reading and writing disorders in children as part of a partial developmental disorder. With the development of neuroscience, the paradigm of «brain damage» in the understanding of a number of pathological conditions was replaced by the concept of «evolutionary neurology». The dominance of the ontogenetic approach caused the appearance of a new section in ICD-11 - «Neurodevelopmental disorders». Twenty-one genes associated with the acquisition of reading and writing skills have been identified. Modern studies demonstrate the connection of neuropsychological prerequisites for reading and writing, and clinical phenotypes of dyslexia with changes in specific loci. It is assumed that there are different molecular genetic bases for dyslexia and dysgraphia depending on ethnicity, orthographic features of language, including logographic features. Pleiotropy of genes is a cause of comorbidity of reading and writing disorders with attention deficit and hyperactivity disorder, specific speech articulation disorders, and dyscalculia. A key function of many of the identified genes is their involvement in the processes of neurogenesis. Their dysfunctions cause atypical neuronal migration, ectopic formation, inadequate axonal growth, and dendrite branching at the early stage of brain development. Morphological changes can distort the correct distribution and/or integration of linguistic stimuli in critical brain areas, leading to abnormalities in phonology, semantics, spelling, and general reading comprehension. The knowledge gained can form the basis for the development of risk models for dysgraphia and dyslexia formation and be used as a diagnostic and/or screening tool, which is important for evidence-based correction, optimization of academic performance, and mitigation of psychosocial consequences.
Collapse
Affiliation(s)
| | | | - G V Anisimov
- First Medico-Pedagogical Center «Lingua Bona», Perm, Russia
| | | |
Collapse
|
16
|
Wang X, Xu G, Liu H, Chen Z, Huang S, Yuan J, Xie C, Du L. Inhibiting apoptosis of Schwann cell under the high-glucose condition: A promising approach to treat diabetic peripheral neuropathy using Chinese herbal medicine. Biomed Pharmacother 2023; 157:114059. [PMID: 36462309 DOI: 10.1016/j.biopha.2022.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes. Glycemic control and lifestyle alterations cannot prevent the development of DPN; therefore, investigating effective treatments for DPN is crucial. Schwann cells (SCs) maintain the physiological function of peripheral nerves and promote the repair and regeneration of injured nerves. Inhibiting the apoptosis of SCs through various pathological pathways in a high-glucose environment plays an important role in developing DPN. Therefore, inhibiting the apoptosis of SCs can be a novel treatment strategy for DPN. Previous studies have indicated the potential of Chinese herbal medicine (CHM) in treating DPN. In this study, we have reviewed the effects of CHM (both monomers and extracts) on the apoptosis of SCs by interfering with the production of advanced glycation end products, oxidative stress, and endoplasmic reticulum stress pathological pathways. This review will demonstrate the potentialities of CHM in inhibiting apoptosis in SCs, providing new insights and perspectives for treating DPN.
Collapse
Affiliation(s)
- Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Gang Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Zhengtao Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Susu Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu610072, Sichuan, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, Sichuan, China.
| | - Lian Du
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
17
|
Milek D, Echternacht SR, LaGuardia J, LaBarge D, Turpin L, Grobbelaar A, Leckenby JI. Evaluation of peripheral nerve regeneration in Murphy Roths Large mouse strain following transection injury. Regen Med 2023; 18:37-53. [PMID: 36255077 PMCID: PMC9892963 DOI: 10.2217/rme-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022] Open
Abstract
Aim: Murphy Roths Large (MRL/MpJ) mice have demonstrated the ability to heal with minimal or no scar formation in several tissue types. In order to identify a novel animal model, this study sought to evaluate whether this attribute applies to peripheral nerve regeneration. Materials & methods: This was a two-phase study. 6-week-old male mice were divided into two interventional groups: nerve repair and nerve graft. The MRL/MpJ was compared with the C57BL/6J strain for evaluation of both functional and histological outcomes. Results: MRL/MpJ strain demonstrated superior axon myelination and less scar formation, however functional outcomes did not show significant difference between strains. Conclusion: Superior histological outcomes did not translate into superior peripheral nerve regeneration in MRL/MpJ strain.
Collapse
Affiliation(s)
- David Milek
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Scott R Echternacht
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jonnby LaGuardia
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Dalton LaBarge
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Loel Turpin
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Adriaan Grobbelaar
- Department of Plastic Surgery, Great Ormond Street Hospital for Children, 40 Bernard Street, London, WC1N 3JH, UK
- Department of Plastic Surgery, Inselspital University Hospital, 18 Freiburgstrasse, Bern, CH3008, Switzerland
| | - Jonathan I Leckenby
- Division of Plastic Surgery, Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
18
|
Jankowska E, Kaczmarek D, Hammar I. Long-term modulation of the axonal refractory period. Eur J Neurosci 2022; 56:4983-4999. [PMID: 35999192 PMCID: PMC9826316 DOI: 10.1111/ejn.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
The main question addressed in this study was whether the refractoriness of nerve fibres can be modulated by their depolarisation and, if so, whether depolarisation of nerve fibres evokes a long-term decrease in the duration of the refractory period as well as the previously demonstrated increase in their excitability. This was investigated on nerve fibres within the dorsal columns, dorsal roots and peripheral nerves in deeply anaesthetised rats in vivo. The results revealed major differences depending on the sites of fibre stimulation and polarisation. Firstly, the relative refractory period was found to be shorter in epidurally stimulated dorsal column fibres than in fibres stimulated at other sites. Secondly, the minimal effective interstimulus intervals reflecting the absolute refractory period were likewise shorter for nerve fibres within the dorsal columns even though action potentials evoked by the second of a pair of stimuli were similarly delayed with respect to the preceding action potentials at all the stimulation sites. Thirdly, the minimal interstimulus intervals were reduced by epidurally applied cathodal direct current polarisation but not at other stimulation sites. Consequently, higher proportions of dorsal column fibres could be excited at higher frequencies, especially following their depolarisation, at interstimulus intervals as short as 0.5-0.7 ms. The results demonstrate that epidural depolarisation results in long-lasting effects not only on the excitability but also on the refractoriness of dorsal column fibres. They also provide further evidence for specific features of afferent fibres traversing the dorsal columns previously linked to properties of their branching regions.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dominik Kaczmarek
- Department of Physiology and BiochemistryPoznan University of Physical EducationPoznanPoland
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
19
|
Ge LL, Xing MY, Zhang HB, Wang ZC. Neurofibroma Development in Neurofibromatosis Type 1: Insights from Cellular Origin and Schwann Cell Lineage Development. Cancers (Basel) 2022; 14:cancers14184513. [PMID: 36139671 PMCID: PMC9497298 DOI: 10.3390/cancers14184513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1), a genetic tumor predisposition syndrome that affects about 1 in 3000 newborns, is caused by mutations in the NF1 gene and subsequent inactivation of its encoded neurofibromin. Neurofibromin is a tumor suppressor protein involved in the downregulation of Ras signaling. Despite a diverse clinical spectrum, one of several hallmarks of NF1 is a peripheral nerve sheath tumor (PNST), which comprises mixed nervous and fibrous components. The distinct spatiotemporal characteristics of plexiform and cutaneous neurofibromas have prompted hypotheses about the origin and developmental features of these tumors, involving various cellular transition processes. METHODS We retrieved published literature from PubMed, EMBASE, and Web of Science up to 21 June 2022 and searched references cited in the selected studies to identify other relevant papers. Original articles reporting the pathogenesis of PNSTs during development were included in this review. We highlighted the Schwann cell (SC) lineage shift to better present the evolution of its corresponding cellular origin hypothesis and its important effects on the progression and malignant transformation of neurofibromas. CONCLUSIONS In this review, we summarized the vast array of evidence obtained on the full range of neurofibroma development based on cellular and molecular pathogenesis. By integrating findings relating to tumor formation, growth, and malignancy, we hope to reveal the role of SC lineage shift as well as the combined impact of additional determinants in the natural history of PNSTs.
Collapse
Affiliation(s)
- Ling-Ling Ge
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming-Yan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
| | - Hai-Bing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| |
Collapse
|
20
|
Elbaz B, Yang L, Vardy M, Isaac S, Rader BL, Kawaguchi R, Traka M, Woolf CJ, Renthal W, Popko B. Sensory neurons display cell-type-specific vulnerability to loss of neuron-glia interactions. Cell Rep 2022; 40:111130. [PMID: 35858549 PMCID: PMC9354470 DOI: 10.1016/j.celrep.2022.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
Peripheral nervous system (PNS) injuries initiate transcriptional changes in glial cells and sensory neurons that promote axonal regeneration. While the factors that initiate the transcriptional changes in glial cells are well characterized, the full range of stimuli that initiate the response of sensory neurons remain elusive. Here, using a genetic model of glial cell ablation, we find that glial cell loss results in transient PNS demyelination without overt axonal loss. By profiling sensory ganglia at single-cell resolution, we show that glial cell loss induces a transcriptional injury response preferentially in proprioceptive and Aβ RA-LTMR neurons. The transcriptional response of sensory neurons to mechanical injury has been assumed to be a cell-autonomous response. By identifying a similar response in non-injured, demyelinated neurons, our study suggests that this represents a non-cell-autonomous transcriptional response of sensory neurons to glial cell loss and demyelination.
Collapse
Affiliation(s)
- Benayahu Elbaz
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Lite Yang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Maia Vardy
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Sara Isaac
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Braesen L Rader
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Traka
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, 3 Blackfan Circle, Boston, MA 02115, USA
| | - William Renthal
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Brian Popko
- Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
21
|
Correale J, Ysrraelit MC. Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination. ASN Neuro 2022; 14:17590914221118502. [PMID: 35938615 PMCID: PMC9364177 DOI: 10.1177/17590914221118502] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system
(CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in
MS patients have been rising over the last decades, and previous studies have shown that
age affects disease progression. Therefore, age appears as one of the most important
factors in accumulating disability in MS patients. Indeed, the degeneration of
oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with
increased inflammatory activity of astrocytes and microglia. Similarly, age-related
neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and
disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is
complete, the long-term integrity of axons depends on OGD supply of energy. These
alterations determine pathological myelin changes consisting of myelin outfolding,
splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate
that old mature OGDs lose their ability to produce and maintain healthy myelin over time,
to induce de novo myelination, and to remodel pre-existing myelinated
axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other
tissues, aging induces a general decline in regenerative processes and, not surprisingly,
progressively hinders remyelination in MS. In this context, this review will provide an
overview of the current knowledge of age-related changes occurring in cells of the
oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and
remyelination efficiency.
Collapse
Affiliation(s)
- Jorge Correale
- Departamento de Neurología, 58782Fleni, Buenos Aires, Argentina
| | | |
Collapse
|
22
|
Ferdoushi A, Jamaluddin MFB, Li X, Pundavela J, Faulkner S, Hondermarck H. Secretome analysis of human schwann cells derived from malignant peripheral nerve sheath tumor. Proteomics 2021; 22:e2100063. [PMID: 34648240 DOI: 10.1002/pmic.202100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive, nerve-associated tumors and the main cause of death amongst neurofibromatosis type I (NF1) patients. Schwann cells (SCs) are the pathogenic cell type in MPNST, however the secretome of human MPNST -derived SCs is poorly defined. In this study, a comprehensive proteomic analysis of the proteins secreted by the sNF96.2 human SC line, derived from a patient with MPNST, was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 17,354 unique peptides corresponding to 1538 individual proteins were identified. Among them, 995 proteins were confirmed as secreted using various bioinformatics tools including SignalP, SecretomeP, Vertebrate Secretome Database (VerSeDa), and Ingenuity Pathway Analysis (IPA). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted to assign protein localization and function, and to define enriched pathways. Protein binding was the most enriched molecular function, and the most enriched biological process was cell-cell adhesion. Metabolic pathways showed the highest levels of enrichment. In addition, 13 of the identified proteins were validated in Western blotting. This comprehensive secretome map constitutes a reference library providing a new molecular insight into MPNST.
Collapse
Affiliation(s)
- Aysha Ferdoushi
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| |
Collapse
|
23
|
Wang S, Dai Y. Roles of AMPK and Its Downstream Signals in Pain Regulation. Life (Basel) 2021; 11:life11080836. [PMID: 34440581 PMCID: PMC8401922 DOI: 10.3390/life11080836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
Pain is an unpleasant sensory and emotional state that decreases quality of life. A metabolic sensor, adenosine monophosphate-activated protein kinase (AMPK), which is ubiquitously expressed in mammalian cells, has recently attracted interest as a new target of pain research. Abnormal AMPK expression and function in the peripheral and central nervous systems are associated with various types of pain. AMPK and its downstream kinases participate in the regulation of neuron excitability, neuroinflammation and axonal and myelin regeneration. Numerous AMPK activators have reduced pain behavior in animal models. The current understanding of pain has been deepened by AMPK research, but certain issues, such as the interactions of AMPK at each step of pain regulation, await further investigation. This review examines the roles of AMPK and its downstream kinases in neurons and non-neuronal cells, as well as their contribution to pain regulation.
Collapse
Affiliation(s)
- Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan
- Correspondence: (S.W.); (Y.D.); Tel.: +86-10-53912197 (S.W.); +81-78-304-3147 (Y.D.)
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute, Hyogo College of Medicine, Kobe 663-8501, Japan
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
- Correspondence: (S.W.); (Y.D.); Tel.: +86-10-53912197 (S.W.); +81-78-304-3147 (Y.D.)
| |
Collapse
|
24
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
25
|
Carvalho CR, Chang W, Silva‐Correia J, Reis RL, Oliveira JM, Kohn J. Engineering Silk Fibroin-Based Nerve Conduit with Neurotrophic Factors for Proximal Protection after Peripheral Nerve Injury. Adv Healthc Mater 2021; 10:e2000753. [PMID: 33169544 DOI: 10.1002/adhm.202000753] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Artificial nerve conduits capable of adequately releasing neurotrophic factors are extensively studied to bridge nerve defects. However, the lack of neurotrophic factors in the proximal area and their visible effects in axonal retrograde transport following nerve injury is one of the factors causing an incomplete nerve regeneration. Herein, an advanced conduit made of silk fibroin is produced, which can incorporate growth factors and promote an effective regeneration after injury. For that, enzymatically crosslinked silk fibroin-based conduits are developed to be used as a platform for the controlled delivery of neurotrophic factors. Nerve growth factor and glial-cell line derived neurotrophic factor (GDNF) are incorporated using two different methodologies: i) crosslinking and ii) absorption method. The release profile is measured by ELISA technique. The bioactivity of the neurotrophic factors is evaluated in vitro by using primary dorsal root ganglia. When implanted in a 10 mm sciatic nerve defect in rats, GDNF-loaded silk fibroin conduits reveal retrograde neuroprotection as compared to autografts and plain silk fibroin conduit. Therefore, the novel design presents a substantial improvement of retrograde trafficking, neurons' protection, and motor nerve reinnervation.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Wei Chang
- New Jersey Center for Biomaterials Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Joana Silva‐Correia
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Rui L. Reis
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group‐Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal
| | - Joachim Kohn
- New Jersey Center for Biomaterials Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| |
Collapse
|
26
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
27
|
Lu CY, Santosa KB, Jablonka-Shariff A, Vannucci B, Fuchs A, Turnbull I, Pan D, Wood MD, Snyder-Warwick AK. Macrophage-Derived Vascular Endothelial Growth Factor-A Is Integral to Neuromuscular Junction Reinnervation after Nerve Injury. J Neurosci 2020; 40:9602-9616. [PMID: 33158964 PMCID: PMC7726545 DOI: 10.1523/jneurosci.1736-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023] Open
Abstract
Functional recovery in the end target muscle is a determinant of outcome after peripheral nerve injury. The neuromuscular junction (NMJ) provides the interface between nerve and muscle and includes non-myelinating terminal Schwann cells (tSCs). After nerve injury, tSCs extend cytoplasmic processes between NMJs to guide axon growth and NMJ reinnervation. The mechanisms related to NMJ reinnervation are not known. We used multiple mouse models to investigate the mechanisms of NMJ reinnervation in both sexes, specifically whether macrophage-derived vascular endothelial growth factor-A (Vegf-A) is crucial to establishing NMJ reinnervation at the end target muscle. Both macrophage number and Vegf-A expression increased in end target muscles after nerve injury and repair. In mice with impaired recruitment of macrophages and monocytes (Ccr2-/- mice), the absence of CD68+ cells (macrophages) in the muscle resulted in diminished muscle function. Using a Vegf-receptor 2 (VegfR2) inhibitor (cabozantinib; CBZ) via oral gavage in wild-type (WT) mice resulted in reduced tSC cytoplasmic process extension and decreased NMJ reinnervation compared with saline controls. Mice with Vegf-A conditionally knocked out in macrophages (Vegf-Afl/fl; LysMCre mice) demonstrated a more prolonged detrimental effect on NMJ reinnervation and worse functional muscle recovery. Together, these results show that contributions of the immune system are integral for NMJ reinnervation and functional muscle recovery after nerve injury.SIGNIFICANCE STATEMENT This work demonstrates beneficial contributions of a macrophage-mediated response for neuromuscular junction (NMJ) reinnervation following nerve injury and repair. Macrophage recruitment occurred at the NMJ, distant from the nerve injury site, to support functional recovery at the muscle. We have shown hindered terminal Schwann cell (tSC) injury response and NMJ recovery with inhibition of: (1) macrophage recruitment after injury; (2) vascular endothelial growth factor receptor 2 (VegfR2) signaling; and (3) Vegf secretion from macrophages. We conclude that macrophage-derived Vegf is a key component of NMJ recovery after injury. Determining the mechanisms active at the end target muscle after motor nerve injury reveals new therapeutic targets that may translate to improve motor recovery following nerve injury.
Collapse
Affiliation(s)
- Chuieng-Yi Lu
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
- Division of Reconstructive Microsurgery, Department of Plastic Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Guishan District 33305, Taiwan
| | - Katherine B Santosa
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
- Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109-4217
| | - Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Bianca Vannucci
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Anja Fuchs
- Division of General Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Isaiah Turnbull
- Division of General Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| |
Collapse
|
28
|
Palavicini JP, Chen J, Wang C, Wang J, Qin C, Baeuerle E, Wang X, Woo JA, Kang DE, Musi N, Dupree JL, Han X. Early disruption of nerve mitochondrial and myelin lipid homeostasis in obesity-induced diabetes. JCI Insight 2020; 5:137286. [PMID: 33148881 PMCID: PMC7710310 DOI: 10.1172/jci.insight.137286] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Diabetic neuropathy is a major complication of diabetes. Current treatment options alleviate pain but do not stop the progression of the disease. At present, there are no approved disease-modifying therapies. Thus, developing more effective therapies remains a major unmet medical need. Seeking to better understand the molecular mechanisms driving peripheral neuropathy, as well as other neurological complications associated with diabetes, we performed spatiotemporal lipidomics, biochemical, ultrastructural, and physiological studies on PNS and CNS tissue from multiple diabetic preclinical models. We unraveled potentially novel molecular fingerprints underlying nerve damage in obesity-induced diabetes, including an early loss of nerve mitochondrial (cardiolipin) and myelin signature (galactosylceramide, sulfatide, and plasmalogen phosphatidylethanolamine) lipids that preceded mitochondrial, myelin, and axonal structural/functional defects; started in the PNS; and progressed to the CNS at advanced diabetic stages. Mechanistically, we provided substantial evidence indicating that these nerve mitochondrial/myelin lipid abnormalities are (surprisingly) not driven by hyperglycemia, dysinsulinemia, or insulin resistance, but rather associate with obesity/hyperlipidemia. Importantly, our findings have major clinical implications as they open the door to novel lipid-based biomarkers to diagnose and distinguish different subtypes of diabetic neuropathy (obese vs. nonobese diabetics), as well as to lipid-lowering therapeutic strategies for treatment of obesity/diabetes-associated neurological complications and for glycemic control.
Collapse
Affiliation(s)
- Juan P. Palavicini
- Barshop Institute for Longevity and Aging Studies and
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Juan Chen
- Barshop Institute for Longevity and Aging Studies and
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies and
| | - Jianing Wang
- Barshop Institute for Longevity and Aging Studies and
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies and
| | - Eric Baeuerle
- Barshop Institute for Longevity and Aging Studies and
| | - Xinming Wang
- Byrd Alzheimer’s Center and Research Institute, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jung A. Woo
- Byrd Alzheimer’s Center and Research Institute, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - David E. Kang
- Byrd Alzheimer’s Center and Research Institute, USF Health Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies and
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
29
|
Tedoldi A, Argent L, Montgomery JM. The role of the tripartite synapse in the heart: how glial cells may contribute to the physiology and pathophysiology of the intracardiac nervous system. Am J Physiol Cell Physiol 2020; 320:C1-C14. [PMID: 33085497 DOI: 10.1152/ajpcell.00363.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the major roles of the intracardiac nervous system (ICNS) is to act as the final site of signal integration for efferent information destined for the myocardium to enable local control of heart rate and rhythm. Multiple subtypes of neurons exist in the ICNS where they are organized into clusters termed ganglionated plexi (GP). The majority of cells in the ICNS are actually glial cells; however, despite this, ICNS glial cells have received little attention to date. In the central nervous system, where glial cell function has been widely studied, glia are no longer viewed simply as supportive cells but rather have been shown to play an active role in modulating neuronal excitability and synaptic plasticity. Pioneering studies have demonstrated that in addition to glia within the brain stem, glial cells within multiple autonomic ganglia in the peripheral nervous system, including the ICNS, can also act to modulate cardiovascular function. Clinically, patients with atrial fibrillation (AF) undergoing catheter ablation show high plasma levels of S100B, a protein produced by cardiac glial cells, correlated with decreased AF recurrence. Interestingly, S100B also alters GP neuron excitability and neurite outgrowth in the ICNS. These studies highlight the importance of understanding how glial cells can affect the heart by modulating GP neuron activity or synaptic inputs. Here, we review studies investigating glia both in the central and peripheral nervous systems to discuss the potential role of glia in controlling cardiac function in health and disease, paying particular attention to the glial cells of the ICNS.
Collapse
Affiliation(s)
- Angelo Tedoldi
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Liam Argent
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Manaaki Mānawa Centre for Heart Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Zhang R, Chen S, Wang X, Gu X, Yi S. Cell populations in neonatal rat peripheral nerves identified by single-cell transcriptomics. Glia 2020; 69:765-778. [PMID: 33079428 DOI: 10.1002/glia.23928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022]
Abstract
Peripheral nerves connect central nerves with target tissues and organs and execute vital signal transduction functions. Although sub-types of neurons have been defined, the heterogeneity of cell populations in peripheral nerves, especially Schwann cells, has not been well demonstrated. Here, we collected sciatic nerves (SN) and dorsal root ganglia (DRG) from neonatal (1-day old) rats and classified cell populations by high-coverage single-cell sequencing. A total of 10 types of cells, including endothelial cells, erythrocytes, fibroblasts, monocytic cells, neurons, neutrophils, pericytes, satellite cells, Schwann cells, and vascular smooth muscle cells, were identified by transcriptome-based cell typing. The comparisons of cells in neonatal rat SN and DRG revealed distinct atlas in different tissue localizations. Investigations of ligand-receptor interactions showed that there existed direct cell-cell communications between endothelial cells and fibroblasts in SN and among endothelial cells, fibroblasts, and vascular smooth muscle cells in DRG. Schwann cells in neonatal rats were further sub-grouped to four sub-types, including LOC100134871 and Hbb expressing Schwann cell sub-type 1, Cldn19 and Emid1 expressing Schwann cell sub-type 2, Timp3 and Col5a3 expressing Schwann cell sub-type 3, and Cenpf and Mki67 expressing Schwann cell sub-type 4. These Schwann cell sub-types exhibited distinct genetic features and functional enrichments. Collectively, our results illustrated the diversity and cellular complexity of peripheral nerves at the neonatal stage and revealed the heterogeneity of Schwann cells in the peripheral nervous system.
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
31
|
Ferdoushi A, Li X, Griffin N, Faulkner S, Jamaluddin MFB, Gao F, Jiang CC, van Helden DF, Tanwar PS, Jobling P, Hondermarck H. Schwann Cell Stimulation of Pancreatic Cancer Cells: A Proteomic Analysis. Front Oncol 2020; 10:1601. [PMID: 32984024 PMCID: PMC7477957 DOI: 10.3389/fonc.2020.01601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs), the glial component of peripheral nerves, have been identified as promoters of pancreatic cancer (PC) progression, but the molecular mechanisms are unclear. In the present study, we aimed to identify proteins released by SCs that could stimulate PC growth and invasion. Proteomic analysis of human primary SC secretome was performed using liquid chromatography–tandem mass spectrometry, and a total of 13,796 unique peptides corresponding to 1,470 individual proteins were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Metabolic and cell–cell adhesion pathways showed the highest levels of enrichment, a finding in line with the supportive role of SCs in peripheral nerves. We identified seven SC-secreted proteins that were validated by western blot. The involvement of these SC-secreted proteins was further demonstrated by using blocking antibodies. PC cell proliferation and invasion induced by SC-conditioned media were decreased using blocking antibodies against the matrix metalloproteinase-2, cathepsin D, plasminogen activator inhibitor-1, and galectin-1. Blocking antibodies against the proteoglycan biglycan, galectin-3 binding protein, and tissue inhibitor of metalloproteinases-2 decreased only the proliferation but not the invasion of PC cells. Together, this study delineates the secretome of human SCs and identifies proteins that can stimulate PC cell growth and invasion and therefore constitute potential therapeutic targets.
Collapse
Affiliation(s)
- Aysha Ferdoushi
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Nathan Griffin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Fangfang Gao
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Chen Chen Jiang
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, Australia
| |
Collapse
|
32
|
Pezzotti G, Adachi T, Miyamoto N, Yamamoto T, Boschetto F, Marin E, Zhu W, Kanamura N, Ohgitani E, Pizzi M, Sowa Y, Mazda O. Raman Probes for In Situ Molecular Analyses of Peripheral Nerve Myelination. ACS Chem Neurosci 2020; 11:2327-2339. [PMID: 32603086 DOI: 10.1021/acschemneuro.0c00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The myelinating activity of living Schwann cells in coculture with neuronal cells was examined in situ in a Raman microprobe spectroscope. The Raman label-free approach revealed vibrational fingerprints directly related to the activity of Schwann cells' metabolites and identified molecular species peculiar to myelinating cells. The identified chemical species included antioxidants, such as hypotaurine and glutathione, and compartmentalized water, in addition to sphingolipids, phospholipids, and nucleoside triphosphates also present in neuronal and nonmyelinating Schwann cells. Raman maps at specific frequencies could be collected, which clearly visualized the myelinating action of Schwann cells and located the demyelinated ones. An important finding was the spectroscopic visualization of confined water in the myelin structure, which exhibited a quite pronounced Raman signal at ∼3470 cm-1. This peculiar signal, whose spatial location precisely corresponded to a low-frequency fingerprint of hypotaurine, was absent in unmyelinating cells and in bulk water. Raman enhancement was attributed to frustration in the hydrogen-bond network as induced by interactions with lipids in the myelin sheaths. According to a generally accepted morphological model of myelin, an explanation was offered of the peculiar Raman scattering of water confined in intraperiod lines, according to an ordered hydrogen bonding structure. The possibility of concurrently mapping antioxidant molecules and compartmentalized water structure with high spectral accuracy and microscopic spatial resolution enables probing myelinating activity and might play a key-role in future studies of neuronal pathologies. Compatible with life, Raman microprobe spectroscopy with the newly discovered probes could be suitable for developing advanced strategies in the reconstruction of injured nerves and nerve terminals at neuromuscular junctions.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
33
|
Wang L, Chopp M, Szalad A, Lu X, Zhang Y, Wang X, Cepparulo P, Lu M, Li C, Zhang ZG. Exosomes Derived From Schwann Cells Ameliorate Peripheral Neuropathy in Type 2 Diabetic Mice. Diabetes 2020; 69:749-759. [PMID: 31915154 PMCID: PMC7085247 DOI: 10.2337/db19-0432] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/31/2019] [Indexed: 12/23/2022]
Abstract
Schwann cell-derived exosomes communicate with dorsal root ganglia (DRG) neurons. The current study investigated the therapeutic effect of exosomes derived from healthy Schwann cells (SC-Exos) on diabetic peripheral neuropathy (DPN). We found that intravenous administration of SC-Exos to type 2 diabetic db/db mice with peripheral neuropathy remarkably ameliorated DPN by improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity. These functional improvements were associated with the augmentation of epidermal nerve fibers and remyelination of sciatic nerves. Quantitative RT-PCR and Western blot analysis of sciatic nerve tissues showed that SC-Exo treatment reversed diabetes-reduced mature form of miRNA (miR)-21, -27a, and -146a and diabetes-increased semaphorin 6A (SEMA6A); Ras homolog gene family, member A (RhoA); phosphatase and tensin homolog (PTEN); and nuclear factor-κB (NF-κB). In vitro data showed that SC-Exos promoted neurite outgrowth of diabetic DRG neurons and migration of Schwann cells challenged by high glucose. Collectively, these novel data provide evidence that SC-Exos have a therapeutic effect on DPN in mice and suggest that SC-Exo modulation of miRs contributes to this therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | | | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Xinli Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | |
Collapse
|
34
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
35
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
36
|
Zhang H, Wu J, Shen FF, Yuan YS, Li X, Ji P, Zhu L, Sun L, Ding J, Niu Q, Zhang KZ. Activated Schwann cells and increased inflammatory cytokines IL-1β, IL-6, and TNF-α in patients' sural nerve are lack of tight relationship with specific sensory disturbances in Parkinson's disease. CNS Neurosci Ther 2019; 26:518-526. [PMID: 31828965 PMCID: PMC7163790 DOI: 10.1111/cns.13282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
Aims Neuroinflammation is one of the most important processes in the pathogenesis of Parkinson's disease (PD). Sensory disturbances are common in patients with PD, but the underlying pathophysiological mechanisms remain unknown. This study aimed to characterize the activation of Schwann cells (SCs) and the increase of expression of inflammatory cytokines IL‐1β, IL‐6, and TNF‐α in the sural nerve of PD, and further explore whether peripheral nerve inflammation is the cause of PD sensory disturbances. Methods A total of 14 patients with PD (including 5 with sensory disturbances and 9 without sensory disturbances) and 6 controls were included. The excitation and conduction function of sural nerve was detected by sural nerve electrophysiological examination. With sural nerve biopsy samples, ultrastructural changes of sural nerve were observed by electron microscopy; Schwann cell biomarker glial fibrillary acid protein (GFAP) and inflammatory cytokines including interleukin‐1beta (IL‐1β), interleukin 6 (IL‐6), and tumor necrosis factor‐alpha (TNF‐α) were detected by immunohistochemistry, and the outcome of immunostaining slice was semiquantitatively counted; double immunofluorescence was used to identify the locus immunoreactive for inflammatory cytokines. Results Compared with healthy controls, nerve conduction velocity (NCV) slowed down and sensory nerve action potential (SNAP) amplitude decreased in PD patients, accompanied by axonal degeneration and demyelinating lesions, and expression of GFAP and inflammatory cytokines was increased. Inflammatory cytokines were significantly colocalized with GFAP and slightly colocalized with NF. These indicators did not differ significantly between PD patients with and without sensory disturbances. Conclusion Our study results suggest that peripheral sensory nerve injury exists in PD patients, accompanied by Schwann cell activation and inflammation, thus demonstrate peripheral nerve inflammation participates in the pathophysiological process of PD but it is not necessarily related to the patient's sensory disturbance.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Fei Shen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pan Ji
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Ding
- Department of Neurology, The First People's Hospital of Changzhou, Changzhou, China
| | - Qi Niu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Tomlinson JE, Golshadi M, Donahue CJ, Dong L, Cheetham J. Evaluation of two methods to isolate Schwann cells from murine sciatic nerve. J Neurosci Methods 2019; 331:108483. [PMID: 31756398 DOI: 10.1016/j.jneumeth.2019.108483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Schwann cells (SC) and macrophages play key roles in the response to peripheral nerve injury (PNI). Accurate isolation of such cells is essential for further analyses that can lead to better understanding of the repair process after PNI. Separation of live SC from the injury site without culture enrichment is necessary for targeted gene expression analysis. NEW METHODS Two flow cytometric techniques are presented for rapid enrichment of live SC and macrophages from injured murine peripheral nerve without the need for culture. RESULTS SC were isolated by fluorescent activated cell sorting (FACS) using transgenic expression of eGFP in SC, or by exclusion of other cell types collected from the injury site. COMPARISON WITH EXISTING METHOD(S) Gene expression analyses of peripheral nerve repair have commonly used whole nerve lysates. Isolating SC allows more accurate understanding of their specific role in repair. SC are commonly enriched from nerve by culture, however this changes gene expression patterns and limits the utility for transcriptomic analysis. The surface marker p75-NTR has variable expression in different SC phenotypes and during the course of injury and repair. Using p75-NTR for SC isolation might enrich only a subset of SC. More stably expressed lineage markers for SC are intracellular and not suitable for sorting for gene expression. The methods used here avoid the requirement for surface marker labeling of SC. CONCLUSION Gene expression analysis of sorted cells from both methods showed successful enrichment of SC. Lineage markers such as Map1b, p75-NTR and S100b were enriched in the sorted SC population. SC sorting by eGFP expression showed improved enrichment, particularly of mature myelinating genes, although this could represent sampling of a subset of SC.
Collapse
Affiliation(s)
- Joy E Tomlinson
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Masoud Golshadi
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Christopher J Donahue
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Lynn Dong
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States
| | - Jonathan Cheetham
- Cornell University College of Veterinary Medicine, Department of Clinical Sciences, 930 Campus Road, Ithaca, NY, 14853, United States.
| |
Collapse
|
38
|
Abstract
Afferent and efferent nerve fibers cannot be distinguished based on the axonal diameter or the presence of the Remark bundle. The compaction of the myelin sheath involves 2 steps: 1) The distance between the 2 layers of cell membranes in the double-bilayer decreases; 2) the adjacent double-bilayers close to form MDL. The expression of MBP is positively correlated with the formation of the MDL. Anchoring of the myelin sheath by lipophilin particles might be required for the formation of a compacted myelin sheath. The abnormalities in nerve fiber structure observed in autologous nerve grafts do not appear to be related to either MBP or lipophilin, so further research is needed to determine their causes. Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.
Collapse
|
39
|
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2019; 171:41-61. [PMID: 31398392 DOI: 10.1016/j.ymeth.2019.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 01/15/2023] Open
Abstract
A variety of surgical and non-surgical approaches have been used to address the impacts of nervous system injuries, which can lead to either impairment or a complete loss of function for affected patients. The inherent ability of nervous tissues to repair and/or regenerate is dampened due to irreversible changes that occur within the tissue remodeling microenvironment following injury. Specifically, dysregulation of the extracellular matrix (i.e., scarring) has been suggested as one of the major factors that can directly impair normal cell function and could significantly alter the regenerative potential of these tissues. A number of tissue engineering and regenerative medicine-based approaches have been suggested to intervene in the process of remodeling which occurs following injury. Decellularization has become an increasingly popular technique used to obtain acellular scaffolds, and their derivatives (hydrogels, etc.), which retain tissue-specific components, including critical structural and functional proteins. These advantageous characteristics make this approach an intriguing option for creating materials capable of stimulating the sensitive repair mechanisms associated with nervous system injuries. Over the past decade, several diverse decellularization methods have been implemented specifically for nervous system applications in an attempt to carefully remove cellular content while preserving tissue morphology and composition. Each application-based decellularized ECM product requires carefully designed treatments that preserve the unique biochemical signatures associated within each tissue type to stimulate the repair of brain, spinal cord, and peripheral nerve tissues. Herein, we review the decellularization techniques that have been applied to create biomaterials with the potential to promote the repair and regeneration of tissues within the central and peripheral nervous system.
Collapse
Affiliation(s)
- Michael J Buckenmeyer
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Tyler J Meder
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Travis A Prest
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States.
| |
Collapse
|
40
|
A population of nonneuronal GFRα3-expressing cells in the bone marrow resembles nonmyelinating Schwann cells. Cell Tissue Res 2019; 378:441-456. [DOI: 10.1007/s00441-019-03068-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
41
|
The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS One 2019; 14:e0216527. [PMID: 31107888 PMCID: PMC6527217 DOI: 10.1371/journal.pone.0216527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures—dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles—where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3–6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.
Collapse
|
42
|
Casalenovo MB, Rosa PS, de Faria Bertoluci DF, Barbosa ASAA, do Nascimento DC, de Souza VNB, Nogueira MRS. Myelination key factor krox-20 is downregulated in Schwann cells and murine sciatic nerves infected by Mycobacterium leprae. Int J Exp Pathol 2019; 100:83-93. [PMID: 31090128 PMCID: PMC6540694 DOI: 10.1111/iep.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Schwann cells (SCs) critically maintain the plasticity of the peripheral nervous system. Peripheral nerve injuries and infections stimulate SCs in order to retrieve homeostasis in neural tissues. Previous studies indicate that Mycobacterium leprae (ML) regulates the expression of key factors related to SC identity, suggesting that alterations in cell phenotype may be involved in the pathogenesis of neural damage in leprosy. To better understand whether ML restricts the plasticity of peripheral nerves, the present study sought to determine the expression of Krox-20, Sox-10, c-Jun and p75NTR in SC culture and mice sciatic nerves, both infected by ML Thai-53 strain. Primary SC cultures were stimulated with two different multiplicities of infection (MOI 100:1; MOI 50:1) and assessed after 7 and 14 days. Sciatic nerves of nude mice (NU-Foxn1nu ) infected with ML were evaluated after 6 and 9 months. In vitro results demonstrate downregulation of Krox-20 and Sox-10 along with the increase in p75NTR-immunolabelled cells. Concurrently, sciatic nerves of infected mice showed a significant decrease in Krox-20 and increase in p75NTR. Our results corroborate previous findings on the interference of ML in the expression of factors involved in cell maturation, favouring the maintenance of a non-myelinating phenotype in SCs, with possible implications for the repair of adult peripheral nerves.
Collapse
Affiliation(s)
- Mariane Bertolucci Casalenovo
- School of Medicine of BotucatuSão Paulo State UniversityBotucatuBrazil
- Lauro de Souza Lima InstituteSecretariat of Health of São PauloBauruSão PauloBrazil
| | | | | | | | | | - Vânia Nieto Brito de Souza
- School of Medicine of BotucatuSão Paulo State UniversityBotucatuBrazil
- Lauro de Souza Lima InstituteSecretariat of Health of São PauloBauruSão PauloBrazil
| | | |
Collapse
|
43
|
Kosack L, Wingelhofer B, Popa A, Orlova A, Agerer B, Vilagos B, Majek P, Parapatics K, Lercher A, Ringler A, Klughammer J, Smyth M, Khamina K, Baazim H, de Araujo ED, Rosa DA, Park J, Tin G, Ahmar S, Gunning PT, Bock C, Siddle HV, Woods GM, Kubicek S, Murchison EP, Bennett KL, Moriggl R, Bergthaler A. The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease. Cancer Cell 2019; 35:125-139.e9. [PMID: 30645971 PMCID: PMC6335503 DOI: 10.1016/j.ccell.2018.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/05/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor disease (DFTD). To unveil the molecular underpinnings of this transmissible cancer, we combined pharmacological screens with an integrated systems-biology characterization. Sensitivity to inhibitors of ERBB tyrosine kinases correlated with their overexpression. Proteomic and DNA methylation analyses revealed tumor-specific signatures linked to the evolutionary conserved oncogenic STAT3. ERBB inhibition blocked phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB or STAT3 prevented tumor growth in xenograft models and restored MHC class I expression. This link between the hyperactive ERBB-STAT3 axis and major histocompatibility complex class I-mediated tumor immunosurveillance provides mechanistic insights into horizontal transmissibility and puts forward a dual chemo-immunotherapeutic strategy to save Tasmanian devils from DFTD. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bettina Wingelhofer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bojan Vilagos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Peter Majek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Anna Ringler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | | | - David A Rosa
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Jisung Park
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Gary Tin
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Siawash Ahmar
- University of Toronto, Mississauga, ON L5L 1C6, Canada
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Hannah V Siddle
- Department of Biological Science, University of Southampton, Southampton SO17 1BJ, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
44
|
Shi Q, Saifetiarova J, Taylor AM, Bhat MA. mTORC1 Activation by Loss of Tsc1 in Myelinating Glia Causes Downregulation of Quaking and Neurofascin 155 Leading to Paranodal Domain Disorganization. Front Cell Neurosci 2018; 12:201. [PMID: 30050412 PMCID: PMC6052123 DOI: 10.3389/fncel.2018.00201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in human tuberous sclerosis complex (TSC) genes TSC1 and TSC2 are the leading causes of developmental brain abnormalities and large tumors in other tissues. Murine Tsc1/2 have been shown to negatively regulate the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway in most tissues, and this pathway has been shown to be essential for proper oligodendrocytes/Schwann cell differentiation and myelination. Here, we report that ablation of Tsc1 gene specifically in oligodendrocytes/Schwann cells activates mTORC1 signaling resulting in severe motor disabilities, weight loss, and early postnatal death. The mutant mice of either sex showed reduced myelination, disrupted paranodal domains in myelinated axons, and disorganized unmyelinated Remak bundles. mRNA and protein expression analyses revealed strong reduction in the RNA-binding protein Quaking (Qk) and the 155 kDa glial Neurofascin (NfascNF155). Re-introduction of exogenous Qk gene in Tsc1 mutant oligodendrocytes restored NfascNF155 protein levels indicating that Qk is required for the stabilization of NfascNF155 mRNA. Interestingly, injection of Rapamycin, a pharmacological mTORC1 inhibitor, to pregnant mothers increased the lifespan of the mutant offspring, restored myelination as well as the levels of Qk and NfascNF155, and consequently the organization of the paranodal domains. Together our studies show a critical role of mTORC1 signaling in the differentiation of myelinating glial cells and proper organization of axonal domains and provide insights into TSC-associated myelinated axon abnormalities.
Collapse
Affiliation(s)
| | | | | | - Manzoor A. Bhat
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
45
|
Tomlinson JE, Žygelytė E, Grenier JK, Edwards MG, Cheetham J. Temporal changes in macrophage phenotype after peripheral nerve injury. J Neuroinflammation 2018; 15:185. [PMID: 29907154 PMCID: PMC6003127 DOI: 10.1186/s12974-018-1219-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Macrophages play a key role in peripheral nerve repair and demonstrate complex phenotypes that are highly dependent on microenvironmental cues. METHODS We determined temporal changes in macrophage gene expression over time using RNA sequencing after fluorescence-activated cell sorting (FACS) macrophage populations from injured peripheral nerve. We identified key upstream regulators and dominant pathways using ingenuity pathway analysis and confirmed these changes with NanoString technology. We then investigate the effects of extreme polarizers of macrophage phenotype (IL4 and IFNγ) on nerve regeneration. We determined macrophage gene expression in vivo at the site of peripheral nerve injury with NanoString technology, and assessed recovery from sciatic nerve injury by cranial tibial muscle weights and retrograde labeling motor neurons in mice with deletion of IL4 or IFNγ receptors. RESULTS We demonstrate that IL4R and IFNγR deletions provide complementary responses to polarization, and alter expression of genes associated with angiogenesis and axonal extension, but do not influence recovery from peripheral nerve transection at 8 weeks after repair. CONCLUSIONS Overall, this study provides a framework to evaluate the phenotype of macrophages over time, and provides a broader and more precise assessment of gene expression changes than has previously been commonly used. This data suggests ways in which polarization may be modulated to improve repair.
Collapse
Affiliation(s)
- Joy E. Tomlinson
- Cornell University College of Veterinary Medicine, Ithaca, NY USA
| | - Emilija Žygelytė
- Cornell University College of Veterinary Medicine, Ithaca, NY USA
| | | | | | | |
Collapse
|
46
|
Zheng Y, Huang C, Liu F, Lin H, Niu Y, Yang X, Zhang Z. Reactivation of denervated Schwann cells by neurons induced from bone marrow-derived mesenchymal stem cells. Brain Res Bull 2018. [DOI: 10.1016/j.brainresbull.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
47
|
Abstract
The schwann cells of the peripheral nervous system are indispensable for the formation, maintenance, and modulation of synapses over the life cycle. They not only recognize neuron-glia signaling molecules, but also secrete gliotransmitters. Through these processes, they regulate neuronal excitability and thus the release of neurotransmitters from the nerve terminal at the neuromuscular junction. Gliotransmitters strongly affect nerve communication, and their secretion is mainly triggered by synchronized Ca2+ signaling, implicating Ca2+ waves in synapse function. Reciprocally, neurotransmitters released during synaptic activity can evoke increases in intracellular Ca2+ levels. A reconsideration of the interplay between the two main types of cells in the nervous system is due, as the concept of nervous system activity comprising only neuron-neuron and neuron-muscle action has become untenable. A more precise understanding of the roles of schwann cells in nerve-muscle signaling is required.
Collapse
Affiliation(s)
- Sujin Hyung
- Department of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
- BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
| | - Kyuhwan Jung
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung-Rae Cho
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
48
|
Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Farzamfar S, Mansouri K, Ai J. Polyurethane/Gelatin Nanofibrils Neural Guidance Conduit Containing Platelet-Rich Plasma and Melatonin for Transplantation of Schwann Cells. Cell Mol Neurobiol 2018; 38:703-713. [PMID: 28823058 DOI: 10.1007/s10571-017-0535-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
The current study aimed to enhance the efficacy of peripheral nerve regeneration using a biodegradable porous neural guidance conduit as a carrier to transplant allogeneic Schwann cells (SCs). The conduit was prepared from polyurethane (PU) and gelatin nanofibrils (GNFs) using thermally induced phase separation technique and filled with melatonin (MLT) and platelet-rich plasma (PRP). The prepared conduit had the porosity of 87.17 ± 1.89%, the contact angle of 78.17 ± 5.30° and the ultimate tensile strength and Young's modulus of 5.40 ± 0.98 MPa and 3.13 ± 0.65 GPa, respectively. The conduit lost about 14% of its weight after 60 days in distilled water. The produced conduit enhanced the proliferation of SCs demonstrated by a tetrazolium salt-based assay. For functional analysis, the conduit was seeded with 1.50 × 104 SCs (PU/GNFs/PRP/MLT/SCs) and implanted into a 10-mm sciatic nerve defect of Wistar rat. Three control groups were used: (1) PU/GNFs/SCs, (2) PU/GNFs/PRP/SCs, and (3) Autograft. The results of sciatic functional index, hot plate latency, compound muscle action potential amplitude and latency, weight-loss percentage of wet gastrocnemius muscle and histopathological examination using hematoxylin-eosin and Luxol fast blue staining, demonstrated that using the PU/GNFs/PRP/MLT conduit to transplant SCs to the sciatic nerve defect resulted in a higher regenerative outcome than the PU/GNFs and PU/GNFs/PRP conduits.
Collapse
Affiliation(s)
- Majid Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Mahdi Naseri-Nosar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Mohammdreza Nourani
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 1435944711, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 1983969411, Tehran, Iran
| | - Saeed Farzamfar
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Korosh Mansouri
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, P.O. Box 14665354, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran.
| |
Collapse
|
49
|
Velasquez JT, St John JA, Nazareth L, Ekberg JAK. Schwann cell lamellipodia regulate cell-cell interactions and phagocytosis. Mol Cell Neurosci 2018; 88:189-200. [PMID: 29336992 DOI: 10.1016/j.mcn.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 01/06/2023] Open
Abstract
Lamellipodia in Schwann cells (SCs) are crucial for myelination, but their other biological functions remain largely uncharacterised. Two types of lamellipodia exist in SCs: axial lamellipodia at the outermost edge of the cell processes, and radial lamellipodia appearing peripherally along the entire cell. We have previously shown that radial lamellipodia on olfactory glia (olfactory ensheathing cells; OECs) promote cell-cell adhesion, contact-mediated migration and phagocytosis. Here we have investigated whether lamellipodia in SCs have similar roles. Using live-cell imaging, we show that the radial lamellipodia in SCs are highly motile, appear at multiple cellular sites and rapidly move in a wave-like manner. We found that axial and radial lamellipodia had strikingly different roles and are regulated by different intracellular pathways. Axial lamellipodia initiated interactions with other SCs and with neurons by contacting radial lamellipodia on SCs, and budding neurites/axons. Most SC-SC interactions resulted in repulsion, and, lamellipodial activity (unlike in OECs) did not promote contact-mediated migration. We show that lamellipodia are crucial for SC-mediated phagocytosis of both axonal debris and bacteria, and demonstrated that inhibition of lamellipodial activity by blocking the Rho/Rac pathways also inhibits phagocytosis. We also show that heregulin, which induces SC differentiation and maturation, alters lamellipodial behaviour but does not affect phagocytic activity. Overall, the results show that SC lamellipodia are important for cell interactions and phagocytosis.
Collapse
Affiliation(s)
- Johana Tello Velasquez
- Griffith Institute for Drug Discovery, 170 Kessels Rd, Griffith University, Nathan, 4111, Queensland, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, 170 Kessels Rd, Griffith University, Brisbane, 4111, QLD, Australia
| | - James A St John
- Griffith Institute for Drug Discovery, 170 Kessels Rd, Griffith University, Nathan, 4111, Queensland, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, 170 Kessels Rd, Griffith University, Brisbane, 4111, QLD, Australia; Menzies Health Institute Queensland, Parklands Drive, Griffith University, Southport, 4222, QLD, Australia
| | - Lynn Nazareth
- Griffith Institute for Drug Discovery, 170 Kessels Rd, Griffith University, Nathan, 4111, Queensland, Australia; Menzies Health Institute Queensland, Parklands Drive, Griffith University, Southport, 4222, QLD, Australia
| | - Jenny A K Ekberg
- Griffith Institute for Drug Discovery, 170 Kessels Rd, Griffith University, Nathan, 4111, Queensland, Australia; Menzies Health Institute Queensland, Parklands Drive, Griffith University, Southport, 4222, QLD, Australia.
| |
Collapse
|
50
|
McCracken JM, Xu S, Badea A, Jang KI, Yan Z, Wetzel DJ, Nan K, Lin Q, Han M, Anderson MA, Lee JW, Wei Z, Pharr M, Wang R, Su J, Rubakhin SS, Sweedler JV, Rogers JA, Nuzzo RG. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. ADVANCED BIOSYSTEMS 2017; 1:1700068. [PMID: 29552634 PMCID: PMC5850936 DOI: 10.1002/adbi.201700068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems-schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures).
Collapse
Affiliation(s)
- Joselle M McCracken
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Sheng Xu
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Adina Badea
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Kyung-In Jang
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Zheng Yan
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - David J Wetzel
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Kewang Nan
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Qing Lin
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Mengdi Han
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Mikayla A Anderson
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Jung Woo Lee
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Zijun Wei
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Matt Pharr
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Renhan Wang
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Jessica Su
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Stanislav S Rubakhin
- Neuroscience Program University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - Jonathan V Sweedler
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA. Neuroscience Program University of Illinois-Urbana Champaign Urbana, IL 61801, USA
| | - John A Rogers
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA. Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | - Ralph G Nuzzo
- School of Chemical Sciences University of Illinois-Urbana Champaign Urbana, IL 61801, USA. Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| |
Collapse
|