1
|
Suyama H, Bianchini G, Lukas M. Vasopressin differentially modulates the excitability of rat olfactory bulb neuron subtypes. Front Neural Circuits 2024; 18:1448592. [PMID: 39268350 PMCID: PMC11390533 DOI: 10.3389/fncir.2024.1448592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Vasopressin (VP) plays a crucial role in social memory even at the level of the olfactory bulb (OB), where OB VP cells are activated during social interactions. However, it remains unclear how VP modulates olfactory processing to enable enhanced discrimination of very similar odors, e.g., rat body odors. Thus far, it has been shown that VP reduces firing rates in mitral cells (MCs) during odor presentation in vivo and decreases the amplitudes of olfactory nerve-evoked excitatory postsynaptic potentials (ON-evoked EPSPs) in external tufted cells in vitro. We performed whole-cell patch-clamp recordings and population Ca2+ imaging on acute rat OB slices. We recorded ON-evoked EPSPs as well as spontaneous inhibitory postsynaptic currents (IPSCs) from two types of projection neurons: middle tufted cells (mTCs) and MCs. VP bath application reduced the amplitudes of ON-evoked EPSPs and the frequencies of spontaneous IPSCs in mTCs but did not change those in MCs. Therefore, we analyzed ON-evoked EPSPs in inhibitory interneurons, i.e., periglomerular cells (PGCs) and granule cells (GCs), to search for the origin of increased inhibition in mTCs. However, VP did not increase the amplitudes of evoked EPSPs in either type of interneurons. We next performed two-photon population Ca2+ imaging in the glomerular layer and the superficial GC layer of responses to stronger ON stimulation than during patch-clamp experiments that should evoke action potentials in the measured cells. We observed that VP application increased ON-evoked Ca2+ influx in juxtaglomerular cells and GC somata. Thus, our findings indicate inhibition by VP on projection neurons via strong ON input-mediated inhibitory interneuron activity. This neural modulation could improve representation of odors, hence, better discriminability of similar odors, e.g., conspecific body odors.
Collapse
Affiliation(s)
- Hajime Suyama
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| | - Gaia Bianchini
- Neural Circuits and Behavior Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael Lukas
- Institute of Zoology, Neurophysiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Sun HZ, Shen FS, Li XX, Liu C, Xue Y, Han XH, Chen XY, Chen L. Exendin-4 increases the firing activity of hippocampal CA1 neurons through TRPC4/5 channels. Neurosci Res 2024; 199:48-56. [PMID: 37595875 DOI: 10.1016/j.neures.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The central neuropeptide GLP-1 is synthesized by preproglucagon (PPG) neurons in the brain. GLP-1 receptors are widely distributed in central nervous system. Hippocampus is a key component of the limbic system which is involved in learning, memory, and cognition. Previous studies have shown that overexpression of GLP-1 receptors in the hippocampus could improve the process of learning and memory. However, up to now, the direct electrophysiological effects and possible molecular mechanisms of GLP-1 in hippocampal CAl neurons remain unexplored. The present study aims to evaluate the effects and mechanisms of GLP-1 on the spontaneous firing activity of hippocampal CAl neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micro-pressure administration of GLP-1 receptor agonist, exendin-4, significantly increased the spontaneous firing rate of hippocampal CA1 neurons in rats. Furthermore, application of the specific GLP-1 receptor antagonist, exendin(9-39), alone significantly decreased the firing rate of CA1 neurons, suggesting that endogenous GLP-1 modulates the firing activity of CA1 neurons. Co-application of exendin(9-39) completely blocked exendin-4-induced excitation of hippocampal CA1 neurons. Finally, the present study demonstrated for the first time that the transient receptor potential canonical 4 (TRPC4)/TRPC5 channels may be involved in exendin-4-induced excitation. The present studies may provide a rationale for further investigation of the modulation of GLP-1 on learning and memory as well as its possible involvement in Alzheimer's disease.
Collapse
Affiliation(s)
- Hui-Zhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fang-Shuai Shen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao-Xue Li
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao-Hua Han
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Freichel M, Tsvilovskyy V, Philippaert K. Resolving the heteromeric composition and macromolecular environment of TRPC channels in the brain. Cell Calcium 2023; 111:102714. [PMID: 36921407 DOI: 10.1016/j.ceca.2023.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Affiliation(s)
- Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
5
|
Hu R, Shankar J, Dong GZ, Villar PS, Araneda RC. α 2-Adrenergic modulation of I h in adult-born granule cells in the olfactory bulb. Front Cell Neurosci 2023; 16:1055569. [PMID: 36687519 PMCID: PMC9853206 DOI: 10.3389/fncel.2022.1055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
In the olfactory bulb (OB), a large population of axon-less inhibitory interneurons, the granule cells (GCs), coordinate network activity and tune the output of principal neurons, the mitral and tufted cells (MCs), through dendrodendritic interactions. Furthermore, GCs undergo neurogenesis throughout life, providing a source of plasticity to the neural network of the OB. The function and integration of GCs in the OB are regulated by several afferent neuromodulatory signals, including noradrenaline (NA), a state-dependent neuromodulator that plays a crucial role in the regulation of cortical function and task-specific decision processes. However, the mechanisms by which NA regulates GC function are not fully understood. Here, we show that NA modulates hyperpolarization-activated currents (Ih) via the activation of α2-adrenergic receptors (ARs) in adult-born GCs (abGCs), thus directly acting on channels that play essential roles in regulating neuronal excitability and network oscillations in the brain. This modulation affects the dendrodendritic output of GCs leading to an enhancement of lateral inhibition onto the MCs. Furthermore, we show that NA modulates subthreshold resonance in GCs, which could affect the temporal integration of abGCs. Together, these results provide a novel mechanism by which a state-dependent neuromodulator acting on Ih can regulate GC function in the OB.
Collapse
|
6
|
Aghvami SS, Kubota Y, Egger V. Anatomical and Functional Connectivity at the Dendrodendritic Reciprocal Mitral Cell-Granule Cell Synapse: Impact on Recurrent and Lateral Inhibition. Front Neural Circuits 2022; 16:933201. [PMID: 35937203 PMCID: PMC9355734 DOI: 10.3389/fncir.2022.933201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the vertebrate olfactory bulb, reciprocal dendrodendritic interactions between its principal neurons, the mitral and tufted cells, and inhibitory interneurons in the external plexiform layer mediate both recurrent and lateral inhibition, with the most numerous of these interneurons being granule cells. Here, we used recently established anatomical parameters and functional data on unitary synaptic transmission to simulate the strength of recurrent inhibition of mitral cells specifically from the reciprocal spines of rat olfactory bulb granule cells in a quantitative manner. Our functional data allowed us to derive a unitary synaptic conductance on the order of 0.2 nS. The simulations predicted that somatic voltage deflections by even proximal individual granule cell inputs are below the detection threshold and that attenuation with distance is roughly linear, with a passive length constant of 650 μm. However, since recurrent inhibition in the wake of a mitral cell action potential will originate from hundreds of reciprocal spines, the summated recurrent IPSP will be much larger, even though there will be substantial mutual shunting across the many inputs. Next, we updated and refined a preexisting model of connectivity within the entire rat olfactory bulb, first between pairs of mitral and granule cells, to estimate the likelihood and impact of recurrent inhibition depending on the distance between cells. Moreover, to characterize the substrate of lateral inhibition, we estimated the connectivity via granule cells between any two mitral cells or all the mitral cells that belong to a functional glomerular ensemble (i.e., which receive their input from the same glomerulus), again as a function of the distance between mitral cells and/or entire glomerular mitral cell ensembles. Our results predict the extent of the three regimes of anatomical connectivity between glomerular ensembles: high connectivity within a glomerular ensemble and across the first four rings of adjacent glomeruli, substantial connectivity to up to eleven glomeruli away, and negligible connectivity beyond. Finally, in a first attempt to estimate the functional strength of granule-cell mediated lateral inhibition, we combined this anatomical estimate with our above simulation results on attenuation with distance, resulting in slightly narrowed regimes of a functional impact compared to the anatomical connectivity.
Collapse
Affiliation(s)
- S. Sara Aghvami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Regensburg University, Regensburg, Germany
| |
Collapse
|
7
|
Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol 2021; 18:139-159. [PMID: 33536636 DOI: 10.1038/s41585-021-00428-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Disruptions to sensory pathways in the lower urinary tract commonly occur and can give rise to lower urinary tract symptoms (LUTS). The unmet clinical need for treatment of LUTS has stimulated research into the molecular mechanisms that underlie neuronal control of the bladder and transient receptor potential (TRP) channels have emerged as key regulators of the sensory processes that regulate bladder function. TRP channels function as molecular sensors in urothelial cells and afferent nerve fibres and can be considered the origin of bladder sensations. TRP channels in the lower urinary tract contribute to the generation of normal and abnormal bladder sensations through a variety of mechanisms, and have demonstrated potential as targets for the treatment of LUTS in functional disorders of the lower urinary tract.
Collapse
Affiliation(s)
- Matthias Vanneste
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain & Disease Research, Leuven, and Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Egger V, Kuner T. Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors. Cell Tissue Res 2021; 383:495-506. [PMID: 33404844 PMCID: PMC7873091 DOI: 10.1007/s00441-020-03402-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
The role of granule cells in olfactory processing is surrounded by several enigmatic observations, such as the purpose of reciprocal spines and the mechanisms for GABA release, the apparently low firing activity and recurrent inhibitory drive of granule cells, the missing proof for functional reciprocal connectivity, and the apparently negligible contribution to lateral inhibition. Here, we summarize recent results with regard to both the mechanisms of GABA release and the behavioral relevance of granule cell activity during odor discrimination. We outline a novel hypothesis that has the potential to resolve most of these enigmas and allows further predictions on the function of granule cells in odor processing. Briefly, recent findings imply that GABA release from the reciprocal spine requires a local spine action potential and the cooperative action of NMDA receptors and high voltage-activated Ca2+ channels. Thus, lateral inhibition is conditional on activity in the principal neurons connected to a granule cell and tightly intertwined with recurrent inhibition. This notion allows us to infer that lateral inhibition between principal neurons occurs "on demand," i.e., selectively on coactive mitral and tufted cells, and thus can provide directed, dynamically switched lateral inhibition in a sensory system with 1000 input channels organized in glomerular columns. The mechanistic underpinnings of this hypothesis concur with findings from odor discrimination behavior in mice with synaptic proteins deleted in granule cells. In summary, our hypothesis explains the unusual microcircuit of the granule cell reciprocal spine as a means of olfactory combinatorial coding.
Collapse
Affiliation(s)
- Veronica Egger
- Institute of Zoology, Regensburg University, Universitätsstr. 30, 93040, Regensburg, Germany.
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Ona Jodar T, Lage-Rupprecht V, Abraham NM, Rose CR, Egger V. Local Postsynaptic Signaling on Slow Time Scales in Reciprocal Olfactory Bulb Granule Cell Spines Matches Asynchronous Release. Front Synaptic Neurosci 2020; 12:551691. [PMID: 33304264 PMCID: PMC7701096 DOI: 10.3389/fnsyn.2020.551691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate olfactory bulb (OB), axonless granule cells (GC) mediate self- and lateral inhibitory interactions between mitral/tufted cells via reciprocal dendrodendritic synapses. Locally triggered release of GABA from the large reciprocal GC spines occurs on both fast and slow time scales, possibly enabling parallel processing during olfactory perception. Here we investigate local mechanisms for asynchronous spine output. To reveal the temporal and spatial characteristics of postsynaptic ion transients, we imaged spine and adjacent dendrite Ca2 +- and Na+-signals with minimal exogenous buffering by the respective fluorescent indicator dyes upon two-photon uncaging of DNI-glutamate in OB slices from juvenile rats. Both postsynaptic fluorescence signals decayed slowly, with average half durations in the spine head of t1 / 2_Δ[Ca2 +]i ∼500 ms and t1 / 2_Δ[Na+]i ∼1,000 ms. We also analyzed the kinetics of already existing data of postsynaptic spine Ca2 +-signals in response to glomerular stimulation in OB slices from adult mice, either WT or animals with partial GC glutamate receptor deletions (NMDAR: GluN1 subunit; AMPAR: GluA2 subunit). In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ∼400 ms, range 20 to >1,000 ms). This slow rise was independent of Ca2 + entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2 + entry in ΔGluA2 GCs (with AMPARs rendered Ca2 +-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly. Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.
Collapse
Affiliation(s)
- Tiffany Ona Jodar
- Regensburg University, Regensburg, Germany
- Institut D’Investigacions Biomèdiques, Barcelona, Spain
| | - Vanessa Lage-Rupprecht
- Regensburg University, Regensburg, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, St. Augustin, Germany
| | | | | | | |
Collapse
|
10
|
Mueller M, Egger V. Dendritic integration in olfactory bulb granule cells upon simultaneous multispine activation: Low thresholds for nonlocal spiking activity. PLoS Biol 2020; 18:e3000873. [PMID: 32966273 PMCID: PMC7535128 DOI: 10.1371/journal.pbio.3000873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/05/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
The inhibitory axonless olfactory bulb granule cells form reciprocal dendrodendritic synapses with mitral and tufted cells via large spines, mediating recurrent and lateral inhibition. As a case in point for dendritic transmitter release, rat granule cell dendrites are highly excitable, featuring local Na+ spine spikes and global Ca2+- and Na+-spikes. To investigate the transition from local to global signaling, we performed holographic, simultaneous 2-photon uncaging of glutamate at up to 12 granule cell spines, along with whole-cell recording and dendritic 2-photon Ca2+ imaging in acute juvenile rat brain slices. Coactivation of less than 10 reciprocal spines was sufficient to generate diverse regenerative signals that included regional dendritic Ca2+-spikes and dendritic Na+-spikes (D-spikes). Global Na+-spikes could be triggered in one third of granule cells. Individual spines and dendritic segments sensed the respective signal transitions as increments in Ca2+ entry. Dendritic integration as monitored by the somatic membrane potential was mostly linear until a threshold number of spines was activated, at which often D-spikes along with supralinear summation set in. As to the mechanisms supporting active integration, NMDA receptors (NMDARs) strongly contributed to all aspects of supralinearity, followed by dendritic voltage-gated Na+- and Ca2+-channels, whereas local Na+ spine spikes, as well as morphological variables, barely mattered. Because of the low numbers of coactive spines required to trigger dendritic Ca2+ signals and thus possibly lateral release of GABA onto mitral and tufted cells, we predict that thresholds for granule cell-mediated bulbar lateral inhibition are low. Moreover, D-spikes could provide a plausible substrate for granule cell-mediated gamma oscillations.
Collapse
Affiliation(s)
- Max Mueller
- Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Veronica Egger
- Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Chu WG, Wang FD, Sun ZC, Ma SB, Wang X, Han WJ, Wang F, Bai ZT, Wu SX, Freichel M, Xie RG, Luo C. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J 2020; 34:8526-8543. [PMID: 32359120 DOI: 10.1096/fj.202000154rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/10/2024]
Abstract
Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.
Collapse
Affiliation(s)
- Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Kepura F, Braun E, Dietrich A, Plant TD. TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons. Cells 2020; 9:cells9020459. [PMID: 32085504 PMCID: PMC7072794 DOI: 10.3390/cells9020459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
The cation channel subunit TRPC1 is strongly expressed in central neurons including neurons in the CA1 region of the hippocampus where it forms complexes with TRPC4 and TRPC5. To investigate the functional role of TRPC1 in these neurons and in channel function, we compared current responses to group I metabotropic glutamate receptor (mGluR I) activation and looked for major differences in dendritic morphology in neurons from TRPC1+/+ and TRPC1-/- mice. mGluR I stimulation resulted in the activation of a voltage-dependent nonselective cation current in both genotypes. Deletion of TRPC1 resulted in a modification of the shape of the current-voltage relationship, leading to an inward current increase. In current clamp recordings, the percentage of neurons that responded to depolarization in the presence of an mGluR I agonist with a plateau potential was increased in TRPC1-/- mice. There was also a small increase in the minor population of CA1 neurons that have more than one apical dendrite in TRPC1-/- mice. We conclude that TRPC1 has an inhibitory effect on receptor-operated nonselective cation channels in hippocampal CA1 neurons probably as a result of heterotetramer formation with other TRPC isoforms, and that TRPC1 deletion has only minor effects on dendritic morphology.
Collapse
Affiliation(s)
- Frauke Kepura
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Eva Braun
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
| | - Alexander Dietrich
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Tim D. Plant
- Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; (F.K.); (E.B.); (A.D.)
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-28-65038
| |
Collapse
|
14
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Coincidence Detection within the Excitable Rat Olfactory Bulb Granule Cell Spines. J Neurosci 2019; 39:584-595. [PMID: 30674614 DOI: 10.1523/jneurosci.1798-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
In the mammalian olfactory bulb, the inhibitory axonless granule cells (GCs) feature reciprocal synapses that interconnect them with the principal neurons of the bulb, mitral, and tufted cells. These synapses are located within large excitable spines that can generate local action potentials (APs) upon synaptic input ("spine spike"). Moreover, GCs can fire global APs that propagate throughout the dendrite. Strikingly, local postsynaptic Ca2+ entry summates mostly linearly with Ca2+ entry due to coincident global APs generated by glomerular stimulation, although some underlying conductances should be inactivated. We investigated this phenomenon by constructing a compartmental GC model to simulate the pairing of local and global signals as a function of their temporal separation Δt. These simulations yield strongly sublinear summation of spine Ca2+ entry for the case of perfect coincidence Δt = 0 ms. Summation efficiency (SE) sharply rises for both positive and negative Δt. The SE reduction for coincident signals depends on the presence of voltage-gated Na+ channels in the spine head, while NMDARs are not essential. We experimentally validated the simulated SE in slices of juvenile rat brain (both sexes) by pairing two-photon uncaging of glutamate at spines and APs evoked by somatic current injection at various intervals Δt while imaging spine Ca2+ signals. Finally, the latencies of synaptically evoked global APs and EPSPs were found to correspond to Δt ≈ 10 ms, explaining the observed approximately linear summation of synaptic local and global signals. Our results provide additional evidence for the existence of the GC spine spike.SIGNIFICANCE STATEMENT Here we investigate the interaction of local synaptic inputs and global activation of a neuron by a backpropagating action potential within a dendritic spine with respect to local Ca2+ signaling. Our system of interest, the reciprocal spine of the olfactory bulb granule cell, is known to feature a special processing mode, namely, a synaptically triggered action potential that is restricted to the spine head. Therefore, coincidence detection of local and global signals follows different rules than in more conventional synapses. We unravel these rules using both simulations and experiments and find that signals coincident within ≈±7 ms around 0 ms result in sublinear summation of Ca2+ entry because of synaptic activation of voltage-gated Na+ channels within the spine.
Collapse
|
16
|
Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, Boehm U, Freichel M, Bruns D. TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol 2019; 17:e3000445. [PMID: 31536487 PMCID: PMC6773422 DOI: 10.1371/journal.pbio.3000445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/01/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5–τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity. Transient receptor potential (TRP) proteins can form non-selective cation channels, but their role in synaptic transmission is poorly understood. This study shows that calcium-permeable TRPC channels provide an additional calcium entry pathway at presynaptic sites and are efficient regulators of synaptic strength and plasticity.
Collapse
Affiliation(s)
- Yvonne Schwarz
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| | | | | | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Petra Weißgerber
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
17
|
Nunes D, Kuner T. Axonal sodium channel NaV1.2 drives granule cell dendritic GABA release and rapid odor discrimination. PLoS Biol 2018; 16:e2003816. [PMID: 30125271 PMCID: PMC6117082 DOI: 10.1371/journal.pbio.2003816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Dendrodendritic synaptic interactions between olfactory bulb mitral and granule cells represent a key neuronal mechanism of odor discrimination. Dendritic release of gamma-aminobutyric acid (GABA) from granule cells contributes to stimulus-dependent, rapid, and accurate odor discrimination, yet the physiological mechanisms governing this release and its behavioral relevance are unknown. Here, we show that granule cells express the voltage-gated sodium channel α-subunit NaV1.2 in clusters distributed throughout the cell surface including dendritic spines. Deletion of NaV1.2 in granule cells abolished spiking and GABA release as well as inhibition of synaptically connected mitral cells (MCs). As a consequence, mice required more time to discriminate highly similar odorant mixtures, while odor discrimination learning remained unaffected. In conclusion, we show that expression of NaV1.2 in granule cells is crucial for physiological dendritic GABA release and rapid discrimination of similar odorants with high accuracy. Hence, our data indicate that neurotransmitter-releasing dendritic spines function just like axon terminals. In axonal nerve terminals, neurotransmitter release is triggered by a localized Ca2+ nanodomain generated by voltage-gated calcium channels in response to an action potential, which in turn is mediated by voltage-gated sodium channels. Dendritic neurotransmitter release has been thought to work differently, mainly depending on Ca2+ entering directly through N-methyl-D-aspartate (NMDA) receptors, a subtype of ligand-gated ion channel. To further investigate how dendritic neurotransmitter is released, we studied granule cells in the olfactory bulb of mice, which establish inhibitory dendrodendritic synapses with mitral cells. We show that granule cells express voltage-gated sodium channels predominantly localized in dendrites and spines. Down-regulation of these channels precludes action potential firing in granule cells and strongly reduces mitral cell inhibition. Behaviorally, these mice require more time to discriminate highly similar odorants at maximal accuracy. Therefore, the inhibition of mitral cells relies on neurotransmitter released from the dendrites of granule cells by a mechanism that resembles axonal neurotransmitter release much more than previously thought.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| | - Thomas Kuner
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| |
Collapse
|
18
|
Lukas M, Holthoff K, Egger V. Long-Term Plasticity at the Mitral and Tufted Cell to Granule Cell Synapse of the Olfactory Bulb Investigated with a Custom Multielectrode in Acute Brain Slice Preparations. Methods Mol Biol 2018; 1820:157-167. [PMID: 29884945 DOI: 10.1007/978-1-4939-8609-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single extracellular stimulation electrodes are a widespread means to locally activate synaptic inputs in acute brain slices. Here we describe the fabrication and application of a multielectrode stimulator that was developed for conditions under which independent stimulation of several nearby sites is desirable. For the construction of the multielectrode we have developed a method by which electrode wires can be spaced at minimal distances of 100 μm. This configuration increases the efficiency of stimulation paradigms, such as the comparison of proximal induced and control inputs for studies of synaptic plasticity.In our case the multielectrode was used for acute olfactory bulb slices to independently excite individual nearby glomeruli; the technique allowed us to demonstrate homosynaptic bidirectional long-term plasticity at the mitral/tufted cell to granule cell synapse. We also describe the determinants for successful recordings of long-term plasticity at this synapse, with mechanical and electrophysiological recording stability being tantamount. Finally, we briefly discuss data analysis procedures.
Collapse
Affiliation(s)
- Michael Lukas
- Institute of Zoology and Regensburg Center of Neuroscience, Regensburg University, Regensburg, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, Jena, Germany
| | - Veronica Egger
- Institute of Zoology and Regensburg Center of Neuroscience, Regensburg University, Regensburg, Germany.
| |
Collapse
|
19
|
Bröker-Lai J, Kollewe A, Schindeldecker B, Pohle J, Nguyen Chi V, Mathar I, Guzman R, Schwarz Y, Lai A, Weißgerber P, Schwegler H, Dietrich A, Both M, Sprengel R, Draguhn A, Köhr G, Fakler B, Flockerzi V, Bruns D, Freichel M. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. EMBO J 2017; 36:2770-2789. [PMID: 28790178 DOI: 10.15252/embj.201696369] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.
Collapse
Affiliation(s)
- Jenny Bröker-Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Astrid Kollewe
- Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Barbara Schindeldecker
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Jörg Pohle
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim, Germany
| | - Vivan Nguyen Chi
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Raul Guzman
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Yvonne Schwarz
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Alan Lai
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Petra Weißgerber
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | | | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University München, München, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Georg Köhr
- Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim, Germany
| | - Bernd Fakler
- Institute of Physiology, University of Freiburg, Freiburg, Germany.,BIOSS, Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany‡
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Dieter Bruns
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
20
|
Burton SD. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol 2017; 118:2034-2051. [PMID: 28724776 DOI: 10.1152/jn.00109.2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Synaptic inhibition critically influences sensory processing throughout the mammalian brain, including the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system. Decades of research across numerous laboratories have established a central role for granule cells (GCs), the most abundant GABAergic interneuron type in the MOB, in the precise regulation of principal mitral and tufted cell (M/TC) firing rates and synchrony through lateral and recurrent inhibitory mechanisms. In addition to GCs, however, the MOB contains a vast diversity of other GABAergic interneuron types, and recent findings suggest that, while fewer in number, these oft-ignored interneurons are just as important as GCs in shaping odor-evoked M/TC activity. Here I challenge the prevailing centrality of GCs. In this review, I first outline the specific properties of each GABAergic interneuron type in the rodent MOB, with particular emphasis placed on direct interneuron recordings and cell type-selective manipulations. On the basis of these properties, I then critically reevaluate the contribution of GCs vs. other interneuron types to the regulation of odor-evoked M/TC firing rates and synchrony via lateral, recurrent, and other inhibitory mechanisms. This analysis yields a novel model in which multiple interneuron types with distinct abundances, connectivity patterns, and physiologies complement one another to regulate M/TC activity and sensory processing.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and .,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Lin EC, Combe CL, Gasparini S. Differential Contribution of Ca 2+-Dependent Mechanisms to Hyperexcitability in Layer V Neurons of the Medial Entorhinal Cortex. Front Cell Neurosci 2017; 11:182. [PMID: 28713246 PMCID: PMC5491848 DOI: 10.3389/fncel.2017.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy is characterized by recurrent seizures in one or both temporal lobes of the brain; some in vitro models show that epileptiform discharges initiate in entorhinal layer V neurons and then spread into other areas of the temporal lobe. We previously found that, in the presence of GABAA receptor antagonists, stimulation of afferent fibers, terminating both at proximal and distal dendritic locations, initiated hyperexcitable bursts in layer V medial entorhinal neurons. We investigated the differential contribution of Ca2+-dependent mechanisms to the plateaus underlying these bursts at proximal and distal synapses. We found that the NMDA glutamatergic antagonist D,L-2-amino-5-phosphonovaleric acid (APV; 50 μM) reduced both the area and duration of the bursts at both proximal and distal synapses by about half. The L-type Ca2+ channel blocker nimodipine (10 μM) and the R- and T-type Ca2+ channel blocker NiCl2 (200 μM) decreased the area of the bursts to a lesser extent; none of these effects appeared to be location-dependent. Remarkably, the perfusion of flufenamic acid (FFA; 100 μM), to block Ca2+-activated non-selective cation currents (ICAN) mediated by transient receptor potential (TRP) channels, had a location-dependent effect, by abolishing burst firing and switching the suprathreshold response to a single action potential (AP) for proximal stimulation, but only minimally affecting the bursts evoked by distal stimulation. A similar outcome was found when FFA was pressure-applied locally around the proximal dendrite of the recorded neurons and in the presence of a selective blocker of melastatin TRP (TRPM) channels, 9-phenanthrol (100 μM), whereas a selective blocker of canonical TRP (TRPC) channels, SKF 96365, did not affect the bursts. These results indicate that different mechanisms might contribute to the initiation of hyperexcitability in layer V neurons at proximal and distal synapses and could shed light on the initiation of epileptiform activity in the entorhinal cortex.
Collapse
Affiliation(s)
- Eric C Lin
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Crescent L Combe
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| | - Sonia Gasparini
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew Orleans, LA, United States.,Department of Cell Biology and Anatomy, Louisiana State University Health Sciences CenterNew Orleans, LA, United States
| |
Collapse
|
22
|
Du T, Rong Y, Feng R, Verkhratsky A, Peng L. Chronic Treatment with Anti-bipolar Drugs Down-Regulates Gene Expression of TRPC1 in Neurones. Front Cell Neurosci 2017; 10:305. [PMID: 28119572 PMCID: PMC5223735 DOI: 10.3389/fncel.2016.00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/22/2016] [Indexed: 11/24/2022] Open
Abstract
In the brain, TRPC1 channels are abundantly expressed in neurones virtually in all regions; these proteins function as receptor-activated ion channels and are implicated in numerous processes, being specifically important for neurogenesis. Primary cultures of mouse cerebellar granule cell, cerebral cortical neurones, and freshly isolated neurones from in vivo brains were used to study effects of chronic treatment with anti-bipolar drugs [carbamazepine (CBZ), lithium salts and valproic acid] on gene expression of TRPC1. Expression of TRPC1 mRNA was identified with reverse transcription-polymerase chain reaction, whereas protein content was determined by Western blotting. Store-operated plasmalemmal Ca2+ entry (SOCE) was measured with fura-2 based microfluorimetry. Chronic treatment with each of the three drugs down-regulated mRNA and protein expression in cultured cerebellar granule cells in a time- and concentration-dependent manner. Similar effect was also observed in cultured cerebral cortical neurones treated with CBZ, lithium salts and valproic acid and in freshly isolated neurones from the brains of CBZ-treated animals. The amplitude of SOCE was substantially decreased in cerebellar granule cells chronically treated with each of the three drugs. Our findings indicate that down-regulation of TRPC1 gene expression and function in neurones may be one of the mechanisms of anti-bipolar drugs action.
Collapse
Affiliation(s)
- Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Rui Feng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of ManchesterManchester, UK; Achucarro Center for Neuroscience, Basque Foundation for ScienceBilbao, Spain
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
23
|
Bavencoffe A, Zhu MX, Tian JB. New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:239-255. [DOI: 10.1007/978-3-319-57732-6_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse. Neural Plast 2016; 2016:9124986. [PMID: 27747107 PMCID: PMC5056313 DOI: 10.1155/2016/9124986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts ("single-sniff paradigm") can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and "single-sniff paradigm"-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.
Collapse
|
25
|
Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o. Biochem J 2016; 473:1379-90. [PMID: 26987813 DOI: 10.1042/bcj20160214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023]
Abstract
Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions.
Collapse
|
26
|
Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. J Neurosci 2016; 35:14103-22. [PMID: 26490853 DOI: 10.1523/jneurosci.0746-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates.
Collapse
|
27
|
Brill J, Shao Z, Puche AC, Wachowiak M, Shipley MT. Serotonin increases synaptic activity in olfactory bulb glomeruli. J Neurophysiol 2015; 115:1208-19. [PMID: 26655822 DOI: 10.1152/jn.00847.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.
Collapse
Affiliation(s)
- Julia Brill
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Zuoyi Shao
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy, and Brain Institute, University of Utah, Salt Lake City, Utah
| | - Michael T Shipley
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
28
|
From GTP and G proteins to TRPC channels: a personal account. J Mol Med (Berl) 2015; 93:941-53. [PMID: 26377676 DOI: 10.1007/s00109-015-1328-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
By serendipity and good fortune, as a postdoctoral fellow in 1967, I landed at the right place at the right time, as I was allowed to investigate the mechanism by which hormones activate the enzyme adenylyl cyclase (then adenyl cyclase) in Martin Rodbell's Laboratory at the NIH in Bethesda, Maryland. The work uncovered first, the existence of receptors separate from the enzyme and then, the existence of transduction mechanisms requiring guanosine-5'-triphosphate (GTP) and Mg(2+). With my laboratory colleagues first and postdoctoral fellows after leaving NIH, I participated in the development of the field "signal transduction by G proteins," uncovered by molecular cloning several G-protein-coupled receptors (GPCRs) and became interested in both the molecular makeup of voltage-gated Ca channels and Ca2+ homeostasis downstream of activation of phospholipase C (PLC) by the Gq/11 signaling pathway. We were able to confirm the hypothesis that there would be mammalian homologues of the Drosophila "transient receptor potential" channel and discovered the existence of six of the seven mammalian genes, now called transient receptor potential canonical (TRPC) channels. In the present article, I summarize from a bird's eye view of what I feel were key findings along this path, not only from my laboratory but also from many others, that allowed for the present knowledge of cell signaling involving G proteins to evolve. Towards the end, I summarize roles of TRPC channels in health and disease.
Collapse
|
29
|
Pérez de los Cobos Pallarés F, Stanić D, Farmer D, Dutschmann M, Egger V. An arterially perfused nose-olfactory bulb preparation of the rat. J Neurophysiol 2015; 114:2033-42. [PMID: 26108959 DOI: 10.1152/jn.01048.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.
Collapse
Affiliation(s)
- Fernando Pérez de los Cobos Pallarés
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| | - Davor Stanić
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - David Farmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Veronica Egger
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| |
Collapse
|
30
|
Dual depolarization responses generated within the same lateral septal neurons by TRPC4-containing channels. Pflugers Arch 2015; 466:1301-16. [PMID: 24121765 DOI: 10.1007/s00424-013-1362-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
In the central nervous system, canonical transient receptor potential (TRPC) channels have been implicated in mediating neuronal excitation induced by stimulating metabotropic receptors, including group 1 metabotropic glutamate receptors (mGluRs). Lateral septal (LS) neurons express high levels of TRPC4 and group I mGluRs. However, to what extent native TRPC4-containing channels (TRPC4-cc) are activated as well as the impact of different levels of TRPC4-cc activation on neuronal excitability remain elusive. Here, we report that stimulating LS neurons with group I mGluR agonist, (S)-3,5-DHPG, causes either an immediate increase in firing rate or an initial burst followed by a pause of firing, which can be correlated with below-threshold-depolarization (BTD) or above-threshold-plateau-depolarization (ATPD), respectively, in whole-cell recordings. The early phase of BTD and the entire ATPD are completely absent in neurons from TRPC4−/− mice. Moreover, in the same LS neurons, BTD can be converted to ATPD at more depolarized potentials or with a brief current injection, suggesting that BTD and ATPD may represent partial and full activations of TRPC4-cc, respectively. We show that coincident mGluR stimulation and depolarization is required to evoke strong TRPC4-cc current, and Na+ and Ca2+ influx, together with dynamic changes of intracellular Ca(2+), are essential for ATPD induction. Our results suggest that TRPC4-cc integrates metabotropic receptor stimulation with intracellular Ca(2+) signals to generate two interconvertible depolarization responses to affect excitability of LS neurons in distinct fashions.
Collapse
|
31
|
Louhivuori LM, Jansson L, Turunen PM, Jäntti MH, Nordström T, Louhivuori V, Åkerman KE. Transient receptor potential channels and their role in modulating radial glial-neuronal interaction: a signaling pathway involving mGluR5. Stem Cells Dev 2014; 24:701-13. [PMID: 25347706 DOI: 10.1089/scd.2014.0209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The guidance of developing neurons to the right position in the central nervous system is of central importance in brain development. Canonical transient receptor potential (TRPC) channels are thought to mediate turning responses of growth cones to guidance cues through fine control of calcium transients. Proliferating and 1- to 5-day-differentiated neural progenitor cells (NPCs) showed expression of Trpc1 and Trpc3 mRNA, while Trpc4-7 was not clearly detected. Time-lapse imaging showed that the motility pattern of neuronal cells was phasic with bursts of rapid movement (>60 μm/h), changes in direction, and intermittent slow phases or stallings (<40 μm/h), which frequently occurred in close contact with radial glial processes. Genetic interference with the TRPC3 and TRPC1 channel enhanced the motility of NPCs (burst frequency/stalling frequency). TRPC3-deficient cells or cells treated with the TRPC3 blocker pyr3 infrequently changed direction and seldom contacted radial glial processes. TRPC channels are also activated by group I metabotropic glutamate receptors (mGluR1 and mGluR5). As shown here, pyr3 blocked the calcium response mediated through mGluR5 in radial glial processes. Furthermore, 2-methyl-6-(phenylethynyl)pyridine, a blocker of mGluR5, affected the motility pattern in a similar way as TRPC3/6 double knockout or pyr3. The results suggest that radial glial cells exert attractant signals to migrating neuronal cells, which alter their motility pattern. Our results suggest that mGluR5 acting through TRPC3 is of central importance in radial glial-mediated neuronal guidance.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, University of Helsinki , Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 2014; 93:1165-83. [PMID: 25502473 DOI: 10.1002/jnr.23529] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been increasingly implicated in the pathological mechanisms of CNS disorders. TRP expression has been detected in neurons, astrocytes, oligodendrocytes, microglia, and ependymal cells as well as in the cerebral vascular endothelium and smooth muscle. In stroke, TRPC3/4/6, TRPM2/4/7, and TRPV1/3/4 channels have been found to participate in ischemia-induced cell death, whereas other TRP channels, in particular those expressed in nonneuronal cells, have been less well studied. This review summarizes the current knowledge on the expression and functions of the TRP channels in various cell types in the brain and our current understanding of TRP channels in stroke pathophysiology. In an aging society, the occurrence of stroke is expected to increase steadily, and there is an urgent requirement to improve the current stroke management strategy. Therefore, elucidating the roles of TRP channels in stroke could shed light on the development of novel therapeutic strategies and ultimately improve stroke outcome.
Collapse
Affiliation(s)
- Eric Zhang
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
33
|
Fu J, Gao Z, Shen B, Zhu MX. Canonical transient receptor potential 4 and its small molecule modulators. SCIENCE CHINA-LIFE SCIENCES 2014; 58:39-47. [PMID: 25480324 DOI: 10.1007/s11427-014-4772-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/06/2014] [Indexed: 02/04/2023]
Abstract
Canonical transient receptor potential 4 (TRPC4) forms non-selective cation channels that contribute to phospholipase C-dependent Ca(2+) entry into cells following stimulation of G protein coupled receptors and receptor tyrosine kinases. Moreover, the channels are regulated by pertussis toxin-sensitive Gi/o proteins, lipids, and various other signaling mechanisms. TRPC4-containing channels participate in the regulation of a variety of physiological functions, including excitability of both gastrointestinal smooth muscles and brain neurons. This review is to present recent advances in the understanding of physiology and development of small molecular modulators of TRPC4 channels.
Collapse
Affiliation(s)
- Jie Fu
- Department of Physiology, Anhui Medical University, Hefei, 230032, China
| | | | | | | |
Collapse
|
34
|
Simões-de-Souza FM, Antunes G, Roque AC. Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations. Front Comput Neurosci 2014; 8:128. [PMID: 25360108 PMCID: PMC4197772 DOI: 10.3389/fncom.2014.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
This work consists of a computational study of the electrical responses of three classes of granule cells of the olfactory bulb to synaptic activation in different dendritic locations. The constructed models were based on morphologically detailed compartmental reconstructions of three granule cell classes of the olfactory bulb with active dendrites described by Bhalla and Bower (1993, pp. 1948-1965) and dendritic spine distributions described by Woolf et al. (1991, pp. 1837-1854). The computational studies with the model neurons showed that different quantities of spines have to be activated in each dendritic region to induce an action potential, which always was originated in the active terminal dendrites, independently of the location of the stimuli, and the morphology of the dendritic tree. These model predictions might have important computational implications in the context of olfactory bulb circuits.
Collapse
Affiliation(s)
- Fábio M Simões-de-Souza
- Laboratory of Neural Systems (SisNE), Department of Psychology, Faculdade de Filosofia Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil ; Center for Mathematics, Computation and Cognition, Federal University of ABC São Bernardo do Campo, Brazil
| | - Gabriela Antunes
- Laboratory of Neural Systems (SisNE), Department of Psychology, Faculdade de Filosofia Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| | - Antonio C Roque
- Laboratory of Neural Systems (SisNE), Department of Physics, Faculdade de Filosofia Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
35
|
Novel coupling between TRPC-like and KNa channels modulates low threshold spike-induced afterpotentials in rat thalamic midline neurons. Neuropharmacology 2014; 86:88-96. [PMID: 25014020 DOI: 10.1016/j.neuropharm.2014.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/17/2014] [Accepted: 06/21/2014] [Indexed: 11/22/2022]
Abstract
Neurons in thalamic midline and paraventricular nuclei (PVT) display a unique slow afterhyperpolarizing potential (sAHP) following the low threshold spike (LTS) generated by activation of their low voltage Ca(2+) channels. We evaluated the conductances underlying this sAHP using whole-cell patch-clamp recordings in rat brain slice preparations. Initial observations recorded in the presence of TTX revealed a marked dependency of the LTS-induced sAHP on extracellular Na(+): replacing Na(+) with TRIS(+) in the external medium eliminated the LTS-induced sAHP; substitution of Na(+) with either Li(+) or choline(+) in the external medium resulted in a gradual loss of the sAHP and its replacement with a prolonged slow afterdepolarizing potential (sADP). The LTS-induced sAHP was reduced by quinidine and potentiated by loxapine, suggesting involvement of KNa-like channels. Canonical transient receptor potential (TRPC) channels were considered the source for Na(+) based on observations that the sAHP was suppressed by nonselective TRPC channel blockers (2-APB, flufenamic acid and ML204) but unchanged in the presence of TRPV1 channel blocker (SB-366791). In addition, after replacement of Na(+) with Li(+), the isolated LTS-induced sADP was significantly suppressed in the presence of 2-APB or ML204, after replacement of extracellular Ca(2+) with Sr(2+), and by intracellular Ca(2+) chelation with EGTA, data that collectively suggest involvement of Ca(2+)-activated TRPC-like conductances containing TRPC4/5 subunits. The isolated LTS-induced sADP also exhibited a strong voltage dependency, decreasing at hyperpolarizing potentials, further support for involvement of TRPC4/5 subunits. This sADP exhibited neurotransmitter receptor sensitivity, with suppression by 5-CT, a 5-HT7 receptor agonist, and enhancement by the neuropeptide orexin A. These data suggest that LTS-induced slow afterpotentials reflect a simultaneous interplay between KNa and TRPC-like conductances, novel for midline thalamic neurons.
Collapse
|
36
|
The role of canonical transient receptor potential channels in seizure and excitotoxicity. Cells 2014; 3:288-303. [PMID: 24722470 PMCID: PMC4092853 DOI: 10.3390/cells3020288] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/29/2014] [Accepted: 04/02/2014] [Indexed: 12/11/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research.
Collapse
|
37
|
Sala C, Segal M. Dendritic spines: the locus of structural and functional plasticity. Physiol Rev 2014; 94:141-88. [PMID: 24382885 DOI: 10.1152/physrev.00012.2013] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.
Collapse
|
38
|
Liao Y, Abramowitz J, Birnbaumer L. The TRPC family of TRP channels: roles inferred (mostly) from knockout mice and relationship to ORAI proteins. Handb Exp Pharmacol 2014; 223:1055-1075. [PMID: 24961980 DOI: 10.1007/978-3-319-05161-1_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aside from entering into cells through voltage gated Ca channels and Na/Ca exchangers in those cells that express these proteins, for all cells be they excitable or non-excitable, Ca(2+) enters through channels that are activated downstream of phosphoinositide mobilization (activation of phospholipase C, PLC) and through channels that are activated secondary to depletion of internal stores. Depletion of internal stores activates plasma membrane channels known as ORAIs. Activation of PLCs activates the canonical class of transient receptor potential channels (TRPCs), and, because this activation also causes depletion of Ca(2+) stores, also ORAI based channels. Whereas the activation of ORAI is a well-accepted phenomenon, it appears that TRPC channels also participate in Ca(2+) entry triggered by store depletion with or without participation of ORAI molecules. Regardless of molecular makeup of TRPC containing channels, a plethora of studies have shown TRPCs to be important both in physiologic systems as well as in pathophysiologic phenomena. Particularly important in defining roles of TRPCs, have been studies with mice with targeted disruption of their genes, i.e., with TRPC KO mice. In this chapter we first focus on TRPCs as regulators of body functions in health and disease, and then focus on the possible make-up of the channels of which they participate. A hypothesis is set forth, whereby ORAI dimers are proposed to be regulatory subunits of tetrameric TRPC channels and serve as structural units that form ORAI channels either as dimers of dimers or trimers of dimers.
Collapse
Affiliation(s)
- Yanhong Liao
- Department of Anatomy, College of Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China,
| | | | | |
Collapse
|
39
|
Abstract
The TRPC1 ion channel was the first mammalian TRP channel to be cloned. In humans, it is encoded by the TRPC1 gene located in chromosome 3. The protein is predicted to consist of six transmembrane segments with the N- and C-termini located in the cytoplasm. The extracellular loop connecting transmembrane segments 5 and 6 participates in the formation of the ionic pore region. Inside the cell, TRPC1 is present in the endoplasmic reticulum, plasma membrane, intracellular vesicles, and primary cilium, an antenna-like sensory organelle functioning as a signaling platform. In human and rodent tissues, it shows an almost ubiquitous expression. TRPC1 interacts with a diverse group of proteins including ion channel subunits, receptors, and cytosolic proteins to mediate its effect on Ca(2+) signaling. It primarily functions as a cation nonselective channel within pathways controlling Ca(2+) entry in response to cell surface receptor activation. Through these pathways, it affects basic cell functions, such as proliferation and survival, differentiation, secretion, and cell migration, as well as cell type-specific functions such as chemotropic turning of neuronal growth cones and myoblast fusion. The biological role of TRPC1 has been studied in genetically engineered mice where the Trpc1 gene has been experimentally ablated. Although these mice live to adulthood, they show defects in several organs and tissues, such as the cardiovascular, central nervous, skeletal and muscular, and immune systems. Genetic and functional studies have implicated TRPC1 in diabetic nephropathy, Parkinson's disease, Huntington's disease, Duchenne muscular dystrophy, cancer, seizures, and Darier-White skin disease.
Collapse
Affiliation(s)
- Vasyl Nesin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
40
|
Abstract
The mammalian olfactory system has become an excellent model system to understand the function of transient receptor potential (TRP) channels within their native cellular and circuit environment. The discovery that the canonical TRP channel TRPC2 is highly expressed in sensory neurons of the vomeronasal organ (VNO) has led to major advances in our understanding of the cellular and molecular processes underlying signal transduction of pheromones and other molecular cues that play an essential role in the control of instinctive decisions and innate social behaviors. TRPC2 knockout mice provide a striking example that the loss of function of a single gene can cause severe alterations in a variety of social interactions including the display of aggression, social dominance, and sexual behaviors. There is mounting evidence that TRPC2 is not the only TRP channel expressed in cells of the olfactory system but that other TRP channel subtypes such as TRPC1, TRPC4, TRPC6, TRPM4, and TRPM5 could also play important functional roles in mammalian olfaction. Here, I review such findings and discuss future areas for investigation.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, 66424, Homburg, Germany,
| |
Collapse
|
41
|
Abstract
TRPC4 proteins comprise six transmembrane domains, a putative pore-forming region, and an intracellularly located amino- and carboxy-terminus. Among eleven splice variants identified so far, TRPC4α and TRPC4β are the most abundantly expressed and functionally characterized. TRPC4 is expressed in various organs and cell types including the soma and dendrites of numerous types of neurons; the cardiovascular system including endothelial, smooth muscle, and cardiac cells; myometrial and skeletal muscle cells; kidney; and immune cells such as mast cells. Both recombinant and native TRPC4-containing channels differ tremendously in their permeability and other biophysical properties, pharmacological modulation, and mode of activation depending on the cellular environment. They vary from inwardly rectifying store-operated channels with a high Ca(2+) selectivity to non-store-operated channels predominantly carrying Na(+) and activated by Gαq- and/or Gαi-coupled receptors with a complex U-shaped current-voltage relationship. Thus, individual TRPC4-containing channels contribute to agonist-induced Ca(2+) entry directly or indirectly via depolarization and activation of voltage-gated Ca(2+) channels. The differences in channel properties may arise from variations in the composition of the channel complexes, in the specific regulatory pathways in the corresponding cell system, and/or in the expression pattern of interaction partners which comprise other TRPC proteins to form heteromultimeric channels. Additional interaction partners of TRPC4 that can mediate the activity of TRPC4-containing channels include (1) scaffolding proteins (e.g., NHERF) that may mediate interactions with signaling molecules in or in close vicinity to the plasma membrane such as Gα proteins or phospholipase C and with the cytoskeleton, (2) proteins in specific membrane microdomains (e.g., caveolin-1), or (3) proteins on cellular organelles (e.g., Stim1). The diversity of TRPC4-containing channels hampers the development of specific agonists or antagonists, but recently, ML204 was identified as a blocker of both recombinant and endogenous TRPC4-containing channels with an IC50 in the lower micromolar range that lacks activity on most voltage-gated channels and other TRPs except TRPC5 and TRPC3. Lanthanides are specific activators of heterologously expressed TRPC4- and TRPC5-containing channels but can block individual native TRPC4-containing channels. The biological relevance of TRPC4-containing channels was demonstrated by knockdown of TRPC4 expression in numerous native systems including gene expression, cell differentiation and proliferation, formation of myotubes, and axonal regeneration. Studies of TRPC4 single and TRPC compound knockout mice uncovered their role for the regulation of vascular tone, endothelial permeability, gastrointestinal contractility and motility, neurotransmitter release, and social exploratory behavior as well as for excitotoxicity and epileptogenesis. Recently, a single-nucleotide polymorphism (SNP) in the Trpc4 gene was associated with a reduced risk for experience of myocardial infarction.
Collapse
Affiliation(s)
- Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany,
| | | | | |
Collapse
|
42
|
Von Niederhäusern V, Kastenhuber E, Stäuble A, Gesemann M, Neuhauss SCF. Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish. Dev Dyn 2013; 242:1427-41. [PMID: 24038627 DOI: 10.1002/dvdy.24041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Canonical transient receptor potential (TRPC) channels are nonselective, calcium-permeable cation channels that are expressed in a great variety of organisms, tissues, and cell types. TRPC channels are known to be involved in the transduction of polymodal sensory input. Additionally, they are implicated in a variety of developmental processes. Distinct gating mechanisms have been elucidated so far, but their exact functional role in vertebrate organisms still needs to be resolved. RESULTS We now used the teleost Danio rerio to perform a comprehensive expression analysis of the trpc gene subfamily. Based on the sequence homology to the seven described mammalian TRPC channels, we identified 12 trpc genes in the zebrafish genome. All but trpc1 and trpc3 are represented by two paralogs. We further describe the specific expression patterns of trpc transcripts in whole-mounts during the first 5 days of development. CONCLUSIONS Consistent with their proposed role in sensory transduction zebrafish trpcs are predominantly expressed in neural structures such as the olfactory, visual, mechanosensitive, and motor systems. Intriguingly, zebrafish paralogs show mainly nonoverlapping expression patterns, suggesting that duplicated genes have either split their functions or have adapted new ones.
Collapse
Affiliation(s)
- Valentin Von Niederhäusern
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Zimnik NC, Treadway T, Smith RS, Araneda RC. α(1A)-Adrenergic regulation of inhibition in the olfactory bulb. J Physiol 2012; 591:1631-43. [PMID: 23266935 DOI: 10.1113/jphysiol.2012.248591] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
By regulating inhibition at dendrodendritic synapses between mitral and granule cells (GCs), noradrenergic neurons extending from the brainstem provide an input essential for odour processing in the olfactory bulb (OB). In the accessory OB (AOB), we have recently shown that noradrenaline (NA) increases GABA inhibitory input on to mitral cells (MCs) by exciting GCs. Here, we show that GCs in the main OB (MOB) exhibit a similar response to NA, indicating a common mechanism for noradrenergic regulation of GCMC inhibition throughout the OB. In GCs of the MOB, NA (10 μM) produced a robust excitatory effect that included a slow afterdepolarization that followed a train of action potentials evoked by a current stimulus. The depolarization and slow afterdepolarization in GCs were blocked by the α1A-adrenergic receptor (AR) selective antagonist WB 4101 (30 nm) and mimicked by the α(1A)-AR selective agonist A 61603 (1 μM). In recordings from MCs, A 61603 (30 nm-1 μM) produced a sizeable increase in the frequency of spontaneous and miniature IPSCs, an effect completely abolished by the GABAA receptor antagonist gabazine (5 μM). Likewise, activation of β-ARs increased the frequency of spontaneous IPSCs; however, this effect was smaller and confined to the first postnatal weeks. NA enhanced inhibition in MCs across a broad concentration range (0.1-30 μM) and its effects were completely abolished by a mixture of α1- and β-AR antagonists (1 μM prazosin and 10 μM propranolol). Furthermore, the general α2-AR agonist clonidine (10 μM) failed to affect sIPSC frequency. Thus, the NA-mediated increase in GCMC inhibition in the OB results mostly from activation of the α1A-AR subtype.
Collapse
Affiliation(s)
- Nathan C Zimnik
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
44
|
Phelan KD, Shwe UT, Abramowitz J, Wu H, Rhee SW, Howell MD, Gottschall PE, Freichel M, Flockerzi V, Birnbaumer L, Zheng F. Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Mol Pharmacol 2012. [PMID: 23188715 DOI: 10.1124/mol.112.082271] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy.
Collapse
Affiliation(s)
- Kevin D Phelan
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 2012. [PMID: 23190074 DOI: 10.1146/annurev-physiol-030212-183731] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern neuroscience has demonstrated how the adult brain has the ability to profoundly remodel its neurons in response to changes in external stimuli or internal states. However, adult brain plasticity, although possible throughout life, remains restricted mostly to subcellular levels rather than affecting the entire cell. New neurons are continuously generated in only a few areas of the adult brain-the olfactory bulb and the dentate gyrus-where they integrate into already functioning circuitry. In these regions, adult neurogenesis adds another dimension of plasticity that either complements or is redundant to the classical molecular and cellular mechanisms of plasticity. This review extracts clues regarding the contribution of adult-born neurons to the different circuits of the olfactory bulb and specifically how new neurons participate in existing computations and enable new computational functions.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Laboratory of Perception and Memory, Institut Pasteur, F-75015 Paris, France.
| | | | | |
Collapse
|
46
|
Locatelli F, Bottà L, Prestori F, Masetto S, D'Angelo E. Late-onset bursts evoked by mossy fibre bundle stimulation in unipolar brush cells: evidence for the involvement of H- and TRP-currents. J Physiol 2012; 591:899-918. [PMID: 23129798 DOI: 10.1113/jphysiol.2012.242180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic transmission at central synapses has usually short latency and graded amplitude, thereby regulating threshold crossing and the probability of action potential generation. In the granular layer of the vestibulo-cerebellum, unipolar brush cells (UBCs) receive a giant synapse generating a stereotyped excitatory postsynaptic potential (EPSP)-burst complex with early-onset (∼2 ms) and high reliability. By using patch-clamp recordings in cerebellar slices of the rat vestibulo-cerebellum, we found that mossy fibre bundle stimulation also evoked (in ∼80% of cases) a late-onset burst (after tens to hundreds of milliseconds) independent of EPSP generation. Different from the early-onset, the late-onset burst delay decreased and its duration increased by raising stimulation intensity or the number of impulses. Although depending on synaptic activity, the late-onset response was insensitive to perfusion of APV ((2R)-5-amino-phosphonopentanoate), NBQX (2,3-dioxo-6-nitro-tetrahydrobenzo(f)quinoxaline-7-sulfonamide) and MCPG ((RS)-α-methyl-4-carboxyphenylglycine) and did not therefore depend on conventional glutamatergic transmission mechanisms. The late-onset response was initiated by a slow depolarizing ramp driven by activation of an H-current (sensitive to ZD7288 and Cs(+)) and of a TRP- (transient receptor potential) current (sensitive to SKF96365), while the high voltage-activated and high voltage-activated Ca(2+) currents (sensitive to nimodipine and mibefradil, respectively) played a negligible role. The late-onset burst was occluded by intracellular cAMP. These results indicate that afferent activity can regulate H- and TRP-current gating in UBCs generating synaptically driven EPSP-independent responses, in which the delay rather than amplitude is graded with the intensity of the input pattern. This modality of synaptic transmission may play an important role in regulating UBC activation and granular layer functions in the vestibulo-cerebellum.
Collapse
Affiliation(s)
- F Locatelli
- Department of Neuroscience, Via Mondino 2, I-27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
47
|
Dong HW, Davis JC, Ding S, Nai Q, Zhou FM, Ennis M. Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb. Neurosci Lett 2012; 524:49-54. [PMID: 22820212 DOI: 10.1016/j.neulet.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/15/2023]
Abstract
Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7-12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Giridhar S, Urban NN. Mechanisms and benefits of granule cell latency coding in the mouse olfactory bulb. Front Neural Circuits 2012; 6:40. [PMID: 22754503 PMCID: PMC3385563 DOI: 10.3389/fncir.2012.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/10/2012] [Indexed: 11/13/2022] Open
Abstract
Inhibitory circuits are critical for shaping odor representations in the olfactory bulb. There, individual granule cells can respond to brief stimulation with extremely long (up to 1000 ms), input-specific latencies that are highly reliable. However, the mechanism and function of this long timescale activity remain unknown. We sought to elucidate the mechanism responsible for long-latency activity, and to understand the impact of widely distributed interneuron latencies on olfactory coding. We used a combination of electrophysiological, optical, and pharmacological techniques to show that long-latency inhibition is driven by late onset synaptic excitation to granule cells. This late excitation originates from tufted cells, which have intrinsic properties that favor longer latency spiking than mitral cells. Using computational modeling, we show that widely distributed interneuron latency increases the discriminability of similar stimuli. Thus, long-latency inhibition in the olfactory bulb requires a combination of circuit- and cellular-level mechanisms that function to improve stimulus representations.
Collapse
Affiliation(s)
- Sonya Giridhar
- Center for Neuroscience, University of Pittsburgh, Pittsburgh PA, USA
| | | |
Collapse
|