1
|
Micheva KD, Simhal AK, Schardt J, Smith SJ, Weinberg RJ, Owen SF. Data-driven synapse classification reveals a logic of glutamate receptor diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.628056. [PMID: 39713368 PMCID: PMC11661198 DOI: 10.1101/2024.12.11.628056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. We used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B. Two of these subclasses align with physiological expectations based on synaptic plasticity: large AMPAR-rich synapses may represent potentiated synapses, whereas small NMDAR-rich synapses suggest "silent" synapses. The NMDA receptor content of large synapses correlates with spine neck diameter, and thus the potential for coupling to the parent dendrite. Overall, ultrastructural features predict receptor content of synapses better than parent neuron identity does, suggesting synapse subclasses act as fundamental elements of neuronal circuits. No barriers prevent future generalization of this approach to other species, or to study of human disorders and therapeutics.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Anish K. Simhal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenna Schardt
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Stephen J Smith
- Allen Institute for Brain Science, Seattle, WA 98109
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Richard J. Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27514
| | - Scott F. Owen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305
- Lead contact
| |
Collapse
|
2
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
3
|
Ohno N, Karube F, Fujiyama F. Volume electron microscopy for genetically and molecularly defined neural circuits. Neurosci Res 2024:S0168-0102(24)00074-9. [PMID: 38914208 DOI: 10.1016/j.neures.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The brain networks responsible for adaptive behavioral changes are based on the physical connections between neurons. Light and electron microscopy have long been used to study neural projections and the physical connections between neurons. Volume electron microscopy has recently expanded its scale of analysis due to methodological advances, resulting in complete wiring maps of neurites in a large volume of brain tissues and even entire nervous systems in a growing number of species. However, structural approaches frequently suffer from inherent limitations in which elements in images are identified solely by morphological criteria. Recently, an increasing number of tools and technologies have been developed to characterize cells and cellular components in the context of molecules and gene expression. These advancements include newly developed probes for visualization in electron microscopic images as well as correlative integration methods for the same elements across multiple microscopic modalities. Such approaches advance our understanding of interactions between specific neurons and circuits and may help to elucidate novel aspects of the basal ganglia network involving dopamine neurons. These advancements are expected to reveal mechanisms for processing adaptive changes in specific neural circuits that modulate brain functions.
Collapse
Affiliation(s)
- Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Japan.
| | - Fuyuki Karube
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Fumino Fujiyama
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
4
|
Son R, Yamazawa K, Oguchi A, Suga M, Tamura M, Yanagita M, Murakawa Y, Kume S. Morphomics via next-generation electron microscopy. J Mol Cell Biol 2024; 15:mjad081. [PMID: 38148118 PMCID: PMC11167312 DOI: 10.1093/jmcb/mjad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/02/2022] [Accepted: 12/23/2023] [Indexed: 12/28/2023] Open
Abstract
The living body is composed of innumerable fine and complex structures. Although these structures have been studied in the past, a vast amount of information pertaining to them still remains unknown. When attempting to observe these ultra-structures, the use of electron microscopy (EM) has become indispensable. However, conventional EM settings are limited to a narrow tissue area, which can bias observations. Recently, new trends in EM research have emerged, enabling coverage of far broader, nano-scale fields of view for two-dimensional wide areas and three-dimensional large volumes. Moreover, cutting-edge bioimage informatics conducted via deep learning has accelerated the quantification of complex morphological bioimages. Taken together, these technological and analytical advances have led to the comprehensive acquisition and quantification of cellular morphology, which now arises as a new omics science termed 'morphomics'.
Collapse
Affiliation(s)
- Raku Son
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Yamazawa
- Advanced Manufacturing Support Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
| | - Akiko Oguchi
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuo Suga
- Multimodal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe 650-0047, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Yasuhiro Murakawa
- R IKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Satoshi Kume
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
- Center for Health Science Innovation, Osaka City University, Osaka 530-0011, Japan
- Osaka Electro-Communication University, Neyagawa 572-8530, Japan
| |
Collapse
|
5
|
Cano-Astorga N, Plaza-Alonso S, Turegano-Lopez M, Rodrigo-Rodríguez J, Merchan-Perez A, DeFelipe J. Unambiguous identification of asymmetric and symmetric synapses using volume electron microscopy. Front Neuroanat 2024; 18:1348032. [PMID: 38645671 PMCID: PMC11026665 DOI: 10.3389/fnana.2024.1348032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray's type I and type II, corresponding to Colonnier's asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin postsynaptic density, respectively. In the cerebral cortex, since most AS are excitatory (glutamatergic), and SS are inhibitory (GABAergic), determining the distribution, size, density, and proportion of the two major cortical types of synapses is critical, not only to better understand synaptic organization in terms of connectivity, but also from a functional perspective. However, several technical challenges complicate the study of synapses. Potassium ferrocyanide has been utilized in recent volume electron microscope studies to enhance electron density in cellular membranes. However, identifying synaptic junctions, especially SS, becomes more challenging as the postsynaptic densities become thinner with increasing concentrations of potassium ferrocyanide. Here we describe a protocol employing Focused Ion Beam Milling and Scanning Electron Microscopy for studying brain tissue. The focus is on the unequivocal identification of AS and SS types. To validate SS observed using this protocol as GABAergic, experiments with immunocytochemistry for the vesicular GABA transporter were conducted on fixed mouse brain tissue sections. This material was processed with different concentrations of potassium ferrocyanide, aiming to determine its optimal concentration. We demonstrate that using a low concentration of potassium ferrocyanide (0.1%) improves membrane visualization while allowing unequivocal identification of synapses as AS or SS.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José Rodrigo-Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Micheva KD, Burden JJ, Schifferer M. Array tomography: trails to discovery. METHODS IN MICROSCOPY 2024; 1:9-17. [PMID: 39119254 PMCID: PMC11308915 DOI: 10.1515/mim-2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Tissue slicing is at the core of many approaches to studying biological structures. Among the modern volume electron microscopy (vEM) methods, array tomography (AT) is based on serial ultramicrotomy, section collection onto solid support, imaging via light and/or scanning electron microscopy, and re-assembly of the serial images into a volume for analysis. While AT largely uses standard EM equipment, it provides several advantages, including long-term preservation of the sample and compatibility with multi-scale and multi-modal imaging. Furthermore, the collection of serial ultrathin sections improves axial resolution and provides access for molecular labeling, which is beneficial for light microscopy and immunolabeling, and facilitates correlation with EM. Despite these benefits, AT techniques are underrepresented in imaging facilities and labs, due to their perceived difficulty and lack of training opportunities. Here we point towards novel developments in serial sectioning and image analysis that facilitate the AT pipeline, and solutions to overcome constraints. Because no single vEM technique can serve all needs regarding field of view and resolution, we sketch a decision tree to aid researchers in navigating the plethora of options available. Lastly, we elaborate on the unexplored potential of AT approaches to add valuable insight in diverse biological fields.
Collapse
Affiliation(s)
| | | | - Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
7
|
Micheva KD, Gong B, Collman F, Weinberg RJ, Smith SJ, Trimmer JS, Murray KD. Developing a Toolbox of Antibodies Validated for Array Tomography-Based Imaging of Brain Synapses. eNeuro 2023; 10:ENEURO.0290-23.2023. [PMID: 37945352 PMCID: PMC10748464 DOI: 10.1523/eneuro.0290-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Antibody (Ab)-based imaging techniques rely on reagents whose performance may be application specific. Because commercial antibodies are validated for only a few purposes, users interested in other applications may have to perform extensive in-house antibody testing. Here, we present a novel application-specific proxy screening step to efficiently identify candidate antibodies for array tomography (AT), a serial section volume microscopy technique for high-dimensional quantitative analysis of the cellular proteome. To identify antibodies suitable for AT-based analysis of synapses in mammalian brain, we introduce a heterologous cell-based assay that simulates characteristic features of AT, such as chemical fixation and resin embedding that are likely to influence antibody binding. The assay was included into an initial screening strategy to generate monoclonal antibodies that can be used for AT. This approach simplifies the screening of candidate antibodies and has high predictive value for identifying antibodies suitable for AT analyses. In addition, we have created a comprehensive database of AT-validated antibodies with a neuroscience focus and show that these antibodies have a high likelihood of success for postembedding applications in general, including immunogold electron microscopy. The generation of a large and growing toolbox of AT-compatible antibodies will further enhance the value of this imaging technique.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Cellular and Molecular Physiology, Stanford School of Medicine, Stanford, 94305, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
| | | | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, 27514, NC
| | | | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
| | - Karl D Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, 95618, CA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, 95618, CA
| |
Collapse
|
8
|
Micheva KD, Gong B, Collman F, Weinberg RJ, Smith SJ, Trimmer JS, Murray KD. Developing a Toolbox of Antibodies Validated for Array Tomography-Based Imaging of Brain Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546920. [PMID: 37425759 PMCID: PMC10327040 DOI: 10.1101/2023.06.28.546920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Antibody-based imaging techniques rely on reagents whose performance may be application-specific. Because commercial antibodies are validated for only a few purposes, users interested in other applications may have to perform extensive in-house antibody testing. Here we present a novel application-specific proxy screening step to efficiently identify candidate antibodies for array tomography (AT), a serial section volume microscopy technique for high-dimensional quantitative analysis of the cellular proteome. To identify antibodies suitable for AT-based analysis of synapses in mammalian brain, we introduce a heterologous cell-based assay that simulates characteristic features of AT, such as chemical fixation and resin embedding that are likely to influence antibody binding. The assay was included into an initial screening strategy to generate monoclonal antibodies that can be used for AT. This approach simplifies the screening of candidate antibodies and has high predictive value for identifying antibodies suitable for AT analyses. In addition, we have created a comprehensive database of AT-validated antibodies with a neuroscience focus and show that these antibodies have a high likelihood of success for postembedding applications in general, including immunogold electron microscopy. The generation of a large and growing toolbox of AT-compatible antibodies will further enhance the value of this imaging technique.
Collapse
Affiliation(s)
- Kristina D. Micheva
- Department of Cellular and Molecular Physiology, Stanford School of Medicine, Stanford, CA
| | - Belvin Gong
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Richard J. Weinberg
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC
| | | | - James S. Trimmer
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Karl D. Murray
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA
| |
Collapse
|
9
|
Liv N, Fermie J, Ten Brink CBM, de Heus C, Klumperman J. Functional characterization of endo-lysosomal compartments by correlative live-cell and volume electron microscopy. Methods Cell Biol 2023; 177:301-326. [PMID: 37451771 DOI: 10.1016/bs.mcb.2022.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Fluorescent biosensors are valuable tools to monitor protein activities and the functional state of organelles in live cells. However, the information provided by fluorescent microscopy (FM) is mostly limited in resolution and lacks ultrastructural context information. Protein activities are confined to organelle zones with a distinct membrane morphology, which can only be seen by electron microscopy (EM). EM, however, intrinsically lacks information on protein activities. The lack of methods to integrate these two imaging modalities has hampered understanding the functional organization of cellular organelles. Here we introduce "functional correlative microscopy" (functional CLEM) to directly infer functional information from live cells to EM with nanometer resolution. We label and visualize live cells with fluorescent biosensors after which they are processed for EM and imaged using a volume electron microscopy technique. Within a single dataset we correlate hundreds of fluorescent spots enabling quantitative analysis of the functional-ultrastructural data. We employ our method to monitor essential functional parameters of late endo-lysosomal compartments, i.e., pH, calcium, enzyme activities and cholesterol content. Our data reveal a steep functional difference in enzyme activity between late endosomes and lysosomes and unexpectedly high calcium levels in late endosomes. The presented CLEM workflow is compatible with a large repertoire of probes and paves the way for large scale functional studies of all types of cellular structures.
Collapse
Affiliation(s)
- Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Job Fermie
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Corlinda B M Ten Brink
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Czymmek KJ, Duncan KE, Berg H. Realizing the Full Potential of Advanced Microscopy Approaches for Interrogating Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:245-255. [PMID: 36947723 DOI: 10.1094/mpmi-10-22-0208-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Kirk J Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Keith E Duncan
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Howard Berg
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| |
Collapse
|
11
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Kislinger G, Niemann C, Rodriguez L, Jiang H, Fard MK, Snaidero N, Schumacher AM, Kerschensteiner M, Misgeld T, Schifferer M. Neurons on tape: Automated Tape Collecting Ultramicrotomy-mediated volume EM for targeting neuropathology. Methods Cell Biol 2023; 177:125-170. [PMID: 37451765 DOI: 10.1016/bs.mcb.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In this chapter, we review Automated Tape Collecting Ultramicrotomy (ATUM), which, among other array tomography methods, substantially simplified large-scale volume electron microscopy (vEM) projects. vEM reveals biological structures at nanometer resolution in three dimensions and resolves ambiguities of two-dimensional representations. However, as the structures of interest-like disease hallmarks emerging from neuropathology-are often rare but the field of view is small, this can easily turn a vEM project into a needle in a haystack problem. One solution for this is correlated light and electron microscopy (CLEM), providing tissue context, dynamic and molecular features before switching to targeted vEM to hone in on the object's ultrastructure. This requires precise coordinate transfer between the two imaging modalities (e.g., by micro computed tomography), especially for block face vEM which relies on physical destruction of sections. With array tomography methods, serial ultrathin sections are collected into a tissue library, thus allowing storage of precious samples like human biopsies and enabling repetitive imaging at different resolution levels for an SEM-based search strategy. For this, ATUM has been developed to reliably collect serial ultrathin sections via a conveyor belt onto a plastic tape that is later mounted onto silicon wafers for serial scanning EM (SEM). The ATUM-SEM procedure is highly modular and can be divided into sample preparation, serial ultramicrotomy onto tape, mounting, serial image acquisition-after which the acquired image stacks can be used for analysis. Here, we describe the steps of this workflow and how ATUM-SEM enables targeting and high resolution imaging of specific structures. ATUM-SEM is widely applicable. To illustrate this, we exemplify the approach by reconstructions of focal pathology in an Alzheimer mouse model and CLEM of a specific cortical synapse.
Collapse
Affiliation(s)
- Georg Kislinger
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Cornelia Niemann
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lucia Rodriguez
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanyi Jiang
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maryam K Fard
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; Hertie institute for Clinical Brain Research, Tuebingen University Hospital, Tuebingen, Germany
| | - Adrian-Minh Schumacher
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Kerschensteiner
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
13
|
White IJ, Burden JJ. A practical guide to starting SEM array tomography-An accessible volume EM technique. Methods Cell Biol 2023; 177:171-196. [PMID: 37451766 DOI: 10.1016/bs.mcb.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The techniques collectively known as volume electron microscopy (vEM) each come with their own advantages and challenges, making them more or less suitable for any specific project. SEM array tomography (SEM-AT) is certainly no different in this respect. Requiring microtomy skills, and involving more data alignment post imaging, SEM-AT presents challenges to its users, nevertheless, as perhaps the most flexible, cost effective and potentially accessible vEM approach to regular EM facilities, it benefits those same users with multiple advantages due to its inherently non-destructive nature. The general principles and advantages/disadvantages of SEM-AT are described here, together with a step-by-step guide to the workflow, from block trimming, sectioning and collection on coverslips, to alignment of the high-resolution 3D dataset. With a suitable SEM/backscatter electron detector setup, and equipment readily found in an electron microscopy lab, it should be possible to begin to acquire 3D ultrastructural data. With the addition of appropriate SEM-AT imaging software, this process can be significantly enhanced to automatically image hundreds, potentially thousands, of sections. Hardware and software advances and future improvements will only make this easier, to the extent that SEM-AT could become a routine vEM technique throughout the world, rather than the privilege of a small number of experts in limited specialist facilities.
Collapse
Affiliation(s)
- Ian J White
- LMCB, University College London, London, United Kingdom
| | | |
Collapse
|
14
|
Chen X, Kuner T, Blanpied TA. Editorial: Quantifying and controlling the nano-architecture of neuronal synapses. Front Synaptic Neurosci 2022; 14:1024073. [PMID: 36160915 PMCID: PMC9491271 DOI: 10.3389/fnsyn.2022.1024073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaobing Chen
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Xiaobing Chen
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Thomas Kuner
| | - Thomas A. Blanpied
- School of Medicine, University of Maryland, Baltimore, MD, United States
- Thomas A. Blanpied
| |
Collapse
|
15
|
Sanchez Avila A, Henstridge C. Array tomography: 15 years of synaptic analysis. Neuronal Signal 2022; 6:NS20220013. [PMID: 36187224 PMCID: PMC9512143 DOI: 10.1042/ns20220013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Synapses are minuscule, intricate structures crucial for the correct communication between neurons. In the 125 years since the term synapse was first coined, we have advanced a long way when it comes to our understanding of how they work and what they do. Most of the fundamental discoveries have been invariably linked to advances in technology. However, due to their size, delicate structural integrity and their sheer number, our knowledge of synaptic biology has remained somewhat elusive and their role in neurodegenerative diseases still remains largely unknown. Here, we briefly discuss some of the imaging technologies used to study synapses and focus on the utility of the high-resolution imaging technique array tomography (AT). We introduce the AT technique and highlight some of the ways it is utilised with a particular focus on its power for analysing synaptic composition and pathology in human post-mortem tissue. We also discuss some of the benefits and drawbacks of techniques for imaging synapses and highlight some recent advances in the study of form and function by combining physiology and high-resolution synaptic imaging.
Collapse
Affiliation(s)
- Anna Sanchez Avila
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| | - Christopher M. Henstridge
- Euan Macdonald Centre for Motor Neuron Disease, Edinburgh, UK
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
16
|
Bélanger S, Berensmann H, Baena V, Duncan K, Meyers BC, Narayan K, Czymmek KJ. A versatile enhanced freeze-substitution protocol for volume electron microscopy. Front Cell Dev Biol 2022; 10:933376. [PMID: 36003147 PMCID: PMC9393620 DOI: 10.3389/fcell.2022.933376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Volume electron microscopy, a powerful approach to generate large three-dimensional cell and tissue volumes at electron microscopy resolutions, is rapidly becoming a routine tool for understanding fundamental and applied biological questions. One of the enabling factors for its adoption has been the development of conventional fixation protocols with improved heavy metal staining. However, freeze-substitution with organic solvent-based fixation and staining has not realized the same level of benefit. Here, we report a straightforward approach including osmium tetroxide, acetone and up to 3% water substitution fluid (compatible with traditional or fast freeze-substitution protocols), warm-up and transition from organic solvent to aqueous 2% osmium tetroxide. Once fully hydrated, samples were processed in aqueous based potassium ferrocyanide, thiocarbohydrazide, osmium tetroxide, uranyl acetate and lead acetate before resin infiltration and polymerization. We observed a consistent and substantial increase in heavy metal staining across diverse and difficult-to-fix test organisms and tissue types, including plant tissues (Hordeum vulgare), nematode (Caenorhabditis elegans) and yeast (Saccharomyces cerevisiae). Our approach opens new possibilities to combine the benefits of cryo-preservation with enhanced contrast for volume electron microscopy in diverse organisms.
Collapse
Affiliation(s)
| | - Heather Berensmann
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Valentina Baena
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Keith Duncan
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Blake C. Meyers
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
- Division of Plant Science and Technology, University of Missouri–Columbia, Columbia, MO, United States
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO, United States
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO, United States
- *Correspondence: Kirk J. Czymmek,
| |
Collapse
|
17
|
Mahalingam G, Torres R, Kapner D, Trautman ET, Fliss T, Seshamani S, Perlman E, Young R, Kinn S, Buchanan J, Takeno MM, Yin W, Bumbarger DJ, Gwinn RP, Nyhus J, Lein E, Smith SJ, Reid RC, Khairy KA, Saalfeld S, Collman F, Macarico da Costa N. A scalable and modular automated pipeline for stitching of large electron microscopy datasets. eLife 2022; 11:e76534. [PMID: 35880860 PMCID: PMC9427110 DOI: 10.7554/elife.76534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/10/2022] [Indexed: 11/13/2022] Open
Abstract
Serial-section electron microscopy (ssEM) is the method of choice for studying macroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so -called connectomes. The data that can comprise of up to 108 individual EM images must be assembled into a volume, requiring seamless 2D registration from physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render Trautman and Saalfeld (2019) services used in the volume assembly of the brain of adult Drosophila melanogaster (Zheng et al. 2018). It achieves high throughput by operating only on image meta-data and transformations. ASAP is modular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (Yin et al. 2020); Microns Consortium et al. (2021) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.
Collapse
Affiliation(s)
| | - Russel Torres
- Allen Institute for Brain ScienceSeattleUnited States
| | - Daniel Kapner
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Tim Fliss
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | - Rob Young
- Allen Institute for Brain ScienceSeattleUnited States
| | - Samuel Kinn
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Marc M Takeno
- Allen Institute for Brain ScienceSeattleUnited States
| | - Wenjing Yin
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience InstituteSeattleUnited States
| | - Julie Nyhus
- Allen Institute for Brain ScienceSeattleUnited States
| | - Ed Lein
- Allen Institute for Brain ScienceSeattleUnited States
| | | | - R Clay Reid
- Allen Institute for Brain ScienceSeattleUnited States
| | | | | | | | | |
Collapse
|
18
|
Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, Pape C, Parton RG, Schieber NL, Schwab Y, Titze B, Verkade P, Aubrey A, Collinson LM. Volume electron microscopy. NATURE REVIEWS. METHODS PRIMERS 2022; 2:51. [PMID: 37409324 PMCID: PMC7614724 DOI: 10.1038/s43586-022-00131-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 07/07/2023]
Abstract
Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.
Collapse
Affiliation(s)
- Christopher J. Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Christel Genoud
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kimberly Meechan
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Present address: Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Constantin Pape
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Robert G. Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicole L. Schieber
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Yannick Schwab
- Cell Biology and Biophysics Unit/ Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Aubrey Aubrey
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lucy M. Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| |
Collapse
|
19
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
20
|
Loginov SV, Fermie J, Fokkema J, Agronskaia AV, De Heus C, Blab GA, Klumperman J, Gerritsen HC, Liv N. Correlative Organelle Microscopy: Fluorescence Guided Volume Electron Microscopy of Intracellular Processes. Front Cell Dev Biol 2022; 10:829545. [PMID: 35478966 PMCID: PMC9035751 DOI: 10.3389/fcell.2022.829545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
Intracellular processes depend on a strict spatial and temporal organization of proteins and organelles. Therefore, directly linking molecular to nanoscale ultrastructural information is crucial in understanding cellular physiology. Volume or three-dimensional (3D) correlative light and electron microscopy (volume-CLEM) holds unique potential to explore cellular physiology at high-resolution ultrastructural detail across cell volumes. However, the application of volume-CLEM is hampered by limitations in throughput and 3D correlation efficiency. In order to address these limitations, we describe a novel pipeline for volume-CLEM that provides high-precision (<100 nm) registration between 3D fluorescence microscopy (FM) and 3D electron microscopy (EM) datasets with significantly increased throughput. Using multi-modal fiducial nanoparticles that remain fluorescent in epoxy resins and a 3D confocal fluorescence microscope integrated into a Focused Ion Beam Scanning Electron Microscope (FIB.SEM), our approach uses FM to target extremely small volumes of even single organelles for imaging in volume EM and obviates the need for post-correlation of big 3D datasets. We extend our targeted volume-CLEM approach to include live-cell imaging, adding information on the motility of intracellular membranes selected for volume-CLEM. We demonstrate the power of our approach by targeted imaging of rare and transient contact sites between the endoplasmic reticulum (ER) and lysosomes within hours rather than days. Our data suggest that extensive ER-lysosome and mitochondria-lysosome interactions restrict lysosome motility, highlighting the unique capabilities of our integrated CLEM pipeline for linking molecular dynamic data to high-resolution ultrastructural detail in 3D.
Collapse
Affiliation(s)
- Sergey V. Loginov
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Job Fermie
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jantina Fokkema
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra V. Agronskaia
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Cilia De Heus
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gerhard A. Blab
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Judith Klumperman
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Hans C. Gerritsen
- Molecular Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Nalan Liv,
| |
Collapse
|
21
|
Baatsen P, Gabarre S, Vints K, Wouters R, Vandael D, Goodchild R, Munck S, Gounko NV. Preservation of Fluorescence Signal and Imaging Optimization for Integrated Light and Electron Microscopy. Front Cell Dev Biol 2022; 9:737621. [PMID: 34977003 PMCID: PMC8715528 DOI: 10.3389/fcell.2021.737621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Life science research often needs to define where molecules are located within the complex environment of a cell or tissue. Genetically encoded fluorescent proteins and or fluorescence affinity-labeling are the go-to methods. Although recent fluorescent microscopy methods can provide localization of fluorescent molecules with relatively high resolution, an ultrastructural context is missing. This is solved by imaging a region of interest with correlative light and electron microscopy (CLEM). We have adopted a protocol that preserves both genetically-encoded and antibody-derived fluorescent signals in resin-embedded cell and tissue samples and provides high-resolution electron microscopy imaging of the same thin section. This method is particularly suitable for dedicated CLEM instruments that combine fluorescence and electron microscopy optics. In addition, we optimized scanning EM imaging parameters for samples of varying thicknesses. These protocols will enable rapid acquisition of CLEM information from samples and can be adapted for three-dimensional EM.
Collapse
Affiliation(s)
- Pieter Baatsen
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform and VIB-Bioimaging Core, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Sergio Gabarre
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform and VIB-Bioimaging Core, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.,VIB-KU Leuven Center for Brain and Disease Research, Light Microscopy Expertise Unit and VIB Bioimaging Core, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform and VIB-Bioimaging Core, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Rosanne Wouters
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.,VIB-KU Leuven Center for Brain and Disease Research, Laboratory for Membrane Trafficking, Leuven, Belgium
| | - Dorien Vandael
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform and VIB-Bioimaging Core, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Rose Goodchild
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.,VIB-KU Leuven Center for Brain and Disease Research, Laboratory for Dystonia Research, Leuven, Belgium
| | - Sebastian Munck
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium.,VIB-KU Leuven Center for Brain and Disease Research, Light Microscopy Expertise Unit and VIB Bioimaging Core, Leuven, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain and Disease Research, Electron Microscopy Platform and VIB-Bioimaging Core, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
22
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Extensive Structural Remodeling of the Axonal Arbors of Parvalbumin Basket Cells during Development in Mouse Neocortex. J Neurosci 2021; 41:9326-9339. [PMID: 34583957 PMCID: PMC8580153 DOI: 10.1523/jneurosci.0871-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Parvalbumin-containing (PV+) basket cells are specialized cortical interneurons that regulate the activity of local neuronal circuits with high temporal precision and reliability. To understand how the PV+ interneuron connectivity underlying these functional properties is established during development, we used array tomography to map pairs of synaptically connected PV+ interneurons and postsynaptic neurons from the neocortex of mice of both sexes. We focused on the axon-myelin unit of the PV+ interneuron and quantified the number of synapses onto the postsynaptic neuron, length of connecting axonal paths, and their myelination at different time points between 2 weeks and 7 months of age. We find that myelination of the proximal axon occurs very rapidly during the third and, to a lesser extent, fourth postnatal weeks. The number of synaptic contacts made by the PV+ interneuron on its postsynaptic partner meanwhile is significantly reduced to about one-third by the end of the first postnatal month. The number of autapses, the synapses that PV+ interneurons form on themselves, however, remains constant throughout the examined period. Axon reorganizations continue beyond postnatal month 2, with the postsynaptic targets of PV+ interneurons gradually shifting to more proximal locations, and the length of axonal paths and their myelin becoming conspicuously uniform per connection. These continued microcircuit refinements likely provide the structural substrate for the robust inhibitory effects and fine temporal precision of adult PV+ basket cells.SIGNIFICANCE STATEMENT The axon of adult parvalbumin-containing (PV+) interneurons is highly specialized for fast and reliable neurotransmission. It is myelinated and forms synapses mostly onto the cell bodies and proximal dendrites of postsynaptic neurons for maximal impact. In this study, we follow the development of the PV+ interneuron axon, its myelination and synapse formation, revealing a rapid sequence of axonal reorganization, myelination of the PV+ interneuron proximal axon, and pruning of almost two-thirds of the synapses in an individual connection. This is followed by a prolonged period of axon refinement and additional myelination leading to a remarkable precision of connections in the adult mouse cortex, consistent with the temporal precision and fidelity of PV+ interneuron action.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| |
Collapse
|
23
|
Schifferer M, Snaidero N, Djannatian M, Kerschensteiner M, Misgeld T. Niwaki Instead of Random Forests: Targeted Serial Sectioning Scanning Electron Microscopy With Reimaging Capabilities for Exploring Central Nervous System Cell Biology and Pathology. Front Neuroanat 2021; 15:732506. [PMID: 34720890 PMCID: PMC8548362 DOI: 10.3389/fnana.2021.732506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.
Collapse
Affiliation(s)
- Martina Schifferer
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Minou Djannatian
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Misgeld
- Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| |
Collapse
|
24
|
Abstract
Fluorescence imaging techniques play a pivotal role in our understanding of the nervous system. The emergence of various super-resolution microscopy methods and specialized fluorescent probes enables direct insight into neuronal structure and protein arrangements in cellular subcompartments with so far unmatched resolution. Super-resolving visualization techniques in neurons unveil a novel understanding of cytoskeletal composition, distribution, motility, and signaling of membrane proteins, subsynaptic structure and function, and neuron-glia interaction. Well-defined molecular targets in autoimmune and neurodegenerative disease models provide excellent starting points for in-depth investigation of disease pathophysiology using novel and innovative imaging methodology. Application of super-resolution microscopy in human brain samples and for testing clinical biomarkers is still in its infancy but opens new opportunities for translational research in neurology and neuroscience. In this review, we describe how super-resolving microscopy has improved our understanding of neuronal and brain function and dysfunction in the last two decades.
Collapse
Affiliation(s)
- Christian Werner
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
25
|
Kuljis DA, Micheva KD, Ray A, Wegner W, Bowman R, Madison DV, Willig KI, Barth AL. Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons. Int J Mol Sci 2021; 22:ijms221810032. [PMID: 34576197 PMCID: PMC8467468 DOI: 10.3390/ijms221810032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 11/26/2022] Open
Abstract
Gephyrin has long been thought of as a master regulator for inhibitory synapses, acting as a scaffold to organize γ-aminobutyric acid type A receptors (GABAARs) at the post-synaptic density. Accordingly, gephyrin immunostaining has been used as an indicator of inhibitory synapses; despite this, the pan-synaptic localization of gephyrin to specific classes of inhibitory synapses has not been demonstrated. Genetically encoded fibronectin intrabodies generated with mRNA display (FingRs) against gephyrin (Gephyrin.FingR) reliably label endogenous gephyrin, and can be tagged with fluorophores for comprehensive synaptic quantitation and monitoring. Here we investigated input- and target-specific localization of gephyrin at a defined class of inhibitory synapse, using Gephyrin.FingR proteins tagged with EGFP in brain tissue from transgenic mice. Parvalbumin-expressing (PV) neuron presynaptic boutons labeled using Cre- dependent synaptophysin-tdTomato were aligned with postsynaptic Gephyrin.FingR puncta. We discovered that more than one-third of PV boutons adjacent to neocortical pyramidal (Pyr) cell somas lack postsynaptic gephyrin labeling. This finding was confirmed using correlative fluorescence and electron microscopy. Our findings suggest some inhibitory synapses may lack gephyrin. Gephyrin-lacking synapses may play an important role in dynamically regulating cell activity under different physiological conditions.
Collapse
Affiliation(s)
- Dika A. Kuljis
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
| | - Kristina D. Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; (K.D.M.); (D.V.M.)
| | - Ajit Ray
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
| | - Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37075 Göttingen, Germany; (W.W.); (K.I.W.)
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Ryan Bowman
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
| | - Daniel V. Madison
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; (K.D.M.); (D.V.M.)
| | - Katrin I. Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37075 Göttingen, Germany; (W.W.); (K.I.W.)
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Alison L. Barth
- Center for the Neural Basis of Cognition, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (D.A.K.); (A.R.); (R.B.)
- Correspondence: ; Tel.: +1-412-268-1198
| |
Collapse
|
26
|
Kim N, Bahn S, Choi JH, Kim JS, Rah JC. Synapses from the Motor Cortex and a High-Order Thalamic Nucleus are Spatially Clustered in Proximity to Each Other in the Distal Tuft Dendrites of Mouse Somatosensory Cortex. Cereb Cortex 2021; 32:737-754. [PMID: 34355731 DOI: 10.1093/cercor/bhab236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/13/2022] Open
Abstract
The posterior medial nucleus of the thalamus (POm) and vibrissal primary motor cortex (vM1) convey essential information to the barrel cortex (S1BF) regarding whisker position and movement. Therefore, understanding the relative spatial relationship of these two inputs is a critical prerequisite for acquiring insights into how S1BF synthesizes information to interpret the location of an object. Using array tomography, we identified the locations of synapses from vM1 and POm on distal tuft dendrites of L5 pyramidal neurons where the two inputs are combined. Synapses from vM1 and POm did not show a significant branchlet preference and impinged on the same set of dendritic branchlets. Within dendritic branches, on the other hand, the two inputs formed robust spatial clusters of their own type. Furthermore, we also observed POm clusters in proximity to vM1 clusters. This work constitutes the first detailed description of the relative distribution of synapses from POm and vM1, which is crucial to elucidate the synaptic integration of whisker-based sensory information.
Collapse
Affiliation(s)
- Nari Kim
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41067, Republic of Korea
| | - Sangkyu Bahn
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu 41067, Republic of Korea
| | - Joon Ho Choi
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41067, Republic of Korea
| | - Jinseop S Kim
- Laboratory of Computational Neuroscience, Korea Brain Research Institute, Daegu 41067, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong-Cheol Rah
- Laboratory of Neurophysiology, Korea Brain Research Institute, Daegu 41067, Republic of Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Republic of Korea
| |
Collapse
|
27
|
Gemin O, Serna P, Zamith J, Assendorp N, Fossati M, Rostaing P, Triller A, Charrier C. Unique properties of dually innervated dendritic spines in pyramidal neurons of the somatosensory cortex uncovered by 3D correlative light and electron microscopy. PLoS Biol 2021; 19:e3001375. [PMID: 34428203 PMCID: PMC8415616 DOI: 10.1371/journal.pbio.3001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.
Collapse
Affiliation(s)
- Olivier Gemin
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Pablo Serna
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Joseph Zamith
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Nora Assendorp
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Matteo Fossati
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Cécile Charrier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
28
|
Gabarre S, Vernaillen F, Baatsen P, Vints K, Cawthorne C, Boeynaems S, Michiels E, Vandael D, Gounko NV, Munck S. A workflow for streamlined acquisition and correlation of serial regions of interest in array tomography. BMC Biol 2021; 19:152. [PMID: 34330271 PMCID: PMC8323292 DOI: 10.1186/s12915-021-01072-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background Array tomography (AT) is a high-resolution imaging method to resolve fine details at the organelle level and has the advantage that it can provide 3D volumes to show the tissue context. AT can be carried out in a correlative way, combing light and electron microscopy (LM, EM) techniques. However, the correlation between modalities can be a challenge and delineating specific regions of interest in consecutive sections can be time-consuming. Integrated light and electron microscopes (iLEMs) offer the possibility to provide well-correlated images and may pose an ideal solution for correlative AT. Here, we report a workflow to automate navigation between regions of interest. Results We use a targeted approach that allows imaging specific tissue features, like organelles, cell processes, and nuclei at different scales to enable fast, directly correlated in situ AT using an integrated light and electron microscope (iLEM-AT). Our workflow is based on the detection of section boundaries on an initial transmitted light acquisition that serves as a reference space to compensate for changes in shape between sections, and we apply a stepwise refinement of localizations as the magnification increases from LM to EM. With minimal user interaction, this enables autonomous and speedy acquisition of regions containing cells and cellular organelles of interest correlated across different magnifications for LM and EM modalities, providing a more efficient way to obtain 3D images. We provide a proof of concept of our approach and the developed software tools using both Golgi neuronal impregnation staining and fluorescently labeled protein condensates in cells. Conclusions Our method facilitates tracing and reconstructing cellular structures over multiple sections, is targeted at high resolution ILEMs, and can be integrated into existing devices, both commercial and custom-built systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01072-7.
Collapse
Affiliation(s)
- Sergio Gabarre
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.,VIB-KU Leuven Center for Brain & Disease Research, Light Microscopy Expertise Unit & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Frank Vernaillen
- VIB BioInformatics Core, Technologiepark 75, 9052, Ghent, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | | | - Steven Boeynaems
- Department of Genetics, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Emiel Michiels
- VIB Center for Brain and Disease Research, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Dorien Vandael
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.,KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium. .,KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.
| | - Sebastian Munck
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium. .,VIB-KU Leuven Center for Brain & Disease Research, Light Microscopy Expertise Unit & VIB BioImaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.
| |
Collapse
|
29
|
Yook JS, Kim J, Kim J. Convergence Circuit Mapping: Genetic Approaches From Structure to Function. Front Syst Neurosci 2021; 15:688673. [PMID: 34234652 PMCID: PMC8255632 DOI: 10.3389/fnsys.2021.688673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex neural circuits that underpin brain function and behavior has been a long-standing goal of neuroscience. Yet this is no small feat considering the interconnectedness of neurons and other cell types, both within and across brain regions. In this review, we describe recent advances in mouse molecular genetic engineering that can be used to integrate information on brain activity and structure at regional, cellular, and subcellular levels. The convergence of structural inputs can be mapped throughout the brain in a cell type-specific manner by antero- and retrograde viral systems expressing various fluorescent proteins and genetic switches. Furthermore, neural activity can be manipulated using opto- and chemo-genetic tools to interrogate the functional significance of this input convergence. Monitoring neuronal activity is obtained with precise spatiotemporal resolution using genetically encoded sensors for calcium changes and specific neurotransmitters. Combining these genetically engineered mapping tools is a compelling approach for unraveling the structural and functional brain architecture of complex behaviors and malfunctioned states of neurological disorders.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Jihyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, South Korea
| |
Collapse
|
30
|
Fulton KA, Briggman KL. Permeabilization-free en bloc immunohistochemistry for correlative microscopy. eLife 2021; 10:63392. [PMID: 33983117 PMCID: PMC8118656 DOI: 10.7554/elife.63392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
A dense reconstruction of neuronal synaptic connectivity typically requires high-resolution 3D electron microscopy (EM) data, but EM data alone lacks functional information about neurons and synapses. One approach to augment structural EM datasets is with the fluorescent immunohistochemical (IHC) localization of functionally relevant proteins. We describe a protocol that obviates the requirement of tissue permeabilization in thick tissue sections, a major impediment for correlative pre-embedding IHC and EM. We demonstrate the permeabilization-free labeling of neuronal cell types, intracellular enzymes, and synaptic proteins in tissue sections hundreds of microns thick in multiple brain regions from mice while simultaneously retaining the ultrastructural integrity of the tissue. Finally, we explore the utility of this protocol by performing proof-of-principle correlative experiments combining two-photon imaging of protein distributions and 3D EM.
Collapse
Affiliation(s)
- Kara A Fulton
- Brown University, Providence, United States.,National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Kevin L Briggman
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Center of Advanced European Studies and Research (caesar), Bonn, Germany
| |
Collapse
|
31
|
Holderith N, Heredi J, Kis V, Nusser Z. A High-Resolution Method for Quantitative Molecular Analysis of Functionally Characterized Individual Synapses. Cell Rep 2021; 32:107968. [PMID: 32726631 PMCID: PMC7408500 DOI: 10.1016/j.celrep.2020.107968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Elucidating the molecular mechanisms underlying the functional diversity of synapses requires a high-resolution, sensitive, diffusion-free, quantitative localization method that allows the determination of many proteins in functionally characterized individual synapses. Array tomography permits the quantitative analysis of single synapses but has limited sensitivity, and its application to functionally characterized synapses is challenging. Here, we aim to overcome these limitations by searching the parameter space of different fixation, resin, embedding, etching, retrieval, and elution conditions. Our optimizations reveal that etching epoxy-resin-embedded ultrathin sections with Na-ethanolate and treating them with SDS dramatically increase the labeling efficiency of synaptic proteins. We also demonstrate that this method is ideal for the molecular characterization of individual synapses following paired recordings, two-photon [Ca2+] or glutamate-sensor (iGluSnFR) imaging. This method fills a missing gap in the toolbox of molecular and cellular neuroscience, helping us to reveal how molecular heterogeneity leads to diversity in function. Etching and antigen retrieval enhance immunoreactions in epoxy-resin-embedded tissue Biocytin-filled nerve cells can be visualized in epoxy-resin-embedded tissue Molecular composition of functionally characterized individual synapses is revealed Multiplexed, postembedding reactions are compatible with STED imaging
Collapse
Affiliation(s)
- Noemi Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Judit Heredi
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Viktor Kis
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest 1083, Hungary.
| |
Collapse
|
32
|
Talapka P, Kocsis Z, Marsi LD, Szarvas VE, Kisvárday ZF. Application of the Mirror Technique for Three-Dimensional Electron Microscopy of Neurochemically Identified GABA-ergic Dendrites. Front Neuroanat 2021; 15:652422. [PMID: 33958990 PMCID: PMC8093522 DOI: 10.3389/fnana.2021.652422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
In the nervous system synaptic input arrives chiefly on dendrites and their type and distribution have been assumed pivotal in signal integration. We have developed an immunohistochemistry (IH)-correlated electron microscopy (EM) method – the “mirror” technique – by which synaptic input to entire dendrites of neurochemically identified interneurons (INs) can be mapped due preserving high-fidelity tissue ultrastructure. Hence, this approach allows quantitative assessment of morphometric parameters of synaptic inputs along the whole length of dendrites originating from the parent soma. The method exploits the fact that adjoining sections have truncated or cut cell bodies which appear on the common surfaces in a mirror fashion. In one of the sections the histochemical marker of the GABAergic subtype, calbindin was revealed in cell bodies whereas in the other section the remaining part of the very same cell bodies were subjected to serial section EM to trace and reconstruct the synaptology of entire dendrites. Here, we provide exemplary data on the synaptic coverage of two dendrites belonging to the same calbindin-D28K immunopositive IN and determine the spatial distribution of asymmetric and symmetric synapses, surface area and volume of the presynaptic boutons, morphometric parameters of synaptic vesicles, and area extent of the active zones.
Collapse
Affiliation(s)
- Petra Talapka
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Kocsis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Diána Marsi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vera Etelka Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán F Kisvárday
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Okabe S. Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy (Oxf) 2021; 69:196-213. [PMID: 32244257 DOI: 10.1093/jmicro/dfaa016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are small protrusions that receive most of the excitatory inputs to the pyramidal neurons in the neocortex and the hippocampus. Excitatory neural circuits in the neocortex and hippocampus are important for experience-dependent changes in brain functions, including postnatal sensory refinement and memory formation. Several lines of evidence indicate that synaptic efficacy is correlated with spine size and structure. Hence, precise and accurate measurement of spine morphology is important for evaluation of neural circuit function and plasticity. Recent advances in light microscopy and image analysis techniques have opened the way toward a full description of spine nanostructure. In addition, large datasets of spine nanostructure can be effectively analyzed using machine learning techniques and other mathematical approaches, and recent advances in super-resolution imaging allow researchers to analyze spine structure at an unprecedented level of precision. This review summarizes computational methods that can effectively identify, segment and quantitate dendritic spines in either 2D or 3D imaging. Nanoscale analysis of spine structure and dynamics, combined with new mathematical approaches, will facilitate our understanding of spine functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
34
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Conduction Velocity Along the Local Axons of Parvalbumin Interneurons Correlates With the Degree of Axonal Myelination. Cereb Cortex 2021; 31:3374-3392. [PMID: 33704414 DOI: 10.1093/cercor/bhab018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Parvalbumin-containing (PV+) basket cells in mammalian neocortex are fast-spiking interneurons that regulate the activity of local neuronal circuits in multiple ways. Even though PV+ basket cells are locally projecting interneurons, their axons are myelinated. Can this myelination contribute in any significant way to the speed of action potential propagation along such short axons? We used dual whole cell recordings of synaptically connected PV+ interneurons and their postsynaptic target in acutely prepared neocortical slices from adult mice to measure the amplitude and latency of single presynaptic action potential-evoked inhibitory postsynaptic currents. These same neurons were then imaged with immunofluorescent array tomography, the synapses between them identified and a precise map of the connections was generated, with the exact axonal length and extent of myelin coverage. Our results support that myelination of PV+ basket cells significantly increases conduction velocity, and does so to a degree that can be physiologically relevant.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Gratuze M, Leyns CE, Sauerbeck AD, St-Pierre MK, Xiong M, Kim N, Serrano JR, Tremblay MÈ, Kummer TT, Colonna M, Ulrich JD, Holtzman DM. Impact of TREM2R47H variant on tau pathology-induced gliosis and neurodegeneration. J Clin Invest 2021; 130:4954-4968. [PMID: 32544086 DOI: 10.1172/jci138179] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by plaques containing amyloid-β (Aβ) and neurofibrillary tangles composed of aggregated, hyperphosphorylated tau. Beyond tau and Aβ, evidence suggests that microglia play an important role in AD pathogenesis. Rare variants in the microglia-expressed triggering receptor expressed on myeloid cells 2 (TREM2) gene increase AD risk 2- to 4-fold. It is likely that these TREM2 variants increase AD risk by decreasing the response of microglia to Aβ and its local toxicity. However, neocortical Aβ pathology occurs many years before neocortical tau pathology in AD. Thus, it will be important to understand the role of TREM2 in the context of tauopathy. We investigated the impact of the AD-associated TREM2 variant (R47H) on tau-mediated neuropathology in the PS19 mouse model of tauopathy. We assessed PS19 mice expressing human TREM2CV (common variant) or human TREM2R47H. PS19-TREM2R47H mice had significantly attenuated brain atrophy and synapse loss versus PS19-TREM2CV mice. Gene expression analyses and CD68 immunostaining revealed attenuated microglial reactivity in PS19-TREM2R47H versus PS19-TREM2CV mice. There was also a decrease in phagocytosis of postsynaptic elements by microglia expressing TREM2R47H in the PS19 mice and in human AD brains. These findings suggest that impaired TREM2 signaling reduces microglia-mediated neurodegeneration in the setting of tauopathy.
Collapse
Affiliation(s)
- Maud Gratuze
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cheryl Eg Leyns
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Monica Xiong
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nayeon Kim
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Javier Remolina Serrano
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec City, Québec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marco Colonna
- Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason D Ulrich
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology.,Hope Center for Neurological Disorders, and.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
36
|
Wang Y, Wang C, Ranefall P, Broussard GJ, Wang Y, Shi G, Lyu B, Wu CT, Wang Y, Tian L, Yu G. SynQuant: an automatic tool to quantify synapses from microscopy images. Bioinformatics 2020; 36:1599-1606. [PMID: 31596456 DOI: 10.1093/bioinformatics/btz760] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Synapses are essential to neural signal transmission. Therefore, quantification of synapses and related neurites from images is vital to gain insights into the underlying pathways of brain functionality and diseases. Despite the wide availability of synaptic punctum imaging data, several issues are impeding satisfactory quantification of these structures by current tools. First, the antibodies used for labeling synapses are not perfectly specific to synapses. These antibodies may exist in neurites or other cell compartments. Second, the brightness of different neurites and synaptic puncta is heterogeneous due to the variation of antibody concentration and synapse-intrinsic differences. Third, images often have low signal to noise ratio due to constraints of experiment facilities and availability of sensitive antibodies. These issues make the detection of synapses challenging and necessitates developing a new tool to easily and accurately quantify synapses. RESULTS We present an automatic probability-principled synapse detection algorithm and integrate it into our synapse quantification tool SynQuant. Derived from the theory of order statistics, our method controls the false discovery rate and improves the power of detecting synapses. SynQuant is unsupervised, works for both 2D and 3D data, and can handle multiple staining channels. Through extensive experiments on one synthetic and three real datasets with ground truth annotation or manually labeling, SynQuant was demonstrated to outperform peer specialized unsupervised synapse detection tools as well as generic spot detection methods. AVAILABILITY AND IMPLEMENTATION Java source code, Fiji plug-in, and test data are available at https://github.com/yu-lab-vt/SynQuant. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| | - Congchao Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| | - Petter Ranefall
- Centre for Image Analysis and SciLifeLab, Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Gerard Joey Broussard
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Yinxue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| | - Guilai Shi
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Boyu Lyu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| | - Chiung-Ting Wu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| | - Yue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 22203, USA
| |
Collapse
|
37
|
Sauerbeck AD, Gangolli M, Reitz SJ, Salyards MH, Kim SH, Hemingway C, Gratuze M, Makkapati T, Kerschensteiner M, Holtzman DM, Brody DL, Kummer TT. SEQUIN Multiscale Imaging of Mammalian Central Synapses Reveals Loss of Synaptic Connectivity Resulting from Diffuse Traumatic Brain Injury. Neuron 2020; 107:257-273.e5. [PMID: 32392471 PMCID: PMC7381374 DOI: 10.1016/j.neuron.2020.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/04/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
The brain's complex microconnectivity underlies its computational abilities and vulnerability to injury and disease. It has been challenging to illuminate the features of this synaptic network due to the small size and dense packing of its elements. Here, we describe a rapid, accessible super-resolution imaging and analysis workflow-SEQUIN-that quantifies central synapses in human tissue and animal models, characterizes their nanostructural and molecular features, and enables volumetric imaging of mesoscale synaptic networks without the production of large histological arrays. Using SEQUIN, we identify cortical synapse loss resulting from diffuse traumatic brain injury, a highly prevalent connectional disorder. Similar synapse loss is observed in three murine models of Alzheimer-related neurodegeneration, where SEQUIN mesoscale mapping identifies regional synaptic vulnerability. These results establish an easily implemented and robust nano-to-mesoscale synapse quantification and characterization method. They furthermore identify a shared mechanism-synaptopathy-between Alzheimer neurodegeneration and its best-established epigenetic risk factor, brain trauma.
Collapse
Affiliation(s)
- Andrew D Sauerbeck
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mihika Gangolli
- McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA; Currently, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sydney J Reitz
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maverick H Salyards
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel H Kim
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Hemingway
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich 82152, Germany
| | - Maud Gratuze
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tejaswi Makkapati
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich 82152, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David L Brody
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Currently, Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Terrance T Kummer
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Klevanski M, Herrmannsdoerfer F, Sass S, Venkataramani V, Heilemann M, Kuner T. Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues. Nat Commun 2020; 11:1552. [PMID: 32214101 PMCID: PMC7096454 DOI: 10.1038/s41467-020-15362-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
Understanding the nano-architecture of protein machines in diverse subcellular compartments remains a challenge despite rapid progress in super-resolution microscopy. While single-molecule localization microscopy techniques allow the visualization and identification of cellular structures with near-molecular resolution, multiplex-labeling of tens of target proteins within the same sample has not yet been achieved routinely. However, single sample multiplexing is essential to detect patterns that threaten to get lost in multi-sample averaging. Here, we report maS3TORM (multiplexed automated serial staining stochastic optical reconstruction microscopy), a microscopy approach capable of fully automated 3D direct STORM (dSTORM) imaging and solution exchange employing a re-staining protocol to achieve highly multiplexed protein localization within individual biological samples. We demonstrate 3D super-resolution images of 15 targets in single cultured cells and 16 targets in individual neuronal tissue samples with <10 nm localization precision, allowing us to define distinct nano-architectural features of protein distribution within the presynaptic nerve terminal. Super-resolution imaging of multiple target proteins in the same sample can provide important information of cellular nanostructure, but has not been routinely achieved. Here, the authors present a fully automated 3D STORM approach using a re-staining protocol to image 15 targets in single cells and 16 targets in neuronal tissue.
Collapse
Affiliation(s)
- Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Frank Herrmannsdoerfer
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Steffen Sass
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Varun Venkataramani
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Mike Heilemann
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Parton RG. Twenty years of traffic: A 2020 vision of cellular electron microscopy. Traffic 2019; 21:156-161. [DOI: 10.1111/tra.12684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
40
|
Guo SM, Veneziano R, Gordonov S, Li L, Danielson E, Perez de Arce K, Park D, Kulesa AB, Wamhoff EC, Blainey PC, Boyden ES, Cottrell JR, Bathe M. Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes. Nat Commun 2019; 10:4377. [PMID: 31558769 PMCID: PMC6763432 DOI: 10.1038/s41467-019-12372-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/03/2019] [Indexed: 12/29/2022] Open
Abstract
Synapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.
Collapse
Affiliation(s)
- Syuan-Ming Guo
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Remi Veneziano
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Simon Gordonov
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Li Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Danielson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Karen Perez de Arce
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Anthony B Kulesa
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paul C Blainey
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Media Lab, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Mark Bathe
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
41
|
Multifaceted Changes in Synaptic Composition and Astrocytic Involvement in a Mouse Model of Fragile X Syndrome. Sci Rep 2019; 9:13855. [PMID: 31554841 PMCID: PMC6761194 DOI: 10.1038/s41598-019-50240-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Fragile X Syndrome (FXS), a common inheritable form of intellectual disability, is known to alter neocortical circuits. However, its impact on the diverse synapse types comprising these circuits, or on the involvement of astrocytes, is not well known. We used immunofluorescent array tomography to quantify different synaptic populations and their association with astrocytes in layers 1 through 4 of the adult somatosensory cortex of a FXS mouse model, the FMR1 knockout mouse. The collected multi-channel data contained approximately 1.6 million synapses which were analyzed using a probabilistic synapse detector. Our study reveals complex, synapse-type and layer specific changes in the neocortical circuitry of FMR1 knockout mice. We report an increase of small glutamatergic VGluT1 synapses in layer 4 accompanied by a decrease in large VGluT1 synapses in layers 1 and 4. VGluT2 synapses show a rather consistent decrease in density in layers 1 and 2/3. In all layers, we observe the loss of large inhibitory synapses. Lastly, astrocytic association of excitatory synapses decreases. The ability to dissect the circuit deficits by synapse type and astrocytic involvement will be crucial for understanding how these changes affect circuit function, and ultimately defining targets for therapeutic intervention.
Collapse
|
42
|
Bloss EB, Hunt DL. Revealing the Synaptic Hodology of Mammalian Neural Circuits With Multiscale Neurocartography. Front Neuroinform 2019; 13:52. [PMID: 31427940 PMCID: PMC6690003 DOI: 10.3389/fninf.2019.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/02/2019] [Indexed: 11/20/2022] Open
Abstract
The functional features of neural circuits are determined by a combination of properties that range in scale from projections systems across the whole brain to molecular interactions at the synapse. The burgeoning field of neurocartography seeks to map these relevant features of brain structure—spanning a volume ∼20 orders of magnitude—to determine how neural circuits perform computations supporting cognitive function and complex behavior. Recent technological breakthroughs in tissue sample preparation, high-throughput electron microscopy imaging, and automated image analyses have produced the first visualizations of all synaptic connections between neurons of invertebrate model systems. However, the sheer size of the central nervous system in mammals implies that reconstruction of the first full brain maps at synaptic scale may not be feasible for decades. In this review, we outline existing and emerging technologies for neurocartography that complement electron microscopy-based strategies and are beginning to derive some basic organizing principles of circuit hodology at the mesoscale, microscale, and nanoscale. Specifically, we discuss how a host of light microscopy techniques including array tomography have been utilized to determine both long-range and subcellular organizing principles of synaptic connectivity. In addition, we discuss how new techniques, such as two-photon serial tomography of the entire mouse brain, have become attractive approaches to dissect the potential connectivity of defined cell types. Ultimately, principles derived from these techniques promise to facilitate a conceptual understanding of how connectomes, and neurocartography in general, can be effectively utilized toward reaching a mechanistic understanding of circuit function.
Collapse
Affiliation(s)
- Erik B Bloss
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, United States
| | - David L Hunt
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, United States
| |
Collapse
|
43
|
Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 2019; 439:80-105. [PMID: 31351140 DOI: 10.1016/j.neuroscience.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. These include certain mouse-models of muscular dystrophy (specifically, dysferlin-mutations), certain mutations of muscle cytoskeletal proteins (specifically, beta-tubulin mutations), and also in denervation-fibrillation, as observed in mouse ears maintained with in vitro tissue-culture conditions. These observations permit us to generate the hypothesis that T-tubules are the "Achilles' heel" in several adult-onset muscular dystrophies, due to their unique susceptibility to damage via muscle lattice-dislocations. These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
44
|
Templier T. MagC, magnetic collection of ultrathin sections for volumetric correlative light and electron microscopy. eLife 2019; 8:e45696. [PMID: 31294691 PMCID: PMC6697447 DOI: 10.7554/elife.45696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/03/2023] Open
Abstract
The non-destructive collection of ultrathin sections on silicon wafers for post-embedding staining and volumetric correlative light and electron microscopy traditionally requires exquisite manual skills and is tedious and unreliable. In MagC introduced here, sample blocks are augmented with a magnetic resin enabling the remote actuation and collection of hundreds of sections on wafer. MagC allowed the correlative visualization of neuroanatomical tracers within their ultrastructural volumetric electron microscopy context.
Collapse
Affiliation(s)
- Thomas Templier
- Institute of NeuroinformaticsUniversity of Zurich and ETH ZurichZurichSwitzerland
| |
Collapse
|
45
|
Nunn N, Prabhakar N, Reineck P, Magidson V, Kamiya E, Heinz WF, Torelli MD, Rosenholm J, Zaitsev A, Shenderova O. Brilliant blue, green, yellow, and red fluorescent diamond particles: synthesis, characterization, and multiplex imaging demonstrations. NANOSCALE 2019; 11:11584-11595. [PMID: 31169858 PMCID: PMC6642439 DOI: 10.1039/c9nr02593f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Until recently, the number of emission colors available from fluorescent diamond particles was primarily limited to red to near-infrared fluorescence from the nitrogen-vacancy color center in type Ib synthetic diamond and green fluorescence associated with the nitrogen-vacancy-nitrogen center in type Ia natural diamond. Using our recently reported rapid thermal annealing technique, we demonstrate the capability of producing fluorescent diamond particles that exhibit distinctive blue, green, yellow, and red fluorescence from the same synthetic diamond starting material. Utilizing these multiple colored diamonds, we analyze their fluorescence characteristics both in-solution as well as on-substrate and additionally evaluate their viability in simple multiplex imaging and cellular bioimaging experiments. While there are still challenges associated with their immediate use in traditional multiplex imaging, this novel approach opens new opportunities to enhance the capability and flexibility of fluorescent diamond particles at the nanoscale.
Collapse
Affiliation(s)
- Nicholas Nunn
- Adámas Nanotechnologies, Inc. 8100 Brownleigh Drive, Suite 120 Raleigh, NC 27617, USA
| | - Neeraj Prabhakar
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistokatu 6A, Turku 20520, Finland
| | - Phillip Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erina Kamiya
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marco D. Torelli
- Adámas Nanotechnologies, Inc. 8100 Brownleigh Drive, Suite 120 Raleigh, NC 27617, USA
| | - Jessica Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistokatu 6A, Turku 20520, Finland
| | - Alexander Zaitsev
- College of Staten Island (CUNY), 2800 Victory Blvd., Staten Island, NY 10312, USA
| | - Olga Shenderova
- Adámas Nanotechnologies, Inc. 8100 Brownleigh Drive, Suite 120 Raleigh, NC 27617, USA
| |
Collapse
|
46
|
Kulikov V, Guo SM, Stone M, Goodman A, Carpenter A, Bathe M, Lempitsky V. DoGNet: A deep architecture for synapse detection in multiplexed fluorescence images. PLoS Comput Biol 2019; 15:e1007012. [PMID: 31083649 PMCID: PMC6533009 DOI: 10.1371/journal.pcbi.1007012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/23/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022] Open
Abstract
Neuronal synapses transmit electrochemical signals between cells through the coordinated action of presynaptic vesicles, ion channels, scaffolding and adapter proteins, and membrane receptors. In situ structural characterization of numerous synaptic proteins simultaneously through multiplexed imaging facilitates a bottom-up approach to synapse classification and phenotypic description. Objective automation of efficient and reliable synapse detection within these datasets is essential for the high-throughput investigation of synaptic features. Convolutional neural networks can solve this generalized problem of synapse detection, however, these architectures require large numbers of training examples to optimize their thousands of parameters. We propose DoGNet, a neural network architecture that closes the gap between classical computer vision blob detectors, such as Difference of Gaussians (DoG) filters, and modern convolutional networks. DoGNet is optimized to analyze highly multiplexed microscopy data. Its small number of training parameters allows DoGNet to be trained with few examples, which facilitates its application to new datasets without overfitting. We evaluate the method on multiplexed fluorescence imaging data from both primary mouse neuronal cultures and mouse cortex tissue slices. We show that DoGNet outperforms convolutional networks with a low-to-moderate number of training examples, and DoGNet is efficiently transferred between datasets collected from separate research groups. DoGNet synapse localizations can then be used to guide the segmentation of individual synaptic protein locations and spatial extents, revealing their spatial organization and relative abundances within individual synapses. The source code is publicly available: https://github.com/kulikovv/dognet.
Collapse
Affiliation(s)
| | - Syuan-Ming Guo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew Stone
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Allen Goodman
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Anne Carpenter
- Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
47
|
Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, de Pablo PJ, Debroye E, Eggeling C, Franck C, Fritzsche M, Gerritsen H, Giepmans BNG, Grunewald K, Hofkens J, Hoogenboom JP, Janssen KPF, Kaufman R, Klumpermann J, Kurniawan N, Kusch J, Liv N, Parekh V, Peckys DB, Rehfeldt F, Reutens DC, Roeffaers MBJ, Salditt T, Schaap IAT, Schwarz US, Verkade P, Vogel MW, Wagner R, Winterhalter M, Yuan H, Zifarelli G. The 2018 correlative microscopy techniques roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:443001. [PMID: 30799880 PMCID: PMC6372154 DOI: 10.1088/1361-6463/aad055] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 05/19/2023]
Abstract
Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | | | | | - H Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | | | - Niels De Jonge
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - P J de Pablo
- Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid 28049, Madrid, Spain
| | - Elke Debroye
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave, Madison, WI 53706, United States of America
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hans Gerritsen
- Debye Institute, Utrecht University, Utrecht, Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kay Grunewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Heinrich-Pette-Institute, Leibniz Institute of Virology, Hamburg, Germany
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | | | | | - Rainer Kaufman
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Klumpermann
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Viha Parekh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Diana B Peckys
- Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Florian Rehfeldt
- University of Göttingen, Third Institute of Physics-Biophysics, 37077 Göttingen, Germany
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, 37077 Göttingen, Germany
| | - Iwan A T Schaap
- SmarAct GmbH, Schütte-Lanz-Str. 9, D-26135 Oldenburg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael W Vogel
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Wagner
- Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| | | | - Haifeng Yuan
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Nanobody immunostaining for correlated light and electron microscopy with preservation of ultrastructure. Nat Methods 2018; 15:1029-1032. [PMID: 30397326 PMCID: PMC6405223 DOI: 10.1038/s41592-018-0177-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Abstract
Morphological and molecular characteristics determine the function of biological tissues. Attempts to combine immunofluorescence and electron microscopy invariably compromise the quality of the ultrastructure of tissue sections. We developed NATIVE, a correlated light and electron microscopy approach that preserves ultrastructure while showing the locations of multiple molecular moieties even deep within tissues. This technique allowed the large-scale 3D reconstruction of a volume of mouse hippocampal CA3 tissue at nanometer resolution.
Collapse
|
49
|
Vogelstein JT, Perlman E, Falk B, Baden A, Gray Roncal W, Chandrashekhar V, Collman F, Seshamani S, Patsolic JL, Lillaney K, Kazhdan M, Hider R, Pryor D, Matelsky J, Gion T, Manavalan P, Wester B, Chevillet M, Trautman ET, Khairy K, Bridgeford E, Kleissas DM, Tward DJ, Crow AK, Hsueh B, Wright MA, Miller MI, Smith SJ, Vogelstein RJ, Deisseroth K, Burns R. A community-developed open-source computational ecosystem for big neuro data. Nat Methods 2018; 15:846-847. [PMID: 30377345 PMCID: PMC6481161 DOI: 10.1038/s41592-018-0181-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Alex Baden
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | | - Robert Hider
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Derek Pryor
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Jordan Matelsky
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Timothy Gion
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Priya Manavalan
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Brock Wester
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ounkomol C, Seshamani S, Maleckar MM, Collman F, Johnson GR. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat Methods 2018; 15:917-920. [PMID: 30224672 PMCID: PMC6212323 DOI: 10.1038/s41592-018-0111-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Understanding cells as integrated systems is central to modern biology. Although fluorescence microscopy can resolve subcellular structure in living cells, it is expensive, is slow, and can damage cells. We present a label-free method for predicting three-dimensional fluorescence directly from transmitted-light images and demonstrate that it can be used to generate multi-structure, integrated images. The method can also predict immunofluorescence (IF) from electron micrograph (EM) inputs, extending the potential applications.
Collapse
|