1
|
Ding L. Contributions of the Basal Ganglia to Visual Perceptual Decisions. Annu Rev Vis Sci 2023; 9:385-407. [PMID: 37713277 DOI: 10.1146/annurev-vision-111022-123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The basal ganglia (BG) make up a prominent nexus between visual and motor-related brain regions. In contrast to the BG's well-established roles in movement control and value-based decision making, their contributions to the transformation of visual input into an action remain unclear, especially in the context of perceptual decisions based on uncertain visual evidence. This article reviews recent progress in our understanding of the BG's contributions to the formation, evaluation, and adjustment of such decisions. From theoretical and experimental perspectives, the review focuses on four key stations in the BG network, namely, the striatum, pallidum, subthalamic nucleus, and midbrain dopamine neurons, which can have different roles and together support the decision process.
Collapse
Affiliation(s)
- Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
2
|
Derbie AY, Dejenie MA, Zegeye TG. Visuospatial representation in patients with mild cognitive impairment: Implication for rehabilitation. Medicine (Baltimore) 2022; 101:e31462. [PMID: 36343037 PMCID: PMC9646670 DOI: 10.1097/md.0000000000031462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Behavioral and neurophysiological experiments have demonstrated that distinct and common cognitive processes and associated neural substrates maintain allocentric and egocentric spatial representations. This review aimed to provide evidence from previous behavioral and neurophysiological studies on collating cognitive processes and associated neural substrates and linking them to the state of visuospatial representations in patients with mild cognitive impairment (MCI). Even though MCI patients showed impaired visuospatial attentional processing and working memory, previous neuropsychological experiments in MCI largely emphasized memory impairment and lacked substantiating evidence of whether memory impairment could be associated with how patients with MCI encode objects in space. The present review suggests that impaired memory capacity is linked to impaired allocentric representation in MCI patients. This review indicates that further research is needed to examine how the decline in visuospatial attentional resources during allocentric coding of space could be linked to working memory impairment.
Collapse
Affiliation(s)
- Abiot Y. Derbie
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
- Department of Psychology, Bahir Dar University, Bahir Dar, Ethiopia
- *Correspondence: Abiot Y. Derbie, Department of Psychology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia (e-mail: )
| | | | - Tsigie G. Zegeye
- Department of Special Needs, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
3
|
The posterior parietal area V6A: an attentionally-modulated visuomotor region involved in the control of reach-toF-grasp action. Neurosci Biobehav Rev 2022; 141:104823. [PMID: 35961383 DOI: 10.1016/j.neubiorev.2022.104823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
In the macaque, the posterior parietal area V6A is involved in the control of all phases of reach-to-grasp actions: the transport phase, given that reaching neurons are sensitive to the direction and amplitude of arm movement, and the grasping phase, since reaching neurons are also sensitive to wrist orientation and hand shaping. Reaching and grasping activity are corollary discharges which, together with the somatosensory and visual signals related to the same movement, allow V6A to act as a state estimator that signals discrepancies during the motor act in order to maintain consistency between the ongoing movement and the desired one. Area V6A is also able to encode the target of an action because of gaze-dependent visual neurons and real-position cells. Here, we advance the hypothesis that V6A also uses the spotlight of attention to guide goal-directed movements of the hand, and hosts a priority map that is specific for the guidance of reaching arm movement, combining bottom-up inputs such as visual responses with top-down signals such as reaching plans.
Collapse
|
4
|
Boshra R, Kastner S. Attention control in the primate brain. Curr Opin Neurobiol 2022; 76:102605. [PMID: 35850060 DOI: 10.1016/j.conb.2022.102605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA; Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
5
|
Purg N, Starc M, Slana Ozimič A, Kraljič A, Matkovič A, Repovš G. Neural Evidence for Different Types of Position Coding Strategies in Spatial Working Memory. Front Hum Neurosci 2022; 16:821545. [PMID: 35517989 PMCID: PMC9067305 DOI: 10.3389/fnhum.2022.821545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Sustained neural activity during the delay phase of spatial working memory tasks is compelling evidence for the neural correlate of active storage and maintenance of spatial information, however, it does not provide insight into specific mechanisms of spatial coding. This activity may reflect a range of processes, such as maintenance of a stimulus position or a prepared motor response plan. The aim of our study was to examine neural evidence for the use of different coding strategies, depending on the characteristics and demands of a spatial working memory task. Thirty-one (20 women, 23 ± 5 years) and 44 (23 women, 21 ± 2 years) participants performed a spatial working memory task while we measured their brain activity using fMRI in two separate experiments. Participants were asked to remember the position of a briefly presented target stimulus and, after a delay period, to use a joystick to indicate either the position of the remembered target or an indicated non-matching location. The task was designed so that the predictability of the response could be manipulated independently of task difficulty and memory retrieval process. We were particularly interested in contrasting conditions in which participants (i) could use prospective coding of the motor response or (ii) had to rely on retrospective sensory information. Prospective motor coding was associated with activity in somatomotor, premotor, and motor cortices and increased integration of brain activity with and within the somatomotor network. In contrast, retrospective sensory coding was associated with increased activity in parietal regions and increased functional connectivity with and within secondary visual and dorsal attentional networks. The observed differences in activation levels, dynamics of differences over trial duration, and integration of information within and between brain networks provide compelling evidence for the use of complementary spatial working memory strategies optimized to meet task demands.
Collapse
Affiliation(s)
- Nina Purg
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Nina Purg
| | - Martina Starc
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Anka Slana Ozimič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksij Kraljič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Andraž Matkovič
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Grega Repovš
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Ramezanpour H, Fallah M. The role of temporal cortex in the control of attention. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100038. [PMID: 36685758 PMCID: PMC9846471 DOI: 10.1016/j.crneur.2022.100038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Attention is an indispensable component of active vision. Contrary to the widely accepted notion that temporal cortex processing primarily focusses on passive object recognition, a series of very recent studies emphasize the role of temporal cortex structures, specifically the superior temporal sulcus (STS) and inferotemporal (IT) cortex, in guiding attention and implementing cognitive programs relevant for behavioral tasks. The goal of this theoretical paper is to advance the hypothesis that the temporal cortex attention network (TAN) entails necessary components to actively participate in attentional control in a flexible task-dependent manner. First, we will briefly discuss the general architecture of the temporal cortex with a focus on the STS and IT cortex of monkeys and their modulation with attention. Then we will review evidence from behavioral and neurophysiological studies that support their guidance of attention in the presence of cognitive control signals. Next, we propose a mechanistic framework for executive control of attention in the temporal cortex. Finally, we summarize the role of temporal cortex in implementing cognitive programs and discuss how they contribute to the dynamic nature of visual attention to ensure flexible behavior.
Collapse
Affiliation(s)
- Hamidreza Ramezanpour
- Centre for Vision Research, York University, Toronto, Ontario, Canada,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada,VISTA: Vision Science to Application, York University, Toronto, Ontario, Canada,Corresponding author. Centre for Vision Research, York University, Toronto, Ontario, Canada.
| | - Mazyar Fallah
- Centre for Vision Research, York University, Toronto, Ontario, Canada,School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada,VISTA: Vision Science to Application, York University, Toronto, Ontario, Canada,Department of Psychology, Faculty of Health, York University, Toronto, Ontario, Canada,Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada,Corresponding author. Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
7
|
Park SH, Koyano KW, Russ BE, Waidmann EN, McMahon DBT, Leopold DA. Parallel functional subnetworks embedded in the macaque face patch system. SCIENCE ADVANCES 2022; 8:eabm2054. [PMID: 35263138 PMCID: PMC8906740 DOI: 10.1126/sciadv.abm2054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
During normal vision, our eyes provide the brain with a continuous stream of useful information about the world. How visually specialized areas of the cortex, such as face-selective patches, operate under natural modes of behavior is poorly understood. Here we report that, during the free viewing of movies, cohorts of face-selective neurons in the macaque cortex fractionate into distributed and parallel subnetworks that carry distinct information. We classified neurons into functional groups on the basis of their movie-driven coupling with functional magnetic resonance imaging time courses across the brain. Neurons from each group were distributed across multiple face patches but intermixed locally with other groups at each recording site. These findings challenge prevailing views about functional segregation in the cortex and underscore the importance of naturalistic paradigms for cognitive neuroscience.
Collapse
Affiliation(s)
- Soo Hyun Park
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Kenji W. Koyano
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Brian E. Russ
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - Elena N. Waidmann
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - David B. T. McMahon
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
| | - David A. Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD, USA
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Mei J, Muller E, Ramaswamy S. Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends Neurosci 2022; 45:237-250. [DOI: 10.1016/j.tins.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/04/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023]
|
9
|
Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct Funct 2021; 226:2951-2966. [PMID: 34524542 PMCID: PMC8541979 DOI: 10.1007/s00429-021-02377-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
The dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named "lateral grasping network", is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named "reach-to-grasp network", is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.
Collapse
|
10
|
Jamoulle T, Ran Q, Meersmans K, Schaeverbeke J, Dupont P, Vandenberghe R. Posterior Intraparietal Sulcus Mediates Detection of Salient Stimuli Outside the Endogenous Focus of Attention. Cereb Cortex 2021; 32:1455-1469. [PMID: 34467392 PMCID: PMC8971085 DOI: 10.1093/cercor/bhab299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Visual consciousness is shaped by the interplay between endogenous selection and exogenous capture. If stimulus saliency is aligned with a subject’s attentional priorities, endogenous selection will be facilitated. In case of a misalignment, endogenous selection may be compromised as attentional capture is a strong and automatic process. We manipulated task-congruent versus -incongruent saliency in a functional magnetic resonance imaging change-detection task and analyzed brain activity patterns in the cortex surrounding the intraparietal sulcus (IPS) within the Julich-Brain probabilistic cytoarchitectonic mapping reference frame. We predicted that exogenous effects would be seen mainly in the posterior regions of the IPS (hIP4–hIP7–hIP8), whereas a conflict between endogenous and exogenous orienting would elicit activity from more anterior cytoarchitectonic areas (hIP1–hIP2–hIP3). Contrary to our hypothesis, a conflict between endogenous and exogenous orienting had an effect early in the IPS (mainly in hIP7 and hIP8). This is strong evidence for an endogenous component in hIP7/8 responses to salient stimuli beyond effects of attentional bottom-up sweep. Our results suggest that hIP7 and hIP8 are implicated in the individuation of attended locations based on saliency as well as endogenous instructions.
Collapse
Affiliation(s)
- Tarik Jamoulle
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Qian Ran
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Russ BE, Petkov CI, Kwok SC, Zhu Q, Belin P, Vanduffel W, Hamed SB. Common functional localizers to enhance NHP & cross-species neuroscience imaging research. Neuroimage 2021; 237:118203. [PMID: 34048898 PMCID: PMC8529529 DOI: 10.1016/j.neuroimage.2021.118203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Functional localizers are invaluable as they can help define regions of interest, provide cross-study comparisons, and most importantly, allow for the aggregation and meta-analyses of data across studies and laboratories. To achieve these goals within the non-human primate (NHP) imaging community, there is a pressing need for the use of standardized and validated localizers that can be readily implemented across different groups. The goal of this paper is to provide an overview of the value of localizer protocols to imaging research and we describe a number of commonly used or novel localizers within NHPs, and keys to implement them across studies. As has been shown with the aggregation of resting-state imaging data in the original PRIME-DE submissions, we believe that the field is ready to apply the same initiative for task-based functional localizers in NHP imaging. By coming together to collect large datasets across research group, implementing the same functional localizers, and sharing the localizers and data via PRIME-DE, it is now possible to fully test their robustness, selectivity and specificity. To do this, we reviewed a number of common localizers and we created a repository of well-established localizer that are easily accessible and implemented through the PRIME-RE platform.
Collapse
Affiliation(s)
- Brian E Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Department of Psychiatry, New York University at Langone, New York City, NY, United States.
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Qi Zhu
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium
| | - Pascal Belin
- Institut de Neurosciences de La Timone, Aix-Marseille Université et CNRS, Marseille, 13005, France
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States; Department of Radiology, Harvard Medical School, Boston, MA 02144, United States.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France.
| |
Collapse
|
12
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
13
|
Kagan I, Gibson L, Spanou E, Wilke M. Effective connectivity and spatial selectivity-dependent fMRI changes elicited by microstimulation of pulvinar and LIP. Neuroimage 2021; 240:118283. [PMID: 34147628 DOI: 10.1016/j.neuroimage.2021.118283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 05/04/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022] Open
Abstract
The thalamic pulvinar and the lateral intraparietal area (LIP) share reciprocal anatomical connections and are part of an extensive cortical and subcortical network involved in spatial attention and oculomotor processing. The goal of this study was to compare the effective connectivity of dorsal pulvinar (dPul) and LIP and to probe the dependency of microstimulation effects on task demands and spatial tuning properties of a given brain region. To this end, we applied unilateral electrical microstimulation in the dPul (mainly medial pulvinar) and LIP in combination with event-related BOLD fMRI in monkeys performing fixation and memory-guided saccade tasks. Microstimulation in both dPul and LIP enhanced task-related activity in monosynaptically-connected fronto-parietal cortex and along the superior temporal sulcus (STS) including putative face patch locations, as well as in extrastriate cortex. LIP microstimulation elicited strong activity in the opposite homotopic LIP while no homotopic activation was found with dPul stimulation. Both dPul and LIP stimulation also elicited activity in several heterotopic cortical areas in the opposite hemisphere, implying polysynaptic propagation of excitation. Despite extensive activation along the intraparietal sulcus evoked by LIP stimulation, there was a difference in frontal and occipital connectivity elicited by posterior and anterior LIP stimulation sites. Comparison of dPul stimulation with the adjacent but functionally dissimilar ventral pulvinar also showed distinct connectivity. On the level of single trial timecourses within each region of interest (ROI), most ROIs did not show task-dependence of stimulation-elicited response modulation. Across ROIs, however, there was an interaction between task and stimulation, and task-specific correlations between the initial spatial selectivity and the magnitude of stimulation effect were observed. Consequently, stimulation-elicited modulation of task-related activity was best fitted by an additive model scaled down by the initial response amplitude. In summary, we identified overlapping and distinct patterns of thalamocortical and corticocortical connectivity of pulvinar and LIP, highlighting the dorsal bank and fundus of STS as a prominent node of shared circuitry. Spatial task-specific and partly polysynaptic modulations of cue and saccade planning delay period activity in both hemispheres exerted by unilateral pulvinar and parietal stimulation provide insight into the distributed interhemispheric processing underlying spatial behavior.
Collapse
Affiliation(s)
- Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany.
| | - Lydia Gibson
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Elena Spanou
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany; Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany; Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| |
Collapse
|
14
|
Maltempo T, Pitzalis S, Bellagamba M, Di Marco S, Fattori P, Galati G, Galletti C, Sulpizio V. Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain Struct Funct 2021; 226:2989-3005. [PMID: 33738579 PMCID: PMC8541995 DOI: 10.1007/s00429-021-02254-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
Collapse
Affiliation(s)
- Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. .,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. .,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
15
|
Borra E, Luppino G. Comparative anatomy of the macaque and the human frontal oculomotor domain. Neurosci Biobehav Rev 2021; 126:43-56. [PMID: 33737106 DOI: 10.1016/j.neubiorev.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
In non-human primates, at the junction of the prefrontal with the premotor cortex, there is a sector designated as frontal eye field (FEF), involved in controlling oculomotor behavior and spatial attention. Evidence for at least two FEFs in humans is at the basis of the still open issue of the possible homologies between the macaque and the human frontal oculomotor system. In this review article we address this issue suggesting a new view solidly grounded on evidence from the last decade showing that, in macaques, the FEF is at the core of an oculomotor domain in which several distinct areas, including areas 45A and 45B, provide the substrate for parallel processing of different aspects of oculomotor behavior. Based on comparative considerations, we will propose a correspondence between some of the macaque and the human oculomotor fields, thus suggesting sharing of neural substrate for oculomotor control, gaze processing, and orienting attention in space. Accordingly, this article could contribute to settle some aspects of the so-called "enigma" of the human FEF anatomy.
Collapse
Affiliation(s)
- Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy.
| | - Giuseppe Luppino
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| |
Collapse
|
16
|
Bogadhi AR, Katz LN, Bollimunta A, Leopold DA, Krauzlis RJ. Midbrain activity shapes high-level visual properties in the primate temporal cortex. Neuron 2021; 109:690-699.e5. [PMID: 33338395 PMCID: PMC7897281 DOI: 10.1016/j.neuron.2020.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/02/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Recent fMRI experiments identified an attention-related region in the macaque temporal cortex, here called the floor of the superior temporal sulcus (fSTS), as the primary cortical target of superior colliculus (SC) activity. However, it remains unclear which aspects of attention are processed by fSTS neurons and how or why these might depend on SC activity. Here, we show that SC inactivation decreases attentional modulations in fSTS neurons by increasing their activity for ignored stimuli in addition to decreasing their activity for attended stimuli. Neurons in the fSTS also exhibit event-related activity during attention tasks linked to detection performance, and this link is eliminated during SC inactivation. Finally, fSTS neurons respond selectively to particular visual objects, and this selectivity is reduced markedly during SC inactivation. These diverse, high-level properties of fSTS neurons all involve visual signals that carry behavioral relevance. Their dependence on SC activity could reflect a circuit that prioritizes cortical processing of events detected subcortically.
Collapse
Affiliation(s)
- Amarender R Bogadhi
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany.
| | - Leor N Katz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Inscopix, Inc., Palo Alto, CA 94303, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Dimensional bias and adaptive adjustments in inhibitory control of monkeys. Anim Cogn 2021; 24:815-828. [PMID: 33554317 DOI: 10.1007/s10071-021-01483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Humans and macaque monkeys, performing a Wisconsin Card Sorting Test (WCST), show a significant behavioral bias to a particular sensory dimension (e.g. color or shape); however, lesions in prefrontal cortical regions do not abolish the dimensional biases in monkeys and, therefore, it has been proposed that these biases emerge in earlier stages of visual information processing. It remains unclear whether such dimensional biases are unique to the WCST, in which attention-shifting between dimensions are required, or affect other aspects of executive functions such as 'response inhibition' and 'error-induced behavioral adjustments'. To address this question, we trained six monkeys (Macaca mulatta) to perform a stop-signal task in which they had to inhibit their response when an instruction for inhibition was given by changing the color or shape of a visual stimulus. Stop Signal Reaction Time (SSRT) is an index of inhibitory processes. In all monkeys, SSRT was significantly shorter, and the probability of a successful inhibition was significantly higher, when a change in the shape dimension acted as the stop-cue. Humans show a response slowing following a failure in response inhibition and also adapt a proactive slowing after facing demands for response inhibition. We found such adaptive behavioral adjustments, with the same pattern, in monkeys' behavior; however, the dimensional bias did not modulate them. Our findings, showing dimensional bias in monkey, with the same pattern, in two different executive control tasks support the hypothesis that the bias to shape dimension emerges in early stages of visual information processing.
Collapse
|
18
|
Sani I, Stemmann H, Caron B, Bullock D, Stemmler T, Fahle M, Pestilli F, Freiwald WA. The human endogenous attentional control network includes a ventro-temporal cortical node. Nat Commun 2021; 12:360. [PMID: 33452252 PMCID: PMC7810878 DOI: 10.1038/s41467-020-20583-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.
Collapse
Affiliation(s)
- Ilaria Sani
- grid.134907.80000 0001 2166 1519Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA ,grid.8591.50000 0001 2322 4988Laboratory of Neurology & Imaging of Cognition, University of Geneva, Chemin de mines 9, 1202 Geneva, CH Switzerland
| | - Heiko Stemmann
- grid.7704.40000 0001 2297 4381Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334 Bremen, Germany
| | - Bradley Caron
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA
| | - Daniel Bullock
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA
| | - Torsten Stemmler
- grid.7704.40000 0001 2297 4381Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334 Bremen, Germany
| | - Manfred Fahle
- grid.7704.40000 0001 2297 4381Institute for Brain Research and Center for Advanced Imaging, University of Bremen, 28334 Bremen, Germany
| | - Franco Pestilli
- grid.411377.70000 0001 0790 959XDepartment of Psychological and Brain Sciences, Indiana University, Bloomington, IN USA ,grid.89336.370000 0004 1936 9924Department of Psychology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Winrich A. Freiwald
- grid.134907.80000 0001 2166 1519Laboratory of Neural Systems, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA ,Center for Brains, Minds & Machines, Cambridge, MA USA
| |
Collapse
|
19
|
Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci Rep 2020; 10:21274. [PMID: 33277552 PMCID: PMC7718281 DOI: 10.1038/s41598-020-78172-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
How do endogenous (voluntary) and exogenous (involuntary) attention modulate activity in visual cortex? Using ROI-based fMRI analysis, we measured fMRI activity for valid and invalid trials (target at cued/un-cued location, respectively), pre- or post-cueing endogenous or exogenous attention, while participants performed the same orientation discrimination task. We found stronger modulation in contralateral than ipsilateral visual regions, and higher activity in valid- than invalid-trials. For endogenous attention, modulation of stimulus-evoked activity due to a pre-cue increased along the visual hierarchy, but was constant due to a post-cue. For exogenous attention, modulation of stimulus-evoked activity due to a pre-cue was constant along the visual hierarchy, but was not modulated due to a post-cue. These findings reveal that endogenous and exogenous attention distinctly modulate activity in visuo-occipital areas during orienting and reorienting; endogenous attention facilitates both the encoding and the readout of visual information whereas exogenous attention only facilitates the encoding of information.
Collapse
|
20
|
Xu T, Nenning KH, Schwartz E, Hong SJ, Vogelstein JT, Goulas A, Fair DA, Schroeder CE, Margulies DS, Smallwood J, Milham MP, Langs G. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 2020; 223:117346. [PMID: 32916286 PMCID: PMC7871099 DOI: 10.1016/j.neuroimage.2020.117346] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution - even within subnetworks.
Collapse
Affiliation(s)
- Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Institute for Computational Medicine, Kavli Neuroscience Discovery Institute, Johns Hopkins University, MD, USA
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Damien A Fair
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Charles E Schroeder
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA; Departments of neurosurgery and Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Jonny Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Psychology Department, University of York, York, UK
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Grohn J, Schüffelgen U, Neubert FX, Bongioanni A, Verhagen L, Sallet J, Kolling N, Rushworth MFS. Multiple systems in macaques for tracking prediction errors and other types of surprise. PLoS Biol 2020; 18:e3000899. [PMID: 33125367 PMCID: PMC7657565 DOI: 10.1371/journal.pbio.3000899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 11/11/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Animals learn from the past to make predictions. These predictions are adjusted after prediction errors, i.e., after surprising events. Generally, most reward prediction errors models learn the average expected amount of reward. However, here we demonstrate the existence of distinct mechanisms for detecting other types of surprising events. Six macaques learned to respond to visual stimuli to receive varying amounts of juice rewards. Most trials ended with the delivery of either 1 or 3 juice drops so that animals learned to expect 2 juice drops on average even though instances of precisely 2 drops were rare. To encourage learning, we also included sessions during which the ratio between 1 and 3 drops changed. Additionally, in all sessions, the stimulus sometimes appeared in an unexpected location. Thus, 3 types of surprising events could occur: reward amount surprise (i.e., a scalar reward prediction error), rare reward surprise, and visuospatial surprise. Importantly, we can dissociate scalar reward prediction errors—rewards that deviated from the average reward amount expected—and rare reward events—rewards that accorded with the average reward expectation but that rarely occurred. We linked each type of surprise to a distinct pattern of neural activity using functional magnetic resonance imaging. Activity in the vicinity of the dopaminergic midbrain only reflected surprise about the amount of reward. Lateral prefrontal cortex had a more general role in detecting surprising events. Posterior lateral orbitofrontal cortex specifically detected rare reward events regardless of whether they followed average reward amount expectations, but only in learnable reward environments. Animals learn from the past to make predictions, and predictions are adjusted whenever surprising outcomes violate those predictions. This study shows that macaques use multiple systems to detect different types of rare reward events; while activity in the vicinity of the dopaminergic midbrain reflected scalar reward prediction errors (i.e. reward amount), activity in the orbitofrontal cortex reflected a rare reward signal.
Collapse
Affiliation(s)
- Jan Grohn
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Urs Schüffelgen
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Franz-Xaver Neubert
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Alessandro Bongioanni
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Lennart Verhagen
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jerome Sallet
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Nils Kolling
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Integrative Neuroimaging (WIN), Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom
| | - Matthew F S Rushworth
- Wellcome Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Diomedi S, Vaccari FE, Filippini M, Fattori P, Galletti C. Mixed Selectivity in Macaque Medial Parietal Cortex during Eye-Hand Reaching. iScience 2020; 23:101616. [PMID: 33089104 PMCID: PMC7559278 DOI: 10.1016/j.isci.2020.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
The activity of neurons of the medial posterior parietal area V6A in macaque monkeys is modulated by many aspects of reach task. In the past, research was mostly focused on modulating the effect of single parameters upon the activity of V6A cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test the contribution of several factors upon V6A cells during a fix-to-reach task. This approach resulted in the definition of a representative “functional fingerprint” for each neuron. We first studied how the features are distributed in the population. Our analysis highlighted the virtual absence of units strictly selective for only one factor and revealed that most cells are characterized by “mixed selectivity.” Then, exploiting our GLM framework, we investigated the dynamics of spatial parameters encoded within V6A. We found that the tuning is not static, but changed along the trial, indicating the sequential occurrence of visuospatial transformations helpful to guide arm movement. The parietal cortex integrates a variety of sensorimotor inputs to guide reaching GLM disentangled the effect of various reaching parameters upon cell activity V6A neurons were not functionally clustered, but characterized by mixed selectivity Spatial selectivity was dynamic and reached its peak during the movement phase
Collapse
Affiliation(s)
- Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesco E. Vaccari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Balan PF, Gerits A, Zhu Q, Kolster H, Orban GA, Wardak C, Vanduffel W. Fast Compensatory Functional Network Changes Caused by Reversible Inactivation of Monkey Parietal Cortex. Cereb Cortex 2020; 29:2588-2606. [PMID: 29901747 DOI: 10.1093/cercor/bhy128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/13/2022] Open
Abstract
The brain has a remarkable capacity to recover after lesions. However, little is known about compensatory neural adaptations at the systems level. We addressed this question by investigating behavioral and (correlated) functional changes throughout the cortex that are induced by focal, reversible inactivations. Specifically, monkeys performed a demanding covert spatial attention task while the lateral intraparietal area (LIP) was inactivated with muscimol and whole-brain fMRI activity was recorded. The inactivation caused LIP-specific decreases in task-related fMRI activity. In addition, these local effects triggered large-scale network changes. Unlike most studies in which animals were mainly passive relative to the stimuli, we observed heterogeneous effects with more profound muscimol-induced increases of task-related fMRI activity in areas connected to LIP, especially FEF. Furthermore, in areas such as FEF and V4, muscimol-induced changes in fMRI activity correlated with changes in behavioral performance. Notably, the activity changes in remote areas did not correlate with the decreased activity at the site of the inactivation, suggesting that such changes arise via neuronal mechanisms lying in the intact portion of the functional task network, with FEF a likely key player. The excitation-inhibition dynamics unmasking existing excitatory connections across the functional network might initiate these rapid adaptive changes.
Collapse
Affiliation(s)
- Puiu F Balan
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Annelies Gerits
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Qi Zhu
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Hauke Kolster
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Guy A Orban
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Department of Medicine and Surgery, University of Parma, via Volturno, 39E Parma, Italy
| | - Claire Wardak
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven Medical School, Campus Gasthuisberg, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
24
|
Pelekanos V, Mok RM, Joly O, Ainsworth M, Kyriazis D, Kelly MG, Bell AH, Kriegeskorte N. Rapid event-related, BOLD fMRI, non-human primates (NHP): choose two out of three. Sci Rep 2020; 10:7485. [PMID: 32366956 PMCID: PMC7198564 DOI: 10.1038/s41598-020-64376-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/15/2020] [Indexed: 12/03/2022] Open
Abstract
Human functional magnetic resonance imaging (fMRI) typically employs the blood-oxygen-level-dependent (BOLD) contrast mechanism. In non-human primates (NHP), contrast enhancement is possible using monocrystalline iron-oxide nanoparticles (MION) contrast agent, which has a more temporally extended response function. However, using BOLD fMRI in NHP is desirable for interspecies comparison, and the BOLD signal’s faster response function promises to be beneficial for rapid event-related (rER) designs. Here, we used rER BOLD fMRI in macaque monkeys while viewing real-world images, and found visual responses and category selectivity consistent with previous studies. However, activity estimates were very noisy, suggesting that the lower contrast-to-noise ratio of BOLD, suboptimal behavioural performance, and motion artefacts, in combination, render rER BOLD fMRI challenging in NHP. Previous studies have shown that rER fMRI is possible in macaques with MION, despite MION’s prolonged response function. To understand this, we conducted simulations of the BOLD and MION response during rER, and found that no matter how fast the design, the greater amplitude of the MION response outweighs the contrast loss caused by greater temporal smoothing. We conclude that although any two of the three elements (rER, BOLD, NHP) have been shown to work well, the combination of all three is particularly challenging.
Collapse
Affiliation(s)
- Vassilis Pelekanos
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK. .,Department of Experimental Psychology, University of Oxford, Oxford, UK. .,School of Medicine, University of Nottingham, Nottingham, UK.
| | - Robert M Mok
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University College London, London, UK
| | - Olivier Joly
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew Ainsworth
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Diana Kyriazis
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Maria G Kelly
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Andrew H Bell
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nikolaus Kriegeskorte
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| |
Collapse
|
25
|
Abstract
A fundamental dogma in the cognitive neurosciences is that attention is controlled by parietal and prefrontal areas. Here, we show that an area in the temporal lobe exhibits the properties of a priority map coding the focus of attention. We show this through whole-brain functional magnetic resonance imaging, electrophysiological single-unit recordings, and causal electrical stimulation. This discovery changes our understanding of the organization of visual pathways and the functions of attention networks. From incoming sensory information, our brains make selections according to current behavioral goals. This process, selective attention, is controlled by parietal and frontal areas. Here, we show that another brain area, posterior inferotemporal cortex (PITd), also exhibits the defining properties of attentional control. We discovered this area with functional magnetic resonance imaging (fMRI) during an attentive motion discrimination task. Single-cell recordings from PITd revealed strong attentional modulation across 3 attention tasks yet no tuning to task-relevant stimulus features, like motion direction or color. Instead, PITd neurons closely tracked the subject’s attention state and predicted upcoming errors of attentional selection. Furthermore, artificial electrical PITd stimulation controlled the location of attentional selection without altering feature discrimination. These are the defining properties of a feature-blind priority map encoding the locus of attention. Together, these results suggest area PITd, located strategically to gather information about object properties, as an attentional priority map.
Collapse
|
26
|
Jonikaitis D, Moore T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Curr Opin Psychol 2019; 29:126-134. [PMID: 30825836 DOI: 10.1016/j.copsyc.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
Abstract
Visual attention, visual working memory, and gaze control are basic functions that all select a subset of visual input to guide immediate or subsequent behavior. In this review, we focus on the relationship between these three functions and describe evidence, both at the behavioral and neural circuit levels that they are heavily interdependent. We start with the demonstration that gaze control - or saccade preparation in particular - leads to spatial attention. Next, we show that spatial attention and working memory interact at the behavioral level and rely on a common set of neural mechanisms. Next, we discuss the evidence that gaze control mechanisms are involved in spatial working memory. Lastly, we highlight the links between gaze control and non-spatial memory.
Collapse
Affiliation(s)
- Donatas Jonikaitis
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
27
|
Caspari N, Arsenault JT, Vandenberghe R, Vanduffel W. Functional Similarity of Medial Superior Parietal Areas for Shift-Selective Attention Signals in Humans and Monkeys. Cereb Cortex 2019; 28:2085-2099. [PMID: 28472289 DOI: 10.1093/cercor/bhx114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 11/14/2022] Open
Abstract
We continually shift our attention between items in the visual environment. These attention shifts are usually based on task relevance (top-down) or the saliency of a sudden, unexpected stimulus (bottom-up), and are typically followed by goal-directed actions. It could be argued that any species that can covertly shift its focus of attention will rely on similar, evolutionarily conserved neural substrates for processing such shift-signals. To address this possibility, we performed comparative fMRI experiments in humans and monkeys, combining traditional, and novel, data-driven analytical approaches. Specifically, we examined correspondences between monkey and human brain areas activated during covert attention shifts. When "shift" events were compared with "stay" events, the medial (superior) parietal lobe (mSPL) and inferior parietal lobes showed similar shift sensitivities across species, whereas frontal activations were stronger in monkeys. To identify, in a data-driven manner, monkey regions that corresponded with human shift-selective SPL, we used a novel interspecies beta-correlation strategy whereby task-related beta-values were correlated across voxels or regions-of-interest in the 2 species. Monkey medial parietal areas V6/V6A most consistently correlated with shift-selective human mSPL. Our results indicate that both species recruit corresponding, evolutionarily conserved regions within the medial superior parietal lobe for shifting spatial attention.
Collapse
Affiliation(s)
- Natalie Caspari
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - John T Arsenault
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.,University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, 3000 Leuven, Belgium.,Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA.,Harvard Medical School, Department of Radiology, Boston, MA 02115, USA
| |
Collapse
|
28
|
Impieri D, Zilles K, Niu M, Rapan L, Schubert N, Galletti C, Palomero-Gallagher N. Receptor density pattern confirms and enhances the anatomic-functional features of the macaque superior parietal lobule areas. Brain Struct Funct 2019; 224:2733-2756. [PMID: 31392403 PMCID: PMC6778536 DOI: 10.1007/s00429-019-01930-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023]
Abstract
The macaque monkey superior parietal lobule (SPL) is part of a neuronal network involved in the integration of information from visual and somatosensory cortical areas for execution of reaching and grasping movements. We applied quantitative in vitro receptor autoradiography to analyse the distribution patterns of 15 different receptors for glutamate, GABA, acetylcholine, serotonin, dopamine, and adenosine in the SPL of three adult male Macaca fascicularis monkeys. For each area, mean (averaged over all cortical layers) receptor densities were visualized as a receptor fingerprint of that area. Multivariate analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their receptor organization. Differences in regional and laminar receptor distributions confirm the location and extent of areas V6, V6Av, V6Ad, PEc, PEci, and PGm as found in cytoarchitectonic and functional studies, but also enable the definition of three subdivisions within area PE. Receptor densities are higher in supra- than in infragranular layers, with the exception of kainate, M2, and adenosine receptors. Glutamate and GABAergic receptors are the most expressed in all areas analysed. Hierarchical cluster analyses demonstrate that SPL areas are organized in two groups, an organization that corresponds to the visual or sensory-motor characteristics of those areas. Finally, based on present results and in the framework of our current understanding of the structural and functional organization of the primate SPL, we propose a novel pattern of homologies between human and macaque SPL areas.
Collapse
Affiliation(s)
- Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Nicole Schubert
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany. .,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| |
Collapse
|
29
|
Breveglieri R, Vaccari FE, Bosco A, Gamberini M, Fattori P, Galletti C. Neurons Modulated by Action Execution and Observation in the Macaque Medial Parietal Cortex. Curr Biol 2019; 29:1218-1225.e3. [DOI: 10.1016/j.cub.2019.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
|
30
|
Bogadhi AR, Bollimunta A, Leopold DA, Krauzlis RJ. Spatial Attention Deficits Are Causally Linked to an Area in Macaque Temporal Cortex. Curr Biol 2019; 29:726-736.e4. [PMID: 30773369 DOI: 10.1016/j.cub.2019.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 11/28/2022]
Abstract
Spatial neglect is a common clinical syndrome involving disruption of the brain's attention-related circuitry, including the dorsocaudal temporal cortex. In macaques, the attention deficits associated with neglect can be readily modeled, but the absence of evidence for temporal cortex involvement has suggested a fundamental difference from humans. To map the neurological expression of neglect-like attention deficits in macaques, we measured attention-related fMRI activity across the cerebral cortex during experimental induction of neglect through reversible inactivation of the superior colliculus and frontal eye fields. During inactivation, monkeys exhibited hallmark attentional deficits of neglect in tasks using either motion or non-motion stimuli. The behavioral deficits were accompanied by marked reductions in fMRI attentional modulation that were strongest in a small region on the floor of the superior temporal sulcus; smaller reductions were also found in frontal eye fields and dorsal parietal cortex. Notably, direct inactivation of the mid-superior temporal sulcus (STS) cortical region identified by fMRI caused similar neglect-like spatial attention deficits. These results identify a putative macaque homolog to temporal cortex structures known to play a central role in human neglect.
Collapse
Affiliation(s)
- Amarender R Bogadhi
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Sani I, McPherson BC, Stemmann H, Pestilli F, Freiwald WA. Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network. eLife 2019; 8:e40520. [PMID: 30601116 PMCID: PMC6345568 DOI: 10.7554/elife.40520] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.
Collapse
Affiliation(s)
- Ilaria Sani
- Laboratory of Neural SystemsThe Rockefeller UniversityNew YorkUnited States
| | - Brent C McPherson
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
| | - Heiko Stemmann
- Institute for Brain Research and Center for Advanced ImagingUniversity of BremenBremenGermany
| | - Franco Pestilli
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUnited States
| | - Winrich A Freiwald
- Laboratory of Neural SystemsThe Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
32
|
Temporal Dynamics and Response Modulation across the Human Visual System in a Spatial Attention Task: An ECoG Study. J Neurosci 2018; 39:333-352. [PMID: 30459219 DOI: 10.1523/jneurosci.1889-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/15/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
The selection of behaviorally relevant information from cluttered visual scenes (often referred to as "attention") is mediated by a cortical large-scale network consisting of areas in occipital, temporal, parietal, and frontal cortex that is organized into a functional hierarchy of feedforward and feedback pathways. In the human brain, little is known about the temporal dynamics of attentional processing from studies at the mesoscopic level of electrocorticography (ECoG), that combines millisecond temporal resolution with precise anatomical localization of recording sites. We analyzed high-frequency broadband responses (HFB) responses from 626 electrodes implanted in 8 epilepsy patients who performed a spatial attention task. Electrode locations were reconstructed using a probabilistic atlas of the human visual system. HFB responses showed high spatial selectivity and tuning, constituting ECoG response fields (RFs), within and outside the topographic visual system. In accordance with monkey physiology studies, both RF widths and onset latencies increased systematically across the visual processing hierarchy. We used the spatial specificity of HFB responses to quantitatively study spatial attention effects and their temporal dynamics to probe a hierarchical top-down model suggesting that feedback signals back propagate the visual processing hierarchy. Consistent with such a model, the strengths of attentional modulation were found to be greater and modulation latencies to be shorter in posterior parietal cortex, middle temporal cortex and ventral extrastriate cortex compared with early visual cortex. However, inconsistent with such a model, attention effects were weaker and more delayed in anterior parietal and frontal cortex.SIGNIFICANCE STATEMENT In the human brain, visual attention has been predominantly studied using methods with high spatial, but poor temporal resolution such as fMRI, or high temporal, but poor spatial resolution such as EEG/MEG. Here, we investigate temporal dynamics and attention effects across the human visual system at a mesoscopic level that combines precise spatial and temporal measurements by using electrocorticography in epilepsy patients performing a classical spatial attention task. Electrode locations were reconstructed using a probabilistic atlas of the human visual system, thereby relating them to topography and processing hierarchy. We demonstrate regional differences in temporal dynamics across the attention network. Our findings do not fully support a top-down model that promotes influences on visual cortex by reversing the processing hierarchy.
Collapse
|
33
|
Functional MRI in Macaque Monkeys during Task Switching. J Neurosci 2018; 38:10619-10630. [PMID: 30355629 DOI: 10.1523/jneurosci.1539-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
Nonhuman primates have proven to be a valuable animal model for exploring neuronal mechanisms of cognitive control. One important aspect of executive control is the ability to switch from one task to another, and task-switching paradigms have often been used in human volunteers to uncover the underlying neuronal processes. To date, however, no study has investigated task-switching paradigms in nonhuman primates during functional magnetic resonance imaging (fMRI). We trained two rhesus macaques to switch between arm movement, eye movement, and passive fixation tasks during fMRI. Similar to results obtained in human volunteers, task switching elicits increased fMRI activations in prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex, and caudate nucleus. Our results indicate that the macaque monkey is a reliable model with which to investigate higher-order cognitive functioning such as task switching. As such, these results can pave the way for a detailed investigation of the neural basis of complex human behavior.SIGNIFICANCE STATEMENT Task switching is an important aspect of cognitive control, and task-switching paradigms have often been used to investigate higher-order executive functioning in human volunteers. We used a task-switching paradigm in the nonhuman primate during fMRI and found increased activation mainly in prefrontal areas (46, 45, frontal eye field, and anterior cingulate), in orbitofrontal area 12, and in the caudate nucleus. These data fit surprisingly well with previous human imaging data, proving that the monkey is an excellent model to study task switching with high spatiotemporal resolution tools that are currently not applicable in humans. As such, our results pave the way for a detailed interrogation of regions performing similar executive functions in humans and monkeys.
Collapse
|
34
|
Bogadhi AR, Bollimunta A, Leopold DA, Krauzlis RJ. Brain regions modulated during covert visual attention in the macaque. Sci Rep 2018; 8:15237. [PMID: 30323289 PMCID: PMC6189039 DOI: 10.1038/s41598-018-33567-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022] Open
Abstract
Neurophysiological studies of covert visual attention in monkeys have emphasized the modulation of sensory neural responses in the visual cortex. At the same time, electrophysiological correlates of attention have been reported in other cortical and subcortical structures, and recent fMRI studies have identified regions across the brain modulated by attention. Here we used fMRI in two monkeys performing covert attention tasks to reproduce and extend these findings in order to help establish a more complete list of brain structures involved in the control of attention. As expected from previous studies, we found attention-related modulation in frontal, parietal and visual cortical areas as well as the superior colliculus and pulvinar. We also found significant attention-related modulation in cortical regions not traditionally linked to attention - mid-STS areas (anterior FST and parts of IPa, PGa, TPO), as well as the caudate nucleus. A control experiment using a second-order orientation stimulus showed that the observed modulation in a subset of these mid-STS areas did not depend on visual motion. These results identify the mid-STS areas (anterior FST and parts of IPa, PGa, TPO) and caudate nucleus as potentially important brain regions in the control of covert visual attention in monkeys.
Collapse
Affiliation(s)
- Amarender R Bogadhi
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, USA.,Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
35
|
Santandrea E, Breveglieri R, Bosco A, Galletti C, Fattori P. Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: Beyond the online guidance of movement. Sci Rep 2018; 8:6926. [PMID: 29720690 PMCID: PMC5931970 DOI: 10.1038/s41598-018-25117-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Over the years, electrophysiological recordings in macaque monkeys performing visuomotor tasks brought about accumulating evidence for the expression of neuronal properties (e.g., selectivity in the visuospatial and somatosensory domains, encoding of visual affordances and motor cues) in the posterior parietal area V6A that characterize it as an ideal neural substrate for online control of prehension. Interestingly, neuroimaging studies suggested a role of putative human V6A also in action preparation; moreover, pre-movement population activity in monkey V6A has been recently shown to convey grip-related information for upcoming grasping. Here we directly test whether macaque V6A neurons encode preparatory signals that effectively differentiate between dissimilar actions before movement. We recorded the activity of single V6A neurons during execution of two visuomotor tasks requiring either reach-to-press or reach-to-grasp movements in different background conditions, and described the nature and temporal dynamics of V6A activity preceding movement execution. We found striking consistency in neural discharges measured during pre-movement and movement epochs, suggesting that the former is a preparatory activity exquisitely linked to the subsequent execution of particular motor actions. These findings strongly support a role of V6A beyond the online guidance of movement, with preparatory activity implementing suitable motor programs that subsequently support action execution.
Collapse
Affiliation(s)
- Elisa Santandrea
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
36
|
Rinne T, Muers RS, Salo E, Slater H, Petkov CI. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences? Cereb Cortex 2018; 27:3471-3484. [PMID: 28419201 PMCID: PMC5654311 DOI: 10.1093/cercor/bhx092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/22/2022] Open
Abstract
The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals.
Collapse
Affiliation(s)
- Teemu Rinne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland
| | - Ross S Muers
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Salo
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Heather Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher I Petkov
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Reversible Silencing of the Frontopolar Cortex Selectively Impairs Metacognitive Judgment on Non-experience in Primates. Neuron 2018; 97:980-989.e6. [DOI: 10.1016/j.neuron.2017.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/04/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
|
38
|
Attention Shifts Recruit the Monkey Default Mode Network. J Neurosci 2017; 38:1202-1217. [PMID: 29263238 DOI: 10.1523/jneurosci.1111-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/06/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
A unifying function associated with the default mode network (DMN), which is more active during rest than under active task conditions, has been difficult to define. The DMN is activated during monitoring the external world for unexpected events, as a sentinel, and when humans are engaged in high-level internally focused tasks. The existence of DMN correlates in other species, such as mice, challenge the idea that internally focused, high-level cognitive operations, such as introspection, autobiographical memory retrieval, planning the future, and predicting someone else's thoughts, are evolutionarily preserved defining properties of the DMN. A recent human study demonstrated that demanding cognitive shifts could recruit the DMN, yet it is unknown whether this holds for nonhuman species. Therefore, we tested whether large changes in cognitive context would recruit DMN regions in female and male nonhuman primates. Such changes were measured as displacements of spatial attentional weights based on internal rules of relevance (spatial shifts) compared with maintaining attentional weights at the same location (stay events). Using fMRI in macaques, we detected that a cortical network, activated during shifts, largely overlapped with the DMN. Moreover, fMRI time courses sampled from independently defined DMN foci showed significant shift selectivity during the demanding attention task. Finally, functional clustering based on independent resting state data revealed that DMN and shift regions clustered conjointly, whereas regions activated during the stay events clustered apart. We therefore propose that cognitive shifting in primates generally recruits DMN regions. This might explain a breakdown of the DMN in many neurological diseases characterized by declined cognitive flexibility.SIGNIFICANCE STATEMENT Activation of the human default mode network (DMN) can be measured with fMRI when subjects shift thoughts between high-level internally directed cognitive states, when thinking about the self, the perspective of others, when imagining future and past events, and during mind wandering. Furthermore, the DMN is activated as a sentinel, monitoring the environment for unexpected events. Arguably, these cognitive processes have in common fast and substantial changes in cognitive context. As DMN activity has also been reported in nonhuman species, we tested whether shifts in spatial attention activated the monkey DMN. Core monkey DMN and shift-selective regions shared several functional properties, indicating that cognitive shifting, in general, might constitute one of the evolutionarily preserved functions of the DMN.
Collapse
|
39
|
Cortical Afferents and Myeloarchitecture Distinguish the Medial Intraparietal Area (MIP) from Neighboring Subdivisions of the Macaque Cortex. eNeuro 2017; 4:eN-NWR-0344-17. [PMID: 29379868 PMCID: PMC5779118 DOI: 10.1523/eneuro.0344-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
The parietal reach region (PRR) in the medial bank of the macaque intraparietal sulcus has been a subject of considerable interest in research aimed at the development of brain-controlled prosthetic arms, but its anatomical organization remains poorly characterized. We examined the anatomical organization of the putative PRR territory based on myeloarchitecture and retrograde tracer injections. We found that the medial bank includes three areas: an extension of the dorsal subdivision of V6A (V6Ad), the medial intraparietal area (MIP), and a subdivision of area PE (PEip). Analysis of corticocortical connections revealed that both V6Ad and MIP receive inputs from visual area V6; the ventral subdivision of V6A (V6Av); medial (PGm, 31), superior (PEc), and inferior (PFG/PF) parietal association areas; and intraparietal areas AIP and VIP. They also receive long-range projections from the superior temporal sulcus (MST, TPO), cingulate area 23, and the dorsocaudal (area F2) and ventral (areas F4/F5) premotor areas. In comparison with V6Ad, MIP receives denser input from somatosensory areas, the primary motor cortex, and the medial motor fields, as well as from visual cortex in the ventral precuneate cortex and frontal regions associated with oculomotor guidance. Unlike MIP, V6Ad receives stronger visual input, from the caudal inferior parietal cortex (PG/Opt) and V6Av, whereas PEip shows marked emphasis on anterior parietal, primary motor, and ventral premotor connections. These anatomical results suggest that MIP and V6A have complementary roles in sensorimotor behavior, with MIP more directly involved in movement planning and execution in comparison with V6A.
Collapse
|
40
|
Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex. J Neurosci 2017; 36:11918-11928. [PMID: 27881778 DOI: 10.1523/jneurosci.1888-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/13/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022] Open
Abstract
Attentional selection requires the interplay of multiple brain areas. Theoretical accounts of selective attention predict different areas with different functional properties to support endogenous covert attention. To test these predictions, we devised a demanding attention task requiring motion discrimination and spatial selection and performed whole-brain imaging in macaque monkeys. Attention modulated the early visual cortex, motion-selective dorsal stream areas, the lateral intraparietal area, and the frontal eye fields. This pattern of activation supports early selection, feature-based, and biased-competition attention accounts, as well as the frontoparietal theory of attentional control. While high-level motion-selective dorsal stream areas did not exhibit strong attentional modulation, ventral stream areas V4d and the dorsal posterior inferotemporal cortex (PITd) did. The PITd in fact was, consistently across task variations, the most significantly and most strongly attention-modulated area, even though it did not exhibit signs of motion selectivity. Thus the recruitment of the PITd in attention tasks involving different kinds of motion analysis is not predicted by any theoretical account of attention. These functional data, together with known anatomical connections, suggest a general and possibly critical role of the PITd in attentional selection. SIGNIFICANCE STATEMENT Attention is the key cognitive function that selects sensory information relevant to the current goals, relegating other information to the shadows of consciousness. To better understand the neural mechanisms of this interplay between sensory processing and internal cognitive state, we must learn more about the brain areas supporting attentional selection. Here, to test theoretical accounts of attentional selection, we used a novel task requiring sustained attention to motion. We found that, surprisingly, among the most strongly attention-modulated areas is one that is neither selective for the sensory feature relevant for current goals nor one hitherto thought to be involved in attentional control. This discovery suggests a need for an extension of current theoretical accounts of the brain circuits for attentional selection.
Collapse
|
41
|
A Putative Multiple-Demand System in the Macaque Brain. J Neurosci 2017; 36:8574-85. [PMID: 27535906 DOI: 10.1523/jneurosci.0810-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. SIGNIFICANCE STATEMENT In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex.
Collapse
|
42
|
Schrooten M, Ghumare EG, Seynaeve L, Theys T, Dupont P, Van Paesschen W, Vandenberghe R. Electrocorticography of Spatial Shifting and Attentional Selection in Human Superior Parietal Cortex. Front Hum Neurosci 2017; 11:240. [PMID: 28553217 PMCID: PMC5425472 DOI: 10.3389/fnhum.2017.00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/25/2017] [Indexed: 12/01/2022] Open
Abstract
Spatial-attentional reorienting and selection between competing stimuli are two distinct attentional processes of clinical and fundamental relevance. In the past, reorienting has been mainly associated with inferior parietal cortex. In a patient with a subdural grid covering the upper and lower bank of the left anterior and middle intraparietal sulcus (IPS) and the superior parietal lobule (SPL), we examined the involvement of superior parietal cortex using a hybrid spatial cueing paradigm identical to that previously applied in stroke and in healthy controls. In SPL, as early as 164 ms following target onset, an invalidly compared to a validly cued target elicited a positive event-related potential (ERP) and an increase in intertrial coherence (ITC) in the theta band, regardless of the direction of attention. From around 400–650 ms, functional connectivity [weighted phase lag index (wPLI) analysis] between SPL and IPS briefly inverted such that SPL activity was driving IPS activity. In contrast, the presence of a competing distracter elicited a robust change mainly in IPS from 300 to 600 ms. Within superior parietal cortex reorienting of attention is associated with a distinct and early electrophysiological response in SPL while attentional selection is indexed by a relatively late electrophysiological response in the IPS. The long latency suggests a role of IPS in working memory or cognitive control rather than early selection.
Collapse
Affiliation(s)
- Maarten Schrooten
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| | - Eshwar G Ghumare
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium
| | - Laura Seynaeve
- Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Epilepsy Research, KU LeuvenLeuven, Belgium
| | - Tom Theys
- Neurosurgery Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Neuro- and Psychophysiology, KU LeuvenLeuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium
| | - Wim Van Paesschen
- Neurology Department, University Hospitals LeuvenLeuven, Belgium.,Laboratory for Epilepsy Research, KU LeuvenLeuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU LeuvenLeuven, Belgium.,Neurology Department, University Hospitals LeuvenLeuven, Belgium
| |
Collapse
|
43
|
Breveglieri R, De Vitis M, Bosco A, Galletti C, Fattori P. Interplay Between Grip and Vision in the Monkey Medial Parietal Lobe. Cereb Cortex 2017; 28:2028-2042. [DOI: 10.1093/cercor/bhx109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Marina De Vitis
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna, Italy
| |
Collapse
|
44
|
Ortiz-Rios M, Azevedo FAC, Kuśmierek P, Balla DZ, Munk MH, Keliris GA, Logothetis NK, Rauschecker JP. Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex. Neuron 2017; 93:971-983.e4. [PMID: 28190642 DOI: 10.1016/j.neuron.2017.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/05/2016] [Accepted: 01/15/2017] [Indexed: 11/15/2022]
Abstract
In primates, posterior auditory cortical areas are thought to be part of a dorsal auditory pathway that processes spatial information. But how posterior (and other) auditory areas represent acoustic space remains a matter of debate. Here we provide new evidence based on functional magnetic resonance imaging (fMRI) of the macaque indicating that space is predominantly represented by a distributed hemifield code rather than by a local spatial topography. Hemifield tuning in cortical and subcortical regions emerges from an opponent hemispheric pattern of activation and deactivation that depends on the availability of interaural delay cues. Importantly, these opponent signals allow responses in posterior regions to segregate space similarly to a hemifield code representation. Taken together, our results reconcile seemingly contradictory views by showing that the representation of space follows closely a hemifield code and suggest that enhanced posterior-dorsal spatial specificity in primates might emerge from this form of coding.
Collapse
Affiliation(s)
- Michael Ortiz-Rios
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstraße 36, 72072 Tübingen, Germany; Graduate School of Neural & Behavioural Sciences, International Max Planck Research School (IMPRS), University of Tübingen, Österbergstraße 3, 72074 Tübingen, Germany; Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, N.W. Washington, D.C., 20057, USA; Institute of Neuroscience, Henry Welcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - Frederico A C Azevedo
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstraße 36, 72072 Tübingen, Germany; Graduate School of Neural & Behavioural Sciences, International Max Planck Research School (IMPRS), University of Tübingen, Österbergstraße 3, 72074 Tübingen, Germany
| | - Paweł Kuśmierek
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, N.W. Washington, D.C., 20057, USA
| | - Dávid Z Balla
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstraße 36, 72072 Tübingen, Germany
| | - Matthias H Munk
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstraße 36, 72072 Tübingen, Germany; Department of Systems Neurophysiology, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Georgios A Keliris
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstraße 36, 72072 Tübingen, Germany; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Nikos K Logothetis
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstraße 36, 72072 Tübingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Josef P Rauschecker
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, N.W. Washington, D.C., 20057, USA; Institute for Advanced Study of Technische Universität München, Lichtenbergstraße 2 a, 85748 Garching, Germany
| |
Collapse
|
45
|
Babapoor-Farrokhran S, Vinck M, Womelsdorf T, Everling S. Theta and beta synchrony coordinate frontal eye fields and anterior cingulate cortex during sensorimotor mapping. Nat Commun 2017; 8:13967. [PMID: 28169987 PMCID: PMC5309702 DOI: 10.1038/ncomms13967] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/16/2016] [Indexed: 11/29/2022] Open
Abstract
The frontal eye fields (FEFs) and the anterior cingulate cortex (ACC) are commonly coactivated for cognitive saccade tasks, but whether this joined activation indexes coordinated activity underlying successful guidance of sensorimotor mapping is unknown. Here we test whether ACC and FEF circuits coordinate through phase synchronization of local field potential and neural spiking activity in macaque monkeys performing memory-guided and pro- and anti-saccades. We find that FEF and ACC showed prominent synchronization at a 3–9 Hz theta and a 12–30 Hz beta frequency band during the delay and preparation periods with a strong Granger-causal influence from ACC to FEF. The strength of theta- and beta-band coherence between ACC and FEF but not variations in power predict correct task performance. Taken together, the results support a role of ACC in cognitive control of frontoparietal networks and suggest that narrow-band theta and to some extent beta rhythmic activity indexes the coordination of relevant information during periods of enhanced control demands. Frontal eye fields (FEF) and anterior cingulate cortex (ACC) are coactivated during cognitive tasks, but the precise format of their interaction is not known. Here the authors show that phase coupling between ACC -FEF in theta and beta frequency bands better predicts behavioural performance.
Collapse
Affiliation(s)
- Sahand Babapoor-Farrokhran
- Neuroscience Graduate Program, University of Western Ontario, London, Ontario, Canada N6A 5K8.,Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5W9
| | - Martin Vinck
- Department of Neurobiology, School of Medicine, Yale University, New Haven, Conneticut 06520, USA.,Ernst Strüngmann Institut (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt 60528, Germany
| | - Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada M3J 1P3
| | - Stefan Everling
- Neuroscience Graduate Program, University of Western Ontario, London, Ontario, Canada N6A 5K8.,Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5W9.,Robarts Research Institute, London, Ontario, Canada N6A 5K8.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
46
|
Miyamoto K, Osada T, Setsuie R, Takeda M, Tamura K, Adachi Y, Miyashita Y. Causal neural network of metamemory for retrospection in primates. Science 2017; 355:188-193. [DOI: 10.1126/science.aal0162] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/14/2016] [Indexed: 11/02/2022]
|
47
|
Wilming N, Kietzmann TC, Jutras M, Xue C, Treue S, Buffalo EA, König P. Differential Contribution of Low- and High-level Image Content to Eye Movements in Monkeys and Humans. Cereb Cortex 2017; 27:279-293. [PMID: 28077512 PMCID: PMC5942390 DOI: 10.1093/cercor/bhw399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Oculomotor selection exerts a fundamental impact on our experience of the environment. To better understand the underlying principles, researchers typically rely on behavioral data from humans, and electrophysiological recordings in macaque monkeys. This approach rests on the assumption that the same selection processes are at play in both species. To test this assumption, we compared the viewing behavior of 106 humans and 11 macaques in an unconstrained free-viewing task. Our data-driven clustering analyses revealed distinct human and macaque clusters, indicating species-specific selection strategies. Yet, cross-species predictions were found to be above chance, indicating some level of shared behavior. Analyses relying on computational models of visual saliency indicate that such cross-species commonalities in free viewing are largely due to similar low-level selection mechanisms, with only a small contribution by shared higher level selection mechanisms and with consistent viewing behavior of monkeys being a subset of the consistent viewing behavior of humans.
Collapse
Affiliation(s)
- Niklas Wilming
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Washington National Primate Research Center, Seattle, WA 09195, USA
| | - Tim C Kietzmann
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Medical Research Council, Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Megan Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Washington National Primate Research Center, Seattle, WA 09195, USA
| | - Cheng Xue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, Goettingen, Germany.,Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany.,Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Washington National Primate Research Center, Seattle, WA 09195, USA
| | - Peter König
- Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Fellrath J, Mottaz A, Schnider A, Guggisberg AG, Ptak R. Theta-band functional connectivity in the dorsal fronto-parietal network predicts goal-directed attention. Neuropsychologia 2016; 92:20-30. [DOI: 10.1016/j.neuropsychologia.2016.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/21/2016] [Accepted: 07/10/2016] [Indexed: 02/07/2023]
|
49
|
Womelsdorf T, Everling S. Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends Neurosci 2016; 38:682-700. [PMID: 26549883 DOI: 10.1016/j.tins.2015.08.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022]
Abstract
Attention networks comprise brain areas whose coordinated activity implements stimulus selection. This selection is reflected in spatially referenced priority maps across frontal-parietal-collicular areas and is controlled through interactions with circuits representing behavioral goals, including prefrontal, cingulate, and striatal circuits, among others. We review how these goal-providing structures control stimulus selection through long-range dynamic projection motifs. These motifs (i) combine feature-tuned subnetworks to a distributed priority map, (ii) establish endogenously controlled, long-range coherent activity at 4-10 Hz theta and 12-30 Hz beta-band frequencies, and (iii) are composed of unique cell types implementing long-range networks through disynaptic disinhibition, dendritic gating, and feedforward inhibitory gain control. This evidence reveals common circuit motifs used to coordinate attentionally selected information across multi-node brain networks during goal-directed behavior.
Collapse
Affiliation(s)
- Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario M6J 1P3, Canada.
| | - Stefan Everling
- Department of Physiology and Pharmacology, Centre for Functional and Metabolic Mapping, University of Western Ontario, 1151 Richmond Street North, Ontario N6A 5B7, Canada
| |
Collapse
|
50
|
Westendorff S, Kaping D, Everling S, Womelsdorf T. Prefrontal and anterior cingulate cortex neurons encode attentional targets even when they do not apparently bias behavior. J Neurophysiol 2016; 116:796-811. [PMID: 27193317 DOI: 10.1152/jn.00027.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/18/2016] [Indexed: 11/22/2022] Open
Abstract
Neurons in anterior cingulate and prefrontal cortex (ACC/PFC) carry information about behaviorally relevant target stimuli. This information is believed to affect behavior by exerting a top-down attentional bias on stimulus selection. However, attention information may not necessarily be a biasing signal but could be a corollary signal that is not directly related to ongoing behavioral success, or it could reflect the monitoring of targets similar to an eligibility trace useful for later attentional adjustment. To test this suggestion we quantified how attention information relates to behavioral success in neurons recorded in multiple subfields in macaque ACC/PFC during a cued attention task. We found that attention cues activated three separable neuronal groups that encoded spatial attention information but were differently linked to behavioral success. A first group encoded attention targets on correct and error trials. This group spread across ACC/PFC and represented targets transiently after cue onset, irrespective of behavior. A second group encoded attention targets on correct trials only, closely predicting behavior. These neurons were not only prevalent in lateral prefrontal but also in anterior cingulate cortex. A third group encoded target locations only on error trials. This group was evident in ACC and PFC and was activated in error trials "as if" attention was shifted to the target location but without evidence for such behavior. These results show that only a portion of neuronaly available information about attention targets biases behavior. We speculate that additionally a unique neural subnetwork encodes counterfactual attention information.
Collapse
Affiliation(s)
- Stephanie Westendorff
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada;
| | - Daniel Kaping
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada; National Institute of Mental Health, Klecany, Czech Republic; and
| | - Stefan Everling
- Department of Physiology and Pharmacology, Centre for Functional and Metabolic Mapping, Western University, Ontario,Canada
| | - Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada; Department of Physiology and Pharmacology, Centre for Functional and Metabolic Mapping, Western University, Ontario,Canada
| |
Collapse
|