1
|
Ehinger Y, Laguesse S, Phamluong K, Salvi A, Sei YJ, Hoisington ZW, Soneja D, Gunasekaran S, Nakamura K, Ron D. Paradoxical mTORC1-Dependent microRNA-mediated Translation Repression in the Nucleus Accumbens of Mice Consuming Alcohol Attenuates Glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.29.569312. [PMID: 38076984 PMCID: PMC10705386 DOI: 10.1101/2023.11.29.569312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
mTORC1 promotes protein translation, learning and memory, and neuroadaptations that underlie alcohol use and abuse. We report that activation of mTORC1 in the nucleus accumbens (NAc) of mice consuming alcohol promotes the translation of microRNA (miR) machinery components and the upregulation of microRNAs (miRs) expression including miR-34a-5p. In parallel, we detected a paradoxical mTORC1-dependent repression of translation of transcripts including Aldolase A, an essential glycolytic enzyme. We found that miR-34a-5p in the NAc targets Aldolase A for translation repression and promotes alcohol intake. Our data further suggest that glycolysis is inhibited in the NAc manifesting in an mTORC1-dependent attenuation of L-lactate, the end product of glycolysis. Finally, we show that systemic administration of L-lactate attenuates mouse excessive alcohol intake. Our data suggest that alcohol promotes paradoxical actions of mTORC1 on translation and glycolysis which in turn drive excessive alcohol use.
Collapse
|
2
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
3
|
Heinz A, Gutwinski S, Bahr NS, Spanagel R, Di Chiara G. Does compulsion explain addiction? Addict Biol 2024; 29:e13379. [PMID: 38588458 PMCID: PMC11001268 DOI: 10.1111/adb.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 04/10/2024]
Abstract
One of the leading drug addiction theories states that habits and the underlying neural process of a ventral to dorsal striatal shift are the building blocks of compulsive drug-seeking behaviour and that compulsion is the maladaptive persistence of responding despite adverse consequences. Here we discuss that compulsive behaviour as defined primarily from the perspective of animal experimentation falls short of the clinical phenomena and their neurobiological correlates. Thus for the human condition, the concept of compulsive habbits should be critically addressed and potentially revised.
Collapse
Affiliation(s)
- Andreas Heinz
- Department of Psychiatry and Neuroscience|CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité‐Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
- German Center for Mental Health (DZPG)Berlin‐Potsdam
| | - Stefan Gutwinski
- Department of Psychiatry and Neuroscience|CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité‐Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Nadja Samia Bahr
- Department of Psychiatry and Neuroscience|CCM, NeuroCure Clinical Research Center, Berlin Institute of Health CCM, Charité‐Universitätsmedizin Berlin, Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
- German Center for Mental Health (DZPG)Berlin‐Potsdam
| | - Rainer Spanagel
- Institute for Psychopharmacology, Medical Faculty Mannheim, Central Institute of Mental Health (CIMH)Heidelberg UniversityMannheimGermany
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of CagliariCittadella Universitaria di MonserratoCagliariItaly
- Neuroscience InstituteNational Research Council of Italy (CNR)CagliariItaly
| |
Collapse
|
4
|
Popova D, Sun J, Chow HM, Hart RP. A critical review of ethanol effects on neuronal firing: A metabolic perspective. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:450-458. [PMID: 38217065 PMCID: PMC10966925 DOI: 10.1111/acer.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Ethanol metabolism is relatively understudied in neurons, even though changes in neuronal metabolism are known to affect their activity. Recent work demonstrates that ethanol is preferentially metabolized over glucose as a source of carbon and energy, and it reprograms neurons to a state of reduced energy potential and diminished capacity to utilize glucose once ethanol is exhausted. Ethanol intake has been associated with changes in neuronal firing and specific brain activity (EEG) patterns have been linked with risk for alcohol use disorder (AUD). Furthermore, a haplotype of the inwardly rectifying potassium channel subunit, GIRK2, which plays a critical role in regulating excitability of neurons, has been linked with AUD and shown to be directly regulated by ethanol. At the same time, overexpression of GIRK2 prevents ethanol-induced metabolic changes. Based on the available evidence, we conclude that the mechanisms underlying the effects of ethanol on neuronal metabolism are a novel target for developing therapies for AUD.
Collapse
Affiliation(s)
- Dina Popova
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway NJ USA
- Present address: Neuroscience Institute, NYU Langone Grossman School of Medicine, New York, NY USA
| | - Jacquelyne Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald P. Hart
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway NJ USA
| |
Collapse
|
5
|
Lee SH, Shnitko TA, Hsu LM, Broadwater MA, Sardinas M, Wang TWW, Robinson DL, Vetreno RP, Crews FT, Shih YYI. Acute alcohol induces greater dose-dependent increase in the lateral cortical network functional connectivity in adult than adolescent rats. ADDICTION NEUROSCIENCE 2023; 7:100105. [PMID: 37576436 PMCID: PMC10421607 DOI: 10.1016/j.addicn.2023.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alcohol misuse and, particularly adolescent drinking, is a major public health concern. While evidence suggests that adolescent alcohol use affects frontal brain regions that are important for cognitive control over behavior little is known about how acute alcohol exposure alters large-scale brain networks and how sex and age may moderate such effects. Here, we employ a recently developed functional magnetic resonance imaging (fMRI) protocol to acquire rat brain functional connectivity data and use an established analytical pipeline to examine the effect of sex, age, and alcohol dose on connectivity within and between three major rodent brain networks: defaul mode, salience, and lateral cortical network. We identify the intra- and inter-network connectivity differences and establish moderation models to reveal significant influences of age on acute alcohol-induced lateral cortical network connectivity. Through this work, we make brain-wide isotropic fMRI data with acute alcohol challenge publicly available, with the hope to facilitate future discovery of brain regions/circuits that are causally relevant to the impact of acute alcohol use.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Mabelle Sardinas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Day SM, Gironda SC, Clarke CW, Snipes JA, Nicol NI, Kamran H, Vaughan W, Weiner JL, Macauley SL. Ethanol exposure alters Alzheimer's-related pathology, behavior, and metabolism in APP/PS1 mice. Neurobiol Dis 2023; 177:105967. [PMID: 36535550 PMCID: PMC10010148 DOI: 10.1016/j.nbd.2022.105967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer's disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-β (Aβ)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aβ in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aβ40, but not ISF Aβ42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABAAR) mRNA levels, indicating a potential hyperexcitable shift in the brain's excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aβ deposition by disrupting metabolism and the brain's E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment.
Collapse
Affiliation(s)
- Stephen M Day
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stephen C Gironda
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States; Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Caitlin W Clarke
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - J Andy Snipes
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Noelle I Nicol
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hana Kamran
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Warner Vaughan
- Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Jeffrey L Weiner
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Shannon L Macauley
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States; Section on Gerontology & Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States.
| |
Collapse
|
7
|
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, Brendel M, Cecchin D, Ekmekcioglu O, Garibotto V, Lammertsma AA, Law I, Peñuelas I, Semah F, Traub-Weidinger T, van de Giessen E, Van Weehaeghe D, Morbelli S. EANM procedure guidelines for brain PET imaging using [ 18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021; 49:632-651. [PMID: 34882261 PMCID: PMC8803744 DOI: 10.1007/s00259-021-05603-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France. .,Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, 264 rue Saint Pierre, 13005, Marseille, France.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Healthcare Services, Stockholm, Sweden
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Centre of Neurodegenerative Diseases (DZNE), Site Munich, Bonn, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Ozgul Ekmekcioglu
- Sisli Hamidiye Etfal Education and Research Hospital, Nuclear Medicine Dept., University of Health Sciences, Istanbul, Turkey
| | - Valentina Garibotto
- NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clinica Universidad de Navarra, IdiSNA, University of Navarra, Pamplona, Spain
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Lille, France
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
No association between GSTM1 and GSTT1 deletion polymorphisms and Amyotrophic Lateral Sclerosis: a genetic study in Brazilian patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Meinhardt MW, Pfarr S, Fouquet G, Rohleder C, Meinhardt ML, Barroso-Flores J, Hoffmann R, Jeanblanc J, Paul E, Wagner K, Hansson AC, Köhr G, Meier N, von Bohlen und Halbach O, Bell RL, Endepols H, Neumaier B, Schönig K, Bartsch D, Naassila M, Spanagel R, Sommer WH. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. SCIENCE ADVANCES 2021; 7:eabh2399. [PMID: 34788104 PMCID: PMC8598005 DOI: 10.1126/sciadv.abh2399] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/28/2021] [Indexed: 05/21/2023]
Abstract
Alcohol-dependent patients commonly show impairments in executive functions that facilitate craving and can lead to relapse. However, the molecular mechanisms leading to executive dysfunction in alcoholism are poorly understood, and new effective pharmacological treatments are desired. Here, using a bidirectional neuromodulation approach, we demonstrate a causal link between reduced prefrontal mGluR2 function and both impaired executive control and alcohol craving. A neuron-specific prefrontal mGluR2 knockdown in rats generated a phenotype of reduced cognitive flexibility and excessive alcohol seeking. Conversely, virally restoring prefrontal mGluR2 levels in alcohol-dependent rats rescued these pathological behaviors. In the search for a pharmacological intervention with high translational potential, psilocybin was capable of restoring mGluR2 expression and reducing relapse behavior. Last, we propose a FDG-PET biomarker strategy to identify mGluR2 treatment-responsive individuals. In conclusion, we identified a common molecular pathological mechanism for both executive dysfunction and alcohol craving and provided a personalized mGluR2 mechanism-based intervention strategy for medication development for alcoholism.
Collapse
Affiliation(s)
- Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Corresponding author. (M.W.M.); (W.H.S.); (R.S.)
| | - Simone Pfarr
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Grégory Fouquet
- Université de Picardie Jules Verne, INSERM UMRS, 1247 Amiens, France
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Multimodal Imaging, Max Planck Institute for Neurological Research, Cologne, Germany
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Manuela L. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Janet Barroso-Flores
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Rebecca Hoffmann
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Jérôme Jeanblanc
- Université de Picardie Jules Verne, INSERM UMRS, 1247 Amiens, France
| | - Elisabeth Paul
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Konstantin Wagner
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Georg Köhr
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nils Meier
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | - Richard L. Bell
- Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Multimodal Imaging, Max Planck Institute for Neurological Research, Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mickaël Naassila
- Université de Picardie Jules Verne, INSERM UMRS, 1247 Amiens, France
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Corresponding author. (M.W.M.); (W.H.S.); (R.S.)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Corresponding author. (M.W.M.); (W.H.S.); (R.S.)
| |
Collapse
|
10
|
Kumar P, Sharma A, Kumar D, Sharma L. Use of Spectroscopic Methods and Their Clinical Applications in Drug Abuse: A Review. Crit Rev Anal Chem 2021; 53:360-373. [PMID: 34376090 DOI: 10.1080/10408347.2021.1958196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Assurance of substance abuse in plasma and different parts of the body is vital in clinical and legal toxicology. Detection techniques are evaluated for their appropriateness in scientific and clinical sciences, where extraordinary prerequisites must be met. Recognition and affirmation are for the most part done by gas chromatography-Mass spectrometry (GC-MS) or liquid chromatography (LC-MS), Surface-enhanced Raman spectroscopy (SERS), Magnetic resonance imaging, Positron Emission Tomography, Infrared Spectroscopy, and UV Spectroscopy. Progressed spectroscopic techniques provided helpful quantitative or qualitative data about the natural chemistry and science of exploited substances. These spectroscopic techniques are assumed as quick, precise, and some of them are non-damaging investigation apparatus that may be assumed as a substitution for previously used compound investigation. Spectroscopy with its advances in technology is centralized to novel applications in the detection of abused drug substances and clinical toxicology. These techniques have attracted growing interest as forensic tools for the early detection and monitoring of exploited drugs. This review describes the principle, role, and clinical application of various spectroscopic techniques which are utilized for the identification of drug abuse like morphine, cocaine, codeine, alcohol, amphetamines, and their metabolites in whole blood, plasma, hair, and nails.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
11
|
Araujo I, Henriksen A, Gamsby J, Gulick D. Impact of Alcohol Abuse on Susceptibility to Rare Neurodegenerative Diseases. Front Mol Biosci 2021; 8:643273. [PMID: 34179073 PMCID: PMC8220155 DOI: 10.3389/fmolb.2021.643273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the prevalence and well-recognized adverse effects of prenatal alcohol exposure and alcohol use disorder in the causation of numerous diseases, their potential roles in the etiology of neurodegenerative diseases remain poorly characterized. This is especially true of the rare neurodegenerative diseases, for which small population sizes make it difficult to conduct broad studies of specific etiological factors. Nonetheless, alcohol has potent and long-lasting effects on neurodegenerative substrates, at both the cellular and systems levels. This review highlights the general effects of alcohol in the brain that contribute to neurodegeneration across diseases, and then focuses on specific diseases in which alcohol exposure is likely to play a major role. These specific diseases include dementias (alcohol-induced, frontotemporal, and Korsakoff syndrome), ataxias (cerebellar and frontal), and Niemann-Pick disease (primarily a Type B variant and Type C). We conclude that there is ample evidence to support a role of alcohol abuse in the etiology of these diseases, but more work is needed to identify the primary mechanisms of alcohol's effects.
Collapse
Affiliation(s)
- Iskra Araujo
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Amy Henriksen
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
| | - Joshua Gamsby
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| | - Danielle Gulick
- Gulick Laboratory, Byrd Neuroscience Institute, University of South Florida Health, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South FL, Tampa, FL, United States
| |
Collapse
|
12
|
Agarwal K, Manza P, Leggio L, Livinski AA, Volkow ND, Joseph PV. Sensory cue reactivity: Sensitization in alcohol use disorder and obesity. Neurosci Biobehav Rev 2021; 124:326-357. [PMID: 33587959 DOI: 10.1016/j.neubiorev.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022]
Abstract
Neuroimaging techniques to measure the function of the human brain such as electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), are powerful tools for understanding the underlying neural circuitry associated with alcohol use disorder (AUD) and obesity. The sensory (visual, taste and smell) paradigms used in neuroimaging studies represent an ideal platform to investigate the connection between the different neural circuits subserving the reward/executive control systems in these disorders, which may offer a translational mechanism for novel intervention predictions. Thus, the current review provides an integrated summary of the recent neuroimaging studies that have applied cue-reactivity paradigms and neuromodulation strategies to explore underlying alterations in neural circuitry as well in treatment strategies in AUD and obesity. Finally, we discuss literature on mechanisms associated with increased alcohol sensitivity post-bariatric surgery (BS) which offers guidance for future research to use sensory percepts in elucidating the relation of reward signaling in AUD development post-BS.
Collapse
Affiliation(s)
- Khushbu Agarwal
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Lorenzo Leggio
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | | | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute on Drug Abuse, Bethesda and Baltimore, MD, USA
| | - Paule Valery Joseph
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA; National Institute of Nursing Research, Bethesda, MD, USA.
| |
Collapse
|
13
|
Tanabe J, Neff S, Sutton B, Ellis S, Patten L, Brown MS, Hoffman PL, Tabakoff B, Burnham EL. Effects of acetate on cerebral blood flow, systemic inflammation, and behavior in alcohol use disorder. Alcohol Clin Exp Res 2021; 45:922-933. [PMID: 33682145 PMCID: PMC8496991 DOI: 10.1111/acer.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol use disorders (AUDs) are associated with altered regulation of physiological processes in the brain. Acetate, a metabolite of ethanol, has been implicated in several processes that are disrupted in AUDs including transcriptional regulation, metabolism, inflammation, and neurotransmission. To further understand the effects of acetate on brain function in AUDs, we investigated the effects of acetate on cerebral blood flow (CBF), systemic inflammatory cytokines, and behavior in AUD. METHODS Sixteen participants with AUD were recruited from a nonmedical, clinically managed detoxification center. Each participant received acetate and placebo in a randomly assigned order of infusion and underwent 3T MR scanning using quantitative pseudo-continuous arterial spin labeling. Participants and the study team were blinded to the infusion. CBF values (ml/100 g/min) extracted from thalamus were compared between placebo and acetate using a mixed effect linear regression model accounting for infusion order. Voxel-wise CBF comparisons were set at threshold of p < 0.05 cluster-corrected for multiple comparisons, voxel-level p < 0.0001. Plasma cytokine levels and behavior were also assessed between infusions. RESULTS Fifteen men and 1 woman were enrolled with Alcohol Use Disorders Identification Test (AUDIT) scores between 13 and 38 with a mean of 28.3 ± 9.1. Compared to placebo, acetate administration increased CBF in the thalamus bilaterally (Left: 51.2 vs. 68.8, p < 0.001; Right: 53.7 vs. 69.6, p = 0.001), as well as the cerebellum, brainstem, and cortex. Older age and higher AUDIT scores were associated with increases in acetate-induced thalamic blood flow. Cytokine levels and behavioral measures did not differ between placebo and acetate infusions. CONCLUSIONS This pilot study in AUD suggests that during the first week of abstinence from alcohol, the brain's response to acetate differs by brain region and this response may be associated with the severity of alcohol dependence.
Collapse
Affiliation(s)
- Jody Tanabe
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sarah Neff
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Brianne Sutton
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sam Ellis
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Luke Patten
- Department of Biostatistics and Informatics, School of Public Health; University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mark S. Brown
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Paula L. Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Ellen L. Burnham
- Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
14
|
Sullivan EV, Zhao Q, Pohl KM, Zahr NM, Pfefferbaum A. Attenuated cerebral blood flow in frontolimbic and insular cortices in Alcohol Use Disorder: Relation to working memory. J Psychiatr Res 2021; 136:140-148. [PMID: 33592385 PMCID: PMC8009820 DOI: 10.1016/j.jpsychires.2021.01.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
Chronic, excessive alcohol consumption is associated with cerebrovascular hypoperfusion, which has the potential to interfere with cognitive processes. Magnetic resonance pulsed continuous arterial spin labeling (PCASL) provides a noninvasive approach for measuring regional cerebral blood flow (CBF) and was used to study 24 men and women with Alcohol Use Disorder (AUD) and 20 age- and sex-matched controls. Two analysis approaches tested group differences: a data-driven, regionally-free method to test for group differences on a voxel-by-voxel basis and a region of interest (ROI) approach, which focused quantification on atlas-determined brain structures. Whole-brain, voxel-wise quantification identified low AUD-related cerebral perfusion in large volumes of medial frontal and cingulate cortices. The ROI analysis also identified lower CBF in the AUD group relative to the control group in medial frontal, anterior/middle cingulate, insular, and hippocampal/amygdala ROIs. Further, years of AUD diagnosis negatively correlated with temporal cortical CBF, and scores on an alcohol withdrawal scale negatively correlated with posterior cingulate and occipital gray matter CBF. Regional volume deficits did not account for AUD CBF deficits. Functional relevance of attenuated regional CBF in the AUD group emerged with positive correlations between episodic working memory test scores and anterior/middle cingulum, insula, and thalamus CBF. The frontolimbic and insular cortical neuroconstellation with dampened perfusion suggests a mechanism of dysfunction associated with these brain regions in AUD.
Collapse
Affiliation(s)
- Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Correspondence Edith V. Sullivan, Ph.D., Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine (MC5723), 401 Quarry Road, Stanford, CA 94305-5723, phone: (650) 859-2880, FAX: (650) 859-2743,
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA;,Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
15
|
Effects of ketogenic diet and ketone monoester supplement on acute alcohol withdrawal symptoms in male mice. Psychopharmacology (Berl) 2021; 238:833-844. [PMID: 33410985 PMCID: PMC7914216 DOI: 10.1007/s00213-020-05735-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE After alcohol ingestion, the brain partly switches from consumption of glucose to consumption of the alcohol metabolite acetate. In heavy drinkers, the switch persists after abrupt abstinence, leading to the hypothesis that the resting brain may be "starved" when acetate levels suddenly drop during abstinence, despite normal blood glucose, contributing to withdrawal symptoms. We hypothesized that ketone bodies, like acetate, could act as alternative fuels in the brain and alleviate withdrawal symptoms. OBJECTIVES We previously reported that a ketogenic diet during alcohol exposure reduced acute withdrawal symptoms in rats. Here, our goals were to test whether (1) we could reproduce our findings, in mice and with longer alcohol exposure; (2) ketone bodies alone are sufficient to reduce withdrawal symptoms (clarifying mechanism); (3) introduction of ketogenic diets at abstinence (a clinically more practical implementation) would also be effective. METHODS Male C57BL/6NTac mice had intermittent alcohol exposure for 3 weeks using liquid diet. Somatic alcohol withdrawal symptoms were measured as handling-induced convulsions; anxiety-like behavior was measured using the light-dark transition test. We tested a ketogenic diet, and a ketone monoester supplement with a regular carbohydrate-containing diet. RESULTS The regular diet with ketone monoester was sufficient to reduce handling-induced convulsions and anxiety-like behaviors in early withdrawal. Only the ketone monoester reduced handling-induced convulsions when given during abstinence, consistent with faster elevation of blood ketones, relative to ketogenic diet. CONCLUSIONS These findings support the potential utility of therapeutic ketosis as an adjunctive treatment in early detoxification in alcohol-dependent patients seeking to become abstinent. TRIAL REGISTRATION clinicaltrials.gov NCT03878225, NCT03255031.
Collapse
|
16
|
Asiedu B, Nyakudya TT, Lembede BW, Chivandi E. Early-life exposure to alcohol and the risk of alcohol-induced liver disease in adulthood. Birth Defects Res 2021; 113:451-468. [PMID: 33577143 DOI: 10.1002/bdr2.1881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
Alcohol consumption remains prevalent among pregnant and nursing mothers despite the well-documented adverse effects this may have on the offspring. Moderate-to-high levels of alcohol consumption in pregnancy result in fetal alcohol syndrome (FAS) disorders, with brain defects being chief among the abnormalities. Recent findings indicate that while light-to-moderate levels may not cause FAS, it may contribute to epigenetic changes that make the offspring prone to adverse health outcomes including metabolic disorders and an increased propensity in the adolescent-onset of drinking alcohol. On the one hand, prenatal alcohol exposure (PAE) causes epigenetic changes that affect lipid and glucose transcript regulating genes resulting in metabolic abnormalities. On the other hand, it can program offspring for increased alcohol intake, enhance its palatability, and increase acceptance of alcohol's flavor through associative learning, making alcohol a plausible second hit for the development of alcohol-induced liver disease. Adolescent drinking results in alcohol dependence and abuse in adulthood. Adolescent drinking results in alcohol dependence and abuse in adulthood. Alterations on the opioid system, particularly, the mu-opioid system, has been implicated in the mechanism that induces increased alcohol consumption and acceptance. This review proposes a mechanism that links PAE to the development of alcoholism and eventually to alcoholic liver disease (ALD), which results from prolonged alcohol consumption. While PAE may not lead to ALD development in childhood, there are chances that it may lead to ALD in adulthood.
Collapse
Affiliation(s)
- Bernice Asiedu
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Trevor Tapiwa Nyakudya
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Gezina, South Africa
| | - Busisani Wiseman Lembede
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Eliton Chivandi
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Wilson DF, Matschinsky FM. Ethanol metabolism: The good, the bad, and the ugly. Med Hypotheses 2020; 140:109638. [PMID: 32113062 DOI: 10.1016/j.mehy.2020.109638] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022]
Abstract
Throughout the world, ethanol is both an important commercial commodity and a source of major medical and social problems. Ethanol readily passes through biological membranes and distributes throughout the body. It is oxidized, first to acetaldehyde and then to acetate, and finally by the citric acid cycle in virtually all tissues. The oxidation of ethanol is irreversible and unregulated, making the rate dependent only on local concentration and enzyme activity. This unregulated input of reducing equivalents increases reduction of both cytoplasmic and intramitochondrial NAD and, through the latter, cellular energy state {[ATP]/([ADP][Pi])}. In brain, this increase in energy state stimulates dopaminergic neural activity signalling reward and a sense of well being, while suppressing glutamatergic neural activity signalling anxiety and unease. These positive responses to ethanol ingestion are important to social alcohol consumption. Importantly, decreased free [AMP] decreases AMP-dependent protein kinase (AMPK) activity, an important regulator of cellular energy metabolism. Oxidation of substrates used for energy metabolism in the absence of ethanol is down regulated to accommodate the input from ethanol. In liver, chronic ethanol metabolism results in fatty liver and general metabolic dysfunction. In brain, transport of other oxidizable metabolites through the blood-brain barrier and the enzymes for their oxidation are both down regulated. For exposures of short duration, ethanol induced regulatory changes are rapid and reversible, recovering completely when the concentrations of ethanol and acetate fall again. Longer periods of ethanol exposure and associated chronic suppression of AMPK activity activates regulatory mechanisms, including gene expression, that operate over longer time scales, both in onset and reversal. If chronic alcohol consumption is abruptly ended, metabolism is no longer able to respond rapidly enough to compensate. Glutamatergic neural activity adapts to chronic dysregulation of glutamate metabolism and suppression of glutamatergic neural activity by increasing excitatory and decreasing inhibitory amino acid receptors. A point is reached (ethanol dependence) where withdrawal of ethanol results in significant metabolic energy depletion in neurons and other brain cells as well as hyperexcitation of the glutamatergic system. The extent and regional specificity of energy depletion in the brain, combined with hyperactivity of the glutamatergic neuronal system, largely determines the severity of withdrawal symptoms.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Vaudano AE, Olivotto S, Ruggieri A, Gessaroli G, Talami F, Parmeggiani A, De Giorgis V, Veggiotti P, Meletti S. The effect of chronic neuroglycopenia on resting state networks in GLUT1 syndrome across the lifespan. Hum Brain Mapp 2020; 41:453-466. [PMID: 31710770 PMCID: PMC7313681 DOI: 10.1002/hbm.24815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Glucose transporter type I deficiency syndrome (GLUT1DS) is an encephalopathic disorder due to a chronic insufficient transport of glucose into the brain. PET studies in GLUT1DS documented a widespread cortico‐thalamic hypometabolism and a signal increase in the basal ganglia, regardless of age and clinical phenotype. Herein, we captured the pattern of functional connectivity of distinct striatal, cortical, and cerebellar regions in GLUT1DS (10 children, eight adults) and in healthy controls (HC, 19 children, 17 adults) during rest. Additionally, we explored for regional connectivity differences in GLUT1 children versus adults and according to the clinical presentation. Compared to HC, GLUT1DS exhibited increase connectivity within the basal ganglia circuitries and between the striatal regions with the frontal cortex and cerebellum. The excessive connectivity was predominant in patients with movement disorders and in children compared to adults, suggesting a correlation with the clinical phenotype and age at fMRI study. Our findings highlight the primary role of the striatum in the GLUT1DS pathophysiology and confirm the dependency of symptoms to the patients' chronological age. Despite the reduced chronic glucose uptake, GLUT1DS exhibit increased connectivity changes in regions highly sensible to glycopenia. Our results may portrait the effect of neuroprotective brain strategy to overcome the chronic poor energy supply during vulnerable ages.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Neurology Unit, OCSAE Hospital, AOU Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara Olivotto
- Pediatric Neurology Unit, V. Buzzi Hospital, University of Milan, Milan, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, Policlinico S. Orsola-Malpighi, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Italy
| | | | | | - Stefano Meletti
- Neurology Unit, OCSAE Hospital, AOU Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
19
|
de Guglielmo G, Fu Y, Chen J, Larrosa E, Hoang I, Kawamura T, Lorrai I, Zorman B, Bryant J, George O, Sumazin P, Lefebvre C, Repunte-Canonigo V, Sanna PP. Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res 2020; 1726:146502. [PMID: 31605699 PMCID: PMC7195807 DOI: 10.1016/j.brainres.2019.146502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The abuse of stimulants, such as methamphetamine (METH), is associated with treatment non-compliance, a greater risk of viral transmission, and the more rapid clinical progression of immunological and central nervous system human immunodeficiency virus (HIV) disease. The behavioral effects of METH in the setting of HIV remain largely uncharacterized. We used a state-of-the-art paradigm of the escalation of voluntary intravenous drug self-administration in HIV transgenic (Tg) and wildtype rats. The rats were first allowed to self-administer METH under short-access (ShA) conditions, which is characterized by a nondependent and more "recreational" pattern of METH use, and then allowed to self-administer METH under long-access (LgA) conditions, which leads to compulsive (dependent) METH intake. HIV Tg and wildtype rats self-administered equal amounts of METH under ShA conditions. HIV Tg rats self-administered METH under LgA conditions following a 4-week enforced abstinence period to model the intermittent pattern of stimulant abuse in humans. These HIV Tg rats developed greater motivation to self-administer METH and self-administered larger amounts of METH. Impairments in function of the medial prefrontal cortex (mPFC) contribute to compulsive drug and alcohol intake. Gene expression profiling of the mPFC in HIV Tg rats with a history of escalated METH self-administration under LgA conditions showed transcriptional evidence of increased inflammation, greater neural injury, and impaired aerobic glucose metabolism than wildtype rats that self-administered METH under LgA conditions. The detrimental effects of the interaction between neuroHIV and escalated METH intake on the mPFC are likely key factors in the greater vulnerability to excessive drug intake in the setting of HIV.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Estefania Larrosa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Hoang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Bryant
- University of Maryland and Institute of Human Virology, Baltimore, MD, United States
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Bioinformatics and Computational Biology, Servier, Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Abstract
Addiction to substances such as alcohol, cocaine, opioids, and methamphetamine poses a continuing clinical and public challenge globally. Despite progress in understanding substance use disorders, challenges remain in their treatment. Some of these challenges include limited ability of therapeutics to reach the brain (blood-brain barrier), adverse systemic side effects of current medications, and importantly key aspects of addiction not addressed by currently available treatments (such as cognitive impairment). Inability to sustain abstinence or seek treatment due to cognitive deficits such as poor decision-making and impulsivity is known to cause poor treatment outcomes. In this review, we provide an evidenced-based rationale for intranasal drug delivery as a viable and safe treatment modality to bypass the blood-brain barrier and target insulin to the brain to improve the treatment of addiction. Intranasal insulin with improvement of brain cell energy and glucose metabolism, stress hormone reduction, and improved monoamine transmission may be an ideal approach for treating multiple domains of addiction including memory and impulsivity. This may provide additional benefits to enhance current treatment approaches.
Collapse
Affiliation(s)
- Bhavani Kashyap
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA.
- HealthPartners Institute, Bloomington, Minnesota, USA.
| | - Leah R Hanson
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - William H Frey Ii
- HealthPartners Neuroscience Center, 295 Phalen Blvd, St Paul, Minnesota, 55130, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| |
Collapse
|
21
|
Tanabe J, Yamamoto DJ, Sutton B, Brown MS, Hoffman PL, Burnham EL, Glueck DH, Tabakoff B. Effects of Alcohol and Acetate on Cerebral Blood Flow: A Pilot Study. Alcohol Clin Exp Res 2019; 43:2070-2078. [PMID: 31386214 PMCID: PMC7066986 DOI: 10.1111/acer.14173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Acute alcohol produces effects on cerebral metabolism and blood flow. Alcohol is converted to acetate, which serves as a source of energy for the brain and is an agonist at G protein-coupled receptors distributed in different cell types in the body including neurons. Acetate has been hypothesized to play a role in the cerebral blood flow (CBF) response after alcohol ingestion. We tested whether administration of acetate would alter CBF in a pattern similar to or different from that of alcohol ingestion in healthy individuals. METHODS Twenty-four healthy participants were assigned by convenience to receive either 0.6 g/kg alcohol orally (n = 12) or acetate intravenously (n = 12). For each participant, CBF maps were acquired using an arterial spin labeling sequence on a 3T magnetic resonance scanner after placebo and after drug administration. Whole-brain CBF maps were compared between placebo and drug using a paired t-test, and set at a threshold of p < 0.05 corrected for multiple comparisons (k ≥ 142 voxels, ≥3.78 cm3 ), voxel-level p < 0.005. Intoxication was measured after placebo and drug administration with a Subjective High Assessment Scale (SHAS-7). RESULTS Compared to placebo, alcohol and acetate were associated with increased CBF in the medial thalamus. Alcohol, but not acetate, was associated with increased CBF in the right orbitofrontal, medial prefrontal and cingulate cortex, and hippocampus. Plasma acetate levels increased following administration of alcohol and acetate and did not differ between the 2 arms. Alcohol, but not acetate, was associated with an increase in SHAS-7 scores (p < 0.001). CONCLUSIONS Increased thalamic CBF associated with either alcohol or acetate administration suggests that the thalamic CBF response after alcohol could be mediated by acetate. Compared to other brain regions, thalamus may differ in its ability to metabolize acetate or expression of receptors responsive to acetate. Increased prefrontal and limbic CBF associated with alcohol may be linked to alcohol's behavioral effects.
Collapse
Affiliation(s)
- Jody Tanabe
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Psychiatry, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dorothy J. Yamamoto
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brianne Sutton
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Psychiatry, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mark S. Brown
- Department of Radiology, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paula L. Hoffman
- Department of Pharmacology, School of Medicine, University
of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ellen L. Burnham
- Department of Medicine, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Deborah H. Glueck
- Department of Pediatrics, School of Medicine, University of
Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
22
|
Tomasi DG, Wiers CE, Shokri-Kojori E, Zehra A, Ramirez V, Freeman C, Burns J, Kure Liu C, Manza P, Kim SW, Wang GJ, Volkow ND. Association Between Reduced Brain Glucose Metabolism and Cortical Thickness in Alcoholics: Evidence of Neurotoxicity. Int J Neuropsychopharmacol 2019; 22:548-559. [PMID: 31369670 PMCID: PMC6754735 DOI: 10.1093/ijnp/pyz036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Excessive alcohol consumption is associated with reduced cortical thickness (CT) and lower cerebral metabolic rate of glucose (CMRGlu), but the correlation between these 2 measures has not been investigated. METHODS We tested the association between CT and cerebral CMRGlu in 19 participants with alcohol use disorder (AUD) and 20 healthy controls. Participants underwent 2-Deoxy-2-[18F]fluoroglucose positron emission tomography to map CMRGlu and magnetic resonance imaging to assess CT. RESULTS Although performance accuracy on a broad range of cognitive domains did not differ significantly between AUD and HC, AUD had widespread decreases in CT and CMRGlu. CMRGlu, normalized to cerebellum (rCMRGlu), showed significant correlation with CT across participants. Although there were large group differences in CMRGlu (>17%) and CT (>6%) in medial orbitofrontal and BA 47, the superior parietal cortex showed large reductions in CMRGlu (~17%) and minimal CT differences (~2.2%). Though total lifetime alcohol (TLA) was associated with CT and rCMRGlu, the causal mediation analysis revealed significant direct effects of TLA on rCMRGlu but not on CT, and there were no significant mediation effects of TLA, CT, and rCMRGlu. CONCLUSIONS The significant correlation between decrements in CT and CMRGlu across AUD participants is suggestive of alcohol-induced neurotoxicity, whereas the findings that the most metabolically affected regions in AUD had minimal atrophy and vice versa indicates that changes in CT and CMRGlu reflect distinct responses to alcohol across brain regions.
Collapse
Affiliation(s)
- Dardo G Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD,Correspondence: Dardo Tomasi, PhD, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 ()
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | | | - Amna Zehra
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Veronica Ramirez
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Clara Freeman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Jamie Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Sung W Kim
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD,National Institute on Drug Abuse, Bethesda, MD
| |
Collapse
|
23
|
Tyler RE, Kim SW, Guo M, Jang YJ, Damadzic R, Stodden T, Vendruscolo LF, Koob GF, Wang GJ, Wiers CE, Volkow ND. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: A comparison between in vivo and in vitro TSPO radioligand binding. Eur J Neurosci 2019; 50:1831-1842. [PMID: 30803059 PMCID: PMC10714130 DOI: 10.1111/ejn.14392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Abstract
Excessive alcohol consumption is associated with neuroinflammation, which likely contributes to alcohol-related pathology. However, positron emission tomography (PET) studies using radioligands for the 18-kDa translocator protein (TSPO), which is considered a biomarker of neuroinflammation, reported decreased binding in alcohol use disorder (AUD) participants compared to controls. In contrast, autoradiographic findings in alcohol exposed rats reported increases in TSPO radioligand binding. To assess if these discrepancies reflected differences between in vitro and in vivo methodologies, we compared in vitro autoradiography (using [3 H]PBR28 and [3 H]PK11195) with in vivo PET (using [11 C]PBR28) in male, Wistar rats exposed to chronic alcohol-vapor (dependent n = 10) and in rats exposed to air-vapor (nondependent n = 10). PET scans were obtained with [11 C]PBR28, after which rats were euthanized and the brains were harvested for autoradiography with [3 H]PBR28 and [3 H]PK11195 (n = 7 dependent and n = 7 nondependent), and binding quantified in hippocampus, thalamus, and parietal cortex. Autoradiography revealed significantly higher binding in alcohol-dependent rats for both radioligands in thalamus and hippocampus (trend level for [3 H]PBR28) compared to nondependent rats, and these group differences were stronger for [3 H]PK11195 than [3 H]PBR28. In contrast, PET measures obtained in the same rats showed no group difference in [11 C]PBR28 binding. Our in vitro data are consistent with neuroinflammation associated with chronic alcohol exposure. Failure to observe similar increases in [11 C]PBR28 binding in vivo suggests the possibility that a mechanism mediated by chronic alcohol exposure interferes with [11 C]PBR28 binding to TSPO in vivo. These data question the sensitivity of PBR28 PET as a methodology to assess neuroinflammation in AUD.
Collapse
Affiliation(s)
- Ryan E. Tyler
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Min Guo
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Yeon Joo Jang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Ruslan Damadzic
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Tyler Stodden
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Leandro F. Vendruscolo
- National Institute on Drug Abuse, National Institutes of Health, NIH, Baltimore, Maryland
| | - George F. Koob
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
- National Institute on Drug Abuse, National Institutes of Health, NIH, Baltimore, Maryland
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Corinde E. Wiers
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
- National Institute on Drug Abuse, National Institutes of Health, NIH, Baltimore, Maryland
| |
Collapse
|
24
|
Enculescu C, Kerr ED, Yeo KYB, Schenk G, Fortes MRS, Schulz BL. Proteomics Reveals Profound Metabolic Changes in the Alcohol Use Disorder Brain. ACS Chem Neurosci 2019; 10:2364-2373. [PMID: 30807102 DOI: 10.1021/acschemneuro.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Changes in brain metabolism are a hallmark of alcohol use disorder (AUD). Determining how AUD changes the brain proteome is critical for understanding the effects of alcohol consumption on biochemical processes in the brain. We used data-independent acquisition mass spectrometry proteomics to study differences in the abundance of proteins associated with AUD in prefrontal lobe and motor cortex from autopsy brain. AUD had a substantial effect on the overall brain proteome exceeding the inherent differences between brain regions. Proteins associated with glycolysis, trafficking, the cytoskeleton, and excitotoxicity were altered in abundance in AUD. We observed extensive changes in the abundance of key metabolic enzymes, consistent with a switch from glucose to acetate utilization in the AUD brain. We propose that metabolic adaptations allowing efficient acetate utilization contribute to ethanol dependence in AUD.
Collapse
Affiliation(s)
- Charmaine Enculescu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Edward D. Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - K. Y. Benjamin Yeo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
25
|
Increased white matter metabolic rates in autism spectrum disorder and schizophrenia. Brain Imaging Behav 2019; 12:1290-1305. [PMID: 29168086 DOI: 10.1007/s11682-017-9785-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Both autism spectrum disorder (ASD) and schizophrenia are often characterized as disorders of white matter integrity. Multimodal investigations have reported elevated metabolic rates, cerebral perfusion and basal activity in various white matter regions in schizophrenia, but none of these functions has previously been studied in ASD. We used 18fluorodeoxyglucose positron emission tomography to compare white matter metabolic rates in subjects with ASD (n = 25) to those with schizophrenia (n = 41) and healthy controls (n = 55) across a wide range of stereotaxically placed regions-of-interest. Both subjects with ASD and schizophrenia showed increased metabolic rates across the white matter regions assessed, including internal capsule, corpus callosum, and white matter in the frontal and temporal lobes. These increases were more pronounced, more widespread and more asymmetrical in subjects with ASD than in those with schizophrenia. The highest metabolic increases in both disorders were seen in the prefrontal white matter and anterior limb of the internal capsule. Compared to normal controls, differences in gray matter metabolism were less prominent and differences in adjacent white matter metabolism were more prominent in subjects with ASD than in those with schizophrenia. Autism spectrum disorder and schizophrenia are associated with heightened metabolic activity throughout the white matter. Unlike in the gray matter, the vector of white matter metabolic abnormalities appears to be similar in ASD and schizophrenia, may reflect inefficient functional connectivity with compensatory hypermetabolism, and may be a common feature of neurodevelopmental disorders.
Collapse
|
26
|
Correspondence between cerebral glucose metabolism and BOLD reveals relative power and cost in human brain. Nat Commun 2019; 10:690. [PMID: 30741935 PMCID: PMC6370887 DOI: 10.1038/s41467-019-08546-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022] Open
Abstract
The correspondence between cerebral glucose metabolism (indexing energy utilization) and synchronous fluctuations in blood oxygenation (indexing neuronal activity) is relevant for neuronal specialization and is affected by brain disorders. Here, we define novel measures of relative power (rPWR, extent of concurrent energy utilization and activity) and relative cost (rCST, extent that energy utilization exceeds activity), derived from FDG-PET and fMRI. We show that resting-state networks have distinct energetic signatures and that brain could be classified into major bilateral segments based on rPWR and rCST. While medial-visual and default-mode networks have the highest rPWR, frontoparietal networks have the highest rCST. rPWR and rCST estimates are generalizable to other indexes of energy supply and neuronal activity, and are sensitive to neurocognitive effects of acute and chronic alcohol exposure. rPWR and rCST are informative metrics for characterizing brain pathology and alternative energy use, and may provide new multimodal biomarkers of neuropsychiatric disorders. The brain primarily uses glucose to generate energy, but the relationship of neuronal activity to glucose utilization is not necessarily a simple linear one. Here, the authors introduce relative power (rPWR) and relative cost (rCST) as new metrics to quantify how brain activity relates to glucose consumption.
Collapse
|
27
|
Kindred JH, Honce JM, Kwak JJ, Rudroff T. Multiple Sclerosis, Cannabis Use, and Clinical Disability: A Preliminary [ 18F]-Fluorodeoxyglucose Positron Emission Tomography Study. Cannabis Cannabinoid Res 2018; 3:213-218. [PMID: 30324138 PMCID: PMC6186162 DOI: 10.1089/can.2018.0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Long-term consequences of medicinal cannabis use in people with multiple sclerosis (PwMS) are unknown. This study investigated whether PwMS using cannabis had lower resting brain glucose uptake (GU) and worse clinical test results compared with nonusers. Methods: Sixteen PwMS, eight users, underwent clinical testing followed by [18F]-Fluorodeoxyglucose positron emission tomography/computed tomography imaging. Results: Users had lower cognitive function test scores, but performed similarly on the other clinical evaluations. Accounting for disease duration, resting brain GU was similar between the groups. Conclusions: Lower cognitive function was not associated with resting brain GU. Cognitive dysfunction may be a contraindication or consequence of cannabis use in PwMS.
Collapse
Affiliation(s)
- John H. Kindred
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
- Division of Physical Therapy, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veteran's Administration Medical Center, Charleston, South Carolina
| | - Justin M. Honce
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jennifer J. Kwak
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Thorsten Rudroff
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Address correspondence to: Thorsten Rudroff, PhD, Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242,
| |
Collapse
|
28
|
Dencker D, Molander A, Thomsen M, Schlumberger C, Wortwein G, Weikop P, Benveniste H, Volkow ND, Fink-Jensen A. Ketogenic Diet Suppresses Alcohol Withdrawal Syndrome in Rats. Alcohol Clin Exp Res 2017; 42:270-277. [PMID: 29160944 DOI: 10.1111/acer.13560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol use disorder is underdiagnosed and undertreated, and up to 50% of alcohol-abstinent patients diagnosed with alcohol dependence relapse within the first year of treatment. Current treatments for the maintenance of alcohol abstinence in patients with alcohol use disorder have limited efficacy, and there is an urgent need for novel treatment strategies. Decreased cerebral glucose metabolism and increased brain uptake of acetate were recently reported in heavy drinkers, relative to controls. Given the switch of metabolic fuel from glucose to acetate in the alcohol-dependent brain, we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. METHODS Male Sprague Dawley rats fed either ketogenic or regular diet were administered ethanol or water orally, twice daily for 6 days while the diet conditions were maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. RESULTS Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms' "rigidity" and "irritability." CONCLUSIONS Our preclinical pilot study suggests that a ketogenic diet may be a novel approach for treating alcohol withdrawal symptoms in humans.
Collapse
Affiliation(s)
- Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Anna Molander
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Chantal Schlumberger
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Gitta Wortwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, Connecticut
| | - Nora D Volkow
- Laboratory for Neuroimaging, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, Maryland
| | - Anders Fink-Jensen
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Jeynes KD, Gibson EL. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol Depend 2017; 179:229-239. [PMID: 28806640 DOI: 10.1016/j.drugalcdep.2017.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nutrition is a prerequisite for health; yet, there is no special nutritional assessment or guidance for drug and alcohol dependent individuals, despite the fact that their food consumption is often very limited, risking malnutrition. Further, the premise is examined that malnutrition may promote drug seeking and impede recovery from substance use disorders (SUD). METHOD A narrative review addressed the relationship between substance use disorders and nutrition, including evidence for malnutrition, as well as their impact on metabolism and appetite regulation. The implications of the biopsychology of addiction and appetite for understanding the role of nutrition in SUD were also considered. RESULTS The literature overwhelmingly finds that subjects with alcohol use disorder (AUD) and drug use disorder (DUD) typically suffer from nutrient deficiencies. These nutrient deficiencies may be complicit in the alcoholic myopathy, osteopenia and osteoporosis, and mood disorders including anxiety and depression, observed in AUD and DUD. These same individuals have also been found to have altered body composition and altered hormonal metabolic regulators. Additionally, brain processes fundamental for survival are stimulated both by food, particularly sweet foods, and by substances of abuse, with evidence supporting confusion (addiction transfer) when recovering from SUD between cravings for a substance and craving for food. CONCLUSION Poor nutritional status in AUD and DUD severely impacts their physical and psychological health, which may impede their ability to resist substances of abuse and recover their health. This review contributes to a better understanding of interventions that could best support individuals with substance use disorders.
Collapse
Affiliation(s)
- Kendall D Jeynes
- Department of Life Sciences, Whitelands College, University of Roehampton, London SW15 4JD, UK
| | - E Leigh Gibson
- Department of Psychology, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK.
| |
Collapse
|
30
|
Alcohol affects brain functional connectivity and its coupling with behavior: greater effects in male heavy drinkers. Mol Psychiatry 2017; 22:1185-1195. [PMID: 27021821 PMCID: PMC5138152 DOI: 10.1038/mp.2016.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here, we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD, N=16, 16 males) and normal controls (NM, N=24, 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default mode network regions and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed that alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced 'neurocognitive coupling', the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared with NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain FCD and individual differences in behavioral performance.
Collapse
|
31
|
Haass-Koffler CL, Akhlaghi F, Swift RM, Leggio L. Altering ethanol pharmacokinetics to treat alcohol use disorder: Can you teach an old dog new tricks? J Psychopharmacol 2017; 31:812-818. [PMID: 28093021 PMCID: PMC5768306 DOI: 10.1177/0269881116684338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Disulfiram was the first pharmacotherapy approved to treat alcohol use disorder in the 1950s. Disulfiram alters ethanol pharmacokinetics and causes uncomfortable reactions (e.g. headache, tachycardia, nausea, flushing and hypotension) when alcohol is consumed. Subsequently, a better understanding of the neurobiological pathways involved in alcohol use disorder led to the development of other medications (e.g. naltrexone and acamprosate). These neurobiological-based medications act on alcohol use disorder-related phenotypes including craving, stress, and/or withdrawal. The original approach to treat alcohol use disorder, by altering ethanol pharmacokinetics has been much less investigated. Recent research on ethanol pharmacokinetics has shed light on the mechanisms of action underlying alcohol use disorder and how some medications that alter ethanol pharmacokinetics may be helpful in treating alcohol use disorder. This review summarizes and discusses the complex pharmacokinetics of ethanol, and proposes that altering ethanol pharmacokinetics via novel pharmacological approaches may be a viable approach to treat alcohol use disorder.
Collapse
Affiliation(s)
- Carolina L. Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD
| | - Fatemeh Akhlaghi
- Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Robert M. Swift
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Brown University, Providence, RI
- Veterans Affairs Medical Center, Providence, RI
| | - Lorenzo Leggio
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang GJ, Baler R. Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. Neuropharmacology 2017; 122:175-188. [PMID: 28108358 DOI: 10.1016/j.neuropharm.2017.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/20/2016] [Accepted: 01/14/2017] [Indexed: 02/07/2023]
Abstract
The use of Positron emission tomography (PET) to study the effects of acute and chronic alcohol on the human brain has enhanced our understanding of the mechanisms underlying alcohol's rewarding effects, the neuroadaptations from chronic exposure that contribute to tolerance and withdrawal, and the changes in fronto-striatal circuits that lead to loss of control and enhanced motivation to drink that characterize alcohol use disorders (AUD). These include studies showing that alcohol's reinforcing effects may result not only from its enhancement of dopaminergic, GABAergic and opioid signaling but also from its caloric properties. Studies in those suffering from an AUD have revealed significant alterations in dopamine (DA), GABA, cannabinoids, opioid and serotonin neurotransmission and in brain energy utilization (glucose and acetate metabolism) that are likely to contribute to compulsive alcohol taking, dysphoria/depression, and to alcohol-associated neurotoxicity. Studies have also evaluated the effects of abstinence on recovery of brain metabolism and neurotransmitter function and the potential value of some of these measures to predict clinical outcomes. Finally, PET studies have started to provide insights about the neuronal mechanisms by which certain genes contribute to the vulnerability to AUD. These findings have helped identify new strategies for prevention and treatment of AUD. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States; National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Corinde E Wiers
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ehsan Shokri-Kojori
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gene-Jack Wang
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ruben Baler
- National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
33
|
Wiers CE, Shokri-Kojori E, Wong CT, Abi-Dargham A, Demiral ŞB, Tomasi D, Wang GJ, Volkow ND. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males. Neuropsychopharmacology 2016; 41:2596-605. [PMID: 27156854 PMCID: PMC4987858 DOI: 10.1038/npp.2016.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 12/14/2022]
Abstract
The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Anissa Abi-Dargham
- Division of Translational Imaging, Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA,National Institute on Alcohol Abuse and Alcoholism, Laboratory of Neuroimaging, National Institutes of Health, 10 Center Drive, Room B2L124, Bethesda, MD 20892, USA, Tel: +1 301 451 3021 or +1 301 402 0868, Fax: +1 301 496 5568, E-mail: or
| |
Collapse
|
34
|
Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:9-42. [PMID: 27885625 DOI: 10.1007/978-3-319-45096-4_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.
Collapse
|
35
|
Wiers CE, Cabrera E, Skarda E, Volkow ND, Wang GJ. PET imaging for addiction medicine: From neural mechanisms to clinical considerations. PROGRESS IN BRAIN RESEARCH 2015; 224:175-201. [PMID: 26822359 DOI: 10.1016/bs.pbr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Positron emission tomography (PET) has been shown to be an effective imaging technique to study neurometabolic and neurochemical processes involved in addiction. That is, PET has been used to research neurobiological differences in substance abusers versus healthy controls and the pharmacokinetics and pharmacodynamics of abused drugs. Over the past years, the research scope has shifted to investigating neurobiological effects of abstinence and treatment, and their predictive power for relapse and other clinical outcomes. This chapter provides an overview of PET methodology, recent human PET studies on drug addiction and their implications for clinical treatment.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth Cabrera
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emily Skarda
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|