1
|
Duarte JM, Nguyen R, Kyprou M, Li K, Milentijevic A, Cerquetella C, Forro T, Ciocchi S. Hippocampal contextualization of social rewards in mice. Nat Commun 2024; 15:9493. [PMID: 39489746 PMCID: PMC11532361 DOI: 10.1038/s41467-024-53866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Acquiring and exploiting memories of rewarding experiences is critical for survival. The spatial environment in which a rewarding stimulus is encountered regulates memory retrieval. The ventral hippocampus (vH) has been implicated in contextual memories involving rewarding stimuli such as food, social cues or drugs. Yet, the neuronal representations and circuits underlying contextual memories of socially rewarding stimuli are poorly understood. Here, using in vivo electrophysiological recordings, in vivo one-photon calcium imaging, and optogenetics during a social reward contextual conditioning paradigm in male mice, we show that vH neurons discriminate between contexts with neutral or acquired social reward value. The formation of context-discriminating vH neurons following learning was contingent upon the presence of unconditioned stimuli. Moreover, vH neurons showed distinct contextual representations during the retrieval of social reward compared to fear contextual memories. Finally, optogenetic inhibition of locus coeruleus (LC) projections in the vH selectively disrupted social reward contextual memory by impairing vH contextual representations. Collectively, our findings reveal that the vH integrates contextual and social reward information, with memory encoding of these representations supported by input from the LC.
Collapse
Affiliation(s)
- Joana Mendes Duarte
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Robin Nguyen
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, USA
| | - Marios Kyprou
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Anastasija Milentijevic
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Carlo Cerquetella
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Rait LI, Hutchinson JB. Recall as a Window into Hippocampally Defined Events. J Cogn Neurosci 2024; 36:2386-2400. [PMID: 38820552 DOI: 10.1162/jocn_a_02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
We experience the present as a continuous stream of information, but often experience the past in parcels of unique events or episodes. Decades of research have helped to articulate how we perform this event segmentation in the moment, as well as how events and their boundaries influence what we later remember. More recently, neuroscientific research has suggested that the hippocampus plays a role at critical moments during event formation alongside its established role in enabling subsequent recall. Here, we review and explore the relationship between event processing and recall with the perspective that it can be uniquely characterized by the contributions of the hippocampus and its interactions with the rest of the brain. Specifically, we highlight a growing number of empirical studies suggesting that the hippocampus is important for processing events that have just ended, bridging the gap between the prior and current event, and influencing the contents and trajectories of recalled information. We also catalogue and summarize the multifaceted sets of findings concerning how recall is influenced by event structure. Lastly, we discuss several exciting directions for future research and how our understanding of events might be enriched by characterizing them in terms of the operations of different regions of the brain.
Collapse
|
3
|
Biane JS, Ladow MA, Fan A, Choi HS, Zhou LZ, Hassan S, Apodaca-Montano DL, Kwon AO, Bratsch-Prince JX, Kheirbek MA. Representations of stimulus meaning in the hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618280. [PMID: 39464010 PMCID: PMC11507678 DOI: 10.1101/2024.10.14.618280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The ability to discriminate and categorize the meaning of environmental stimuli and respond accordingly is essential for survival. The ventral hippocampus (vHPC) controls emotional and motivated behaviors in response to environmental cues and is hypothesized to do so in part by deciphering the positive or negative quality of these cues. Yet, what features of the environment are represented in the activity patterns of vCA1 neurons, and whether the positive or negative meaning of a stimulus is present at this stage, remains unclear. Here, using 2-photon calcium imaging across six different experimental paradigms, we consistently found that vCA1 ensembles encode the identity, sensory features, and intensity of learned and innately salient stimuli, but not their overall valence. These results offer a reappraisal of vCA1 function, wherein information corresponding to individual stimulus features and their behavioral saliency predominates, while valence-related information is attached elsewhere.
Collapse
Affiliation(s)
- Jeremy S. Biane
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Max A. Ladow
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Fan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Hye Sun Choi
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lexi Zichen Zhou
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Shazreh Hassan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L. Apodaca-Montano
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O. Kwon
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua X. Bratsch-Prince
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A. Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. Behav Brain Res 2024; 470:115071. [PMID: 38806099 DOI: 10.1016/j.bbr.2024.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Samantha L Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA
| | - Justin M Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
5
|
Liakath-Ali K, Refaee R, Südhof TC. Cartography of teneurin and latrophilin expression reveals spatiotemporal axis heterogeneity in the mouse hippocampus during development. PLoS Biol 2024; 22:e3002599. [PMID: 38713721 PMCID: PMC11101112 DOI: 10.1371/journal.pbio.3002599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 05/17/2024] [Accepted: 03/26/2024] [Indexed: 05/09/2024] Open
Abstract
Synaptic adhesion molecules (SAMs) are evolutionarily conserved proteins that play an important role in the form and function of neuronal synapses. Teneurins (Tenms) and latrophilins (Lphns) are well-known cell adhesion molecules that form a transsynaptic complex. Recent studies suggest that Tenm3 and Lphn2 (gene symbol Adgrl2) are involved in hippocampal circuit assembly via their topographical expression. However, it is not known whether other teneurins and latrophilins display similar topographically restricted expression patterns during embryonic and postnatal development. Here, we reveal the cartography of all teneurin (Tenm1-4) and latrophilin (Lphn1-3 [Adgrl1-3]) paralog expression in the mouse hippocampus across prenatal and postnatal development as monitored by large-scale single-molecule RNA in situ hybridization mapping. Our results identify a striking heterogeneity in teneurin and latrophilin expression along the spatiotemporal axis of the hippocampus. Tenm2 and Tenm4 expression levels peak at the neonatal stage when compared to Tenm1 and Tenm3, while Tenm1 expression is restricted to the postnatal pyramidal cell layer. Tenm4 expression in the dentate gyrus (DG) exhibits an opposing topographical expression pattern in the embryonic and neonatal hippocampus. Our findings were validated by analyses of multiple RNA-seq datasets at bulk, single-cell, and spatial levels. Thus, our study presents a comprehensive spatiotemporal map of Tenm and Lphn expression in the hippocampus, showcasing their diverse expression patterns across developmental stages in distinct spatial axes.
Collapse
Affiliation(s)
- Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Rebecca Refaee
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|
6
|
Oleksiak CR, Plas SL, Carriaga D, Vasudevan K, Maren S, Moscarello JM. Ventral hippocampus mediates inter-trial responding in signaled active avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585627. [PMID: 38562746 PMCID: PMC10983994 DOI: 10.1101/2024.03.18.585627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The hippocampus has a central role in regulating contextual processes in memory. We have shown that pharmacological inactivation of ventral hippocampus (VH) attenuates the context-dependence of signaled active avoidance (SAA) in rats. Here, we explore whether the VH mediates intertrial responses (ITRs), which are putative unreinforced avoidance responses that occur between trials. First, we examined whether VH inactivation would affect ITRs. Male rats underwent SAA training and subsequently received intra-VH infusions of saline or muscimol before retrieval tests in the training context. Rats that received muscimol performed significantly fewer ITRs, but equivalent avoidance responses, compared to controls. Next, we asked whether chemogenetic VH activation would increase ITR vigor. In male and female rats expressing excitatory (hM3Dq) DREADDs, systemic CNO administration produced a robust ITR increase that was not due to nonspecific locomotor effects. Then, we examined whether chemogenetic VH activation potentiated ITRs in an alternate (non-training) test context and found it did. Finally, to determine if context-US associations mediate ITRs, we exposed rats to the training context for three days after SAA training to extinguish the context. Rats submitted to context extinction did not show a reliable decrease in ITRs during a retrieval test, suggesting that context-US associations are not responsible for ITRs. Collectively, these results reveal an important role for the VH in context-dependent ITRs during SAA. Further work is required to explore the neural circuits and associative basis for these responses, which may be underlie pathological avoidance that occurs in humans after threat has passed.
Collapse
Affiliation(s)
- Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Denise Carriaga
- Department of Psychological Science, University of Texas Rio Grande Valley, TX 78539
| | - Krithika Vasudevan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77845
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77845
| |
Collapse
|
7
|
Nguyen R, Sivakumaran S, Lambe EK, Kim JC. Ventral hippocampal cholecystokinin interneurons gate contextual reward memory. iScience 2024; 27:108824. [PMID: 38303709 PMCID: PMC10831933 DOI: 10.1016/j.isci.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Associating contexts with rewards depends on hippocampal circuits, with local inhibitory interneurons positioned to play an important role in shaping activity. Here, we demonstrate that the encoding of context-reward memory requires a ventral hippocampus (vHPC) to nucleus accumbens (NAc) circuit that is gated by cholecystokinin (CCK) interneurons. In a sucrose conditioned place preference (CPP) task, optogenetically inhibiting vHPC-NAc terminals impaired the acquisition of place preference. Transsynaptic rabies tracing revealed vHPC-NAc neurons were monosynaptically innervated by CCK interneurons. Using intersectional genetic targeting of CCK interneurons, ex vivo optogenetic activation of CCK interneurons increased GABAergic transmission onto vHPC-NAc neurons, while in vivo optogenetic inhibition of CCK interneurons increased cFos in these projection neurons. Notably, CCK interneuron inhibition during sucrose CPP learning increased time spent in the sucrose-associated location, suggesting enhanced place-reward memory. Our findings reveal a previously unknown hippocampal microcircuit crucial for modulating the strength of contextual reward learning.
Collapse
Affiliation(s)
- Robin Nguyen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | | | - Evelyn K. Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of OBGYN, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Ibrahim KM, Massaly N, Yoon HJ, Sandoval R, Widman AJ, Heuermann RJ, Williams S, Post W, Pathiranage S, Lintz T, Zec A, Park A, Yu W, Kash TL, Gereau RW, Morón JA. Dorsal hippocampus to nucleus accumbens projections drive reinforcement via activation of accumbal dynorphin neurons. Nat Commun 2024; 15:750. [PMID: 38286800 PMCID: PMC10825206 DOI: 10.1038/s41467-024-44836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Hye-Jean Yoon
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Rossana Sandoval
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Allie J Widman
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Heuermann
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University Pain Center, St. Louis, MO, 63110, USA
| | - Sidney Williams
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - William Post
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Sulan Pathiranage
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Tania Lintz
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Ashley Park
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
| | - Waylin Yu
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, St. Louis, MO, 63110, USA.
- Washington University in St. Louis, School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Piquet R, Faugère A, Parkes SL. A hippocampo-cortical pathway detects changes in the validity of an action as a predictor of reward. Curr Biol 2024; 34:24-35.e4. [PMID: 38101404 DOI: 10.1016/j.cub.2023.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Much research has been dedicated to understanding the psychological and neural bases of goal-directed action, yet the relationship between context and goal-directed action is not well understood. Here, we used excitotoxic lesions, chemogenetics, and circuit-specific manipulations to demonstrate the role of the ventral hippocampus (vHPC) in contextual learning that supports sensitivity to action-outcome contingencies, a hallmark of goal-directed action. We found that chemogenetic inhibition of the ventral, but not dorsal, hippocampus attenuated sensitivity to instrumental contingency degradation. We then tested the hypothesis that this deficit was due to an inability to discern the relative validity of the action compared with the context as a predictor of reward. Using latent inhibition and Pavlovian context conditioning, we confirm that degradation of action-outcome contingencies relies on intact context-outcome learning and show that this learning is dependent on vHPC. Finally, we show that chemogenetic inhibition of vHPC terminals in the medial prefrontal cortex also impairs both instrumental contingency degradation and context-outcome learning. These results implicate a hippocampo-cortical pathway in adapting to changes in instrumental contingencies and indicate that the psychological basis of this deficit is an inability to learn the predictive value of the context. Our findings contribute to a broader understanding of the neural bases of goal-directed action and its contextual regulation.
Collapse
Affiliation(s)
- Robin Piquet
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | | | - Shauna L Parkes
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France.
| |
Collapse
|
10
|
Piquet R, Faugère A, Parkes SL. Contribution of dorsal versus ventral hippocampus to the hierarchical modulation of goal-directed actions in rats. Eur J Neurosci 2023; 58:3737-3750. [PMID: 37697949 DOI: 10.1111/ejn.16143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Adaptive behaviour often necessitates that animals learn about events in a manner that is specific to a particular context or environment. These hierarchical organisations allow the animal to decide which action is the most appropriate when faced with ambiguous or conflicting possibilities. This study examined the role of hippocampus in enabling animals to use the context to guide action selection. We used a hierarchical instrumental outcome devaluation task in which male rats learn that the context provides information about the unique action-outcome relations that are in effect. We first confirmed that rats encode and use hierarchical context-(action-outcome) relations. We then show that chemogenetic inhibition of ventral hippocampus impairs both the encoding and retrieval of these associations, while inhibition of dorsal hippocampus impairs only the retrieval. Importantly, neither dorsal nor ventral hippocampus was required for goal-directed behaviour per se as these impairments only emerged when rats were forced to use the context to identify the current action-outcome relationships. These findings are discussed with respect to the role of the hippocampus and its broader circuitry in the contextual modulation of goal-directed behaviour and the importance of hierarchical associations in flexible behaviour.
Collapse
Affiliation(s)
- Robin Piquet
- University of Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Shauna L Parkes
- University of Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
11
|
Wu WY, Yiu E, Ophir AG, Smith DM. Effects of social context manipulation on dorsal and ventral hippocampal neuronal responses. Hippocampus 2023; 33:830-843. [PMID: 36789678 PMCID: PMC11127721 DOI: 10.1002/hipo.23507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The hippocampus is critical for contextual memory and has recently been implicated in various kinds of social memory. Traditionally, studies of hippocampal context coding have manipulated elements of the background environment, such as the shape and color of the apparatus. These manipulations produce large shifts in the spatial firing patterns, a phenomenon known as remapping. These findings suggest that the hippocampus encodes and differentiates contexts by generating unique spatial firing patterns for each environment a subject encounters. However, we do not know whether the hippocampus encodes social contexts defined by the presence of particular conspecifics. We examined this by exposing rats to a series of manipulations of the social context, including the presence of familiar male, unfamiliar male and female conspecifics, in order to determine whether remapping is a plausible mechanism for encoding socially-defined contexts. Because the dorsal and ventral regions of the hippocampus are thought to play different roles in spatial and social cognition, we recorded neurons in both regions. Surprisingly, we found little evidence of remapping in response to manipulation of the social context in either the dorsal or ventral hippocampus, although we saw typical remapping in response to changing the background color. This result suggests that remapping is not the primary mechanism for encoding different social contexts. However, we found that a subset of hippocampal neurons fired selectively near the cages that contained the conspecifics, and these responses were most prevalent in the ventral hippocampus. We also found a striking increase in the spatial information content of ventral hippocampal firing patterns. These results indicate that the ventral hippocampus is sensitive to changes in the social context and neurons that respond selectively near the conspecific cages could play an important, if not fully understood role in encoding the conjunction of conspecifics, their location and the environment.
Collapse
Affiliation(s)
- Wen-Yi Wu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Eunice Yiu
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | | | - David M Smith
- Department of Psychology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Nguyen R, Koukoutselos K, Forro T, Ciocchi S. Fear extinction relies on ventral hippocampal safety codes shaped by the amygdala. SCIENCE ADVANCES 2023; 9:eadg4881. [PMID: 37256958 PMCID: PMC10413664 DOI: 10.1126/sciadv.adg4881] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Extinction memory retrieval is influenced by spatial contextual information that determines responding to conditioned stimuli (CS). However, it is poorly understood whether contextual representations are imbued with emotional values to support memory selection. Here, we performed activity-dependent engram tagging and in vivo single-unit electrophysiological recordings from the ventral hippocampus (vH) while optogenetically manipulating basolateral amygdala (BLA) inputs during the formation of cued fear extinction memory. During fear extinction when CS acquire safety properties, we found that CS-related activity in the vH reactivated during sleep consolidation and was strengthened upon memory retrieval. Moreover, fear extinction memory was facilitated when the extinction context exhibited precise coding of its affective zones. Last, these activity patterns along with the retrieval of the fear extinction memory were dependent on glutamatergic transmission from the BLA during extinction learning. Thus, fear extinction memory relies on the formation of contextual and stimulus safety representations in the vH instructed by the BLA.
Collapse
Affiliation(s)
| | | | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
13
|
Guo D, Chen G, Yang J. Effects of schema on the relationship between post-encoding brain connectivity and subsequent durable memory. Sci Rep 2023; 13:8736. [PMID: 37253795 PMCID: PMC10229577 DOI: 10.1038/s41598-023-34822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Schemas can facilitate memory consolidation. Studies have suggested that interactions between the hippocampus and the ventromedial prefrontal cortex (vmPFC) are important for schema-related memory consolidation. However, in humans, how schema accelerates the consolidation of new information and relates to durable memory remains unclear. To address these knowledge gaps, we used a human analogue of the rodent spatial schema task and resting-state fMRI to investigate how post-encoding brain networks can predict long-term memory performance in different schema conditions. After participants were trained to obtain schema-consistent or schema-inconsistent object-location associations, they learned new object-location associations. The new associations were tested after the post-encoding rest in the scanner and 24 h later outside the scanner. The Bayesian multilevel modelling was applied to analyse the post-encoding brain networks. The results showed that during the post-encoding, stronger vmPFC- anterior hippocampal connectivity was associated with durable memory in the schema-consistent condition, whereas stronger object-selective lateral occipital cortex (LOC)-ventromedial prefrontal connectivity and weaker connectivity inside the default mode network were associated with durable memory in the schema inconsistent condition. In addition, stronger LOC-anterior hippocampal connectivity was associated with memory in both schema conditions. These results shed light on how schemas reconfigure early brain networks, especially the prefrontal-hippocampal and stimuli-relevant cortical networks and influence long-term memory performance.
Collapse
Affiliation(s)
- Dingrong Guo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behaviour and Mental Health, Peking University, Beijing, 100871, People's Republic of China
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Jiongjiong Yang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behaviour and Mental Health, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
14
|
Biane JS, Ladow MA, Stefanini F, Boddu SP, Fan A, Hassan S, Dundar N, Apodaca-Montano DL, Zhou LZ, Fayner V, Woods NI, Kheirbek MA. Neural dynamics underlying associative learning in the dorsal and ventral hippocampus. Nat Neurosci 2023; 26:798-809. [PMID: 37012382 PMCID: PMC10448873 DOI: 10.1038/s41593-023-01296-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/07/2023] [Indexed: 04/05/2023]
Abstract
Animals associate cues with outcomes and update these associations as new information is presented. This requires the hippocampus, yet how hippocampal neurons track changes in cue-outcome associations remains unclear. Using two-photon calcium imaging, we tracked the same dCA1 and vCA1 neurons across days to determine how responses evolve across phases of odor-outcome learning. Initially, odors elicited robust responses in dCA1, whereas, in vCA1, odor responses primarily emerged after learning and embedded information about the paired outcome. Population activity in both regions rapidly reorganized with learning and then stabilized, storing learned odor representations for days, even after extinction or pairing with a different outcome. Additionally, we found stable, robust signals across CA1 when mice anticipated outcomes under behavioral control but not when mice anticipated an inescapable aversive outcome. These results show how the hippocampus encodes, stores and updates learned associations and illuminates the unique contributions of dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Jeremy S Biane
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Max A Ladow
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Fabio Stefanini
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA
| | - Sayi P Boddu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Fan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Shazreh Hassan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Naz Dundar
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel L Apodaca-Montano
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lexi Zichen Zhou
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Varya Fayner
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas I Woods
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Mazen A Kheirbek
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Handwerk CJ, Bland KM, Denzler CJ, Kalinowski AR, Brett CA, Swinehart BD, Rodriguez HV, Cook HN, Vinson EC, Florenz ME, Vidal GS. Simultaneous 3D cellular positioning and apical dendritic morphology of transgenic fluorescent mouse CA3 hippocampal pyramidal neurons. J Neurosci Methods 2023; 388:109823. [PMID: 36809825 PMCID: PMC10006342 DOI: 10.1016/j.jneumeth.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Pyramidal neurons throughout hippocampal CA3 are diverse in their dendritic morphology, and CA3 is not homogenous in its structure or function. Nonetheless, few structural studies have captured the precise 3D somatic position and the 3D dendritic morphology of CA3 pyramidal neurons simultaneously. NEW METHOD Here, we present a simple approach to reconstruct the apical dendritic morphology of CA3 pyramidal neurons using the transgenic fluorescent Thy1-GFP-M line. The approach simultaneously tracks the dorsoventral, tangential, and radial positions of reconstructed neurons within the hippocampus. It is especially designed for use with transgenic fluorescent mouse lines, which are commonly used in genetic studies of neuronal morphology and development. RESULTS We demonstrate how topographic and morphological data are captured from transgenic fluorescent mouse CA3 pyramidal neurons. COMPARISON WITH EXISTING METHODS There is no need to select and label CA3 pyramidal neurons with the transgenic fluorescent Thy1-GFP-M line. By taking transverse (not coronal) serial sections, we preserve fine dorsoventral, tangential, and radial somatic positioning of 3D-reconstructed neurons. Because CA2 is well defined by PCP4 immunohistochemistry, we use that technique here to to increase precision in defining tangential position along CA3. CONCLUSIONS We developed a method for simultaneously collecting precise somatic positioning as well as 3D morphological data among transgenic fluorescent mouse hippocampal pyramidal neurons. This fluorescent method should be compatible with many other transgenic fluorescent reporter lines and immunohistochemical methods, facilitating the capture of topographic and morphological data from a wide variety of genetic experiments in mouse hippocampus.
Collapse
Affiliation(s)
- Christopher J Handwerk
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Katherine M Bland
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Collin J Denzler
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Anna R Kalinowski
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Cooper A Brett
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Brian D Swinehart
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Hilda V Rodriguez
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Hollyn N Cook
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Elizabeth C Vinson
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Madison E Florenz
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - George S Vidal
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America.
| |
Collapse
|
16
|
Coughlan G, Bouffard NR, Golestani A, Thakral PP, Schacter DL, Grady C, Moscovitch M. Transcranial magnetic stimulation to the angular gyrus modulates the temporal dynamics of the hippocampus and entorhinal cortex. Cereb Cortex 2023; 33:3255-3264. [PMID: 36573400 PMCID: PMC10016030 DOI: 10.1093/cercor/bhac273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) delivered to the angular gyrus (AG) affects hippocampal function and associated behaviors (Thakral PP, Madore KP, Kalinowski SE, Schacter DL. Modulation of hippocampal brain networks produces changes in episodic simulation and divergent thinking. 2020a. Proc Natl Acad Sci U S A. 117:12729-12740). Here, we examine if functional magnetic resonance imaging (fMRI)-guided TMS disrupts the gradient organization of temporal signal properties, known as the temporal organization, in the hippocampus (HPC) and entorhinal cortex (ERC). For each of 2 TMS sessions, TMS was applied to either a control site (vertex) or to a left AG target region (N = 18; 14 females). Behavioral measures were then administered, and resting-state scans were acquired. Temporal dynamics were measured by tracking change in the fMRI signal (i) "within" single voxels over time, termed single-voxel autocorrelation and (ii) "between" different voxels over time, termed intervoxel similarity. TMS reduced AG connectivity with the hippocampal target and induced more rapid shifting of activity in single voxels between successive time points, lowering the single-voxel autocorrelation, within the left anteromedial HPC and posteromedial ERC. Intervoxel similarity was only marginally affected by TMS. Our findings suggest that hippocampal-targeted TMS disrupts the functional properties of the target site along the anterior/posterior axis. Further studies should examine the consequences of altering the temporal dynamics of these medial temporal areas to the successful processing of episodic information under task demand.
Collapse
Affiliation(s)
- Gillian Coughlan
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 15 Parkman St, Boston, MA 02114, United States
| | - Nichole R Bouffard
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, Ontario M5S 3G3, Canada
| | - Ali Golestani
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, Ontario M5S 3G3, Canada
| | - Preston P Thakral
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, United States
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, United States
| | - Daniel L Schacter
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, United States
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
17
|
Bouffard NR, Golestani A, Brunec IK, Bellana B, Park JY, Barense MD, Moscovitch M. Single voxel autocorrelation uncovers gradients of temporal dynamics in the hippocampus and entorhinal cortex during rest and navigation. Cereb Cortex 2023; 33:3265-3283. [PMID: 36573396 PMCID: PMC10388386 DOI: 10.1093/cercor/bhac480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/28/2022] Open
Abstract
During navigation, information at multiple scales needs to be integrated. Single-unit recordings in rodents suggest that gradients of temporal dynamics in the hippocampus and entorhinal cortex support this integration. In humans, gradients of representation are observed, such that granularity of information represented increases along the long axis of the hippocampus. The neural underpinnings of this gradient in humans, however, are still unknown. Current research is limited by coarse fMRI analysis techniques that obscure the activity of individual voxels, preventing investigation of how moment-to-moment changes in brain signal are organized and how they are related to behavior. Here, we measured the signal stability of single voxels over time to uncover previously unappreciated gradients of temporal dynamics in the hippocampus and entorhinal cortex. Using our novel, single voxel autocorrelation technique, we show a medial-lateral hippocampal gradient, as well as a continuous autocorrelation gradient along the anterolateral-posteromedial entorhinal extent. Importantly, we show that autocorrelation in the anterior-medial hippocampus was modulated by navigational difficulty, providing the first evidence that changes in signal stability in single voxels are relevant for behavior. This work opens the door for future research on how temporal gradients within these structures support the integration of information for goal-directed behavior.
Collapse
Affiliation(s)
- Nichole R Bouffard
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Ali Golestani
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Iva K Brunec
- Department of Psychology, Temple University, 1701 North 13th Street, Philadelphia, PA 19122, USA
- Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104, USA
| | - Buddhika Bellana
- Department of Psychology, Glendon College—York University, 2275 Bayview Ave, North York, ON M4N 3M6, Canada
| | - Jun Young Park
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Department of Statistical Sciences, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Sidney Smith Hall, 100 St. George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, 3650 Baycrest Street, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
18
|
Chen YH, Jin SY, Yang JM, Gao TM. The Memory Orchestra: Contribution of Astrocytes. Neurosci Bull 2023; 39:409-424. [PMID: 36738435 PMCID: PMC10043126 DOI: 10.1007/s12264-023-01024-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
For decades, memory research has centered on the role of neurons, which do not function in isolation. However, astrocytes play important roles in regulating neuronal recruitment and function at the local and network levels, forming the basis for information processing as well as memory formation and storage. In this review, we discuss the role of astrocytes in memory functions and their cellular underpinnings at multiple time points. We summarize important breakthroughs and controversies in the field as well as potential avenues to further illuminate the role of astrocytes in memory processes.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Pak S, Jang D, Lee J, Choi G, Shin H, Yang S, Yang S. Hippocampal interlamellar cell-cell connectome that counts. J Cell Physiol 2022; 237:4037-4048. [PMID: 36063532 PMCID: PMC9826151 DOI: 10.1002/jcp.30868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
The hippocampus is regarded as a cognition hub, particularly for learning and memory. Previously, neuronal mechanisms underlying various cognitive functions are delineated with the lamellar hippocampal circuitry, dentate gyrus-CA3 or CA2-CA1, within the transverse plane. More recently, interlamellar (often referred to as longitudinal) projections have received intensive attention to help understand signal convergence and divergence in cognition and behavior. Signal propagation along the longitudinal axis is evidenced by axonal arborization patterns and synaptic responses to electro- and photo-stimulation, further demonstrating that information flow is more enriched in the longitudinal plane than the transverse plane. Here, we review the significance of longitudinal connections for cognition, discuss a putative circuit mechanism of place coding, and suggest the reconceptualization of the hippocampal circuitry.
Collapse
Affiliation(s)
- Sojeong Pak
- Department of NeuroscienceCity University of Hong KongKowloonHong Kong SAR
| | - Doohyeong Jang
- Department of Nano‐BioengineeringIncheon National UniversityIncheonSouth Korea
| | - Jinho Lee
- Department of Nano‐BioengineeringIncheon National UniversityIncheonSouth Korea
| | - Gona Choi
- Department of NeuroscienceCity University of Hong KongKowloonHong Kong SAR
| | - Hongseong Shin
- Department of Nano‐BioengineeringIncheon National UniversityIncheonSouth Korea
| | - Sungchil Yang
- Department of NeuroscienceCity University of Hong KongKowloonHong Kong SAR
| | - Sunggu Yang
- Department of Nano‐BioengineeringIncheon National UniversityIncheonSouth Korea
| |
Collapse
|
20
|
Leschik J, Gentile A, Cicek C, Péron S, Tevosian M, Beer A, Radyushkin K, Bludau A, Ebner K, Neumann I, Singewald N, Berninger B, Lessmann V, Lutz B. Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Prog Neurobiol 2022; 217:102333. [PMID: 35872219 DOI: 10.1016/j.pneurobio.2022.102333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis. To elucidate the interplay of both systems at cellular and behavioral levels, we generated a transgenic mouse line that overexpresses BDNF in serotonergic neurons in an inducible manner. Besides displaying enhanced hippocampus-dependent contextual learning, transgenic mice were less affected by chronic social defeat stress (CSDS) compared to wild-type animals. In parallel, we observed enhanced serotonergic axonal sprouting in the dentate gyrus and increased neural stem/progenitor cell proliferation, which was uniformly distributed along the dorsoventral axis of the hippocampus. In the forced swim test, BDNF-overexpressing mice behaved similarly as wild-type mice treated with the antidepressant fluoxetine. Our data suggest that BDNF released from serotonergic projections exerts this effect partly by enhancing adult neurogenesis. Furthermore, independently of the genotype, enhanced neurogenesis positively correlated with the social interaction time after the CSDS, a measure for stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany.
| | - Antonietta Gentile
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Department of Systems Medicine, Tor Vergata University, Rome 00183, Italy
| | - Cigdem Cicek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, 06100 Ankara, Turkey; Faculty of Medicine, Department of Medical Biochemistry, Yuksek Ihtisas University, 06520 Ankara, Turkey
| | - Sophie Péron
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE11UL, United Kingdom
| | - Margaryta Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | - Annika Beer
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | | | - Anna Bludau
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck 6020, Austria
| | - Inga Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck 6020, Austria
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE11UL, United Kingdom; Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE11UL, United Kingdom
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| |
Collapse
|
21
|
Persson BM, Ambrozova V, Duncan S, Wood ER, O’Connor AR, Ainge JA. Lateral entorhinal cortex lesions impair odor-context associative memory in male rats. J Neurosci Res 2022; 100:1030-1046. [PMID: 35187710 PMCID: PMC9302644 DOI: 10.1002/jnr.25027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/14/2023]
Abstract
Lateral entorhinal cortex (LEC) has been hypothesized to process nonspatial, item information that is combined with spatial information from medial entorhinal cortex to form episodic memories within the hippocampus. Recent studies, however, have demonstrated that LEC has a role in integrating features of episodic memory prior to the hippocampus. While the precise role of LEC is still unclear, anatomical studies show that LEC is ideally placed to be a hub integrating multisensory information. The current study tests whether the role of LEC in integrating information extends to long-term multimodal item-context associations. In Experiment 1, male rats were trained on a context-dependent odor discrimination task, where two different contexts served as the cue to the correct odor. Rats were pretrained on the task and then received either bilateral excitotoxic LEC or sham lesions. Following surgery, rats were tested on the previously learned odor-context associations. Control rats showed good memory for the previously learned association but rats with LEC lesions showed significantly impaired performance relative to both their own presurgery performance and to control rats. Experiment 2 went on to test whether impairments in Experiment 1 were the result of LEC lesions impairing either odor or context memory retention alone. Male rats were trained on simple odor and context discrimination tasks that did not require integration of features to solve. Following surgery, both LEC and control rats showed good memory for previously learned odors and contexts. These data show that LEC is critical for long-term odor-context associative memory.
Collapse
Affiliation(s)
- Bjorn M. Persson
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | | | - Stephen Duncan
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | - Emma R. Wood
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Akira R. O’Connor
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| | - James A. Ainge
- School of Psychology & NeuroscienceUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
22
|
He Q, Starnes J, Brown TI. Environmental overlap influences goal-oriented coding of spatial sequences differently along the long-axis of hippocampus. Hippocampus 2022; 32:419-435. [PMID: 35312204 DOI: 10.1002/hipo.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/09/2022]
Abstract
When navigating our world we often first plan or retrieve a route to our goal, avoiding alternative paths to other destinations. Inspired by computational and animal models, we have recently demonstrated evidence that the human hippocampus supports prospective spatial coding, mediated by interactions with the prefrontal cortex. But the relationship between such signals and the need to discriminate possible routes based on their goal remains unclear. In the current study, we combined human fMRI, multi-voxel pattern analysis, and an established paradigm for contrasting memories of nonoverlapping routes with those of routes that cross paths and must be disambiguated. By classifying goal-oriented representations at the initiation of a navigational route, we demonstrate that environmental overlap modulates goal-oriented representations in the hippocampus. This modulation manifest through representational shifts from posterior to anterior components of the right hippocampus. Moreover, declines in goal-oriented decoding due to overlapping memories were predicted by the strength of the alternative memory, suggesting co-expression and competition between alternatives in the hippocampus during prospective thought. Moreover, exploratory whole-brain analyses revealed that a region of frontopolar cortex, which we have previously tied to prospective route planning, represented goal-states in new overlapping routes. Together, our findings provide insight into the influences of contextual overlap on the long-axis of the hippocampus and a broader memory and planning network that we have long-associated with such navigation tasks.
Collapse
Affiliation(s)
- Qiliang He
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jon Starnes
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thackery I Brown
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Eom K, Lee HR, Hyun JH, An H, Lee YS, Ho WK, Lee SH. Gradual decorrelation of CA3 ensembles associated with contextual discrimination learning is impaired by Kv1.2 insufficiency. Hippocampus 2022; 32:193-216. [PMID: 34964210 DOI: 10.1002/hipo.23400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
The associative network of hippocampal CA3 is thought to contribute to rapid formation of contextual memory from one-trial learning, but the network mechanisms underlying decorrelation of neuronal ensembles in CA3 is largely unknown. Kv1.2 expressions in rodent CA3 pyramidal cells (CA3-PCs) are polarized to distal apical dendrites, and its downregulation specifically enhances dendritic responses to perforant pathway (PP) synaptic inputs. We found that haploinsufficiency of Kv1.2 (Kcna2+/-) in CA3-PCs, but not Kv1.1 (Kcna1+/-), lowers the threshold for long-term potentiation (LTP) at PP-CA3 synapses, and that the Kcna2+/- mice are normal in discrimination of distinct contexts but impaired in discrimination of similar but slightly distinct contexts. We further examined the neuronal ensembles in CA3 and dentate gyrus (DG), which represent the two similar contexts using in situ hybridization of immediate early genes, Homer1a and Arc. The size and overlap of CA3 ensembles activated by the first visit to the similar contexts were not different between wild type and Kcna2+/- mice, but these ensemble parameters diverged over training days between genotypes, suggesting that abnormal plastic changes at PP-CA3 synapses of Kcna2+/- mice is responsible for the impaired pattern separation. Unlike CA3, DG ensembles were not different between two genotype mice. The DG ensembles were already separated on the first day, and their overlap did not further evolve. Eventually, the Kcna2+/- mice exhibited larger CA3 ensemble size and overlap upon retrieval of two contexts, compared to wild type or Kcna1+/- mice. These results suggest that sparse LTP at PP-CA3 synapse probably supervised by mossy fiber inputs is essential for gradual decorrelation of CA3 ensembles.
Collapse
Affiliation(s)
- Kisang Eom
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Ro Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Hyun
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunhoe An
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yong-Seok Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
24
|
Ramos JMJ, Morón I. Ventral hippocampus lesions and allocentric spatial memory in the radial maze: Anterograde and retrograde deficits. Behav Brain Res 2022; 417:113620. [PMID: 34624425 DOI: 10.1016/j.bbr.2021.113620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Although the dorsal hippocampus (DHip) has been clearly implicated in spatial learning and memory, there is currently debate as to whether the ventral hippocampus (VHip) is also necessary in allocentric-based navigation tasks. To differentiate between these two subregions of the hippocampal dorsoventral axis, we examined the effect of neurotoxic lesions to the DHip and VHip in different learning situations, using a four-arm plus-shaped maze. In experiment 1 a spatial reference memory task was used, with results showing an acquisition deficit in DHip-lesioned rats but perfect learning in VHip-lesioned rats. However, in experiment 2 an acquisition deficit was found in VHip-lesioned rats using a doubly marked training protocol. In this case the position of the goal arm during training was marked simultaneously by the extramaze constellation of stimuli around the maze and an intramaze cue. The main results indicated that DHip and VHip groups presented significantly more allocentric errors in the probe test than the control rats. In experiments 3 and 4, animals with their brains still intact learned, respectively, a spatial reference memory task or a purely cue-guided navigation task, and DHip and VHip lesions were made 2-3 days after reaching learning criterion. Results indicated a profound retrograde deficit in both lesioned groups but only with regard to allocentric information. So, depending on the training protocol used, our results point to increased integration and cooperation throughout the hippocampal dorsoventral axis when allocentric learning and memory is involved. These data support the existence of a functional continuum from the dorsal to the ventral hippocampus.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| | - Ignacio Morón
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| |
Collapse
|
25
|
Smith DM, Yang YY, Subramanian DL, Miller AMP, Bulkin DA, Law LM. The limbic memory circuit and the neural basis of contextual memory. Neurobiol Learn Mem 2022; 187:107557. [PMID: 34808337 PMCID: PMC8755583 DOI: 10.1016/j.nlm.2021.107557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
The hippocampus, retrosplenial cortex and anterior thalamus are key components of a neural circuit known to be involved in a variety of memory functions, including spatial, contextual and episodic memory. In this review, we focus on the role of this circuit in contextual memory processes. The background environment, or context, is a powerful cue for memory retrieval, and neural representations of the context provide a mechanism for efficiently retrieving relevant memories while avoiding interference from memories that belong to other contexts. Data from experimental lesions and neural manipulation techniques indicate that each of these regions is critical for contextual memory. Neurophysiological evidence from the hippocampus and retrosplenial cortex suggest that contextual information is represented within this circuit by population-level neural firing patterns that reliably differentiate each context a subject encounters. These findings indicate that encoding contextual information to support context-dependent memory retrieval is a key function of this circuit.
Collapse
Affiliation(s)
- David M Smith
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Yan Yu Yang
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | | | - Adam M P Miller
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - David A Bulkin
- Department of Psychology, Cornell University, Ithaca, NY, United States
| | - L Matthew Law
- Department of Psychology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Yousuf M, Packard PA, Fuentemilla L, Bunzeck N. Functional coupling between CA3 and laterobasal amygdala supports schema dependent memory formation. Neuroimage 2021; 244:118563. [PMID: 34537382 DOI: 10.1016/j.neuroimage.2021.118563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/01/2023] Open
Abstract
The medial temporal lobe drives semantic congruence dependent memory formation. However, the exact roles of hippocampal subfields and surrounding brain regions remain unclear. Here, we used an established paradigm and high-resolution functional magnetic resonance imaging of the medial temporal lobe together with cytoarchitectonic probability estimates in healthy humans. Behaviorally, robust congruence effects emerged in young and older adults, indicating that schema dependent learning is unimpaired during healthy aging. Within the medial temporal lobe, semantic congruence was associated with hemodynamic activity in the subiculum, CA1, CA3 and dentate gyrus, as well as the entorhinal cortex and laterobasal amygdala. Importantly, a subsequent memory analysis showed increased activity for later remembered vs. later forgotten congruent items specifically within CA3, and this subfield showed enhanced functional connectivity to the laterobasal amygdala. As such, our findings extend current models on schema dependent learning by pinpointing the functional properties of subregions within the medial temporal lobe.
Collapse
Affiliation(s)
- Mushfa Yousuf
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany
| | - Pau A Packard
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, Barcelona 08005, Spain
| | - Lluís Fuentemilla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
| |
Collapse
|
27
|
Mızrak E, Bouffard NR, Libby LA, Boorman ED, Ranganath C. The hippocampus and orbitofrontal cortex jointly represent task structure during memory-guided decision making. Cell Rep 2021; 37:110065. [PMID: 34852232 PMCID: PMC8686644 DOI: 10.1016/j.celrep.2021.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 07/23/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
The hippocampus, well known for its role in episodic memory, might also be an important brain region for extracting structure from our experiences in order to guide future decisions. Recent evidence in rodents suggests that the hippocampus supports decision making by representing task structure in cooperation with the orbitofrontal cortex (OFC). Here, we examine how the human hippocampus and OFC represent task structure during an associative learning task that required learning of both context-determined and context-invariant probabilistic associations. We find that after learning, hippocampal and lateral OFC representations differentiated between context-determined and context-invariant task structures. The degree of this differentiation within the hippocampus and lateral OFC is highly correlated. These results advance our understanding of the hippocampus and suggest that the hippocampus and OFC support goal-directed behavior by representing information that guides the selection of appropriate decision strategies. Mizrak et al. use fMRI to demonstrate that hippocampus and orbitofrontal cortex generalize across decisions that share the same task sub-structure compared with different task sub-structures. Results show that the hippocampus, in coordination with OFC, supports decision making by extracting structure from past experiences.
Collapse
Affiliation(s)
- Eda Mızrak
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of Zürich, Zürich 8006, Switzerland.
| | - Nichole R Bouffard
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Laura A Libby
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Erie D Boorman
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95618, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
28
|
Hippocampal neurogenesis promotes preference for future rewards. Mol Psychiatry 2021; 26:6317-6335. [PMID: 34021262 DOI: 10.1038/s41380-021-01165-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023]
Abstract
Adult hippocampal neurogenesis has been implicated in a number of disorders where reward processing is disrupted but whether new neurons regulate specific aspects of reward-related decision making remains unclear. Given the role of the hippocampus in future-oriented cognition, here we tested whether adult neurogenesis regulates preference for future, advantageous rewards in a delay discounting paradigm for rats. Indeed, blocking neurogenesis caused a profound aversion for delayed rewards, and biased choice behavior toward immediately available, but smaller, rewards. Consistent with a role for the ventral hippocampus in impulsive decision making and future-thinking, neurogenesis-deficient animals displayed reduced activity in the ventral hippocampus. In intact animals, delay-based decision making restructured dendrites and spines in adult-born neurons and specifically activated adult-born neurons in the ventral dentate gyrus, relative to dorsal activation in rats that chose between immediately-available rewards. Putative developmentally-born cells, located in the superficial granule cell layer, did not display task-specific activity. These findings identify a novel and specific role for neurogenesis in decisions about future rewards, thereby implicating newborn neurons in disorders where short-sighted gains are preferred at the expense of long-term health.
Collapse
|
29
|
Robinson JC, Brandon MP. Skipping ahead: A circuit for representing the past, present, and future. eLife 2021; 10:e68795. [PMID: 34647521 PMCID: PMC8516414 DOI: 10.7554/elife.68795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 01/02/2023] Open
Abstract
Envisioning the future is intuitively linked to our ability to remember the past. Within the memory system, substantial work has demonstrated the involvement of the prefrontal cortex and the hippocampus in representing the past and present. Recent data shows that both the prefrontal cortex and the hippocampus encode future trajectories, which are segregated in time by alternating cycles of the theta rhythm. Here, we discuss how information is temporally organized by these brain regions supported by the medial septum, nucleus reuniens, and parahippocampal regions. Finally, we highlight a brain circuit that we predict is essential for the temporal segregation of future scenarios.
Collapse
Affiliation(s)
- Jennifer C Robinson
- Department of Psychological and Brain Sciences, Rajen Kilachand Center for Integrated Life Sciences and Engineering, Boston UniversityBostonUnited States
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill UniversityMontrealCanada
| |
Collapse
|
30
|
Liu YY, Liu L, Zhu L, Yang X, Tong K, You Y, Yang L, Gao Y, Li X, Chen DS, Hao JR, Sun N, Gao C. dCA1-NAc shell glutamatergic projection mediates context-induced memory recall of morphine. Pharmacol Res 2021; 172:105857. [PMID: 34461223 DOI: 10.1016/j.phrs.2021.105857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Opioid relapse is generally caused by the recurrence of context-induced memory reinstatement of reward. However, the internal mechanisms that facilitate and modify these processes remain unknown. One of the key regions of the reward is the nucleus accumbens (NAc) which receives glutamatergic projections from the dorsal hippocampus CA1 (dCA1). It is not yet known whether the dCA1 projection to the NAc shell regulates the context-induced memory recall of morphine. Here, we used a common model of addiction-related behavior conditioned place preference paradigm, combined with immunofluorescence, chemogenetics, optogenetics, and electrophysiology techniques to characterize the projection of the dCA1 to the NAc shell, in context-induced relapse memory to morphine. We found that glutamatergic neurons of the dCA1 and gamma aminobutyric acidergic (GABA) neurons of the NAc shell are the key brain areas and neurons involved in the context-induced reinstatement of morphine memory. The dCA1-NAc shell glutamatergic input pathway and the excitatory synaptic transmission of the dCA1-NAc shell were enhanced via the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) when mice were re-exposed to environmental cues previously associated with drug intake. Furthermore, chemogenetic and optogenetic inactivation of the dCA1-NAc shell pathway decreased the recurrence of long- and short-term morphine-paired context memory in mice. These results provided evidence that the dCA1-NAc shell glutamatergic projections mediated the context-induced memory recall of morphine.
Collapse
Affiliation(s)
- Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lei Zhu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kun Tong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yin Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu Li
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Di-Shi Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
31
|
Cowan ET, Liu AA, Henin S, Kothare S, Devinsky O, Davachi L. Time-dependent transformations of memory representations differ along the long axis of the hippocampus. Learn Mem 2021; 28:329-340. [PMID: 34400534 PMCID: PMC8372564 DOI: 10.1101/lm.053438.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Research has shown that sleep is beneficial for the long-term retention of memories. According to theories of memory consolidation, memories are gradually reorganized, becoming supported by widespread, distributed cortical networks, particularly during postencoding periods of sleep. However, the effects of sleep on the organization of memories in the hippocampus itself remains less clear. In a 3-d study, participants encoded separate lists of word-image pairs differing in their opportunity for sleep-dependent consolidation. Pairs were initially studied either before or after an overnight sleep period, and were then restudied in a functional magnetic resonance imaging (fMRI) scan session. We used multivariate pattern similarity analyses to examine fine-grained effects of consolidation on memory representations in the hippocampus. We provide evidence for a dissociation along the long axis of the hippocampus that emerges with consolidation, such that representational patterns for object-word memories initially formed prior to sleep become differentiated in anterior hippocampus and more similar, or overlapping, in posterior hippocampus. Differentiation in anterior hippocampal representations correlated with subsequent behavioral performance. Furthermore, representational overlap in posterior hippocampus correlated with the duration of intervening slow wave sleep. Together, these results demonstrate that sleep-dependent consolidation promotes the reorganization of memory traces along the long axis of the hippocampus.
Collapse
Affiliation(s)
- Emily T Cowan
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Anli A Liu
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Simon Henin
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Sanjeev Kothare
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University, New York, New York 10016, USA
- Department of Neurology, New York University Langone Health, New York, New York 10017, USA
| | - Lila Davachi
- Psychology Department, Columbia University, New York, New York 10027, USA
- Nathan Kline Institute, Orangeburg, New York 10962, USA
| |
Collapse
|
32
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
33
|
Abstract
There are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework. On the other hand, most other theories see the function of the hippocampal formation as broader, treating all types of information as equivalent and concentrating on the processes carried out irrespective of the specific material being represented, stored, and manipulated. One crucial difference, therefore, is the extent to which theories see hippocampal pyramidal cells as representing nonspatial information independently of a spatial framework. Studies have reported the existence of single hippocampal unit responses to nonspatial stimuli, both to simple sensory inputs as well as to more complex stimuli such as objects, conspecifics, rewards, and time, and these findings been interpreted as evidence in favor of a broader hippocampal function. Alternatively, these nonspatial responses might actually be feature-in-place signals where the spatial nature of the response has been masked by the fact that the objects or features were only presented in one location or one spatial context. In this article, we argue that when tested in multiple locations, the hippocampal response to nonspatial stimuli is almost invariably dependent on the animal's location. Looked at collectively, the data provide strong support for the cognitive map theory.
Collapse
Affiliation(s)
- John O'Keefe
- Sainsbury Wellcome Centre and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Differential encoding of place value between the dorsal and intermediate hippocampus. Curr Biol 2021; 31:3053-3072.e5. [DOI: 10.1016/j.cub.2021.04.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
|
35
|
DiFazio LE, Reis DS, Manns JR. Optogenetic stimulation of the basolateral amygdala accelerates acquisition of object-context associations. Behav Neurosci 2021; 135:354-358. [PMID: 34264688 DOI: 10.1037/bne0000428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The basolateral complex of the amygdala (BLA) is capable of modulating memory and is thought to do so via projections to regions such as the hippocampus. The present study used optogenetic stimulation of glutamatergic projection neurons in the BLA as rats learned object-context associations during a well-studied hippocampus-dependent memory task. Relative to a control condition, optogenetic BLA stimulation resulted in the accelerated acquisition of when stimulation was delivered following correct choices but not when it was delivered during the intertrial interval. These results extend prior examples of amygdala-mediated memory enhancement to a canonical example of hippocampus-dependent memory and provide an opportunity for future dissection of amygdalar modulation of object-context associative memory. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
36
|
Brown TI, He Q, Aselcioglu I, Stern CE. Evidence for a gradient within the medial temporal lobes for flexible retrieval under hierarchical task rules. Hippocampus 2021; 31:1003-1019. [PMID: 34038011 DOI: 10.1002/hipo.23365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 11/07/2022]
Abstract
A fundamental question in memory research is how the hippocampus processes contextual cues to retrieve distinct mnemonic associations. Prior research has emphasized the importance of hippocampal-prefrontal interactions for context-dependent memory. Our fMRI study examined the human medial temporal lobes (MTL) and their prefrontal interactions when retrieving memories associated with hierarchically organized task contexts. Participants learned virtual object-location associations governed by subordinate and superordinate task rules, which could be independently cued to change. On each fMRI trial, participants retrieved the correct object for convergent rule and location contextual information. Results demonstrated that hippocampal activity and hippocampal-prefrontal functional interconnectivity distinguished retrieval under different levels of hierarchically organized task rules. In explicit contrast to the hippocampal tail, anterior (body and head) regions were recruited specifically for superordinate changes in the contextual hierarchy. The hippocampal body also differed in its functional connectivity with the prefrontal cortex for superordinate versus subordinate changes. Our findings demonstrate a gradient in MTL for associative retrieval under changing task rules, and advance understanding of hippocampal-prefrontal interactions that support flexible contextual memory.
Collapse
Affiliation(s)
- Thackery I Brown
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Qiliang He
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Irem Aselcioglu
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, and Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| | - Chantal E Stern
- Department of Psychological and Brain Sciences, Center for Systems Neuroscience, and Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
37
|
Graham J, D’Ambra AF, Jung SJ, Teratani-Ota Y, Vishwakarma N, Venkatesh R, Parigi A, Antzoulatos EG, Fioravante D, Wiltgen BJ. High-Frequency Stimulation of Ventral CA1 Neurons Reduces Amygdala Activity and Inhibits Fear. Front Behav Neurosci 2021; 15:595049. [PMID: 33767614 PMCID: PMC7985556 DOI: 10.3389/fnbeh.2021.595049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
The hippocampus can be divided into distinct segments that make unique contributions to learning and memory. The dorsal segment supports cognitive processes like spatial learning and navigation while the ventral hippocampus regulates emotional behaviors related to fear, anxiety and reward. In the current study, we determined how pyramidal cells in ventral CA1 respond to spatial cues and aversive stimulation during a context fear conditioning task. We also examined the effects of high and low frequency stimulation of these neurons on defensive behavior. Similar to previous work in the dorsal hippocampus, we found that cells in ventral CA1 expressed high-levels of c-Fos in response to a novel spatial environment. Surprisingly, however, the number of activated neurons did not increase when the environment was paired with footshock. This was true even in the subpopulation of ventral CA1 pyramidal cells that send direct projections to the amygdala. When these cells were stimulated at high-frequencies (20 Hz) we observed feedforward inhibition of basal amygdala neurons and impaired expression of context fear. In contrast, low-frequency stimulation (4 Hz) did not inhibit principal cells in the basal amygdala and produced an increase in fear generalization. Similar results have been reported in dorsal CA1. Therefore, despite clear differences between the dorsal and ventral hippocampus, CA1 neurons in each segment appear to make similar contributions to context fear conditioning.
Collapse
Affiliation(s)
- Jalina Graham
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Alexa F. D’Ambra
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Se Jung Jung
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Yusuke Teratani-Ota
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Nina Vishwakarma
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Rasika Venkatesh
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Abhijna Parigi
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Evan G. Antzoulatos
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Diasynou Fioravante
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Brian J. Wiltgen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Department of Psychology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
38
|
Trompoukis G, Leontiadis LJ, Rigas P, Papatheodoropoulos C. Scaling of Network Excitability and Inhibition may Contribute to the Septotemporal Differentiation of Sharp Waves-Ripples in Rat Hippocampus In Vitro. Neuroscience 2021; 458:11-30. [PMID: 33465412 DOI: 10.1016/j.neuroscience.2020.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/21/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
The functional organization of the hippocampus along its longitudinal (septotemporal or dorsoventral) axis is conspicuously heterogeneous. This functional diversification includes the activity of sharp wave and ripples (SPW-Rs), a complex intrinsic network pattern involved in memory consolidation. In this study, using transverse slices from the ventral and the dorsal rat hippocampus and recordings of CA1 field potentials we studied the development of SPW-Rs and possible changes in local network excitability and inhibition, during in vitro maintenance of the hippocampal tissue. We found that SPW-Rs develop gradually in terms of magnitude and rate of occurrence in the ventral hippocampus. On the contrary, neither the magnitude nor the rate of occurrence significantly changed in dorsal hippocampal slices during their in vitro maintenance. The development of SPW-Rs was accompanied by an increase in local network excitability more in the ventral than in the dorsal hippocampus, and an increase in local network inhibition in the ventral hippocampus only. Furthermore, the amplitude of SPWs positively correlated with the level of maximum excitation of the local neuronal network in both segments of the hippocampus, and the local network excitability and inhibition in the ventral but not the dorsal hippocampus. Blockade of α5 subunit-containing GABAA receptor by L-655,708 significantly reduced the rate of occurrence of SPWs and enhanced the probability of their generation in the form of clusters in the ventral hippocampus without affecting activity in the dorsal hippocampus. The present evidence suggests that a dynamic upregulation of excitation and inhibition in the local neuronal network may significantly contribute to the generation of SPW-Rs, particularly in the ventral hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Leonidas J Leontiadis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Pavlos Rigas
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
39
|
Should context hold a special place in hippocampal memory? PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Spoelma MJ, Boakes RA. Sugar consumption and behavioural inhibition in the rat. Appetite 2020; 159:105043. [PMID: 33227383 DOI: 10.1016/j.appet.2020.105043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/18/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The metabolic effects of sugary drinks have been extensively studied, whereas the effects on psychological processes have received relatively limited attention. Several studies have found that high-sugar diets can produce impaired performance by rats on tests assessing spatial learning and memory. In contrast, despite claims that weakened inhibitory control underlies many sugar-induced deficits, evidence supporting this proposal has been limited. The aim of the present study was to assess the impact of high-sugar diets on response inhibition, as measured by rats' performance on a differential reinforcement of low rates schedule (DRL) in Experiments 1 and 2 and on a Pavlovian discrimination reversal task in Experiment 3. In all three experiments a 30-day diet stage, in which Sugar groups were given unrestricted access to 10% sucrose solution and Control groups had access to water only, was followed by behavioural tests. In Experiment 1 the Sugar group performed poorly on a spatial memory task, but no difference was detected between the performances of the two groups in the DRL test. In Experiment 2 longer DRL training was given and post-diet performance was assessed both before and after access to sugar was withdrawn. Null results were obtained under both conditions. In Experiment 3 rats' performance on a discrimination learned prior to the diet intervention was not affected by the high-sugar diet, but neither was performance once the discrimination was reversed. The implications of these results for understanding of sugar-induced psychological deficits are discussed.
Collapse
|
41
|
Ekstrom AD. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190634. [PMID: 33190605 DOI: 10.1098/rstb.2019.0634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is the dominant tool in cognitive neuroscience although its relation to underlying neural activity, particularly in the human brain, remains largely unknown. A major research goal, therefore, has been to uncover a 'Rosetta Stone' providing direct translation between the blood oxygen level-dependent (BOLD) signal, the local field potential and single-neuron activity. Here, I evaluate the proposal that BOLD signal changes equate to changes in gamma-band activity, which in turn may partially relate to the spiking activity of neurons. While there is some support for this idea in sensory cortices, findings in deeper brain structures like the hippocampus instead suggest both regional and frequency-wise differences. Relatedly, I consider four important factors in linking fMRI to neural activity: interpretation of correlations between these signals, regional variability in local vasculature, distributed neural coding schemes and varying fMRI signal quality. Novel analytic fMRI techniques, such as multivariate pattern analysis (MVPA), employ the distributed patterns of voxels across a brain region to make inferences about information content rather than whether a small number of voxels go up or down relative to baseline in response to a stimulus. Although unlikely to provide a Rosetta Stone, MVPA, therefore, may represent one possible means forward for better linking BOLD signal changes to the information coded by underlying neural activity. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, 1503 E. University Boulevard, Tucson, AZ 85721, USA.,Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Boulevard, Tucson, AZ 85721, USA
| |
Collapse
|
42
|
Dombrovski AY, Luna B, Hallquist MN. Differential reinforcement encoding along the hippocampal long axis helps resolve the explore-exploit dilemma. Nat Commun 2020; 11:5407. [PMID: 33106508 PMCID: PMC7589536 DOI: 10.1038/s41467-020-18864-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
When making decisions, should one exploit known good options or explore potentially better alternatives? Exploration of spatially unstructured options depends on the neocortex, striatum, and amygdala. In natural environments, however, better options often cluster together, forming structured value distributions. The hippocampus binds reward information into allocentric cognitive maps to support navigation and foraging in such spaces. Here we report that human posterior hippocampus (PH) invigorates exploration while anterior hippocampus (AH) supports the transition to exploitation on a reinforcement learning task with a spatially structured reward function. These dynamics depend on differential reinforcement representations in the PH and AH. Whereas local reward prediction error signals are early and phasic in the PH tail, global value maximum signals are delayed and sustained in the AH body. AH compresses reinforcement information across episodes, updating the location and prominence of the value maximum and displaying goal cell-like ramping activity when navigating toward it.
Collapse
Affiliation(s)
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Michael N Hallquist
- Department of Psychology, Penn State University, University Park, PA, 16801, USA.
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
| |
Collapse
|
43
|
Lothmann K, Deitersen J, Zilles K, Amunts K, Herold C. New boundaries and dissociation of the mouse hippocampus along the dorsal-ventral axis based on glutamatergic, GABAergic and catecholaminergic receptor densities. Hippocampus 2020; 31:56-78. [PMID: 32986281 DOI: 10.1002/hipo.23262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 02/01/2023]
Abstract
In rodents, gene-expression, neuronal tuning, connectivity and neurogenesis studies have postulated that the dorsal, the intermediate and the ventral hippocampal formation (HF) are distinct entities. These findings are underpinned by behavioral studies showing a dissociable role of dorsal and ventral HF in learning, memory, stress and emotional processing. However, up to now, the molecular basis of such differences in relation to discrete boundaries is largely unknown. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA, kainate and mGluR2/3 , GABAergic GABAA (including benzodiazepine binding sites), GABAB , dopaminergic D1/5 and noradrenergic α1 and α2 receptors as key modulators for signal transmission in hippocampal functions, using quantitative in vitro receptor autoradiography along the dorsal-ventral axis of the mouse HF. Beside general different receptor profiles of the dentate gyrus (DG) and Cornu Ammonis fields (CA1, CA2, CA3, CA4/hilus), we detected substantial differences between dorsal, intermediate and ventral subdivisions and individual layers for all investigated receptor types, except GABAB . For example, striking higher densities of α2 receptors were detected in the ventral DG, while the dorsal DG possesses higher numbers of kainate, NMDA, GABAA and D1/5 receptors. CA1 dorsal and intermediate subdivisions showed higher AMPA, NMDA, mGluR2/3 , GABAA , D1/5 receptors, while kainate receptors are higher expressed in ventral CA1, and noradrenergic α1 and α2 receptors in the intermediate region of CA1. CA2 dorsal was distinguished by higher kainate, α1 and α2 receptors in the intermediate region, while CA3 showed a more complex dissociation. Our findings resulted not only in a clear segmentation of the mouse hippocampus along the dorsal-ventral axis, but also provides insights into the neurochemical basis and likely associated physiological processes in hippocampal functions. Therein, the presented data has a high impact for future studies modeling and investigating dorsal, intermediate and ventral hippocampal dysfunction in relation to neurodegenerative diseases or psychiatric disorders.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jana Deitersen
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, 52425, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute for Brain Research, Medical Faculty, University Clinic Düsseldof, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
44
|
The Hippocampus Maps Concept Space, Not Feature Space. J Neurosci 2020; 40:7318-7325. [PMID: 32826311 DOI: 10.1523/jneurosci.0494-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023] Open
Abstract
The hippocampal formation encodes maps of space and a key question in neuroscience is whether its spatial coding principles also provide a universal metric for the organization of nonspatial, conceptual information. Previous work demonstrated directional coding during navigation through a continuous stimulus feature space as well as mapping of distances in a feature space that was relevant for concept learning. Here we provide the first unambiguous evidence for a hippocampal representation of the actual concept space, by showing that the hippocampal distance signal selectively reflects the mapping of specifically conceptually relevant rather than of all feature dimensions. During fMRI scanning of 32 human participants (21 females), we presented everyday objects, which had beforehand been associated with specific values on three continuous feature dimensions. Crucially, only two dimensions were relevant to prior concept learning. We find that hippocampal responses to the objects reflect their relative distances in a space defined along conceptually relevant dimensions compared with distances in a space defined along all feature dimensions. These findings suggest that the hippocampus supports knowledge acquisition by dynamically encoding information in a space spanned along dimensions that are relevant in relation to define concepts.SIGNIFICANCE STATEMENT How are neural representations of conceptual knowledge organized, such that humans are able to infer never experienced relations or categorize new exemplars? Map-like representations as supported by the hippocampal formation to encode physical space during navigation have been suggested as a suitable format. Here we provide the first evidence for a hippocampal representation of a conceptual space compared with a general feature-based space.
Collapse
|
45
|
Levinson M, Kolenda JP, Alexandrou GJ, Escanilla O, Cleland TA, Smith DM, Linster C. Context-dependent odor learning requires the anterior olfactory nucleus. Behav Neurosci 2020; 134:332-343. [PMID: 32378908 PMCID: PMC8710084 DOI: 10.1037/bne0000371] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Learning to associate the context in which a stimulus occurs is an important aspect of animal learning. We propose that the association of an olfactory stimulus with its multisensory context is mediated by projections from ventral hippocampus (vHC) networks to the anterior olfactory nucleus (AON). Using a contextually cued olfactory discrimination task, rats were trained to associate 2 olfactory stimuli with different responses depending on visuospatial context. Temporary lesions of the AON or vHC impaired performance on this task. In contrast, such lesions did not impair performance on a noncontextual olfactory discrimination task. Moreover, vHC lesions also impaired performance on an analogous contextually cued texture discrimination task, whereas AON lesions affected only olfactory contextual associations. We describe a distinct role for the AON in olfactory processing and conclude that early olfactory networks such as the olfactory bulb and AON function as multimodal integration networks rather than processing olfactory signals exclusively. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Max Levinson
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jacob P. Kolenda
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | | | - Olga Escanilla
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | | | - David M. Smith
- Dept. of Psychology, Cornell University, Ithaca, NY 14853
| | - Christiane Linster
- Dept. of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| |
Collapse
|
46
|
Avigan PD, Cammack K, Shapiro ML. Flexible spatial learning requires both the dorsal and ventral hippocampus and their functional interactions with the prefrontal cortex. Hippocampus 2020; 30:733-744. [PMID: 32077554 PMCID: PMC7731996 DOI: 10.1002/hipo.23198] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 01/14/2023]
Abstract
When faced with changing contingencies, animals can use memory to flexibly guide actions, engaging both frontal and temporal lobe brain structures. Damage to the hippocampus (HPC) impairs episodic memory, and damage to the prefrontal cortex (PFC) impairs cognitive flexibility, but the circuit mechanisms by which these areas support flexible memory processing remain unclear. The present study investigated these mechanisms by temporarily inactivating the medial PFC (mPFC), the dorsal HPC (dHPC), and the ventral HPC (vHPC), individually and in combination, as rats learned spatial discriminations and reversals in a plus maze. Bilateral inactivation of either the dHPC or vHPC profoundly impaired spatial learning and memory, whereas bilateral mPFC inactivation primarily impaired reversal versus discrimination learning. Inactivation of unilateral mPFC together with the contralateral dHPC or vHPC impaired spatial discrimination and reversal learning, whereas ipsilateral inactivation did not. Flexible spatial learning thus depends on both the dHPC and vHPC and their functional interactions with the mPFC.
Collapse
Affiliation(s)
- Philip D. Avigan
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katharine Cammack
- Department of Psychology & Neuroscience Program, The University of the South, Sewanee, Tennessee
| | - Matthew L. Shapiro
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
47
|
Sherfey J, Ardid S, Miller EK, Hasselmo ME, Kopell NJ. Prefrontal oscillations modulate the propagation of neuronal activity required for working memory. Neurobiol Learn Mem 2020; 173:107228. [PMID: 32561459 DOI: 10.1016/j.nlm.2020.107228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/01/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023]
Abstract
Cognition involves using attended information, maintained in working memory (WM), to guide action. During a cognitive task, a correct response requires flexible, selective gating so that only the appropriate information flows from WM to downstream effectors that carry out the response. In this work, we used biophysically-detailed modeling to explore the hypothesis that network oscillations in prefrontal cortex (PFC), leveraging local inhibition, can independently gate responses to items in WM. The key role of local inhibition was to control the period between spike bursts in the outputs, and to produce an oscillatory response no matter whether the WM item was maintained in an asynchronous or oscillatory state. We found that the WM item that induced an oscillatory population response in the PFC output layer with the shortest period between spike bursts was most reliably propagated. The network resonant frequency (i.e., the input frequency that produces the largest response) of the output layer can be flexibly tuned by varying the excitability of deep layer principal cells. Our model suggests that experimentally-observed modulation of PFC beta-frequency (15-30 Hz) and gamma-frequency (30-80 Hz) oscillations could leverage network resonance and local inhibition to govern the flexible routing of signals in service to cognitive processes like gating outputs from working memory and the selection of rule-based actions. Importantly, we show for the first time that nonspecific changes in deep layer excitability can tune the output gate's resonant frequency, enabling the specific selection of signals encoded by populations in asynchronous or fast oscillatory states. More generally, this represents a dynamic mechanism by which adjusting network excitability can govern the propagation of asynchronous and oscillatory signals throughout neocortex.
Collapse
Affiliation(s)
- Jason Sherfey
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, MA 02215, United States; The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States.
| | - Salva Ardid
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, MA 02215, United States
| | - Nancy J Kopell
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States.
| |
Collapse
|
48
|
Hauser J, Llano López LH, Feldon J, Gargiulo PA, Yee BK. Small lesions of the dorsal or ventral hippocampus subregions are associated with distinct impairments in working memory and reference memory retrieval, and combining them attenuates the acquisition rate of spatial reference memory. Hippocampus 2020; 30:938-957. [DOI: 10.1002/hipo.23207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jonas Hauser
- Laboratory of Behavioural NeurobiologySwiss Federal Institute of Technology Zurich Schwerzenbach Switzerland
| | - Luis H. Llano López
- Laboratorio de Neurociencias y Psicología ExperimentalInstituto de Medicina y Biología Experimental de Cuyo (IMBECU), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo Mendoza Argentina
- Servicio de Terapia Intensiva Infantil. Servicio de Recuperación Cardiovascular Pediátrica. Hospital Pediátrico Humberto Notti Mendoza Argentina
| | - Joram Feldon
- Laboratory of Behavioural NeurobiologySwiss Federal Institute of Technology Zurich Schwerzenbach Switzerland
| | - Pascual A. Gargiulo
- Laboratorio de Neurociencias y Psicología ExperimentalInstituto de Medicina y Biología Experimental de Cuyo (IMBECU), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo Mendoza Argentina
| | - Benjamin K. Yee
- Department of Rehabilitation Sciences, Faculty of Health & Social SciencesThe Hong Kong Polytechnic University Hung Hom Hong Kong
| |
Collapse
|
49
|
Zhu H, Paschalidis IC, Chang A, Stern CE, Hasselmo ME. A neural circuit model for a contextual association task inspired by recommender systems. Hippocampus 2020; 30:384-395. [PMID: 32057161 DOI: 10.1002/hipo.23194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 11/07/2022]
Abstract
Behavioral data shows that humans and animals have the capacity to learn rules of associations applied to specific examples, and generalize these rules to a broad variety of contexts. This article focuses on neural circuit mechanisms to perform a context-dependent association task that requires linking sensory stimuli to behavioral responses and generalizing to multiple other symmetrical contexts. The model uses neural gating units that regulate the pattern of physiological connectivity within the circuit. These neural gating units can be used in a learning framework that performs low-rank matrix factorization analogous to recommender systems, allowing generalization with high accuracy to a wide range of additional symmetrical contexts. The neural gating units are trained with a biologically inspired framework involving traces of Hebbian modification that are updated based on the correct behavioral output of the network. This modeling demonstrates potential neural mechanisms for learning context-dependent association rules and for the change in selectivity of neurophysiological responses in the hippocampus. The proposed computational model is evaluated using simulations of the learning process and the application of the model to new stimuli. Further, human subject behavioral experiments were performed and the results validate the key observation of a low-rank synaptic matrix structure linking stimuli to responses.
Collapse
Affiliation(s)
- Henghui Zhu
- Division of Systems Engineering, Boston University, Boston, Massachusetts
| | - Ioannis Ch Paschalidis
- Department of Electrical and Computer Engineering, Division of Systems Engineering, and Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Allen Chang
- Department of Psychological and Brain Sciences, and Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Chantal E Stern
- Department of Psychological and Brain Sciences, and Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| | - Michael E Hasselmo
- Department of Psychological and Brain Sciences, and Center for Systems Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
50
|
Sosa M, Joo HR, Frank LM. Dorsal and Ventral Hippocampal Sharp-Wave Ripples Activate Distinct Nucleus Accumbens Networks. Neuron 2019; 105:725-741.e8. [PMID: 31864947 DOI: 10.1016/j.neuron.2019.11.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Memories of positive experiences link places, events, and reward outcomes. These memories recruit interactions between the hippocampus and nucleus accumbens (NAc). Both dorsal and ventral hippocampus (dH and vH) project to the NAc, but it remains unknown whether dH and vH act in concert or separately to engage NAc representations related to space and reward. We recorded simultaneously from the dH, vH, and NAc of rats during an appetitive spatial task and focused on hippocampal sharp-wave ripples (SWRs) to identify times of memory reactivation across brain regions. Here, we show that dH and vH awake SWRs occur asynchronously and activate distinct and opposing patterns of NAc spiking. Only NAc neurons activated during dH SWRs were tuned to task- and reward-related information. These temporally and anatomically separable hippocampal-NAc interactions point to distinct channels of mnemonic processing in the NAc, with the dH-NAc channel specialized for spatial task and reward information. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marielena Sosa
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hannah R Joo
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Loren M Frank
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA.
| |
Collapse
|