1
|
Chib S, Dutta BJ, Chalotra R, Abubakar M, Kumar P, Singh TG, Singh R. Role of Flavonoids in Mitigating the Pathological Complexities and Treatment Hurdles in Alzheimer's Disease. Phytother Res 2024. [PMID: 39660432 DOI: 10.1002/ptr.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
With the passage of time, people step toward old age and become more prone to several diseases associated with the age. One such is Alzheimer's disease (AD) which results into neuronal damage and dementia with the progression of age. The existing therapeutics has been hindered by various enkindles like less eminent between remote populations, affordability issues and toxicity profiles. Moreover, lack of suitable therapeutic option further worsens the quality of life in older population. Developing an efficient therapeutic intervention to cure AD is still a challenge for medical fraternity. Recently, alternative approaches attain the attention of researchers to focus on plant-based therapy in mitigating AD. In this context, flavonoids gained centrality as a feasible treatment in modifying various neurological deficits. This review mainly focuses on the pathological facets and economic burden of AD. Furthermore, we have explored the possible mechanism of flavonoids with the preclinical and clinical aspects for curing AD. Flavonoids being potential therapeutic, target the pathogenic factors of AD such as oxidative stress, inflammation, metal toxicity, Aβ accumulation, modulate neurotransmission and insulin signaling. In this review, we emphasized on potential neuroprotective effects of flavonoids in AD pathology, with focus on both experimental and clinical findings. While preclinical studies suggest promising therapeutic benefits, clinical data remains limited and inconclusive. Thus, further high-quality clinical trials are necessary to validate the efficacy of flavonoids in AD. The study aim is to promote the plant-based therapies and encourage people to add flavonoids to regular diet to avail the beneficial effects in preventive therapy for AD.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Md Abubakar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Bär J, Fanutza T, Reimann CC, Seipold L, Grohe M, Bolter JR, Delfs F, Bucher M, Gee CE, Schweizer M, Saftig P, Mikhaylova M. Non-canonical function of ADAM10 in presynaptic plasticity. Cell Mol Life Sci 2024; 81:342. [PMID: 39123091 PMCID: PMC11335265 DOI: 10.1007/s00018-024-05327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024]
Abstract
A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Julia Bär
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tomas Fanutza
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christopher C Reimann
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Lisa Seipold
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany
| | - Maja Grohe
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany
| | - Janike Rabea Bolter
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
| | - Flemming Delfs
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michael Bucher
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christine E Gee
- Department of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, ZMNH, 20251, Hamburg, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany.
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany.
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
3
|
Scolz A, Vezzoli E, Villa M, Talpo F, Cazzola J, Raffin F, Cordiglieri C, Falqui A, Pepe G, Maglione V, Besusso D, Biella G, Zuccato C. Neuroprotection by ADAM10 inhibition requires TrkB signaling in the Huntington's disease hippocampus. Cell Mol Life Sci 2024; 81:333. [PMID: 39112663 PMCID: PMC11335257 DOI: 10.1007/s00018-024-05382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Synaptic dysfunction is an early pathogenic event leading to cognitive decline in Huntington's disease (HD). We previously reported that the active ADAM10 level is increased in the HD cortex and striatum, causing excessive proteolysis of the synaptic cell adhesion protein N-Cadherin. Conversely, ADAM10 inhibition is neuroprotective and prevents cognitive decline in HD mice. Although the breakdown of cortico-striatal connection has been historically linked to cognitive deterioration in HD, dendritic spine loss and long-term potentiation (LTP) defects identified in the HD hippocampus are also thought to contribute to the cognitive symptoms of the disease. The aim of this study is to investigate the contribution of ADAM10 to spine pathology and LTP defects of the HD hippocampus. We provide evidence that active ADAM10 is increased in the hippocampus of two mouse models of HD, leading to extensive proteolysis of N-Cadherin, which has a widely recognized role in spine morphology and synaptic plasticity. Importantly, the conditional heterozygous deletion of ADAM10 in the forebrain of HD mice resulted in the recovery of spine loss and ultrastructural synaptic defects in CA1 pyramidal neurons. Meanwhile, normalization of the active ADAM10 level increased the pool of synaptic BDNF protein and activated ERK neuroprotective signaling in the HD hippocampus. We also show that the ADAM10 inhibitor GI254023X restored LTP defects and increased the density of mushroom spines enriched with GluA1-AMPA receptors in HD hippocampal neurons. Notably, we report that administration of the TrkB antagonist ANA12 to HD hippocampal neurons reduced the beneficial effect of GI254023X, indicating that the BDNF receptor TrkB contributes to mediate the neuroprotective activity exerted by ADAM10 inhibition in HD. Collectively, these findings indicate that ADAM10 inhibition coupled with TrkB signaling represents an efficacious strategy to prevent hippocampal synaptic plasticity defects and cognitive dysfunction in HD.
Collapse
Affiliation(s)
- Andrea Scolz
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- Advanced Light and Electron Microscopy BioImaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Michela Villa
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Falqui
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), Department of Physics, University of Milan, Milan, Italy
| | | | | | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.
| |
Collapse
|
4
|
Mockett BG, Davies JWT, Mills ZB, Kweon DY, Abraham WC. Alpha-secretase inhibition impairs Group I metabotropic glutamate receptor-mediated protein synthesis, long-term potentiation and long-term depression. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230481. [PMID: 38853546 PMCID: PMC11343310 DOI: 10.1098/rstb.2023.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Group I metabotropic glutamate receptors (Gp1-mGluRs) exert a host of effects on cellular functions, including enhancement of protein synthesis and the associated facilitation of long-term potentiation (LTP) and induction of long-term depression (LTD). However, the complete cascades of events mediating these events are not fully understood. Gp1-mGluRs trigger α-secretase cleavage of amyloid precursor protein, producing soluble amyloid precursor protein-α (sAPPα), a known regulator of LTP. However, the α-cleavage of APP has not previously been linked to Gp1-mGluR's actions. Using rat hippocampal slices, we found that the α-secretase inhibitor tumour necrosis factor-alpha protease inhibitor-1, which inhibits both disintegrin and metalloprotease 10 (ADAM10) and 17 (ADAM17) activity, blocked or reduced the ability of the Gp1-mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) to stimulate protein synthesis, metaplastically prime future LTP and elicit sub-maximal LTD. In contrast, the specific ADAM10 antagonist GI254023X did not affect the regulation of plasticity, suggesting that ADAM17 but not ADAM10 is involved in mediating these effects of DHPG. However, neither drug affected LTD that was strongly induced by either high-concentration DHPG or paired-pulse synaptic stimulation. Our data suggest that moderate Gp1-mGluR activation triggers α-secretase sheddase activity targeting APP or other membrane-bound proteins as part of a more complex signalling cascade than previously envisioned. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, Aotearoa Brain Project, University of Otago, Dunedin9054, New Zealand
| | - James W. T. Davies
- Department of Psychology, Brain Health Research Centre, Aotearoa Brain Project, University of Otago, Dunedin9054, New Zealand
| | - Zoë B. Mills
- Department of Psychology, Brain Health Research Centre, Aotearoa Brain Project, University of Otago, Dunedin9054, New Zealand
| | - Do Y. Kweon
- Department of Psychology, Brain Health Research Centre, Aotearoa Brain Project, University of Otago, Dunedin9054, New Zealand
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Aotearoa Brain Project, University of Otago, Dunedin9054, New Zealand
| |
Collapse
|
5
|
Song F, Kovac V, Mohammadi B, Littau JL, Scharfenberg F, Matamoros Angles A, Vanni I, Shafiq M, Orge L, Galliciotti G, Djakkani S, Linsenmeier L, Černilec M, Hartman K, Jung S, Tatzelt J, Neumann JE, Damme M, Tschirner SK, Lichtenthaler SF, Ricklefs FL, Sauvigny T, Schmitz M, Zerr I, Puig B, Tolosa E, Ferrer I, Magnus T, Rupnik MS, Sepulveda-Falla D, Matschke J, Šmid LM, Bresjanac M, Andreoletti O, Krasemann S, Foliaki ST, Nonno R, Becker-Pauly C, Monzo C, Crozet C, Haigh CL, Glatzel M, Curin Serbec V, Altmeppen HC. Cleavage site-directed antibodies reveal the prion protein in humans is shed by ADAM10 at Y226 and associates with misfolded protein deposits in neurodegenerative diseases. Acta Neuropathol 2024; 148:2. [PMID: 38980441 PMCID: PMC11233397 DOI: 10.1007/s00401-024-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Collapse
Affiliation(s)
- Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Valerija Kovac
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jessica L Littau
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Andreu Matamoros Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonor Orge
- National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Salma Djakkani
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maja Černilec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Katrina Hartman
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Tim Magnus
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Marjan S Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lojze M Šmid
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Bresjanac
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Andreoletti
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecile Monzo
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Carole Crozet
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Vladka Curin Serbec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia.
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
6
|
Rosenbaum D, Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase A Disintegrin And Metalloproteinase 10 (ADAM10). FEBS J 2024; 291:2733-2766. [PMID: 37218105 DOI: 10.1111/febs.16870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
The 'A Disintegrin And Metalloproteinase 10' (ADAM10) has gained considerable attention due to its discovery as an 'α-secretase' involved in the nonamyloidogenic processing of the amyloid precursor protein, thereby possibly preventing the excessive generation of the amyloid beta peptide, which is associated with the pathogenesis of Alzheimer's disease. ADAM10 was found to exert many additional functions, cleaving about 100 different membrane proteins. ADAM10 is involved in many pathophysiological conditions, ranging from cancer and autoimmune disorders to neurodegeneration and inflammation. ADAM10 cleaves its substrates close to the plasma membrane, a process referred to as ectodomain shedding. This is a central step in the modulation of the functions of cell adhesion proteins and cell surface receptors. ADAM10 activity is controlled by transcriptional and post-translational events. The interaction of ADAM10 with tetraspanins and the way they functionally and structurally depend on each other is another topic of interest. In this review, we will summarize findings on how ADAM10 is regulated and what is known about the biology of the protease. We will focus on novel aspects of the molecular biology and pathophysiology of ADAM10 that were previously poorly covered, such as the role of ADAM10 on extracellular vesicles, its contribution to virus entry, and its involvement in cardiac disease, cancer, inflammation, and immune regulation. ADAM10 has emerged as a regulator controlling cell surface proteins during development and in adult life. Its involvement in disease states suggests that ADAM10 may be exploited as a therapeutic target to treat conditions associated with a dysfunctional proteolytic activity.
Collapse
Affiliation(s)
- David Rosenbaum
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|
7
|
Pantelopulos GA, Abraham CB, Straub JE. Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease. Annu Rev Biophys 2024; 53:455-486. [PMID: 38382114 PMCID: PMC11575466 DOI: 10.1146/annurev-biophys-062823-023436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cholesterol has been conjectured to be a modulator of the amyloid cascade, the mechanism that produces the amyloid-β (Aβ) peptides implicated in the onset of Alzheimer's disease. We propose that cholesterol impacts the genesis of Aβ not through direct interaction with proteins in the bilayer, but indirectly by inducing the liquid-ordered phase and accompanying liquid-liquid phase separations, which partition proteins in the amyloid cascade to different lipid domains and ultimately to different endocytotic pathways. We explore the full process of Aβ genesis in the context of liquid-ordered phases induced by cholesterol, including protein partitioning into lipid domains, mechanisms of endocytosis experienced by lipid domains and secretases, and pH-controlled activation of amyloid precursor protein secretases in specific endocytotic environments. Outstanding questions on the essential role of cholesterol in the amyloid cascade are identified for future studies.
Collapse
Affiliation(s)
| | - Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Kelley CM, Maloney B, Beck JS, Ginsberg SD, Liang W, Lahiri DK, Mufson EJ, Counts SE. Micro-RNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders. Brain Commun 2024; 6:fcae082. [PMID: 38572270 PMCID: PMC10988646 DOI: 10.1093/braincomms/fcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S Beck
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| |
Collapse
|
9
|
Zhang Q, Xing M, Bao Z, Xu L, Bai Y, Chen W, Pan W, Cai F, Wang Q, Guo S, Zhang J, Wang Z, Wu Y, Zhang Y, Li JD, Song W. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential α-secretase cleavages, leading to autism-like phenotypes. Signal Transduct Target Ther 2024; 9:51. [PMID: 38424048 PMCID: PMC10904759 DOI: 10.1038/s41392-024-01768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in the Contactin-associated protein-like 2 (CNTNAP2) gene are associated with autism spectrum disorder (ASD), and ectodomain shedding of the CNTNAP2 protein plays a role in its function. However, key enzymes involved in the C-terminal cleavage of CNTNAP2 remain largely unknown, and the effect of ASD-associated mutations on this process and its role in ASD pathogenesis remain elusive. In this report we showed that CNTNAP2 undergoes sequential cleavages by furin, ADAM10/17-dependent α-secretase and presenilin-dependent γ-secretase. We identified that the cleavage sites of ADAM10 and ADAM17 in CNTNAP2 locate at its C-terminal residue I79 and L96, and the main α-cleavage product C79 by ADAM10 is required for the subsequent γ-secretase cleavage to generate CNTNAP2 intracellular domain (CICD). ASD-associated CNTNAP2 mutations impair the α-cleavage to generate C79, and the inhibition leads to ASD-like repetitive and social behavior abnormalities in the Cntnap2-I1254T knock-in mice. Finally, exogenous expression of C79 improves autism-like phenotypes in the Cntnap2-I1254T knock-in and Cntnap2-/- knockout mice. This data demonstrates that the α-secretase is essential for CNTNAP2 processing and its function. Our study indicates that inhibition of the cleavage by pathogenic mutations underlies ASD pathogenesis, and upregulation of its C-terminal fragments could have therapeutical potentials for ASD treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengkai Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wanqi Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jia-Da Li
- Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
10
|
Hershkovits AS, Gelley S, Hanna R, Kleifeld O, Shulman A, Fishman A. Shifting the balance: soluble ADAM10 as a potential treatment for Alzheimer's disease. Front Aging Neurosci 2023; 15:1171123. [PMID: 37266401 PMCID: PMC10229884 DOI: 10.3389/fnagi.2023.1171123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction Accumulation of amyloid β in the brain is regarded as a key initiator of Alzheimer's disease pathology. Processing of the amyloid precursor protein (APP) in the amyloidogenic pathway yields neurotoxic amyloid β species. In the non-amyloidogenic pathway, APP is processed by membrane-bound ADAM10, the main α-secretase in the nervous system. Here we present a new enzymatic approach for the potential treatment of Alzheimer's disease using a soluble form of ADAM10. Methods The ability of the soluble ADAM10 to shed overexpressed and endogenous APP was determined with an ADAM10 knockout cell line and a human neuroblastoma cell line, respectively. We further examined its effect on amyloid β aggregation by thioflavin T fluorescence, HPLC, and confocal microscopy. Using N-terminal and C-terminal enrichment proteomic approaches, we identified soluble ADAM10 substrates. Finally, a truncated soluble ADAM10, based on the catalytic domain, was expressed in Escherichia coli for the first time, and its activity was evaluated. Results The soluble enzyme hydrolyzes APP and releases the neuroprotective soluble APPα when exogenously added to cell cultures. The soluble ADAM10 inhibits the formation and aggregation of characteristic amyloid β extracellular neuronal aggregates. The proteomic investigation identified new and verified known substrates, such as VGF and N-cadherin, respectively. The truncated variant also exhibited α-secretase capacity as shown with a specific ADAM10 fluorescent substrate in addition to shedding overexpressed and endogenous APP. Discussion Our in vitro study demonstrates that exogenous treatment with a soluble variant of ADAM10 would shift the balance toward the non-amyloidogenic pathway, thus utilizing its natural neuroprotective effect and inhibiting the main neurotoxic amyloid β species. The potential of such a treatment for Alzheimer's disease needs to be further evaluated in vivo.
Collapse
Affiliation(s)
- Ayelet Sarah Hershkovits
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology, Haifa, Israel
- The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sivan Gelley
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology, Haifa, Israel
| | - Rawad Hanna
- Department of Biology Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Department of Biology Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Ayelet Fishman
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Palma-Lara I, García Alonso-Themann P, Pérez-Durán J, Godínez-Aguilar R, Bonilla-Delgado J, Gómez-Archila D, Espinosa-García AM, Nolasco-Quiroga M, Victoria-Acosta G, López-Ornelas A, Serrano-Bello JC, Olguín-García MG, Palacios-Reyes C. Potential Role of Protein Kinase FAM20C on the Brain in Raine Syndrome, an In Silico Analysis. Int J Mol Sci 2023; 24:ijms24108904. [PMID: 37240249 DOI: 10.3390/ijms24108904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.
Collapse
Affiliation(s)
- Icela Palma-Lara
- Laboratorio de Morfología Celular y Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Javier Pérez-Durán
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | | | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Regional de Ixtapaluca, Ixtapaluca 56530, Mexico
- Departamento de Biotecnología, Escuela de Ingeniería y Ciencias, Instituto Tecnológico de Monterrey, Toluca de Lerdo 50110, Mexico
| | - Damián Gómez-Archila
- Departamento de Oncología Quirúrgica, Hospital de Gineco-Obstetricia 3, Centro Médico Nacional "La Raza", Ciudad de México 02990, Mexico
| | | | - Manuel Nolasco-Quiroga
- Coordinación de Enseñanza e Investigación, Clínica Hospital Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Huauchinango 73177, Mexico
| | | | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 11340, Mexico
| | - Juan Carlos Serrano-Bello
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | | | - Carmen Palacios-Reyes
- División de Investigación, Hospital Juárez de México, Ciudad de México 11340, Mexico
| |
Collapse
|
12
|
Fu WY, Ip NY. The role of genetic risk factors of Alzheimer's disease in synaptic dysfunction. Semin Cell Dev Biol 2023; 139:3-12. [PMID: 35918217 DOI: 10.1016/j.semcdb.2022.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive deterioration of cognitive functions. Due to the extended global life expectancy, the prevalence of AD is increasing among aging populations worldwide. While AD is a multifactorial disease, synaptic dysfunction is one of the major neuropathological changes that occur early in AD, before clinical symptoms appear, and is associated with the progression of cognitive deterioration. However, the underlying pathological mechanisms leading to this synaptic dysfunction remains unclear. Recent large-scale genomic analyses have identified more than 40 genetic risk factors that are associated with AD. In this review, we discuss the functional roles of these genes in synaptogenesis and synaptic functions under physiological conditions, and how their functions are dysregulated in AD. This will provide insights into the contributions of these encoded proteins to synaptic dysfunction during AD pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Fu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
13
|
Cencelli G, Pacini L, De Luca A, Messia I, Gentile A, Kang Y, Nobile V, Tabolacci E, Jin P, Farace MG, Bagni C. Age-Dependent Dysregulation of APP in Neuronal and Skin Cells from Fragile X Individuals. Cells 2023; 12:758. [PMID: 36899894 PMCID: PMC10000963 DOI: 10.3390/cells12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilenia Messia
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, 00166 Rome, Italy
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Veronica Nobile
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Elisabetta Tabolacci
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
14
|
Jiao F, Zhou B, Meng L. The regulatory mechanism and therapeutic potential of transcription factor EB in neurodegenerative diseases. CNS Neurosci Ther 2022; 29:37-59. [PMID: 36184826 PMCID: PMC9804079 DOI: 10.1111/cns.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of protein aggregates and damaged organelles. Transcription factor EB (TFEB), a major regulator of ALP, has emerged as a leading factor in addressing neurodegenerative disease pathology, including Alzheimer's disease (AD), Parkinson's disease (PD), PolyQ diseases, and Amyotrophic lateral sclerosis (ALS). In this review, we delineate the regulation of TFEB expression and its functions in ALP. Dysfunctions of TFEB and its role in the pathogenesis of several neurodegenerative diseases are reviewed. We summarize the protective effects and molecular mechanisms of some TFEB-targeted agonists in neurodegenerative diseases. We also offer our perspective on analyzing the pros and cons of these agonists in the treatment of neurodegenerative diseases from the perspective of drug development. More studies on the regulatory mechanisms of TFEB in other biological processes will aid our understanding of the application of TFEB-targeted therapy in neurodegeneration.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Bojie Zhou
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Lingyan Meng
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| |
Collapse
|
15
|
Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat Neurosci 2022; 25:1104-1112. [PMID: 35915177 DOI: 10.1038/s41593-022-01128-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/22/2022] [Indexed: 12/22/2022]
Abstract
To date, most expression quantitative trait loci (eQTL) studies, which investigate how genetic variants contribute to gene expression, have been performed in heterogeneous brain tissues rather than specific cell types. In this study, we performed an eQTL analysis using single-nuclei RNA sequencing from 192 individuals in eight brain cell types derived from the prefrontal cortex, temporal cortex and white matter. We identified 7,607 eGenes, a substantial fraction (46%, 3,537/7,607) of which show cell-type-specific effects, with strongest effects in microglia. Cell-type-level eQTLs affected more constrained genes and had larger effect sizes than tissue-level eQTLs. Integration of brain cell type eQTLs with genome-wide association studies (GWAS) revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene co-localized in a single cell type, providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among brain cell types and reveal potential mechanisms by which disease risk genes influence brain disorders.
Collapse
|
16
|
Martín-de-Saavedra MD, Santos MD, Penzes P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci 2022; 45:483-498. [DOI: 10.1016/j.tins.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
|
17
|
Cope ZA, Murai T, Sukoff Rizzo SJ. Emerging Electroencephalographic Biomarkers to Improve Preclinical to Clinical Translation in Alzheimer's Disease. Front Aging Neurosci 2022; 14:805063. [PMID: 35250541 PMCID: PMC8891809 DOI: 10.3389/fnagi.2022.805063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Continually emerging data indicate that sub-clinical, non-convulsive epileptiform activity is not only prevalent in Alzheimer's disease (AD) but is detectable early in the course of the disease and predicts cognitive decline in both humans and animal models. Epileptiform activity and other electroencephalographic (EEG) measures may hold powerful, untapped potential to improve the translational validity of AD-related biomarkers in model animals ranging from mice, to rats, and non-human primates. In this review, we will focus on studies of epileptiform activity, EEG slowing, and theta-gamma coupling in preclinical models, with particular focus on its role in cognitive decline and relevance to AD. Here, each biomarker is described in the context of the contemporary literature and recent findings in AD relevant animal models are discussed.
Collapse
Affiliation(s)
| | | | - Stacey J. Sukoff Rizzo
- Aging Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
19
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Secretases Related to Amyloid Precursor Protein Processing. MEMBRANES 2021; 11:membranes11120983. [PMID: 34940484 PMCID: PMC8706128 DOI: 10.3390/membranes11120983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease whose prevalence increases with age. An increasing number of findings suggest that abnormalities in the metabolism of amyloid precursor protein (APP), a single transmembrane aspartic protein that is cleaved by β- and γ-secretases to produce β-amyloid protein (Aβ), are a major pathological feature of AD. In recent years, a large number of studies have been conducted on the APP processing pathways and the role of secretion. This paper provides a summary of the involvement of secretases in the processing of APP and the potential drug targets that could provide new directions for AD therapy.
Collapse
|
21
|
Rueda‐Carrasco J, Martin‐Bermejo MJ, Pereyra G, Mateo MI, Borroto A, Brosseron F, Kummer MP, Schwartz S, López‐Atalaya JP, Alarcon B, Esteve P, Heneka MT, Bovolenta P. SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation. EMBO Rep 2021; 22:e51696. [PMID: 34569685 PMCID: PMC8567217 DOI: 10.15252/embr.202051696] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Javier Rueda‐Carrasco
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - María Jesús Martin‐Bermejo
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Guadalupe Pereyra
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - María Inés Mateo
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Aldo Borroto
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
| | - Frederic Brosseron
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Markus P Kummer
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Stephanie Schwartz
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Balbino Alarcon
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
| | - Pilar Esteve
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| | - Michael T Heneka
- NeurologyUniversitätsklinikum BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Paola Bovolenta
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER)MadridSpain
| |
Collapse
|
22
|
Hsia HE, Tüshaus J, Feng X, Hofmann LI, Wefers B, Marciano DK, Wurst W, Lichtenthaler SF. Endoglycan (PODXL2) is proteolytically processed by ADAM10 (a disintegrin and metalloprotease 10) and controls neurite branching in primary neurons. FASEB J 2021; 35:e21813. [PMID: 34390512 DOI: 10.1096/fj.202100475r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Cell adhesion is tightly controlled in multicellular organisms, for example, through proteolytic ectodomain shedding of the adhesion-mediating cell surface transmembrane proteins. In the brain, shedding of cell adhesion proteins is required for nervous system development and function, but the shedding of only a few adhesion proteins has been studied in detail in the mammalian brain. One such adhesion protein is the transmembrane protein endoglycan (PODXL2), which belongs to the CD34-family of highly glycosylated sialomucins. Here, we demonstrate that endoglycan is broadly expressed in the developing mouse brains and is proteolytically shed in vitro in mouse neurons and in vivo in mouse brains. Endoglycan shedding in primary neurons was mediated by the transmembrane protease a disintegrin and metalloprotease 10 (ADAM10), but not by its homolog ADAM17. Functionally, endoglycan deficiency reduced the branching of neurites extending from primary neurons in vitro, whereas deletion of ADAM10 had the opposite effect and increased neurite branching. Taken together, our study discovers a function for endoglycan in neurite branching, establishes endoglycan as an ADAM10 substrate and suggests that ADAM10 cleavage of endoglycan may contribute to neurite branching.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Laura I Hofmann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg/Munich, Germany
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg/Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Technical University of Munich-Weihenstephan, Neuherberg/Munich, Neuherberg, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Stone JS, Pujol R, Nguyen TB, Cox BC. The Transcription Factor Sox2 Is Required to Maintain the Cell Type-Specific Properties and Innervation of Type II Vestibular Hair Cells in Adult Mice. J Neurosci 2021; 41:6217-6233. [PMID: 34099510 PMCID: PMC8287988 DOI: 10.1523/jneurosci.1831-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The sense of balance relies on vestibular hair cells, which detect head motions. Mammals have two types of vestibular hair cell, I and II, with unique morphological, molecular, and physiological properties. Furthermore, each hair cell type signals to a unique form of afferent nerve terminal. Little is known about the mechanisms in mature animals that maintain the specific features of each hair cell type or its postsynaptic innervation. We found that deletion of the transcription factor Sox2 from Type II hair cells in adult mice of both sexes caused many cells in utricles to acquire features unique to Type I hair cells and to lose Type II-specific features. This cellular transdifferentiation, which included changes in nuclear size, chromatin condensation, soma and stereocilium morphology, and marker expression, resulted in a significantly higher proportion of Type I-like hair cells in all epithelial zones. Furthermore, Sox2 deletion from Type II hair cells triggered non-cell autonomous changes in vestibular afferent neurons; they retracted bouton terminals (normally present on only Type II cells) from transdifferentiating hair cells and replaced them with a calyx terminal (normally present on only Type I cells). These changes were accompanied by significant expansion of the utricle's central zone, called the striola. Our study presents the first example of a transcription factor required to maintain the type-specific hair cell phenotype in adult inner ears. Furthermore, we demonstrate that a single genetic change in Type II hair cells is sufficient to alter the morphology of their postsynaptic partners, the vestibular afferent neurons.SIGNIFICANCE STATEMENT The sense of balance relies on two types of sensory cells in the inner ear, Type I and Type II hair cells. These two cell types have unique properties. Furthermore, their postsynaptic partners, the vestibular afferent neurons, have differently shaped terminals on Type I versus Type II hair cells. We show that the transcription factor Sox2 is required to maintain the cell-specific features of Type II hair cells and their postsynaptic terminals in adult mice. This is the first evidence of a molecule that maintains the phenotypes of hair cells and, non-cell autonomously, their postsynaptic partners in mature animals.
Collapse
Affiliation(s)
- Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Rémy Pujol
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
- Institut National de la Santé et de la Recherche Médicale Unit 1051, Institute of Neuroscience, University of Montpellier, 34000 Montpellier, France
| | - Tot Bui Nguyen
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195-7923
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9624
| |
Collapse
|
24
|
Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22147697. [PMID: 34299316 PMCID: PMC8307724 DOI: 10.3390/ijms22147697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary for normal brain function. To control the amounts of metal ions in the brain and understand the involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions, and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the structures and functions of ADE in the brain, as well as their interrelationships.
Collapse
|
25
|
Mattila SO, Tuhkanen HE, Lackman JJ, Konzack A, Morató X, Argerich J, Saftig P, Ciruela F, Petäjä-Repo UE. GPR37 is processed in the N-terminal ectodomain by ADAM10 and furin. FASEB J 2021; 35:e21654. [PMID: 34042202 DOI: 10.1096/fj.202002385rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
GPR37 is an orphan G protein-coupled receptor (GPCR) implicated in several neurological diseases and important physiological pathways in the brain. We previously reported that its long N-terminal ectodomain undergoes constitutive metalloprotease-mediated cleavage and shedding, which have been rarely described for class A GPCRs. Here, we demonstrate that the protease that cleaves GPR37 at Glu167↓Gln168 is a disintegrin and metalloprotease 10 (ADAM10). This was achieved by employing selective inhibition, RNAi-mediated downregulation, and genetic depletion of ADAM10 in cultured cells as well as in vitro cleavage of the purified receptor with recombinant ADAM10. In addition, the cleavage was restored in ADAM10 knockout cells by overexpression of the wild type but not the inactive mutant ADAM10. Finally, postnatal conditional depletion of ADAM10 in mouse neuronal cells was found to reduce cleavage of the endogenous receptor in the brain cortex and hippocampus, confirming the physiological relevance of ADAM10 as a GPR37 sheddase. Additionally, we discovered that the receptor is subject to another cleavage step in cultured cells. Using site-directed mutagenesis, the site (Arg54↓Asp55) was localized to a highly conserved region at the distal end of the ectodomain that contains a recognition site for the proprotein convertase furin. The cleavage by furin was confirmed by using furin-deficient human colon carcinoma LoVo cells and proprotein convertase inhibitors. GPR37 is thus the first multispanning membrane protein that has been validated as an ADAM10 substrate and the first GPCR that is processed by both furin and ADAM10. The unconventional N-terminal processing may represent an important regulatory element for GPR37.
Collapse
Affiliation(s)
- S Orvokki Mattila
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Hanna E Tuhkanen
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Jarkko J Lackman
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Xavier Morató
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Josep Argerich
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Paul Saftig
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Ulla E Petäjä-Repo
- Medical Research Center Oulu, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| |
Collapse
|
26
|
Cozzolino F, Vezzoli E, Cheroni C, Besusso D, Conforti P, Valenza M, Iacobucci I, Monaco V, Birolini G, Bombaci M, Falqui A, Saftig P, Rossi RL, Monti M, Cattaneo E, Zuccato C. ADAM10 hyperactivation acts on piccolo to deplete synaptic vesicle stores in Huntington's disease. Hum Mol Genet 2021; 30:1175-1187. [PMID: 33601422 DOI: 10.1093/hmg/ddab047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Synaptic dysfunction and cognitive decline in Huntington's disease (HD) involve hyperactive A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). To identify the molecular mechanisms through which ADAM10 is associated with synaptic dysfunction in HD, we performed an immunoaffinity purification-mass spectrometry (IP-MS) study of endogenous ADAM10 in the brains of wild-type and HD mice. We found that proteins implicated in synapse organization, synaptic plasticity, and vesicle and organelles trafficking interact with ADAM10, suggesting that it may act as hub protein at the excitatory synapse. Importantly, the ADAM10 interactome is enriched in presynaptic proteins and ADAM10 co-immunoprecipitates with piccolo (PCLO), a key player in the recycling and maintenance of synaptic vesicles. In contrast, reduced ADAM10/PCLO immunoprecipitation occurs in the HD brain, with decreased density of synaptic vesicles in the reserve and docked pools at the HD presynaptic terminal. Conditional heterozygous deletion of ADAM10 in the forebrain of HD mice reduces active ADAM10 to wild-type level and normalizes ADAM10/PCLO complex formation and synaptic vesicle density and distribution. The results indicate that presynaptic ADAM10 and PCLO are a relevant component of HD pathogenesis.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Advanced Biotechnologies, Naples 80131, Italy
| | - Elena Vezzoli
- Department of Biomedical Sciences for Health, University of Milan, Milan 20133, Italy
| | - Cristina Cheroni
- European Institute of Oncology, IRCCS, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Marta Valenza
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Advanced Biotechnologies, Naples 80131, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Naples 80131, Italy
- Biostructures and Biosystems National Institute (INBB), Rome 00136, Italy
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Mauro Bombaci
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Andrea Falqui
- Biological and Environmental Science and Engineering (BESE) Division, NABLA Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel D-24098, Germany
| | - Riccardo L Rossi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Advanced Biotechnologies, Naples 80131, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| |
Collapse
|
27
|
Sachs M, Wetzel S, Reichelt J, Sachs W, Schebsdat L, Zielinski S, Seipold L, Heintz L, Müller SA, Kretz O, Lindenmeyer M, Wiech T, Huber TB, Lüllmann-Rauch R, Lichtenthaler SF, Saftig P, Meyer-Schwesinger C. ADAM10-Mediated Ectodomain Shedding Is an Essential Driver of Podocyte Damage. J Am Soc Nephrol 2021; 32:1389-1408. [PMID: 33785583 PMCID: PMC8259650 DOI: 10.1681/asn.2020081213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/08/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.
Collapse
Affiliation(s)
- Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Schebsdat
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Seipold
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Lukas Heintz
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan A. Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Lehmann L, Lo A, Knox KM, Barker-Haliski M. Alzheimer's Disease and Epilepsy: A Perspective on the Opportunities for Overlapping Therapeutic Innovation. Neurochem Res 2021; 46:1895-1912. [PMID: 33929683 PMCID: PMC8254705 DOI: 10.1007/s11064-021-03332-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
Early-onset Alzheimer's disease (AD) is associated with variants in amyloid precursor protein (APP) and presenilin (PSEN) 1 and 2. It is increasingly recognized that patients with AD experience undiagnosed focal seizures. These AD patients with reported seizures may have worsened disease trajectory. Seizures in epilepsy can also lead to cognitive deficits, neuroinflammation, and neurodegeneration. Epilepsy is roughly three times more common in individuals aged 65 and older. Due to the numerous available antiseizure drugs (ASDs), treatment of seizures has been proposed to reduce the burden of AD. More work is needed to establish the functional impact of seizures in AD to determine whether ASDs could be a rational therapeutic strategy. The efficacy of ASDs in aged animals is not routinely studied, despite the fact that the elderly represents the fastest growing demographic with epilepsy. This leaves a particular gap in understanding the discrete pathophysiological overlap between hyperexcitability and aging, and AD more specifically. Most of our preclinical knowledge of hyperexcitability in AD has come from mouse models that overexpress APP. While these studies have been invaluable, other drivers underlie AD, e.g. PSEN2. A diversity of animal models should be more frequently integrated into the study of hyperexcitability in AD, which could be particularly beneficial to identify novel therapies. Specifically, AD-associated risk genes, in particular PSENs, altogether represent underexplored contributors to hyperexcitability. This review assesses the available studies of ASDs administration in clinical AD populations and preclinical studies with AD-associated models and offers a perspective on the opportunities for further therapeutic innovation.
Collapse
Affiliation(s)
- Leanne Lehmann
- Undergraduate Neuroscience Program, University of Washington, Seattle, WA, 98195, USA
| | - Alexandria Lo
- Department of Public Health-Global Health, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - Kevin M Knox
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
29
|
Appel D, Hummel R, Weidemeier M, Endres K, Gölz C, Schäfer MKE. Pharmacologic Inhibition of ADAM10 Attenuates Brain Tissue Loss, Axonal Injury and Pro-inflammatory Gene Expression Following Traumatic Brain Injury in Mice. Front Cell Dev Biol 2021; 9:661462. [PMID: 33791311 PMCID: PMC8005610 DOI: 10.3389/fcell.2021.661462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
The α-secretase A disintegrin and metalloprotease 10 (ADAM10) regulates various physiological and pathophysiological processes. Despite its broad functional implications during development, plasticity, and disease, no pharmacological approaches to inhibit ADAM10 in acute brain injury have been reported. Here, we examined the effects of the ADAM10 inhibitor GI254023X on the neurological and histopathological outcome after experimental traumatic brain injury (TBI). C57BL/6N mice were subjected to the controlled cortical impact (CCI) model of TBI or sham procedure and received GI254023X or vehicle during the acute phase of injury (n = 40, 100 mg/kg, 25% DMSO, 0.1 M Na2CO3, intraperitoneal, 30 min and 24 h after TBI). GI254023X treatment did not improve neurological deficits from 1 to 7 days post-injury (dpi) but animals treated with GI254023X exhibited smaller brain lesions compared to vehicle treatment. Determination of brain mRNA expression by quantitative PCR showed that TBI-induced up-regulation of Adam10 and Adam17 was not influenced by GI254023X but the up-regulation of the matrix metalloproteinase genes Mmp2 and Mmp9 was attenuated. GI254023X treatment further increased the T cell marker Cd247 but did not affect blood brain barrier integrity, as assessed by Occludin mRNA expression and IgG brain extravasation. However, in agreement with neuroprotective effects of ADAM10 inhibition, GI254023X treatment attenuated axonal injury, as indicated by decreased generation of spectrin breakdown products (SBDPs) and decreased immunostaining using anti-non-phosphorylated neurofilament (SMI-32). Interestingly, reduced axonal injury in GI254023X-treated animals coincided with subtle mRNA dysregulation in the glutamate receptor subunit genes Gria1 and Grin2b. Quantitative PCR also revealed that GI254023X mitigated up-regulation of the pro-inflammatory markers Il6, Tnfa, and Lcn2 but not the up-regulation of the pan-microglia marker Aif1, the M2 microglia marker Arg1 and the reactive astrocyte marker Gfap. Taken together, the ADAM10 inhibitor GI254023X attenuates brain tissue loss, axonal injury and pro-inflammatory gene expression in the CCI model of TBI. These results suggest that ADAM10 may represent a therapeutic target in the acute phase of TBI.
Collapse
Affiliation(s)
- Dominik Appel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Martin Weidemeier
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Kristina Endres
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
30
|
Tao H, Zhou X, Chen J, Zhou H, Huang L, Cai Y, Fu J, Liu Z, Chen Y, Sun C, Zhao B, Zhong W, Li K. Genetic Effects of the Schizophrenia-Related Gene DTNBP1 in Temporal Lobe Epilepsy. Front Genet 2021; 12:553974. [PMID: 33679873 PMCID: PMC7933566 DOI: 10.3389/fgene.2021.553974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies have reported patients who concurrently exhibit conditions of epilepsy and schizophrenia, indicating certain shared pathologies between them. This study aimed to investigate the genetic effects of the schizophrenia-related gene DTNBP1 in temporal lobe epilepsy (TLE). A total of 496 TLE patients and 528 healthy individuals were successfully genotyped for six DTNBP1 polymorphisms (rs760665, rs1011313, rs2619528, rs2619522, rs909706, and rs2619538), including 335 TLE patients and 325 healthy controls in cohort 1, and 161 TLE patients and 203 healthy controls in cohort 2. The frequency of the TT genotype at rs909706 T > C was lower in TLE patients than in normal controls in the initial cohort (cohort 1), which was confirmed in an independent cohort (cohort 2). However, the intronic T allele failed to be in linkage disequilibrium (LD) with any functional variations nearby; thus, together with the CCAC and TCAT haplotypes (rs1011313-rs2619528-rs2619522-rs909706) observed in the study, this allele acts only as a protective factor against susceptibility to TLE. Meanwhile, a novo mutant allele rs2619538 T > A was exclusively observed in TLE patients, and a dual-luciferase assay revealed that the mutant allele was increased by approximately 22% in the DTNBP2 promoter compared with the wild-type allele. Together with the trend of increasing DTNBP1 expression in epilepsy patients and animal models in this study, these are the first findings to demonstrate the genetic association of DTNBP1 with TLE. Homozygous mutation of rs2619538 T > A likely promotes DTNBP1 expression and facilitates subsequent processes in epilepsy pathologies. Thus, the role of DTNBP1 in TLE deserves further exploration in the future.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Xu Zhou
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jun Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lidan Huang
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Chaowen Sun
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, China
| | - Wangtao Zhong
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Neurology and Neurosurgery Division, Stroke Center, The First Affiliated Hospital, Clinical Medicine Research Institute, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Asada-Utsugi M, Uemura K, Kubota M, Noda Y, Tashiro Y, Uemura TM, Yamakado H, Urushitani M, Takahashi R, Hattori S, Miyakawa T, Ageta-Ishihara N, Kobayashi K, Kinoshita M, Kinoshita A. Mice with cleavage-resistant N-cadherin exhibit synapse anomaly in the hippocampus and outperformance in spatial learning tasks. Mol Brain 2021; 14:23. [PMID: 33494786 PMCID: PMC7831172 DOI: 10.1186/s13041-021-00738-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
N-cadherin is a homophilic cell adhesion molecule that stabilizes excitatory synapses, by connecting pre- and post-synaptic termini. Upon NMDA receptor (NMDAR) activation by glutamate, membrane-proximal domains of N-cadherin are cleaved serially by a-disintegrin-and-metalloprotease 10 (ADAM10) and then presenilin 1(PS1, catalytic subunit of the γ-secretase complex). To assess the physiological significance of the initial N-cadherin cleavage, we engineer the mouse genome to create a knock-in allele with tandem missense mutations in the mouse N-cadherin/Cadherin-2 gene (Cdh2 R714G, I715D, or GD) that confers resistance on proteolysis by ADAM10 (GD mice). GD mice showed a better performance in the radial maze test, with significantly less revisiting errors after intervals of 30 and 300 s than WT, and a tendency for enhanced freezing in fear conditioning. Interestingly, GD mice reveal higher complexity in the tufts of thorny excrescence in the CA3 region of the hippocampus. Fine morphometry with serial section transmission electron microscopy (ssTEM) and three-dimensional (3D) reconstruction reveals significantly higher synaptic density, significantly smaller PSD area, and normal dendritic spine volume in GD mice. This knock-in mouse has provided in vivo evidence that ADAM10-mediated cleavage is a critical step in N-cadherin shedding and degradation and involved in the structure and function of glutamatergic synapses, which affect the memory function.
Collapse
Affiliation(s)
- M. Asada-Utsugi
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho Otsu, Shiga, 520-2192 Japan
| | - K. Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M. Kubota
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y. Noda
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Y. Tashiro
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T. M. Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - H. Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - M. Urushitani
- Department of Neurology, Shiga University of Medical Science, Seta-Tsukinowa-Cho Otsu, Shiga, 520-2192 Japan
| | - R. Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - S. Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192 Japan
| | - T. Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192 Japan
| | - N. Ageta-Ishihara
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, 464-8602 Japan
| | - K. Kobayashi
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602 Japan
| | - M. Kinoshita
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya, 464-8602 Japan
| | - A. Kinoshita
- School of Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
33
|
Wang H, Muthu Karuppan MK, Nair M, Lakshmana MK. Autophagy-Dependent Increased ADAM10 Mature Protein Induced by TFEB Overexpression Is Mediated Through PPARα. Mol Neurobiol 2021; 58:2269-2283. [PMID: 33417226 DOI: 10.1007/s12035-020-02230-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Nonamyloidogenic processing of amyloid precursor protein (APP) by augmenting ADAM10 is a promising therapeutic strategy for Alzheimer's disease (AD). Therefore identification of molecular pathways that regulate ADAM10 expression is crucial. Autophagy is strongly dysregulated in AD, and TFEB was recently shown to be a master regulator of autophagy-lysosome pathway (ALP). Here, we report that TFEB expression in HeLa cells increased ADAM10 mature form by 72% (p < 0.01, n = 4), while TFEB knockdown by CRISPR strategy reduced ADAM10 mature form by 36% (p < 0.05, n = 4). Autophagy inhibition by 3-methyladenine (3-MA), but not bafilomycin A1 (BAF1), reduced ADAM10 mature form by 49% (p < 0.05, n = 4) in the TFEB expressing HeLa cells. Autophagy activation by 3 h of starvation increased ADAM10 to 91% (p < 0.001, n = 6) relative to 51% (p < 0.01, n = 6) in the nutrient-fed cells. Further, siRNAs targeted against PPARα in HeLa cells decreased ADAM10 levels by 28% (p < 0.05, n = 6) relative to the cells treated with scrambled siRNAs. Further, incubation of EGFP-TFEB expressing HeLa cells with PPARα antagonist, but not PPARβ or PPARγ antagonists, prevented TFEB-induced increase in ADAM10 levels. Importantly, flag-TFEB expression in the brain also increased ADAM10 by 60% (p < 0.05, n = 3) in the cortical and 34% (p < 0.001, n = 3) in the hippocampal homogenates. ADAM10 activity also increased by 57% (p < 0.01, n = 3) in the HeLa cells. Finally, TFEB-induced ADAM10 potentiation led to increased secretion of sAPPα by 154% (p < 0.001, n = 3) in the cortex and 62% (p < 0.001, n = 3) in the hippocampus. Thus, TFEB expression enhances nonamyloidogenic processing of APP. In conclusion, TFEB expression induces ADAM10 in an autophagy-dependent manner through PPARα.
Collapse
Affiliation(s)
- Hongjie Wang
- Institute for Human Health & Disease Intervention (I-HEALTH), Department of Chemistry and Biochemistry, Center for Molecular Biology and Biotechnology, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL, 33458, USA
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200, 8th Street, University Park, Miami, FL, 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200, 8th Street, University Park, Miami, FL, 33199, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200, 8th Street, University Park, Miami, FL, 33199, USA.
| |
Collapse
|
34
|
Zheng Y, Verhoeff TA, Perez Pardo P, Garssen J, Kraneveld AD. The Gut-Brain Axis in Autism Spectrum Disorder: A Focus on the Metalloproteases ADAM10 and ADAM17. Int J Mol Sci 2020; 22:ijms22010118. [PMID: 33374371 PMCID: PMC7796333 DOI: 10.3390/ijms22010118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a spectrum of disorders that are characterized by problems in social interaction and repetitive behavior. The disease is thought to develop from changes in brain development at an early age, although the exact mechanisms are not known yet. In addition, a significant number of people with ASD develop problems in the intestinal tract. A Disintegrin And Metalloproteases (ADAMs) include a group of enzymes that are able to cleave membrane-bound proteins. ADAM10 and ADAM17 are two members of this family that are able to cleave protein substrates involved in ASD pathogenesis, such as specific proteins important for synapse formation, axon signaling and neuroinflammation. All these pathological mechanisms are involved in ASD. Besides the brain, ADAM10 and ADAM17 are also highly expressed in the intestines. ADAM10 and ADAM17 have implications in pathways that regulate gut permeability, homeostasis and inflammation. These metalloproteases might be involved in microbiota-gut-brain axis interactions in ASD through the regulation of immune and inflammatory responses in the intestinal tract. In this review, the potential roles of ADAM10 and ADAM17 in the pathology of ASD and as targets for new therapies will be discussed, with a focus on the gut-brain axis.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Tessa A. Verhoeff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Global Centre of Excellence Immunology, Danone Nutricia Research B.V., 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584CG Utrecht, The Netherlands; (Y.Z.); (T.A.V.); (P.P.P.); (J.G.)
- Correspondence: ; Tel.: +31-(0)3-02534509
| |
Collapse
|
35
|
Target Enzymes Considered for the Treatment of Alzheimer's Disease and Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2010728. [PMID: 33224974 PMCID: PMC7669341 DOI: 10.1155/2020/2010728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Various amyloidogenic proteins have been suggested to be involved in the onset and progression of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Particularly, the aggregation of misfolded amyloid-β and hyperphosphorylated tau and α-synuclein are linked to the pathogenesis of AD and PD, respectively. In order to care the diseases, multiple small molecules have been developed to regulate the aggregation pathways of these amyloid proteins. In addition to controlling the aggregation of amyloidogenic proteins, maintaining the levels of the proteins in the brain by amyloid degrading enzymes (ADE; neprilysin (NEP), insulin-degrading enzyme (IDE), asparagine endopeptidase (AEP), and ADAM10) is also essential to cure AD and PD. Therefore, numerous biological molecules and chemical agents have been investigated as either inducer or inhibitor against the levels and activities of ADE. Although the side effect of enhancing the activity of ADE could occur, the removal of amyloidogenic proteins could result in a relatively good strategy to treat AD and PD. Furthermore, since the causes of ND are diverse, various multifunctional (multitarget) chemical agents have been designed to control the actions of multiple risk factors of ND, including amyloidogenic proteins, metal ions, and reactive oxygen species. Many of them, however, were invented without considerations of regulating ADE levels and actions. Incorporation of previously created molecules with the chemical agents handling ADE could be a promising way to treat AD and PD. This review introduces the ADE and molecules capable of modulating the activity and expression of ADE.
Collapse
|
36
|
Feng Y, Yang H, Yue Y, Tian F. MicroRNAs and target genes in epileptogenesis. Epilepsia 2020; 61:2086-2096. [PMID: 32944964 DOI: 10.1111/epi.16687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Epilepsy is a chronic brain dysfunction. Current antiepileptic medicines cannot prevent epileptogenesis. Increasing data have shown that microRNAs (miRNAs) are selectively altered within the epileptic hippocampi of experimental models and human tissues, and these alterations affect the genes that control epileptogenesis. Furthermore, manipulation of miRNAs in animal models can modify epileptogenesis. As a result, miRNAs have been proposed as promising targets for treating epilepsy. We searched PubMed using the terms "microRNAs/miRNAs AND epilepsy", "microRNAs/miRNAs AND epileptogenesis", and "microRNAs/miRNAs AND seizure". We selected the articles in which the relationship between miRNAs and target gene(s) was validated and manipulation of miRNAs in in vivo epilepsy models modified epileptogenesis during the chronic phase via gene regulation. A total of 13 miRNAs were found in the present review. Based on the current analysis of miRNAs and their target gene(s), each miRNA has limitations as a potential epilepsy target. Importantly, miR-211 or miR-128 transgenic mice displayed seizures. These findings highlight new developments for epileptogenesis prevention. Developing novel strategies to modify epileptogenesis will be effective in curing epilepsy patients. This article provides an overview of the clinical application of miRNAs as novel targets for epilepsy.
Collapse
Affiliation(s)
- Yanyan Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yinyan Yue
- Department of Pediatrics, First Hospital of Zhengzhou University, Zhengzhou, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Shi L, Bergson CM. Neuregulin 1: an intriguing therapeutic target for neurodevelopmental disorders. Transl Psychiatry 2020; 10:190. [PMID: 32546684 PMCID: PMC7297728 DOI: 10.1038/s41398-020-00868-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Neurodevelopmental psychiatric disorders including schizophrenia (Sz) and attention deficit hyperactivity disorder (ADHD) are chronic mental illnesses, which place costly and painful burdens on patients, their families and society. In recent years, the epidermal growth factor (EGF) family member Neuregulin 1 (NRG1) and one of its receptors, ErbB4, have received considerable attention due to their regulation of inhibitory local neural circuit mechanisms important for information processing, attention, and cognitive flexibility. Here we examine an emerging body of work indicating that either decreasing NRG1-ErbB4 signaling in fast-spiking parvalbumin positive (PV+) interneurons or increasing it in vasoactive intestinal peptide positive (VIP+) interneurons could reactivate cortical plasticity, potentially making it a future target for gene therapy in adults with neurodevelopmental disorders. We propose preclinical studies to explore this model in prefrontal cortex (PFC), but also review the many challenges in pursuing cell type and brain-region-specific therapeutic approaches for the NRG1 system.
Collapse
Affiliation(s)
- Liang Shi
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Boulevard, Augusta, GA 30912 USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Cell Biology, Emory University School of Medicine, Atlanta, GA USA
| | - Clare M. Bergson
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, 1460 Laney Walker Boulevard, Augusta, GA 30912 USA
| |
Collapse
|
38
|
Barthet G, Mulle C. Presynaptic failure in Alzheimer's disease. Prog Neurobiol 2020; 194:101801. [PMID: 32428558 DOI: 10.1016/j.pneurobio.2020.101801] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Synaptic loss is the best correlate of cognitive deficits in Alzheimer's disease (AD). Extensive experimental evidence also indicates alterations of synaptic properties at the early stages of disease progression, before synapse loss and neuronal degeneration. A majority of studies in mouse models of AD have focused on post-synaptic mechanisms, including impairment of long-term plasticity, spine structure and glutamate receptor-mediated transmission. Here we review the literature indicating that the synaptic pathology in AD includes a strong presynaptic component. We describe the evidence indicating presynaptic physiological functions of the major molecular players in AD. These include the amyloid precursor protein (APP) and the two presenilin (PS) paralogs PS1 or PS2, genetically linked to the early-onset form of AD, in addition to tau which accumulates in a pathological form in the AD brain. Three main mechanisms participating in presynaptic functions are highlighted. APP fragments bind to presynaptic receptors (e.g. nAChRs and GABAB receptors), presenilins control Ca2+ homeostasis and Ca2+-sensors, and tau regulates the localization of presynaptic molecules and synaptic vesicles. We then discuss how impairment of these presynaptic physiological functions can explain or forecast the hallmarks of synaptic impairment and associated dysfunction of neuronal circuits in AD. Beyond the physiological roles of the AD-related proteins, studies in AD brains also support preferential presynaptic alteration. This review features presynaptic failure as a strong component of pathological mechanisms in AD.
Collapse
Affiliation(s)
- Gael Barthet
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, France.
| |
Collapse
|
39
|
Suh J, Romano DM, Nitschke L, Herrick SP, DiMarzio BA, Dzhala V, Bae JS, Oram MK, Zheng Y, Hooli B, Mullin K, Gennarino VA, Wasco W, Schmahmann JD, Albers MW, Zoghbi HY, Tanzi RE. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell 2020; 178:1159-1175.e17. [PMID: 31442405 DOI: 10.1016/j.cell.2019.07.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/21/2018] [Accepted: 07/24/2019] [Indexed: 01/28/2023]
Abstract
Expansion of CAG trinucleotide repeats in ATXN1 causes spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease that impairs coordination and cognition. While ATXN1 is associated with increased Alzheimer's disease (AD) risk, CAG repeat number in AD patients is not changed. Here, we investigated the consequences of ataxin-1 loss of function and discovered that knockout of Atxn1 reduced CIC-ETV4/5-mediated inhibition of Bace1 transcription, leading to increased BACE1 levels and enhanced amyloidogenic cleavage of APP, selectively in AD-vulnerable brain regions. Elevated BACE1 expression exacerbated Aβ deposition and gliosis in AD mouse models and impaired hippocampal neurogenesis and olfactory axonal targeting. In SCA1 mice, polyglutamine-expanded mutant ataxin-1 led to the increase of BACE1 post-transcriptionally, both in cerebrum and cerebellum, and caused axonal-targeting deficit and neurodegeneration in the hippocampal CA2 region. These findings suggest that loss of ataxin-1 elevates BACE1 expression and Aβ pathology, rendering it a potential contributor to AD risk and pathogenesis.
Collapse
Affiliation(s)
- Jaehong Suh
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | - Donna M Romano
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Larissa Nitschke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott P Herrick
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Britt A DiMarzio
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jun-Seok Bae
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Yuejiao Zheng
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Basavaraj Hooli
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Kristina Mullin
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Wilma Wasco
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
40
|
Brummer T, Müller SA, Pan-Montojo F, Yoshida F, Fellgiebel A, Tomita T, Endres K, Lichtenthaler SF. NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer's disease. EMBO Mol Med 2020; 11:emmm.201809695. [PMID: 30833305 PMCID: PMC6460357 DOI: 10.15252/emmm.201809695] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid‐beta. Yet, ADAM10 has additional substrates, which may cause mechanism‐based side effects upon therapeutic ADAM10 activation. However, they may also serve—in addition to APP—as biomarkers to monitor ADAM10 activity in patients and to develop APP‐selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM. ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM‐dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate‐selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM. Taken together, this study demonstrates an NrCAM‐dependent function for ADAM10 in neurite outgrowth and reveals that a substrate‐selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Francisco Pan-Montojo
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
41
|
Cheng C, Wang Y, Guo L, Lu X, Zhu W, Muhammad W, Zhang L, Lu L, Gao J, Tang M, Chen F, Gao X, Li H, Chai R. Age-related transcriptome changes in Sox2+ supporting cells in the mouse cochlea. Stem Cell Res Ther 2019; 10:365. [PMID: 31791390 PMCID: PMC6889721 DOI: 10.1186/s13287-019-1437-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background Inner ear supporting cells (SCs) in the neonatal mouse cochlea are a potential source for hair cell (HC) regeneration, but several studies have shown that the regeneration ability of SCs decreases dramatically as mice age and that lost HCs cannot be regenerated in adult mice. To better understand how SCs might be better used to regenerate HCs, it is important to understand how the gene expression profile changes in SCs at different ages. Methods Here, we used Sox2GFP/+ mice to isolate the Sox2+ SCs at postnatal day (P)3, P7, P14, and P30 via flow cytometry. Next, we used RNA-seq to determine the transcriptome expression profiles of P3, P7, P14, and P30 SCs. To further analyze the relationships between these age-related and differentially expressed genes in Sox2+ SCs, we performed gene ontology (GO) analysis. Results Consistent with previous reports, we also found that the proliferation and HC regeneration ability of isolated Sox2+ SCs significantly decreased as mice aged. We identified numerous genes that are enriched and differentially expressed in Sox2+ SCs at four different postnatal ages, including cell cycle genes, signaling pathway genes, and transcription factors that might be involved in regulating the proliferation and HC differentiation ability of SCs. We thus present a set of genes that might regulate the proliferation and HC regeneration ability of SCs, and these might serve as potential new therapeutic targets for HC regeneration. Conclusions In our research, we found several genes that might play an important role in regulating the proliferation and HC regeneration ability of SCs. These datasets are expected to serve as a resource to provide potential new therapeutic targets for regulating the ability of SCs to regenerate HCs in postnatal mammals.
Collapse
Affiliation(s)
- Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.,Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yunfeng Wang
- Shanghai Fenyang Vision & Audition Center, Shanghai, China.,ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Weijie Zhu
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Waqas Muhammad
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.,Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Junyan Gao
- Jiangsu Rehabilitation Research Center for Hearing and Speech Impairment, Nanjing, 210004, Jiangsu, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China.
| | - Renjie Chai
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,MOE Key Laboratory for Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Co-Innovation Center of Neuroregeneration, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
42
|
Abstract
The Amyloid Precursor Protein (APP) is infamous for its proposed pivotal role in the pathogenesis of Alzheimer’s disease (AD). Much research on APP focusses on potential contributions to neurodegeneration, mostly based on mouse models with altered expression or mutated forms of APP. However, cumulative evidence from recent years indicates the indispensability of APP and its metabolites for normal brain physiology. APP contributes to the regulation of synaptic transmission, plasticity, and calcium homeostasis. It plays an important role during development and it exerts neuroprotective effects. Of particular importance is the soluble secreted fragment APPsα which mediates many of its physiological actions, often counteracting the effects of the small APP-derived peptide Aβ. Understanding the contribution of APP for normal functions of the nervous system is of high importance, both from a basic science perspective and also as a basis for generating new pathophysiological concepts and therapeutic approaches in AD. In this article, we review the physiological functions of APP and its metabolites, focusing on synaptic transmission, plasticity, calcium signaling, and neuronal network activity.
Collapse
Affiliation(s)
- Dimitri Hefter
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany.,RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Susann Ludewig
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Martin Korte
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany.,Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
43
|
Disturbed Prefrontal Cortex Activity in the Absence of Schizophrenia-Like Behavioral Dysfunction in Arc/Arg3.1 Deficient Mice. J Neurosci 2019; 39:8149-8163. [PMID: 31488612 DOI: 10.1523/jneurosci.0623-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Arc/Arg3.1, an activity regulated immediate early gene, is essential for learning and memory, synaptic plasticity, and maturation of neural networks. It has also been implicated in several neurodevelopmental disorders, including schizophrenia. Here, we used male and female constitutive and conditional Arc/Arg3.1 knock-out (KO) mice to investigate the causal relationship between Arc/Arg3.1 deletion and schizophrenia-linked neurophysiological and behavioral phenotypes. Using in vivo local field potential recordings, we observed dampened oscillatory activity in the prefrontal cortex (PFC) of the KO and early conditional KO (early-cKO) mice, in which Arc/Arg3.1 was deleted perinatally. Whole-cell patch-clamp recordings from neurons in PFC slices revealed altered synaptic properties and reduced network gain in the KO mice as possible mechanisms underlying the oscillation deficits. In contrast, we measured normal oscillatory activity in the PFC of late conditional KO (late-cKO) mice, in which Arc/Arg3.1 was deleted during late postnatal development. Our data show that constitutive Arc/Arg3.1 KO mice exhibit no deficit in social engagement, working memory, sensorimotor gating, native locomotor activity, and dopaminergic innervation. Moreover, adolescent social isolation, an environmental stressor, failed to induce deficits in sociability or sensorimotor gating in adult KO mice. Thus, genetic removal of Arc/Arg3.1 per se does not cause schizophrenia-like behavior. Prenatal or perinatal deletion of Arc/Arg3.1 alters cortical network activity, however, without overtly disrupting the balance of excitation and inhibition in the brain and not promoting schizophrenia. Misregulation of Arc/Arg3.1 rather than deletion could potentially tip this balance and thereby promote emergence of schizophrenia and other neuropsychiatric disorders.SIGNIFICANCE STATEMENT The activity-regulated and memory-linked gene Arc/Arg3.1 has been implicated in the pathogenesis of schizophrenia, but direct evidence and a mechanistic link are still missing. The current study asks whether loss of Arc/Arg3.1 can affect brain circuitry and cause schizophrenia-like symptoms in mice. The findings demonstrate that genetic deletion of Arc/Arg3.1 before puberty alters synaptic function and prefrontal cortex activity. Although brain networks are disturbed, genetic deletion of Arc/Arg3.1 does not cause schizophrenia-like behavior, even when combined with an environmental insult. It remains to be seen whether misregulation of Arc/Arg3.1 might critically imbalance brain networks and lead to emergence of schizophrenia.
Collapse
|
44
|
Trotter JH, Hao J, Maxeiner S, Tsetsenis T, Liu Z, Zhuang X, Südhof TC. Synaptic neurexin-1 assembles into dynamically regulated active zone nanoclusters. J Cell Biol 2019; 218:2677-2698. [PMID: 31262725 PMCID: PMC6683742 DOI: 10.1083/jcb.201812076] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/10/2019] [Accepted: 05/30/2019] [Indexed: 12/04/2022] Open
Abstract
Neurexins are well-characterized presynaptic cell adhesion molecules that engage multifarious postsynaptic ligands and organize diverse synapse properties. However, the precise synaptic localization of neurexins remains enigmatic. Using super-resolution microscopy, we demonstrate that neurexin-1 forms discrete nanoclusters at excitatory synapses, revealing a novel organizational feature of synaptic architecture. Synapses generally contain a single nanocluster that comprises more than four neurexin-1 molecules and that also includes neurexin-2 and/or neurexin-3 isoforms. Moreover, we find that neurexin-1 is physiologically cleaved by ADAM10 similar to its ligand neuroligin-1, with ∼4-6% of neurexin-1 and ∼2-3% of neuroligin-1 present in the adult brain as soluble ectodomain proteins. Blocking ADAM10-mediated neurexin-1 cleavage dramatically increased the synaptic neurexin-1 content, thereby elevating the percentage of Homer1(+) excitatory synapses containing neurexin-1 nanoclusters from 40-50% to ∼80%, and doubling the number of neurexin-1 molecules per nanocluster. Taken together, our results reveal an unexpected nanodomain organization of synapses in which neurexin-1 is assembled into discrete presynaptic nanoclusters that are dynamically regulated via ectodomain cleavage.
Collapse
Affiliation(s)
- Justin H Trotter
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Junjie Hao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Department of Physics, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Stephan Maxeiner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Theodoros Tsetsenis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA
- Department of Physics, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA
| |
Collapse
|
45
|
Hsia HE, Tüshaus J, Brummer T, Zheng Y, Scilabra SD, Lichtenthaler SF. Functions of 'A disintegrin and metalloproteases (ADAMs)' in the mammalian nervous system. Cell Mol Life Sci 2019; 76:3055-3081. [PMID: 31236626 PMCID: PMC11105368 DOI: 10.1007/s00018-019-03173-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
'A disintegrin and metalloproteases' (ADAMs) are a family of transmembrane proteins with diverse functions in multicellular organisms. About half of the ADAMs are active metalloproteases and cleave numerous cell surface proteins, including growth factors, receptors, cytokines and cell adhesion proteins. The other ADAMs have no catalytic activity and function as adhesion proteins or receptors. Some ADAMs are ubiquitously expressed, others are expressed tissue specifically. This review highlights functions of ADAMs in the mammalian nervous system, including their links to diseases. The non-proteolytic ADAM11, ADAM22 and ADAM23 have key functions in neural development, myelination and synaptic transmission and are linked to epilepsy. Among the proteolytic ADAMs, ADAM10 is the best characterized one due to its substrates Notch and amyloid precursor protein, where cleavage is required for nervous system development or linked to Alzheimer's disease (AD), respectively. Recent work demonstrates that ADAM10 has additional substrates and functions in the nervous system and its substrate selectivity may be regulated by tetraspanins. New roles for other proteolytic ADAMs in the nervous system are also emerging. For example, ADAM8 and ADAM17 are involved in neuroinflammation. ADAM17 additionally regulates neurite outgrowth and myelination and its activity is controlled by iRhoms. ADAM19 and ADAM21 function in regenerative processes upon neuronal injury. Several ADAMs, including ADAM9, ADAM10, ADAM15 and ADAM30, are potential drug targets for AD. Taken together, this review summarizes recent progress concerning substrates and functions of ADAMs in the nervous system and their use as drug targets for neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Tobias Brummer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Yuanpeng Zheng
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
| | - Simone D Scilabra
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany
- Fondazione Ri.MED, Department of Research, IRCCS-ISMETT, via Tricomi 5, 90127, Palermo, Italy
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377, Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technische Universität München, 81675, Munich, Germany.
- Munich Center for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
46
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
47
|
Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. J Cell Mol Med 2019; 23:4494-4504. [PMID: 31087543 PMCID: PMC6584734 DOI: 10.1111/jcmm.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of epileptic seizures in Alzheimer's disease (AD) has attracted an increasing amount of attention in recent years, and many cohort studies have found several risk factors associated with the genesis of seizures in AD. Among these factors, young age and severe dementia are seemingly contradictory and independent risk factors, indicating that the pathogenesis of epileptic seizures is, to a certain extent, stage‐dependent. A disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) is a crucial α‐secretase responsible for ectodomain shedding of its substrates; thus, the function of this protein depends on the biological effects of its substrates. Intriguingly, transgenic models have demonstrated ADAM10 to be associated with epilepsy. Based on the biological effects of its substrates, the potential pathogenic roles of ADAM10 in epileptic seizures can be classified into amyloidogenic processes in the ageing stage and cortical dysplasia in the developmental stage. Therefore, ADAM10 is reviewed here as a stage‐dependent modulator in the pathogenesis of epilepsy. Current data regarding ADAM10 in epileptic seizures were collected and reviewed for potential pathogenic roles (ie amyloidogenic processes and cortical dysplasia) and regulatory mechanisms (ie transcriptional and posttranscriptional regulation). These findings are then discussed in terms of the significance of the stage‐dependent functions of ADAM10 in epilepsy. Several potential targets for seizure control, such as candidate transcription factors and microRNAs that regulate ADAM10, as well as potential genetic screening tools for the early recognition of cortical dysplasia, have been suggested but must be studied in more detail.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Vezzoli E, Caron I, Talpo F, Besusso D, Conforti P, Battaglia E, Sogne E, Falqui A, Petricca L, Verani M, Martufi P, Caricasole A, Bresciani A, Cecchetti O, Rivetti di Val Cervo P, Sancini G, Riess O, Nguyen H, Seipold L, Saftig P, Biella G, Cattaneo E, Zuccato C. Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington's disease. J Clin Invest 2019; 129:2390-2403. [PMID: 31063986 DOI: 10.1172/jci120616] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/14/2019] [Indexed: 01/10/2023] Open
Abstract
A disintegrine and metalloproteinase 10 (ADAM10) is implicated in synaptic function through its interaction with postsynaptic receptors and adhesion molecules. Here, we report that levels of active ADAM10 are increased in Huntington's disease (HD) mouse cortices and striata and in human postmortem caudate. We show that, in the presence of polyglutamine-expanded (polyQ-expanded) huntingtin (HTT), ADAM10 accumulates at the postsynaptic densities (PSDs) and causes excessive cleavage of the synaptic protein N-cadherin (N-CAD). This aberrant phenotype is also detected in neurons from HD patients where it can be reverted by selective silencing of mutant HTT. Consistently, ex vivo delivery of an ADAM10 synthetic inhibitor reduces N-CAD proteolysis and corrects electrophysiological alterations in striatal medium-sized spiny neurons (MSNs) of 2 HD mouse models. Moreover, we show that heterozygous conditional deletion of ADAM10 or delivery of a competitive TAT-Pro-ADAM10709-729 peptide in R6/2 mice prevents N-CAD proteolysis and ameliorates cognitive deficits in the mice. Reduction in synapse loss was also found in R6/2 mice conditionally deleted for ADAM10. Taken together, these results point to a detrimental role of hyperactive ADAM10 at the HD synapse and provide preclinical evidence of the therapeutic potential of ADAM10 inhibition in HD.
Collapse
Affiliation(s)
- Elena Vezzoli
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Ilaria Caron
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnologies, University of Pavia, Pavia, Italy
| | - Dario Besusso
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Elisa Battaglia
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Elisa Sogne
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science & Engineering (BESE) Division, NABLA Lab, Thuwal, Saudi Arabia
| | - Andrea Falqui
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science & Engineering (BESE) Division, NABLA Lab, Thuwal, Saudi Arabia
| | | | | | | | | | | | | | - Pia Rivetti di Val Cervo
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Giulio Sancini
- School of Medicine and Surgery, Nanomedicine Center, Neuroscience Center, University of Milano-Bicocca, Monza, Italy
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Hoa Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Lisa Seipold
- Institute of Biochemistry, Christian Albrechts University of Kiel, Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University of Kiel, Kiel, Germany
| | - Gerardo Biella
- Department of Biology and Biotechnologies, University of Pavia, Pavia, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Chiara Zuccato
- Department of Biosciences, University of Milan, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| |
Collapse
|
49
|
Zhu X, Yao Y, Liu Y, Zhou R, Zhang W, Hu Q, Liu H, Al Hamda MH, Zhang A. Regulation of ADAM10 by MicroRNA-23a Contributes to Epileptogenesis in Pilocarpine-Induced Status Epilepticus Mice. Front Cell Neurosci 2019; 13:180. [PMID: 31114485 PMCID: PMC6503058 DOI: 10.3389/fncel.2019.00180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/12/2019] [Indexed: 01/13/2023] Open
Abstract
ADAM10, a member of the disintegrin and metalloproteinase domain-containing protein (ADAM) family, has been reported to mediate proteolytic shedding of cell surface proteins. An increasing body of evidence indicates that ADAM10 is involved in various neurological disorders including epilepsy. However, the molecular mechanisms underlying the regulation of ADAM10 expression in the epileptic brain remain poorly understood. In this study, we demonstrate that ADAM10 is targeted by microRNA-23a (miR-23a) in the hippocampus. Inhibition of miR-23a increased hippocampal ADAM10 expression while an increase in miR-23a suppressed hippocampal ADAM10 expression in pilocarpine-induced status epilepticus (SE) mice. Furthermore, inhibition of miR-23a suppressed spontaneous recurrent seizures through up-regulation of ADAM10 in pilocarpine-induced SE mice. Our findings suggest that miR-23a targeting of ADAM10 contributes to epileptogenesis in temporal lobe epilepsy. Thus, the miR-23a-ADAM10 pathway in the epileptic brain may provide a novel target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yaoyao Liu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Rong Zhou
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Wei Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Qiang Hu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Hang Liu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | | | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
50
|
Kudryashova IV. The Molecular Basis of Destabilization of Synapses as a Factor of Structural Plasticity. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|