1
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Spencer NJ, Keating DJ. Role of 5-HT in the enteric nervous system and enteroendocrine cells. Br J Pharmacol 2025; 182:471-483. [PMID: 35861711 DOI: 10.1111/bph.15930] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Since the 1950s, considerable circumstantial evidence had been presented that endogenous 5-HT (serotonin) synthesized from within the wall of the gastrointestinal (GI) tract played an important role in GI motility and transit. However, identifying the precise functional role of gut-derived 5-HT has been difficult to ascertain, for a number of reasons. Over the past decade, as recording techniques have advanced significantly and access to new genetically modified animals improved, there have been major new insights and major changes in our understanding of the functional role of endogenous 5-HT in the GI tract. Data from many different laboratories have shown that major patterns of GI motility and transit still occur with minor or no, change when all endogenous 5-HT is pharmacologically or genetically ablated from the gut. Furthermore, antagonists of 5-HT3 receptors are equally, or more potent at inhibiting GI motility in segments of intestine that are completely depleted of endogenous 5-HT. Here, the most recent findings are discussed with regard to the functional role of endogenous 5-HT in enterochromaffin cells and enteric neurons in gut motility and more broadly in some major homeostatic pathways.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Kim JM, Lee HL, Go MJ, Kim HJ, Sung MJ, Heo HJ. Green Tea Attenuates the Particulate Matter (PM) 2.5-Exposed Gut-Brain Axis Dysfunction through Regulation of Intestinal Microenvironment and Hormonal Changes. J Microbiol Biotechnol 2024; 34:2492-2505. [PMID: 39572022 PMCID: PMC11729334 DOI: 10.4014/jmb.2409.09035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 12/31/2024]
Abstract
Chronic exposure to particulate matter (PM)2.5 causes brain damage through intestinal imbalance. This study was estimated to confirm the regulatory activity of green tea against chronic PM2.5 exposure-induced abnormal gut-brain axis (GBA) in BALB/c mice. The green tea, as an aqueous extract of matcha (EM), ameliorated the colon length, short chain fatty acid contents, antioxidant biomarkers, myeloperoxidase (MPO) activity, and serum inflammatory cytokines. EM regulated the gut microbiota related to tryptophan intake and hormone metabolism. EM showed regulatory effect of intestinal tight junction (TJ) protein, inflammatory response, and apoptotic biomarkers. In addition, EM improved PM2.5-induced tryptophan-related hormonal metabolic dysfunction in intestinal tissue and serum. Through the ameliorating effect on GBA function, the consumption of EM presented the protective effect against inflammatory effect, apoptosis, synaptic damage, and hormonal activity in cerebral tissue, and suppressed abnormal change of brain lipid metabolites. In particular, EM intake showed relatively excellent improvement effects on indicators including Bacteroides, Ruminococcus, Murinobaculaceae, Allopreyotella, cyclooxygenase-2 (COX-2), acetylcholinesterase (AChE), 11,12-dihydroxyeicosatrienoic acid (DHET), and intestinal acetate from the PM group. These findings indicate that the dietary intake of EM might provide a regulatory effect against PM2.5-exposed GBA dysfunction via the intestinal microbiota and hormonal changes.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mi Jeong Sung
- Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Yang D, Bai R, Li C, Sun Y, Jing H, Wang Z, Chen Y, Dong Y. Early-Life Stress Induced by Neonatal Maternal Separation Leads to Intestinal 5-HT Accumulation and Causes Intestinal Dysfunction. J Inflamm Res 2024; 17:8945-8964. [PMID: 39588137 PMCID: PMC11586501 DOI: 10.2147/jir.s488290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Background The early childhood period is a critical development stage, and experiencing stress during this time may increase the risk of gastrointestinal disorders, including irritable bowel syndrome (IBS). Neonatal maternal separation (NMS) in rodent models has been shown to cause bowel dysfunctions similar to IBS, and 5-HT is considered to be a key regulator regulating intestinal function, but the precise underlying mechanisms remain unclear. Results We established a maternal separation stress mouse model to simulate early-life stress, exploring the expression patterns of 5-HT under chronic stress and its mechanisms affecting gut function. We observed a significant increase in 5-HT expression due to NMS, leading to disruptions in intestinal structure and function. However, inhibiting 5-HT reversed these effects, suggesting its potential as a therapeutic target. Furthermore, our research revealed that excess 5-HT in mice with early life stress increased intestinal neural network density and promoted excitatory motor neuron expression. Mechanistically, 5-HT activated the Wnt signaling pathway through the 5-HT4 receptor, promoting neurogenesis within the intestinal nervous system. Conclusion These findings shed light on the intricate changes induced by early life stress in the intestines, confirming the regulatory role of 5-HT in the enteric nervous system and providing potential insights for the development of novel therapies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rulan Bai
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, People’s Republic of China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, People’s Republic of China
| | - Hongyu Jing
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Shen H, Zhang C, Zhang Q, Lv Q, Liu H, Yuan H, Wang C, Meng F, Guo Y, Pei J, Yu C, Tie J, Chen X, Yu H, Zhang G, Wang X. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation 2024; 21:290. [PMID: 39508236 PMCID: PMC11539449 DOI: 10.1186/s12974-024-03282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Chronic ethanol exposure (CEE) is recognized as an important risk factor for depression, and the gut-brain axis has emerged as a key mechanism underlying chronic ethanol exposure-induced anxiety and depression-like behaviors. Short-chain fatty acids (SCFAs), which are the key metabolites generated by gut microbiota from insoluble dietary fiber, exert protective roles on the central nervous system, including the reduction of neuroinflammation. However, the link between gut microbial disturbances caused by chronic ethanol exposure, production of SCFAs, and anxiety and depression-like behaviors remains unclear. METHODS Initially, a 90-day chronic ethanol exposure model was established, followed by fecal microbiota transplantation model, which was supplemented with SCFAs via gavage. Anxiety and depression-like behaviors were determined by open field test, forced swim test, and elevated plus-maze. Serum and intestinal SCFAs levels were quantified using GC-MS. Changes in related indicators, including the intestinal barrier, intestinal inflammation, neuroinflammation, neurotrophy, and nerve damage, were detected using Western blotting, immunofluorescence, and Nissl staining. RESULTS Chronic ethanol exposure disrupted with gut microbial homeostasis, reduced the production of SCFAs, and led to anxiety and depression-like behaviors. Recipient mice transplanted with fecal microbiota that had been affected by chronic ethanol exposure exhibited impaired intestinal structure and function, low levels of SCFAs, intestinal inflammation, activation of neuroinflammation, a compromised blood-brain barrier, neurotrophic defects, alterations in the GABA system, anxiety and depression-like behaviors. Notably, the negative effects observed in these recipient mice were significantly alleviated through the supplementation of SCFAs. CONCLUSION SCFAs not only mitigate damage to intestinal structure and function but also alleviate various lesions in the central nervous system, such as neuroinflammation, and reduce anxiety and depression-like behaviors, which were triggered by transplantation with fecal microbiota that had been affected by chronic ethanol exposure, adding more support that SCFAs serve as a bridge between the gut and the brain.
Collapse
Affiliation(s)
- Hui Shen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chaoxu Zhang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qian Zhang
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, P. R. China
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, P. R. China
| | - Qing Lv
- Department of Clinical Nutrition, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, P. R. China
| | - Hao Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Huiya Yuan
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, Liaoning, 110122, P. R. China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, 110122, P. R. China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, 110032, P. R. China
| | - Fanyue Meng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Yufu Guo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jiaxin Pei
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Chenyang Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Jinming Tie
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaohuan Chen
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China
| | - Hao Yu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Guohua Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| | - Xiaolong Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, P. R. China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning, 110122, P. R. China.
- China Medical University Center of Forensic Investigation, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
6
|
Xiang J, Tang J, Kang F, Ye J, Cui Y, Zhang Z, Wang J, Wu S, Ye K. Gut-induced alpha-Synuclein and Tau propagation initiate Parkinson's and Alzheimer's disease co-pathology and behavior impairments. Neuron 2024; 112:3585-3601.e5. [PMID: 39241780 DOI: 10.1016/j.neuron.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/30/2024] [Accepted: 08/07/2024] [Indexed: 09/09/2024]
Abstract
Tau interacts with α-Synuclein (α-Syn) and co-localizes with it in the Lewy bodies, influencing α-Syn pathology in Parkinson's disease (PD). However, whether these biochemical events regulate α-Syn pathology spreading from the gut into the brain remains incompletely understood. Here, we show that α-Syn and Tau co-pathology is spread into the brain in gut-inducible SYN103+/- and/or TAU368+/- transgenic mouse models, eliciting behavioral defects. Gut pathology was initially observed, and α-Syn or Tau pathology was subsequently propagated into the DMV or NTS and then to other brain regions. Remarkably, more extensive spreading and widespread neuronal loss were found in double transgenic mice (Both) than in single transgenic mice. Truncal vagotomy and α-Syn deficiency significantly inhibited synucleinopathy or tauopathy spreading. The α-Syn PET tracer [18F]-F0502B detected α-Syn aggregates in the gut and brain. Thus, α-Syn and Tau co-pathology can propagate from the gut to the brain, triggering behavioral disorders.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingrong Tang
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiajun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yueying Cui
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Bornstein JC. Experimental West Nile virus infection provides lessons for recovery from enteric neuropathies. J Clin Invest 2024; 134:e185865. [PMID: 39484722 PMCID: PMC11527442 DOI: 10.1172/jci185865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Loss of enteric neurons leading to long-term gastrointestinal dysfunction is common to many diseases, and the path to functional recovery is unclear. In this issue of the JCI, Janova et al. report that West Nile virus killed enteric neurons and glia via CD4+ and CD8+ T cells acting through the perforin and Fas ligand pathways. Enteric glial cells contributed to neurogenesis and at least partial replacement of affected neurons. While neurogenesis is important for recovery, dysmotility and disruptions to the network structure persisted. Following enteric injury, the contribution of neurogenesis and the conditions that support restoration of enteric neural circuits for functional recovery remain for further investigation.
Collapse
|
8
|
Zhang H, Hasegawa Y, Suzuki M, Zhang T, Leitner DR, Jackson RP, Waldor MK. Mouse enteric neurons control intestinal plasmacytoid dendritic cell function via serotonin-HTR7 signaling. Nat Commun 2024; 15:9237. [PMID: 39455564 PMCID: PMC11511829 DOI: 10.1038/s41467-024-53545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonergic neurons in the central nervous system control behavior and mood, but knowledge of the roles of serotonergic circuits in the regulation of immune homeostasis is limited. Here, we employ mouse genetics to investigate the functions of enteric serotonergic neurons in the control of immune responses and find that these circuits regulate IgA induction and boost host defense against oral, but not systemic Salmonella Typhimurium infection. Enteric serotonergic neurons promote gut-homing, retention and activation of intestinal plasmacytoid dendritic cells (pDC). Mechanistically, this neuro-immune crosstalk is achieved through a serotonin-5-HT receptor 7 (HTR7) signaling axis that ultimately facilitates the pDC-mediated differentiation of IgA+ B cells from IgD+ precursors in the gut. Single-cell RNA-seq data further reveal novel patterns of bidirectional communication between specific subsets of enteric neurons and lamina propria DC. Our findings thus reveal a close interplay between enteric serotonergic neurons and gut immune homeostasis that enhances mucosal defense.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Masataka Suzuki
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ruaidhrí P Jackson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
He Z, Yu Q, He B, Liu J, Gao W, Chen X. Can depression lead to chronic constipation, or does chronic constipation worsen depression? NHANES 2005-2010 and bidirectional mendelian randomization analyses. BMC Gastroenterol 2024; 24:361. [PMID: 39390366 PMCID: PMC11468412 DOI: 10.1186/s12876-024-03454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Depression and chronic constipation often co-occur, but the reciprocal influence between the two remains unclear. The purpose of this study is to explore the potential association between depression and chronic constipation. METHODS This study initially utilized data from National Health and Nutrition Examination Survey (NHANES) 2005-2010 to explore the correlation between depression scores and chronic constipation, assessing the non-linear relationship between the two. Subsequently, we conducted a two-sample Mendelian randomization (MR) analysis to evaluate the causal relationship between depression and major depression with chronic constipation. The Inverse Variance Weighting (IVW) method served as the primary reference, supplemented by sensitivity tests. Finally, a reverse MR analysis was performed to assess the presence of any reverse causation. The STROBE-MR checklist for the reporting of MR studies was used in this study. RESULTS In the NHANES analysis, survey-weighted logistic regression revealed a significantly positive correlation between depression scores and chronic constipation (OR = 1.04, 95% CI = 1.02-1.07, p = 0.002), even after adjusting for the included covariates. The nonlinear analysis using Restricted Cubic Splines (RCS) enhanced the robustness of the association (P-non-liner = 0.01). The MR analysis also confirmed the causal relationship between depression (OR = 11.43, 95% CI = 1.85-70.67, p = 0.008) and major depression (OR = 1.12, 95% CI = 1.03-1.22, p = 0.007) with chronic constipation, passing rigorous sensitivity tests. No evidence of reverse causation was observed in the reverse MR analysis (P > 0.05). CONCLUSIONS Depression is positively correlated with the risk of chronic constipation. Therefore, enhancing attention to chronic constipation in patients with depression may be effective in clinical practice.
Collapse
Affiliation(s)
- ZhiGuo He
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - QianLe Yu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - Bin He
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - JieFeng Liu
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China
| | - WenBin Gao
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China.
| | - Xiong Chen
- Department of General Surgery, Affiliated Changsha Hospital of Hunan Normal University, No. 70, Lushan Road, Changsha, 410000, PR China.
| |
Collapse
|
10
|
Chaverra M, Cheney AM, Scheel A, Miller A, George L, Schultz A, Henningsen K, Kominsky D, Walk H, Kennedy WR, Kaufmann H, Walk S, Copié V, Lefcort F. ELP1, the Gene Mutated in Familial Dysautonomia, Is Required for Normal Enteric Nervous System Development and Maintenance and for Gut Epithelium Homeostasis. J Neurosci 2024; 44:e2253232024. [PMID: 39138000 PMCID: PMC11391678 DOI: 10.1523/jneurosci.2253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.
Collapse
Affiliation(s)
- Marta Chaverra
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alexandra M Cheney
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Alpha Scheel
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alessa Miller
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - Anastasia Schultz
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Katelyn Henningsen
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Douglas Kominsky
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Heather Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - William R Kennedy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, New York 10016
| | - Seth Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Valérie Copié
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Frances Lefcort
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
11
|
El Baassiri MG, Raouf Z, Jang HS, Scheese D, Duess JW, Fulton WB, Sodhi CP, Hackam DJ, Nasr IW. Ccr2-dependent monocytes exacerbate intestinal inflammation and modulate gut serotonergic signaling following traumatic brain injury. J Trauma Acute Care Surg 2024; 97:356-364. [PMID: 38189659 DOI: 10.1097/ta.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to acute gastrointestinal dysfunction and mucosal damage, resulting in feeding intolerance. C-C motif chemokine receptor 2 (Ccr2 + ) monocytes are crucial immune cells that regulate the gut's inflammatory response via the brain-gut axis. Using Ccr2 ko mice, we investigated the intricate interplay between these cells to better elucidate the role of systemic inflammation after TBI. METHODS A murine-controlled cortical impact model was used, and results were analyzed on postinjury days 1 and 3. The experimental groups included (1) sham C57Bl/6 wild type (WT), (2) TBI WT, (3) sham Ccr2 ko , and (4) TBI Ccr2 ko . Mice were euthanized on postinjury days 1 and 3 to harvest the ileum and study intestinal dysfunction and serotonergic signaling using a combination of quantitative real-time polymerase chain reaction, immunohistochemistry, fluorescein isothiocyanate-dextran motility assays, and flow cytometry. Student's t test and one-way analysis of variance were used for statistical analysis, with significance achieved when p < 0.05. RESULTS Traumatic brain injury resulted in severe dysfunction and dysmotility of the small intestine in WT mice as established by significant upregulation of inflammatory cytokines iNOS , Lcn2 , TNFα , and IL1β and the innate immunity receptor toll-like receptor 4 ( Tlr4 ). This was accompanied by disruption of genes related to serotonin synthesis and degradation. Notably, Ccr2 ko mice subjected to TBI showed substantial improvements in intestinal pathology. Traumatic brain injury Ccr2 ko groups demonstrated reduced expression of inflammatory mediators ( iNOS , Lcn2 , IL1β , and Tlr4 ) and improvement in serotonin synthesis genes, including tryptophan hydroxylase 1 ( Tph1 ) and dopa decarboxylase ( Ddc ). CONCLUSION Our study reveals a critical role for Ccr2 + monocytes in modulating intestinal homeostasis after TBI. Ccr2 + monocytes aggravate intestinal inflammation and alter gut-derived serotonergic signaling. Therefore, targeting Ccr2 + monocyte-dependent responses could provide a better understanding of TBI-induced gut inflammation. Further studies are required to elucidate the impact of these changes on brain neuroinflammation and cognitive outcomes.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- From the Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Raka F, Hoffman S, Nady A, Guan H, Zhang R, Wang H, Khan WI, Adeli K. Peripheral Serotonin Controls Dietary Fat Absorption and Chylomicron Secretion via 5-HT4 Receptor in Males. Endocrinology 2024; 165:bqae112. [PMID: 39248655 PMCID: PMC11417612 DOI: 10.1210/endocr/bqae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.
Collapse
Affiliation(s)
- Fitore Raka
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asal Nady
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Henry Guan
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rianna Zhang
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Huaqing Wang
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Waliul I Khan
- Department of Pathology & Molecular Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Khosrow Adeli
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
13
|
Shen X, Mu X. Systematic Insights into the Relationship between the Microbiota-Gut-Brain Axis and Stroke with the Focus on Tryptophan Metabolism. Metabolites 2024; 14:399. [PMID: 39195495 DOI: 10.3390/metabo14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke, as a serious cerebral vascular disease with high incidence and high rates of disability and mortality, has limited therapeutic options due to the narrow time window. Compelling evidence has highlighted the significance of the gut microbiota and gut-brain axis as critical regulatory factors affecting stroke. Along the microbiota-gut-brain axis, tryptophan metabolism further acquires increasing attention for its intimate association with central nervous system diseases. For the purpose of exploring the potential role of tryptophan metabolism in stroke and providing systematic insights into the intricate connection of the microbiota-gut-brain axis with the pathological procedure of stroke, this review first summarized the practical relationship between microbiota and stroke by compiling the latest case-control research. Then, the microbiota-gut-brain axis, as well as its interaction with stroke, were comprehensively elucidated on the basis of the basic anatomical structure and physiological function. Based on the crosstalk of microbiota-gut-brain, we further focused on the tryptophan metabolism from the three major metabolic pathways, namely, the kynurenine pathway, serotonin pathway, and microbial pathway, within the axis. Moreover, the effects of tryptophan metabolism on stroke were appreciated and elaborated here, which is scarcely found in other reviews. Hopefully, the systematic illustration of the mechanisms and pathways along the microbiota-gut-brain axis will inspire more translational research from metabolic perspectives, along with more attention paid to tryptophan metabolism as a promising pharmaceutical target in order to reduce the risk of stroke, mitigate the stroke progression, and ameliorate the stroke prognosis.
Collapse
Affiliation(s)
- Xinyu Shen
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Xiaoqin Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
14
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
15
|
Wagai G, Togao M, Kurakawa T, Nishizaki H, Otsuka J, Ohta-Takada Y, Kurita A, Suzuki T, Kawakami K. CFP/Yit: An Inbred Mouse Strain with Slow Gastrointestinal Transit. Dig Dis Sci 2024; 69:2026-2043. [PMID: 38622463 PMCID: PMC11162387 DOI: 10.1007/s10620-024-08420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Gastrointestinal transit (GIT) is influenced by factors including diet, medications, genetics, and gut microbiota, with slow GIT potentially indicating a functional disorder linked to conditions, such as constipation. Although GIT studies have utilized various animal models, few effectively model spontaneous slow GIT. AIMS We aimed to characterize the GIT phenotype of CFP/Yit (CFP), an inbred mouse strain with suggested slow GIT. METHODS Female and male CFP mice were compared to Crl:CD1 (ICR) mice in GIT and assessed based on oral gavage of fluorescent-labeled 70-kDa dextran, feed intake, fecal amount, and fecal water content. Histopathological analysis of the colon and analysis of gut microbiota were conducted. RESULTS CFP mice exhibited a shorter small intestine and a 1.4-fold longer colon compared to ICR mice. The median whole-GIT time was 6.0-fold longer in CFP mice than in ICR mice. CFP mice demonstrated slower gastric and cecal transits than ICR mice, with a median colonic transit time of 4.1 h (2.9-fold longer). CFP mice exhibited lower daily feed intakes and fecal amounts. Fecal water content was lower in CFP mice, apparently attributed to the longer colon. Histopathological analysis showed no changes in CFP mice, including tumors or inflammation. Moreover, CFP mice had a higher Firmicutes/Bacteroidota ratio and a relative abundance of Erysipelotrichaceae in cecal and fecal contents. CONCLUSIONS This study indicates that CFP mice exhibit slow transit in the stomach, cecum, and colon. As a novel mouse model, CFP mice can contribute to the study of gastrointestinal physiology and disease.
Collapse
Affiliation(s)
- Gaku Wagai
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan.
| | - Masao Togao
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Takashi Kurakawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Haruka Nishizaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Jun Otsuka
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Yuki Ohta-Takada
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Akinobu Kurita
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Tomo Suzuki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| | - Koji Kawakami
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo, 186-8650, Japan
| |
Collapse
|
16
|
McCluskey KE, Stovell KM, Law K, Kostyanovskaya E, Schmidt J, Exner CRT, Dea J, Brimble E, State MW, Willsey AJ, Willsey HR. Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.593642. [PMID: 38854068 PMCID: PMC11160671 DOI: 10.1101/2024.05.28.593642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The comorbidity of autism spectrum disorders and severe gastrointestinal symptoms is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence large-effect autism risk genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons as well as their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated pathogenic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen of these genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using the high-throughput diploid frog Xenopus tropicalis , we individually target five of these genes ( SYNGAP1, CHD8, SCN2A, CHD2 , and DYRK1A ) and observe disrupted enteric neuronal progenitor migration for each. More extensive analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo , which can be ameliorated by treatment with a selective serotonin reuptake inhibitor (escitalopram) or a serotonin receptor 6 agonist, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that increasing serotonin signaling may be a productive therapeutic avenue.
Collapse
|
17
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
18
|
Valiyeva S, Tiso D, Cerri P, Pisciaroli A, Pietroletti R. Results of medical treatment with psyllium, lactobacillus, and tryptophan (Plurilac® Trio) in obstructive defecation syndrome. Front Surg 2024; 11:1361049. [PMID: 38650661 PMCID: PMC11033349 DOI: 10.3389/fsurg.2024.1361049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The term "obstructive defecation syndrome" (ODS) describes a complex condition characterized by defecatory disorders. Such a condition represents a significant proportion of patients, which is estimated to be up to 30% of patients affected by chronic constipation. Presently, a broad agreement has been reached on diagnostic studies, whereas the choice of treatment that aims to improve the quality of life and/or correct the prevalent abnormalities or all anatomical abnormalities remains controversial. Methods This was a retrospective cohort study on 174 patients out of a total of 232 with ODS who were observed in a specialized university unit of surgical coloproctology between 2018 and 2022. Clinical assessment included examining the values of the Agachan-Wexner constipation score and Patient Assessment of Constipation (PAC)-quality of life (QoL) scores, a full digital anorectal examination, anoscopy, RX defecography, and a urogynecological consultation; a functional anorectal test, an endoanal ultrasound, and colonoscopy were performed in select patients. The patients were reevaluated after an 8-10-week course of medical treatment based on a high-fiber diet and fluid intake and 6 g of psyllium combined with lactobacillus and tryptophan b.i.d. The results were analyzed by means of the Wilcoxon rank-sum test, comparing pretreatment scores with the results at the first follow-up visit. Results After 8-10 weeks of conservative treatment, 128 patients declared full satisfaction, 29 reported moderate satisfaction, and 17 (9.7%) declared no improvement. Among these 17, there were 5 patients with paradoxical puborectal contractions. The value of the Agachan-Wexner constipation score after treatment decreased from the pretreatment Agachan-Wexner constipation score mean value of 23.4 ± 3.7 (mean ± SD range 15-27) to a mean value of 5.3 ± 0.7 (range 3-8, p < 0.001). The quality of life improved, as shown by the PAC-QoL score, indicating great improvement in social relationships. Conclusions Given the benefits of conservative therapies, they represent a cornerstone in the treatment of ODS, a complex disorder. Diet and bulking agents are mandatory forms of treatment prior to making any surgical attempt, also considering the fact that the psychosomatic component of ODS is an essential prerequisite to match patient expectations.
Collapse
Affiliation(s)
- Sayali Valiyeva
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L'Aquila, Italy
| | - Domenico Tiso
- Clinical Nutrition, “Villa Maria” Hospital, Rimini, Italy
| | - Paolo Cerri
- General Surgery Department, Val Vibrata Hospital, Sant’Omero, Italy
| | | | - Renato Pietroletti
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, L'Aquila, Italy
| |
Collapse
|
19
|
Huang X, Choi S, Wu W, Shahi PK, Lee JH, Hong C, Jun JY. 5-Hydroxytryptamine Enhances the Pacemaker Activity of Interstitial Cells of Cajal in Mouse Colon. Int J Mol Sci 2024; 25:3997. [PMID: 38612808 PMCID: PMC11012597 DOI: 10.3390/ijms25073997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.
Collapse
Affiliation(s)
- Xingyou Huang
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Seok Choi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Wenhao Wu
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Pawan Kumar Shahi
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Jun Hyung Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Chansik Hong
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| | - Jae Yeoul Jun
- Department of Physiology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea; (X.H.); (S.C.); (W.W.); (P.K.S.); (C.H.)
| |
Collapse
|
20
|
Raouf Z, Steinway SN, Scheese D, Lopez CM, Duess JW, Tsuboi K, Sampah M, Klerk D, El Baassiri M, Moore H, Tragesser C, Prindle T, Wang S, Wang M, Jang HS, Fulton WB, Sodhi CP, Hackam DJ. Colitis-Induced Small Intestinal Hypomotility Is Dependent on Enteroendocrine Cell Loss in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:53-70. [PMID: 38438014 PMCID: PMC11127033 DOI: 10.1016/j.jcmgh.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS The abdominal discomfort experienced by patients with colitis may be attributable in part to the presence of small intestinal dysmotility, yet mechanisms linking colonic inflammation with small-bowel motility remain largely unexplored. We hypothesize that colitis results in small intestinal hypomotility owing to a loss of enteroendocrine cells (EECs) within the small intestine that can be rescued using serotonergic-modulating agents. METHODS Male C57BL/6J mice, as well as mice that overexpress (EECOVER) or lack (EECDEL) NeuroD1+ enteroendocrine cells, were exposed to dextran sulfate sodium (DSS) colitis (2.5% or 5% for 7 days) and small intestinal motility was assessed by 70-kilodalton fluorescein isothiocyanate-dextran fluorescence transit. EEC number and differentiation were evaluated by immunohistochemistry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining, and quantitative reverse-transcriptase polymerase chain reaction. Mice were treated with the 5-hydroxytryptamine receptor 4 agonist prucalopride (5 mg/kg orally, daily) to restore serotonin signaling. RESULTS DSS-induced colitis was associated with a significant small-bowel hypomotility that developed in the absence of significant inflammation in the small intestine and was associated with a significant reduction in EEC density. EEC loss occurred in conjunction with alterations in the expression of key serotonin synthesis and transporter genes, including Tph1, Ddc, and Slc6a4. Importantly, mice overexpressing EECs revealed improved small intestinal motility, whereas mice lacking EECs had worse intestinal motility when exposed to DSS. Finally, treatment of DSS-exposed mice with the 5-hydroxytryptamine receptor 4 agonist prucalopride restored small intestinal motility and attenuated colitis. CONCLUSIONS Experimental DSS colitis induces significant small-bowel dysmotility in mice owing to enteroendocrine loss that can be reversed by genetic modulation of EEC or administering serotonin analogs, suggesting novel therapeutic approaches for patients with symptomatic colitis.
Collapse
Affiliation(s)
- Zachariah Raouf
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steve N Steinway
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carla M Lopez
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Johannes W Duess
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maame Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daphne Klerk
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mahmoud El Baassiri
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hannah Moore
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cody Tragesser
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Menghan Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hee-Seong Jang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
22
|
Zhang H, Leitner DR, Hasegawa Y, Waldor MK. Peripheral serotonergic neurons regulate gut motility and anxiety-like behavior. Curr Biol 2024; 34:R133-R134. [PMID: 38412819 PMCID: PMC10921988 DOI: 10.1016/j.cub.2023.12.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/29/2024]
Abstract
Serotonergic circuits in the central nervous system play important roles in regulating mood and behavior, yet the functions of peripheral serotonergic neurons are less understood. Here, we engineered mice lacking the serotonin-producing enzyme Tph2 in peripheral neurons but with intact Tph2 in central neurons. In contrast to mice lacking Tph2 in all neurons, mice lacking Tph2 in peripheral serotonergic neurons did not exhibit increased territorial aggression. However, similar to the total body Tph2 knockout (KO) mice, the conditional KO animals exhibited reduced gut motility and decreased anxiety-like behavior. These observations reveal that peripheral serotonergic neurons contribute to control of intestinal motility and anxiety-like behavior and suggest that therapeutics targeting this subset of peripheral neurons could be beneficial.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Akram N, Faisal Z, Irfan R, Shah YA, Batool SA, Zahid T, Zulfiqar A, Fatima A, Jahan Q, Tariq H, Saeed F, Ahmed A, Asghar A, Ateeq H, Afzaal M, Khan MR. Exploring the serotonin-probiotics-gut health axis: A review of current evidence and potential mechanisms. Food Sci Nutr 2024; 12:694-706. [PMID: 38370053 PMCID: PMC10867509 DOI: 10.1002/fsn3.3826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Modulatory effects of serotonin (5-Hydroxytryptamine [5-HT]) have been seen in hepatic, neurological/psychiatric, and gastrointestinal (GI) disorders. Probiotics are live microorganisms that confer health benefits to their host. Recent research has suggested that probiotics can promote serotonin signaling, a crucial pathway in the regulation of mood, cognition, and other physiological processes. Reviewing the literature, we find that peripheral serotonin increases nutrient uptake and storage, regulates the composition of the gut microbiota, and is involved in mediating neuronal disorders. This review explores the mechanisms underlying the probiotic-mediated increase in serotonin signaling, highlighting the role of gut microbiota in the regulation of serotonin production and the modulation of neurotransmitter receptors. Additionally, this review discusses the potential clinical implications of probiotics as a therapeutic strategy for disorders associated with altered serotonin signaling, such as GI and neurological disorders. Overall, this review demonstrates the potential of probiotics as a promising avenue for the treatment of serotonin-related disorders and signaling of serotonin.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Zargham Faisal
- Department of Human NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Rushba Irfan
- Faculty of Food Nutrition & Home SciencesUniversity of AgricultureFaisalabadPakistan
| | - Yasir Abbas Shah
- Natural & Medical Science Research CenterUniversity of NizwaNizwaOman
| | - Syeda Ayesha Batool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Toobaa Zahid
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Zulfiqar
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Areeja Fatima
- National Institute of Food Science & TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Qudsia Jahan
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Hira Tariq
- Department of Food and NutritionGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aasma Asghar
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Mahbubur Rahman Khan
- Department of Food Processing and PreservationHajee Mohammad Danesh Science & Technology UniversityDinajpurBangladesh
| |
Collapse
|
24
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Penkova N, Atanasova P, Penkov R, Hrischev P, Peychev L, Peychev Z. Serotonin production of the developing gastrointestinal tract of human embryos in 6th gestation week. PHARMACIA 2023; 70:1499-1509. [DOI: 10.3897/pharmacia.70.e114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Background: Local regulation of gastrointestinal tract digestion is performed by a large number of hormones produced by the mucosal enteroendocrine cells. Some of the earliest differentiating cells in the gastrointestinal tract are enteroendocrine cells. Serotonin-producing cells - EC cells are found mostly in the stomach and duodenum.
Aim: The aim of our study is to establish the presence and to make morphological and morphofunctional characteristic of ЕС cells in the developing gastrointestinal tract of a human.
Materials and methods: Our study was performed with biopsy specimen from human stomach and duodenum and fragments of gastrointestinal tract of human embryos 6th gestation week, studied by immunohistochemical, electron microscopy and morphometric methods.
Results: EC cells have already been differentiated in the 6th gestation week. Embryonic EC cells had identical characteristics with those of adults. They were in two morphofunctional conditions: stage of increased synthesis and stage of relative secretory rest.
Conclusion: In the early embryonic period - 6th gestation week EC cells have already been differentiated. The occurrence of EC cells with hormonal production prior to the definitive differentiation of tissues presupposes participation of serotonin in the digestive tube histogenetic processes.
Collapse
|
26
|
Zhang W, Dong XY, Huang R. Gut Microbiota in Ischemic Stroke: Role of Gut Bacteria-Derived Metabolites. Transl Stroke Res 2023; 14:811-828. [PMID: 36279071 DOI: 10.1007/s12975-022-01096-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
Abstract
Ischemic stroke (IS) remains a leading cause of death and long-term disability globally. Several mechanisms including glutamate excitotoxicity, calcium overload, neuroinflammation, oxidative stress, mitochondrial damage, and apoptosis are known to be involved in the pathogenesis of IS, but the underlying pathophysiology mechanisms of IS are not fully clarified. During the past decade, gut microbiota were recognized as a key regulator to affect the health of the host either directly or via their metabolites. Recent studies indicate that gut bacterial dysbiosis is closely related to hypertension, diabetes, obesity, dyslipidemia, and metabolic syndrome, which are the main risk factors for cardiovascular diseases. Increasing evidence indicates that IS can lead to perturbation in gut microbiota and increased permeability of the gut mucosa, known as "leaky gut," resulting in endotoxemia and bacterial translocation. In turn, gut dysbiosis and impaired intestinal permeability can alter gut bacterial metabolite signaling profile from the gut to the brain. Microbiota-derived products and metabolites, such as short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), and phenylacetylglutamine (PAGln) can exert beneficial or detrimental effects on various extraintestinal organs, including the brain, liver, and heart. These metabolites have been increasingly acknowledged as biomarkers and mediators of IS. However, the specific role of the gut bacterial metabolites in the context of stroke remains incompletely understood. In-depth studies on these products and metabolites may provide new insight for the development of novel therapeutics for IS.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Yu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
27
|
Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol 2023; 20:784-796. [PMID: 37626258 DOI: 10.1038/s41575-023-00830-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Gut hormones orchestrate pivotal physiological processes in multiple metabolically active tissues, including the pancreas, liver, adipose tissue, gut and central nervous system, making them attractive therapeutic targets in the treatment of obesity and type 2 diabetes mellitus. Most gut hormones are derived from enteroendocrine cells, but bioactive peptides that are derived from other intestinal epithelial cell types have also been implicated in metabolic regulation and can be considered gut hormones. A deeper understanding of the complex inter-organ crosstalk mediated by the intestinal endocrine system is a prerequisite for designing more effective drugs that are based on or target gut hormones and their receptors, and extending their therapeutic potential beyond obesity and diabetes mellitus. In this Review, we present an overview of gut hormones that are involved in the regulation of metabolism and discuss their action in the gastrointestinal system and beyond.
Collapse
Affiliation(s)
- Rula Bany Bakar
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Wang Y, Huang Y, Zhao M, Yang L, Su K, Wu H, Wang Y, Chang Q, Liu W. Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the theTPH2/5-HT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155067. [PMID: 37716030 DOI: 10.1016/j.phymed.2023.155067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The complex bidirectional communication between the gastrointestinal tract and the brain is associated with mental disorders such as depression; serotonin, as a crucial neurotransmitter in the communication system between the central nervous system and the gastrointestinal tract, has effects on regulating gastrointestinal motility and sensation and improving psychosomatic status. Zuojin pill is used as a traditional Chinese medicine formula for the treatment of gastrointestinal disorders. This study explored the effects of Zuojin pill on the improvement of depression and gastrointestinal function in CUMS mice via TPH2 and its mechanism. PURPOSE The aim of this study was to investigate whether Zuojin pill could improve depression and concomitant gastrointestinal dysfunction, and to reveal whether Zuojin pill could work through the regulation of the tryptophan hydroxylase 2 (TPH2) pathway. METHODS The CUMS model was established to observe the effects of Zuojin pill on depression-like behavior and gastrointestinal function in mice. Nissler staining and HE staining were used to observe the structure of hippocampal neurons and intestinal mucosa respectively. 5-HT levels in serum, hippocampus, and intestinal tissues were measured by ELISA, and TPH2 expression in hippocampus and intestinal nerves was observed by WB and immunofluorescence. In order to investigate the protective effect and mechanism of Zuojin pill on PC12 cells, CORT used an in vitro model to produce PC12 cell damage. RESULTS Our study showed that Zuojin pill ameliorated depression-like behavior and gastrointestinal dysfunction in CUMS mice, elevated BDNF, 5-HT, and TPH2 expression in the hippocampus, and restored the ratio of dopaminergic and GABAergic neurons between intestinal muscles. In vitro experiments showed that Zuojin pill exerted a protective effect on neurons by regulating TPH2 ubiquitination and thus inhibiting CORT-induced apoptosis of PC12 cells. CONCLUSION Zuojin pill improves chronic unpredictable stress-induced depression-like behavior and gastrointestinal dysfunction in mice via the TPH2/5-HT pathway. Therefore, TPH2 may be a potential therapeutic target for depression with gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Yuzhen Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Min Zhao
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Yang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Yuting Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Qing Chang
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Wanli Liu
- Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
29
|
Nakamori H, Hashitani H. Neural targets of the enteric dopaminergic system in regulating motility of rat proximal colon. Pflugers Arch 2023; 475:1315-1327. [PMID: 37589734 DOI: 10.1007/s00424-023-02849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
In isolated segments of the rat proximal colon, the dopamine reuptake inhibitor GBR 12909 (GBR) causes a dilatation, while the D1-like receptor antagonist SCH 23390 (SCH) induces a tonic constriction, suggesting that neurally released dopamine tonically stimulates enteric inhibitory efferent neurons. Here, the targets of the enteric dopaminergic neurons were investigated. Cannulated segments of rat proximal colon were bathed in physiological salt solution and luminally perfused with 0.9% saline, while all drugs were applied to the bath. Spatio-temporal maps of colonic motility were constructed from video recordings of peristaltic contractions, and the maximum diameter was measured as an index of colonic contractility. GBR (1 μM)-induced dilatations of colonic segments were prevented by SCH (5 μM), L-nitro arginine (L-NA; 100 μM), a nitric oxide synthase inhibitor, or tetrodotoxin (0.6 μM). In contrast, constrictions induced by a higher concentration of SCH (20 μM) were unaffected by either L-NA or tetrodotoxin. The vasoactive intestinal peptide (VIP) receptor antagonist VIP10-28 (3 μM) or P2Y1 receptor antagonist MRS 2500 (1 μM) had no effect on either the GBR-induced dilatation or the SCH-induced constriction. In colonic segments that had been pretreated with 6-hydroxydopamine (100 μM, 3 h) to deplete enteric dopamine, GBR failed to increase the colonic diameter, while SCH was still capable of constricting colonic segments. Enteric dopaminergic neurons appear to project to nitrergic neurons to dilate the proximal colon by activating neuronal D1-like receptors. In addition, constitutively activated D1-like receptors expressed in cells yet to be determined may provide a tonic inhibition on colonic constrictions.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| |
Collapse
|
30
|
Wang X, Tang R, Wei Z, Zhan Y, Lu J, Li Z. The enteric nervous system deficits in autism spectrum disorder. Front Neurosci 2023; 17:1101071. [PMID: 37694110 PMCID: PMC10484716 DOI: 10.3389/fnins.2023.1101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Gastrointestinal (GI) disorders are common comorbidities in individuals with autism spectrum disorder (ASD), and abnormalities in these issues have been found to be closely related to the severity of core behavioral deficits in autism. The enteric nervous system (ENS) plays a crucial role in regulating various aspects of gut functions, including gastrointestinal motility. Dysfunctional wiring in the ENS not only results in various gastrointestinal issues, but also correlates with an increasing number of central nervous system (CNS) disorders, such as ASD. However, it remains unclear whether the gastrointestinal dysfunctions are a consequence of ASD or if they directly contribute to its pathogenesis. This review focuses on the deficits in the ENS associated with ASD, and highlights several high-risk genes for ASD, which are expressed widely in the gut and implicated in gastrointestinal dysfunction among both animal models and human patients with ASD. Furthermore, we provide a brief overview of environmental factors associated with gastrointestinal tract in individuals with autism. This could offer fresh perspectives on our understanding of ASD.
Collapse
Affiliation(s)
- Xinnian Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Life Science, USTC Life Sciences and Medicine, Hefei, China
| | - Ruijin Tang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Yang Zhan
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Zhiling Li
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
31
|
Chaudhry TS, Senapati SG, Gadam S, Mannam HPSS, Voruganti HV, Abbasi Z, Abhinav T, Challa AB, Pallipamu N, Bheemisetty N, Arunachalam SP. The Impact of Microbiota on the Gut-Brain Axis: Examining the Complex Interplay and Implications. J Clin Med 2023; 12:5231. [PMID: 37629273 PMCID: PMC10455396 DOI: 10.3390/jcm12165231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The association and interaction between the central nervous system (CNS) and enteric nervous system (ENS) is well established. Essentially ENS is the second brain, as we call it. We tried to understand the structure and function, to throw light on the functional aspect of neurons, and address various disease manifestations. We summarized how various neurological disorders influence the gut via the enteric nervous system and/or bring anatomical or physiological changes in the enteric nervous system or the gut and vice versa. It is known that stress has an effect on Gastrointestinal (GI) motility and causes mucosal erosions. In our literature review, we found that stress can also affect sensory perception in the central nervous system. Interestingly, we found that mutations in the neurohormone, serotonin (5-HT), would result in dysfunctional organ development and further affect mood and behavior. We focused on the developmental aspects of neurons and cognition and their relation to nutritional absorption via the gastrointestinal tract, the development of neurodegenerative disorders in relation to the alteration in gut microbiota, and contrariwise associations between CNS disorders and ENS. This paper further summarizes the synergetic relation between gastrointestinal and neuropsychological manifestations and emphasizes the need to include behavioral therapies in management plans.
Collapse
Affiliation(s)
| | | | - Srikanth Gadam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Hari Priya Sri Sai Mannam
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Hima Varsha Voruganti
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Zainab Abbasi
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Tushar Abhinav
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | | | - Namratha Pallipamu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
| | - Niharika Bheemisetty
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
| | - Shivaram P. Arunachalam
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (S.G.); (N.P.)
- GIH Artificial Intelligence Laboratory (GAIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.P.S.S.M.); (H.V.V.); (Z.A.); (T.A.); (N.B.)
- Microwave Engineering and Imaging Laboratory (MEIL), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Salvi PS, Shaughnessy MP, Sumigray KD, Cowles RA. Antibiotic-induced microbial depletion enhances murine small intestinal epithelial growth in a serotonin-dependent manner. Am J Physiol Gastrointest Liver Physiol 2023; 325:G80-G91. [PMID: 37158470 DOI: 10.1152/ajpgi.00113.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 05/10/2023]
Abstract
Regulation of small intestinal epithelial growth by endogenous and environmental factors is critical for intestinal homeostasis and recovery from insults. Depletion of the intestinal microbiome increases epithelial proliferation in small intestinal crypts, similar to the effects observed in animal models of serotonin potentiation. Based on prior evidence that the microbiome modulates serotonin activity, we hypothesized that microbial depletion-induced epithelial proliferation is dependent on host serotonin activity. A mouse model of antibiotic-induced microbial depletion (AIMD) was employed. Serotonin potentiation was achieved through either genetic knockout of the serotonin transporter (SERT) or pharmacological SERT inhibition, and inhibition of serotonin synthesis was achieved with para-chlorophenylalanine. AIMD and serotonin potentiation increased intestinal villus height and crypt proliferation in an additive manner, but the epithelial proliferation observed after AIMD was blocked in the absence of endogenous serotonin. Using Lgr5-EGFP-reporter mice, we evaluated intestinal stem cell (ISC) quantity and proliferation. AIMD increased the number of ISCs per crypt and ISC proliferation compared with controls, and changes in ISC number and proliferation were dependent on the presence of host serotonin. Furthermore, Western blotting demonstrated that AIMD reduced epithelial SERT protein expression compared with controls. In conclusion, host serotonin activity is necessary for microbial depletion-associated changes in villus height and ISC proliferation in crypts, and microbial depletion produces a functional serotonin-potentiated state through reduced SERT protein expression. These findings provide an understanding of how changes to the microbiome contribute to intestinal pathology and can be applied therapeutically.NEW & NOTEWORTHY Antibiotic-induced microbial depletion of the murine small intestine results in a state of potentiated serotonin activity through reduced epithelial expression of the serotonin transporter. Specifically, serotonin-dependent mechanisms lead to increased intestinal surface area and intestinal stem cell proliferation. Furthermore, the absence of endogenous serotonin leads to blunting of small intestinal villi, suggesting that serotonin signaling is required for epithelial homeostasis.
Collapse
Affiliation(s)
- Pooja S Salvi
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Matthew P Shaughnessy
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kaelyn D Sumigray
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Robert A Cowles
- Division of Pediatric Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
33
|
Liu Y, Shan L, Liu T, Li J, Chen Y, Sun C, Yang C, Bian X, Niu Y, Zhang C, Xi J, Rao Y. Molecular and cellular mechanisms of the first social relationship: A conserved role of 5-HT from mice to monkeys, upstream of oxytocin. Neuron 2023; 111:1468-1485.e7. [PMID: 36868221 DOI: 10.1016/j.neuron.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/21/2021] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Maternal affiliation by infants is the first social behavior of mammalian animals. We report here that elimination of the Tph2 gene essential for serotonin synthesis in the brain reduced affiliation in mice, rats, and monkeys. Calcium imaging and c-fos immunostaining showed maternal odors activation of serotonergic neurons in the raphe nuclei (RNs) and oxytocinergic neurons in the paraventricular nucleus (PVN). Genetic elimination of oxytocin (OXT) or its receptor reduced maternal preference. OXT rescued maternal preference in mouse and monkey infants lacking serotonin. Tph2 elimination from RN serotonergic neurons innervating PVN reduced maternal preference. Reduced maternal preference after inhibiting serotonergic neurons was rescued by oxytocinergic neuronal activation. Our genetic studies reveal a role for serotonin in affiliation conserved from mice and rats to monkeys, while electrophysiological, pharmacological, chemogenetic, and optogenetic studies uncover OXT downstream of serotonin. We suggest serotonin as the master regulator upstream of neuropeptides in mammalian social behaviors.
Collapse
Affiliation(s)
- Yan Liu
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China.
| | - Liang Shan
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China
| | - Tiane Liu
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China
| | - Juan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Changhong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chaojuan Yang
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China
| | - Xiling Bian
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen Zhang
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China
| | - Jianzhong Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yi Rao
- Chinese Institutes for Medical Research (CIMR) and Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10069, China; PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking University, Beijing 100871, China; Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing, China; Chinese Institute for Brain Research, Beijing, Zhongguangcun Life Science Park, Beijing, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Shahbazi A, Sepehrinezhad A, Vahdani E, Jamali R, Ghasempour M, Massoudian S, Sahab Negah S, Larsen FS. Gut Dysbiosis and Blood-Brain Barrier Alteration in Hepatic Encephalopathy: From Gut to Brain. Biomedicines 2023; 11:1272. [PMID: 37238943 PMCID: PMC10215854 DOI: 10.3390/biomedicines11051272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023] Open
Abstract
A common neuropsychiatric complication of advanced liver disease, hepatic encephalopathy (HE), impacts the quality of life and length of hospital stays. There is new evidence that gut microbiota plays a significant role in brain development and cerebral homeostasis. Microbiota metabolites are providing a new avenue of therapeutic options for several neurological-related disorders. For instance, the gut microbiota composition and blood-brain barrier (BBB) integrity are altered in HE in a variety of clinical and experimental studies. Furthermore, probiotics, prebiotics, antibiotics, and fecal microbiota transplantation have been shown to positively affect BBB integrity in disease models that are potentially extendable to HE by targeting gut microbiota. However, the mechanisms that underlie microbiota dysbiosis and its effects on the BBB are still unclear in HE. To this end, the aim of this review was to summarize the clinical and experimental evidence of gut dysbiosis and BBB disruption in HE and a possible mechanism.
Collapse
Affiliation(s)
- Ali Shahbazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Ali Sepehrinezhad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
| | - Edris Vahdani
- Department of Microbiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran;
| | - Raika Jamali
- Research Development Center, Sina Hospital, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Monireh Ghasempour
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Shirin Massoudian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (A.S.); (S.M.)
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9919191778, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 9815733169, Iran
| | - Fin Stolze Larsen
- Department of Intestinal Failure and Liver Diseases, Rigshospitalet, Inge Lehmanns Vej 5, 2100 Copenhagen, Denmark
| |
Collapse
|
35
|
Osorio N, Martineau M, Fortea M, Rouget C, Penalba V, Lee CJ, Boesmans W, Rolli-Derkinderen M, Patel AV, Mondielli G, Conrod S, Labat-Gest V, Papin A, Sasabe J, Sweedler JV, Vanden Berghe P, Delmas P, Mothet JP. d-Serine agonism of GluN1-GluN3 NMDA receptors regulates the activity of enteric neurons and coordinates gut motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537136. [PMID: 37131687 PMCID: PMC10153202 DOI: 10.1101/2023.04.19.537136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The enteric nervous system (ENS) is a complex network of diverse molecularly defined classes of neurons embedded in the gastrointestinal wall and responsible for controlling the major functions of the gut. As in the central nervous system, the vast array of ENS neurons is interconnected by chemical synapses. Despite several studies reporting the expression of ionotropic glutamate receptors in the ENS, their roles in the gut remain elusive. Here, by using an array of immunohistochemistry, molecular profiling and functional assays, we uncover a new role for d-serine (d-Ser) and non-conventional GluN1-GluN3 N-methyl d-aspartate receptors (NMDARs) in regulating ENS functions. We demonstrate that d-Ser is produced by serine racemase (SR) expressed in enteric neurons. By using both in situ patch clamp recording and calcium imaging, we show that d-Ser alone acts as an excitatory neurotransmitter in the ENS independently of the conventional GluN1-GluN2 NMDARs. Instead, d-Ser directly gates the non-conventional GluN1-GluN3 NMDARs in enteric neurons from both mouse and guinea-pig. Pharmacological inhibition or potentiation of GluN1-GluN3 NMDARs had opposite effects on mouse colonic motor activities, while genetically driven loss of SR impairs gut transit and fluid content of pellet output. Our results demonstrate the existence of native GluN1-GluN3 NMDARs in enteric neurons and open new perspectives on the exploration of excitatory d-Ser receptors in gut function and diseases.
Collapse
Affiliation(s)
- Nancy Osorio
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | | | - Marina Fortea
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | - Virginie Penalba
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Cindy J. Lee
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | - Amit V. Patel
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Grégoire Mondielli
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Sandrine Conrod
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | | | - Amandine Papin
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
| | - Jumpei Sasabe
- Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Patrick Delmas
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille-Université, CNRS, UMR 7291, Marseille, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
| | - Jean-Pierre Mothet
- Neurocentre Magendie, INSERM UMR U862, Bordeaux, France
- Centre de Recherche en Neurophysiologie et Neuroscience de Marseille, UMR 7286, CNRS, Université Aix-Marseille, Marseille, France
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, CentraleSupélec, LuMIn UMR9024, Gif-sur-Yvette 91190, France
| |
Collapse
|
36
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
37
|
Vijay A, Boyle NR, Kumar SM, Perdew GH, Srinivasan S, Patterson AD. Aryl hydrocarbon receptor activation affects nitrergic neuronal survival and delays intestinal motility in mice. Toxicol Sci 2023; 192:117-128. [PMID: 36782369 PMCID: PMC10025877 DOI: 10.1093/toxsci/kfad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Despite progress describing the effects of persistent organic pollutants (POPs) on the central nervous system, the effect of POPs on enteric nervous system (ENS) function remains underexplored. We studied the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a POP, and a potent aryl hydrocarbon receptor (AHR) ligand, on the ENS and intestinal motility in mice. C57Bl/6J mice treated with TCDD (2.4 µg/kg body weight) for 8 weeks (once per week) exhibited significant delay in intestinal motility as shown by reduced stool frequency, prolonged intestinal transit time, and a persistence of dye in the jejunum compared to control mice with maximal dye retention in the ileum. TCDD significantly increased Cyp1a1 expression, an AHR target gene, and reduced the total number of neurons and affected nitrergic neurons in cells isolated from WT mice, but not Ahr-/- mice. In immortalized fetal enteric neuronal cells, TCDD-induced nuclear translocation of AHR as well as increased Cyp1a1 expression. AHR activation did not affect neuronal proliferation. However, AHR activation resulted in enteric neuronal toxicity, specifically, nitrergic neurons. Our results demonstrate that TCDD adversely affects nitrergic neurons and thereby contributes to delayed intestinal motility. These findings suggest that AHR signaling in the ENS may play a role in modulating TCDD-induced gastrointestinal pathophysiology.
Collapse
Affiliation(s)
- Anitha Vijay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nina R Boyle
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Supriya M Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
38
|
Identification and Characterization of 5-HT Receptor 1 from Scylla paramamosain: The Essential Roles of 5-HT and Its Receptor Gene during Aggressive Behavior in Crab Species. Int J Mol Sci 2023; 24:ijms24044211. [PMID: 36835632 PMCID: PMC9960410 DOI: 10.3390/ijms24044211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Biogenic amines (BAs) play an important role in the aggressive behavior of crustaceans. In mammals and birds, 5-HT and its receptor genes (5-HTRs) are characterized as essential regulators involved in neural signaling pathways during aggressive behavior. However, only one 5-HTR transcript has been reported in crabs. In this study, the full-length cDNA of the 5-HTR1 gene, named Sp5-HTR1, was first isolated from the muscle of the mud crab Scylla paramamosain using the reverse-transcription polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) methods. The transcript encoded a peptide of 587 amino acid residues with a molecular mass of 63.36 kDa. Western blot results indicate that the 5-HTR1 protein was expressed at the highest level in the thoracic ganglion. Furthermore, the results of quantitative real-time PCR show that the expression levels of Sp5-HTR1 in the ganglion at 0.5, 1, 2, and 4 h after 5-HT injection were significantly upregulated compared with the control group (p < 0.05). Meanwhile, the behavioral changes in 5-HT-injected crabs were analyzed with EthoVision. After 0.5 h of injection, the speed and movement distance of the crab, the duration of aggressive behavior, and the intensity of aggressiveness in the low-5-HT-concentration injection group were significantly higher than those in the saline-injection and control groups (p < 0.05). In this study, we found that the Sp5-HTR1 gene plays a role in the regulation of aggressive behavior by BAs, including 5-HT in the mud crab. The results provide reference data for the analysis of the genetic mechanism of aggressive behaviors in crabs.
Collapse
|
39
|
Wang H, Chen G, Ahn EH, Xia Y, Kang SS, Liu X, Liu C, Han MH, Chen S, Ye K. C/EBPβ/AEP is age-dependently activated in Parkinson's disease and mediates α-synuclein in the gut and brain. NPJ Parkinsons Dis 2023; 9:1. [PMID: 36609384 PMCID: PMC9822984 DOI: 10.1038/s41531-022-00430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/11/2022] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder, and its pathologic hallmarks include extensive dopaminergic neuronal degeneration in the Substantia nigra associated with Lewy bodies, predominantly consisting of phosphorylated and truncated α-Synuclein (α-Syn). Asparagine endopeptidase (AEP) cleaves human α-Syn at N103 residue and promotes its aggregation, contributing to PD pathogenesis. However, how AEP mediates Lewy body pathologies during aging and elicits PD onset remains incompletely understood. Knockout of AEP or C/EBPβ from α-SNCA mice, and their chronic rotenone exposure models were used, and the mechanism of α-Syn from the gut that spread to the brain was observed. Here we report that C/EBPβ/AEP pathway, aggravated by oxidative stress, is age-dependently activated and cleaves α-Syn N103 and regulates Lewy body-like pathologies spreading from the gut into the brain in human α-SNCA transgenic mice. Deletion of C/EBPβ or AEP substantially diminished the oxidative stress, neuro-inflammation, and PD pathologies, attenuating motor dysfunctions in aged α-SNCA mice. Noticeably, PD pathologies initiate in the gut and progressively spread into the brain. Chronic gastric exposure to a low dose of rotenone initiates Lewy body-like pathologies in the gut that propagate into the brain in a C/EBPβ/AEP-dependent manner. Hence, our studies demonstrate that C/EBPβ/AEP pathway is critical for mediating Lewy body pathology progression in PD.
Collapse
Affiliation(s)
- Hualong Wang
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China ,grid.452458.aDepartment of Neurology, The First Hospital of Hebei Medical University (Department of Neurology, Hebei Hospital of Xuanwu Hospital Capital Medical University), Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang, 050031 Hebei P. R. China ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Guiqin Chen
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA ,grid.412632.00000 0004 1758 2270Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060 China
| | - Eun Hee Ahn
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA ,grid.256753.00000 0004 0470 5964Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil, Chuncheon-si, Gangwon-Do, 24252, South Korea
| | - Yiyuan Xia
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Seong Su Kang
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Xia Liu
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Chang Liu
- grid.458489.c0000 0001 0483 7922CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China ,grid.458489.c0000 0001 0483 7922Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518000, China
| | - Ming-Hu Han
- grid.458489.c0000 0001 0483 7922Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Shengdi Chen
- grid.16821.3c0000 0004 0368 8293Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - Keqiang Ye
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322 USA ,grid.458489.c0000 0001 0483 7922Department of Biology, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| |
Collapse
|
40
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Shi CJ, Lian JJ, Zhang BW, Cha JX, Hua QH, Pi XP, Hou YJ, Xie X, Zhang R. TGFβR-1/ALK5 inhibitor RepSox induces enteric glia-to-neuron transition and influences gastrointestinal mobility in adult mice. Acta Pharmacol Sin 2023; 44:92-104. [PMID: 35794374 DOI: 10.1038/s41401-022-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Promoting adult neurogenesis in the enteric nervous system (ENS) may be a potential therapeutic approach to cure enteric neuropathies. Enteric glial cells (EGCs) are the most abundant glial cells in the ENS. Accumulating evidence suggests that EGCs can be a complementary source to supply new neurons during adult neurogenesis in the ENS. In the brain, astrocytes have been intensively studied for their neuronal conversion properties, and small molecules have been successfully used to induce the astrocyte-to-neuron transition. However, research on glia-to-neuron conversion in the ENS is still lacking. In this study, we used GFAP-Cre:Rosa-tdTomato mice to trace glia-to-neuron transdifferentiation in the ENS in vivo and in vitro. We showed that GFAP promoter-driven tdTomato exclusively labelled EGCs and was a suitable marker to trace EGCs and their progeny cells in the ENS of adult mice. Interestingly, we discovered that RepSox or other ALK5 inhibitors alone induced efficient transdifferentiation of EGCs into neurons in vitro. Knockdown of ALK5 further confirmed that the TGFβR-1/ALK5 signalling pathway played an essential role in the transition of EGCs to neurons. RepSox-induced neurons were Calbindin- and nNOS-positive and displayed typical neuronal electrophysiological properties. Finally, we showed that administration of RepSox (3, 10 mg· kg-1 ·d-1, i.g.) for 2 weeks significantly promoted the conversion of EGCs to neurons in the ENS and influenced gastrointestinal motility in adult mice. This study provides a method for efficiently converting adult mouse EGCs into neurons by small-molecule compounds, which might be a promising therapeutic strategy for gastrointestinal neuropathy.
Collapse
Affiliation(s)
- Chang-Jie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun-Jiang Lian
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo-Wen Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jia-Xue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiu-Hong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiao-Ping Pi
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu-Jun Hou
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
42
|
Kola JB, Docsa T, Uray K. Mechanosensing in the Physiology and Pathology of the Gastrointestinal Tract. Int J Mol Sci 2022; 24:ijms24010177. [PMID: 36613619 PMCID: PMC9820522 DOI: 10.3390/ijms24010177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Normal gastrointestinal function relies on sensing and transducing mechanical signals into changes in intracellular signaling pathways. Both specialized mechanosensing cells, such as certain enterochromaffin cells and enteric neurons, and non-specialized cells, such as smooth muscle cells, interstitial cells of Cajal, and resident macrophages, participate in physiological and pathological responses to mechanical signals in the gastrointestinal tract. We review the role of mechanosensors in the different cell types of the gastrointestinal tract. Then, we provide several examples of the role of mechanotransduction in normal physiology. These examples highlight the fact that, although these responses to mechanical signals have been known for decades, the mechanosensors involved in these responses to mechanical signals are largely unknown. Finally, we discuss several diseases involving the overstimulation or dysregulation of mechanotransductive pathways. Understanding these pathways and identifying the mechanosensors involved in these diseases may facilitate the identification of new drug targets to effectively treat these diseases.
Collapse
Affiliation(s)
- Job Baffin Kola
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, 4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
43
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
44
|
Behl T, Arora A, Singla RK, Sehgal A, Makeen HA, Albratty M, Meraya AM, Najmi A, Bungau SG. Understanding the role of "sunshine vitamin D " in Parkinson's disease: A review. Front Pharmacol 2022; 13:993033. [PMID: 36601055 PMCID: PMC9807223 DOI: 10.3389/fphar.2022.993033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Next to Alzheimer's disease, Parkinson's disease constitutes the second most widespread neurological disorder, primarily affecting the older population. Its symptoms are noticeable with advancing age including tremors, postural imbalance, and slow movements, and over time, these symptoms get aggravated, progressing to osteoporosis, osteopenia, and risk of fractures. These symptoms correlate to low bone density and hence weakened bones; thus, vitamin D proves to be an intricate component of the pathogenesis of the disease. Moreover, lower serum concentrations of vitamin D have been found in diseased subjects. Supplementation with vitamin D can retard the aggravation of non-motor as well as motor symptoms of Parkinson's disease that include cognitive improvement along with the decline in risk of fractures. Also, vitamin D is extremely crucial for brain functioning, targeting dopaminergic neurons, and almost the entire functioning of the brain is affected. However, further exploration is required to determine the toxic dose of vitamin D in Parkinson's subjects. This "sunshine vitamin" surely can be a ray of sunshine for neurologically diseased subjects.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Science and Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, India
| | - Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
45
|
Gut microbiome-wide association study of depressive symptoms. Nat Commun 2022; 13:7128. [PMID: 36473852 PMCID: PMC9726982 DOI: 10.1038/s41467-022-34502-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Depression is one of the most poorly understood diseases due to its elusive pathogenesis. There is an urgency to identify molecular and biological mechanisms underlying depression and the gut microbiome is a novel area of interest. Here we investigate the relation of fecal microbiome diversity and composition with depressive symptoms in 1,054 participants from the Rotterdam Study cohort and validate these findings in the Amsterdam HELIUS cohort in 1,539 subjects. We identify association of thirteen microbial taxa, including genera Eggerthella, Subdoligranulum, Coprococcus, Sellimonas, Lachnoclostridium, Hungatella, Ruminococcaceae (UCG002, UCG003 and UCG005), LachnospiraceaeUCG001, Eubacterium ventriosum and Ruminococcusgauvreauiigroup, and family Ruminococcaceae with depressive symptoms. These bacteria are known to be involved in the synthesis of glutamate, butyrate, serotonin and gamma amino butyric acid (GABA), which are key neurotransmitters for depression. Our study suggests that the gut microbiome composition may play a key role in depression.
Collapse
|
46
|
Xiao Z, Xu J, Tan J, Zhang S, Wang N, Wang R, Yang P, Bai T, Song J, Shi Z, Lyu W, Zhang L, Hou X. Zhizhu Kuanzhong, a traditional Chinese medicine, alleviates gastric hypersensitivity and motor dysfunction on a rat model of functional dyspepsia. Front Pharmacol 2022; 13:1026660. [PMID: 36467071 PMCID: PMC9712737 DOI: 10.3389/fphar.2022.1026660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Ethnopharmacological relevance: Zhizhu Kuanzhong (ZZKZ) is a traditional Chinese medicine modified from classic formula Zhizhu decoction in "Synopsis of Golden Chamber" (Han Dynasty in the 3rd century) and the Zhizhu pill in "Differentiation on Endogenous" in Jin Dynasty (1,115-1,234). ZZKZ contains four botanical drugs, including Citrus × Aurantium L [Rutaceae; Aurantii Fructus Immaturus], Atractylodes Macrocephala Koidz. [Compositae; Rhizoma Atractylodis Macrocephalae], Bupleurum Chinense DC [Apiaceae; Radix Bupleuri Chinensis], and Crataegus Pinnatifida Bunge [Rosaceae; Fructus Crataegi Pinnatifidae], which have been widely used in clinical therapy for functional dyspepsia (FD). Aim of the study: This study aimed to evaluate the pharmacological effects and mechanisms of action of ZZKZ on gastric hypersensitivity and motor dysfunction in a rat model of FD. Materials and methods: FD was induced in Sprague-Dawley rats by neonatal gastric irritation with 0.1% iodoacetamide. The FD rats were treated with ZZKZ (0.5 g/kg, 1.0 g/kg, or 1.5 g/kg respectively) by gavage for 7 days, while domperidone (3 mg/kg) acted as treatment control. Body weight gain, food intake, gastric emptying, and intestinal propulsion were also measured. Ex vivo gastric smooth muscle activity recordings and greater splanchnic afferent (GSN) firing recordings were employed to evaluate gastric motility and sensation. Particularly, the role of 5-HT in the action of ZZKZ in improving gastric dysmotility and hypersensitivity was explored. Results: ZZKZ promoted weight gain, food intake, gastric emptying, and intestinal propulsion in FD rats. ZZKZ promoted spontaneous and ACh-induced contractions of gastric smooth muscle strips in FD rats, alleviated spontaneous activity, and chemical (acid perfusion) and mechanical (intragastric distension) stimulated GSN firing in FD rats. ZZKZ ameliorated gastric smooth muscle contraction and GSN firing induced by 5-HT in FD rats. ZZKZ stimulated the release of serum 5-HT, with reduced 5-HT3 receptor and increased 5-HT4 receptor mRNA expression in the guts of FD rats. Conclusion: This study demonstrated that ZZKZ improves FD-related gastric hypersensitivity and motor dysfunction and should be an effective compound for relieving FD symptoms. The gastric 5-HT system with lower 5-HT3 activity and increased 5-HT4 distribution is involved in the mechanisms of ZZKZ underlying the treatment of FD.
Collapse
Affiliation(s)
- Zhuanglong Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Chinese Medicine, Hubei College of Chinese Medicine, Jingzhou, China
| | - Jun Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengyan Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Wang
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Ruiyun Wang
- Department of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Song
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong Shi
- Department of Gastroenterology, The First Hospital of Wuhan (Wuhan Integrated TCM and Western Medicine Hospital), Wuhan, China
| | - Wenliang Lyu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Bin1 targeted immunotherapy alters the status of the enteric neurons and the microbiome during ulcerative colitis treatment. PLoS One 2022; 17:e0276910. [PMID: 36322599 PMCID: PMC9629549 DOI: 10.1371/journal.pone.0276910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022] Open
Abstract
Ulcerative colitis (UC) is a common chronic disease of the large intestine. Current anti-inflammatory drugs prescribed to treat this disease have limited utility due to significant side-effects. Thus, immunotherapies for UC treatment are still sought. In the DSS mouse model of UC, we recently demonstrated that systemic administration of the Bin1 monoclonal antibody 99D (Bin1 mAb) developed in our laboratory was sufficient to reinforce intestinal barrier function and preserve an intact colonic mucosa, compared to control subjects which displayed severe mucosal lesions, high-level neutrophil and lymphocyte infiltration of mucosal and submucosal areas, and loss of crypts. A dysbiotic microbiome may lead to UC. We determined the effects of Bin1 mAb on the gut microbiome and colonic neurons and correlated the benefits of immunotherapeutic treatment. In the DSS model, we found that induction of UC was associated with disintegration of enteric neurons and elevated levels of glial cells, which translocated to the muscularis at distinct sites. Further, we characterized an altered gut microbiome in DSS treated mice associated with pathogenic proinflammatory characters. Both of these features of UC induction were normalized by Bin1 mAb treatment. With regard to microbiome changes, we observed in particular, increase in Enterobacteriaceae; whereas Firmicutes were eliminated by UC induction and Bin1 mAb treatment restored this phylum including the genus Lactobacillus. Overall, our findings suggest that the intestinal barrier function restored by Bin1 immunotherapy in the DSS model of UC is associated with an improvement in the gut microbiome and preservation of enteric neurons, contributing overall to a healthy intestinal tract.
Collapse
|
48
|
Lambrinos G, Cristofaro V, Pelton K, Bigger-Allen A, Doyle C, Vasquez E, Bielenberg DR, Sullivan MP, Adam RM. Neuropilin 2 Is a Novel Regulator of Distal Colon Contractility. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1592-1603. [PMID: 35985479 PMCID: PMC9667714 DOI: 10.1016/j.ajpath.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 06/05/2023]
Abstract
Appropriate coordination of smooth muscle contraction and relaxation is essential for normal colonic motility. The impact of perturbed motility ranges from moderate, in conditions such as colitis, to potentially fatal in the case of pseudo-obstruction. The mechanisms underlying aberrant motility and the extent to which they can be targeted pharmacologically are incompletely understood. This study identified colonic smooth muscle as a major site of expression of neuropilin 2 (Nrp2) in mice and humans. Mice with inducible smooth muscle-specific knockout of Nrp2 had an increase in evoked contraction of colonic rings in response to carbachol at 1 and 4 weeks following initiation of deletion. KCl-induced contractions were also increased at 4 weeks. Colonic motility was similarly enhanced, as evidenced by faster bead expulsion in Nrp2-deleted mice versus Nrp2-intact controls. In length-tension analysis of the distal colon, passive tension was similar in Nrp2-deficient and Nrp2-intact mice, but at low strains, active stiffness was greater in Nrp2-deficient animals. Consistent with the findings in conditional Nrp2 mice, Nrp2-null mice showed increased contractility in response to carbachol and KCl. Evaluation of selected proteins implicated in smooth muscle contraction revealed no significant differences in the level of α-smooth muscle actin, myosin light chain, calponin, or RhoA. Together, these findings identify Nrp2 as a novel regulator of colonic contractility that may be targetable in conditions characterized by dysmotility.
Collapse
Affiliation(s)
- George Lambrinos
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Division of Urology, VA Boston Healthcare System, Boston, Massachusetts
| | - Kristine Pelton
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts; Biological and Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Evalynn Vasquez
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts
| | - Diane R Bielenberg
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts; Division of Urology, VA Boston Healthcare System, Boston, Massachusetts.
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
49
|
Li B, Li M, Luo Y, Li R, Li W, Liu Z. Engineered 5-HT producing gut probiotic improves gastrointestinal motility and behavior disorder. Front Cell Infect Microbiol 2022; 12:1013952. [PMID: 36339343 PMCID: PMC9630942 DOI: 10.3389/fcimb.2022.1013952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Slow transit constipation is an intractable constipation with unknown aetiology and uncertain pathogenesis. The gut microbiota maintains a symbiotic relationship with the host and has an impact on host metabolism. Previous studies have reported that some gut microbes have the ability to produce 5-hydroxytryptamine (5-HT), an important neurotransmitter. However, there are scarce data exploiting the effects of gut microbiota-derived 5-HT in constipation-related disease. We genetically engineered the probiotic Escherichia coli Nissle 1917 (EcN-5-HT) for synthesizing 5-HT in situ. The ability of EcN-5-HT to secrete 5-HT in vitro and in vivo was confirmed. Then, we examined the effects of EcN-5-HT on intestinal motility in a loperamide-induced constipation mouse model. After two weeks of EcN-5-HT oral gavage, the constipation-related symptoms were relieved and gastrointestinal motility were enhanced. Meanwhile, administration of EcN-5-HT alleviated the constipation related depressive-like behaviors. We also observed improved microbiota composition during EcN-5-HT treatment. This work suggests that gut microbiota-derived 5-HT might promise a potential therapeutic strategy for constipation and related behavioral disorders.
Collapse
Affiliation(s)
- Bei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Min Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Yanan Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Rong Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
| | - Wei Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
- *Correspondence: Wei Li, ; Zhi Liu,
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, China
- *Correspondence: Wei Li, ; Zhi Liu,
| |
Collapse
|
50
|
The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun 2022; 13:6068. [PMID: 36241650 PMCID: PMC9568547 DOI: 10.1038/s41467-022-33609-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Diurnal (i.e., 24-hour) oscillations of the gut microbiome have been described in various species including mice and humans. However, the driving force behind these rhythms remains less clear. In this study, we differentiate between endogenous and exogenous time cues driving microbial rhythms. Our results demonstrate that fecal microbial oscillations are maintained in mice kept in the absence of light, supporting a role of the host's circadian system rather than representing a diurnal response to environmental changes. Intestinal epithelial cell-specific ablation of the core clock gene Bmal1 disrupts rhythmicity of microbiota. Targeted metabolomics functionally link intestinal clock-controlled bacteria to microbial-derived products, in particular branched-chain fatty acids and secondary bile acids. Microbiota transfer from intestinal clock-deficient mice into germ-free mice altered intestinal gene expression, enhanced lymphoid organ weights and suppressed immune cell recruitment. These results highlight the importance of functional intestinal clocks for microbiota composition and function, which is required to balance the host's gastrointestinal homeostasis.
Collapse
|