1
|
Li F, Bahr JN, Bierth FAL, Reshetniak S, Tetzlaff C, Fornasiero EF, Wichmann C, Rizzoli SO. Morphological correlates of synaptic protein turnover in the mouse brain. Life Sci Alliance 2024; 7:e202402793. [PMID: 39134363 PMCID: PMC11325198 DOI: 10.26508/lsa.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Synaptic proteins need to be replaced regularly, to maintain function and to prevent damage. It is unclear whether this process, known as protein turnover, relates to synaptic morphology. To test this, we relied on nanoscale secondary ion mass spectrometry, to detect newly synthesized synaptic components in the brains of young adult (6 mo old) and aged mice (24 mo old), and on transmission electron microscopy, to reveal synapse morphology. Several parameters correlated to turnover, including pre- and postsynaptic size, the number of synaptic vesicles and the presence of a postsynaptic nascent zone. In aged mice, the turnover of all brain compartments was reduced by ∼20%. The turnover rates of the pre- and postsynapses correlated well in aged mice, suggesting that they are subject to common regulatory mechanisms. This correlation was poorer in young adult mice, in line with their higher synaptic dynamics. We conclude that synapse turnover is reflected by synaptic morphology.
Collapse
Affiliation(s)
- Fengxia Li
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Julius N Bahr
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany
| | - Felicitas A-L Bierth
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Molecular Medicine Bachelor Programme, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Carolin Wichmann
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Li W, Dasgupta A, Yang K, Wang S, Hemandhar-Kumar N, Yarbro JM, Hu Z, Salovska B, Fornasiero EF, Peng J, Liu Y. An Extensive Atlas of Proteome and Phosphoproteome Turnover Across Mouse Tissues and Brain Regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618303. [PMID: 39464138 PMCID: PMC11507808 DOI: 10.1101/2024.10.15.618303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Understanding how proteins in different mammalian tissues are regulated is central to biology. Protein abundance, turnover, and post-translational modifications like phosphorylation, are key factors that determine tissue-specific proteome properties. However, these properties are challenging to study across tissues and remain poorly understood. Here, we present Turnover-PPT, a comprehensive resource mapping the abundance and lifetime of 11,000 proteins and 40,000 phosphosites across eight mouse tissues and various brain regions, using advanced proteomics and stable isotope labeling. We revealed tissue-specific short- and long-lived proteins, strong correlations between interacting protein lifetimes, and distinct impacts of phosphorylation on protein turnover. Notably, we discovered that peroxisomes are regulated by protein turnover across tissues, and that phosphorylation regulates the stability of neurodegeneration-related proteins, such as Tau and α-synuclein. Thus, Turnover-PPT provides new fundamental insights into protein stability, tissue dynamic proteotypes, and the role of protein phosphorylation, and is accessible via an interactive web-based portal at https://yslproteomics.shinyapps.io/tissuePPT.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Abhijit Dasgupta
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Neerukonda, Guntur, Andhra Pradesh 522240, India
| | - Ka Yang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nisha Hemandhar-Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhenyi Hu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Current address: Interdisciplinary Research center on Biology and chemistry, Shanghai institute of Organic chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead Contact
| |
Collapse
|
3
|
Bolz S, Haucke V. Biogenesis and reformation of synaptic vesicles. J Physiol 2024. [PMID: 39367867 DOI: 10.1113/jp286554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.
Collapse
Affiliation(s)
- Svenja Bolz
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Steen PR, Unterauer EM, Masullo LA, Kwon J, Perovic A, Jevdokimenko K, Opazo F, Fornasiero EF, Jungmann R. The DNA-PAINT palette: a comprehensive performance analysis of fluorescent dyes. Nat Methods 2024; 21:1755-1762. [PMID: 39112798 PMCID: PMC11399092 DOI: 10.1038/s41592-024-02374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT. Here we defined four key parameters characterizing performance: brightness, signal-to-background ratio, DNA-PAINT docking site damage and off-target signal. We then analyzed 18 fluorescent dyes in three spectral regions and examined them both in DNA origami nanostructures, establishing a reference standard, and in a cellular environment, targeting the nuclear pore complex protein Nup96. Finally, having identified several well-performing dyes for each excitation wavelength, we conducted simultaneous three-color DNA-PAINT combined with Exchange-PAINT to image six protein targets in neurons at ~16 nm resolution in less than 2 h. We thus provide guidelines for DNA-PAINT dye selection and evaluation and an overview of performances of commonly used dyes.
Collapse
Affiliation(s)
- Philipp R Steen
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eduard M Unterauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
6
|
Yousefi R, Dennerlein S. Analysis of mitochondrial translation using click chemistry. Methods Enzymol 2024; 706:533-547. [PMID: 39455233 DOI: 10.1016/bs.mie.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain their own gene expression machinery, which synthesizes core subunits of the oxidative phosphorylation system. Monitoring mitochondrial translation within spatial compartments of cells is difficult. Here we describe a method to visualize mitochondrial translation within defined parts of cells, using a click chemistry approach. This method can be applied to different cell types such as neurons and allows detection of newly synthesized mitochondrial proteins in spatial resolution using microscopy techniques. Furthermore, using click chemistry, mitochondrial translation can also be monitored by standard SDS-PAGE. The described method avenues the analysis of newly synthesized mitochondrial encoded proteins in the cellular context, by avoiding the usage of radioactive components.
Collapse
Affiliation(s)
- Roya Yousefi
- Institute for Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
7
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
8
|
Shahar O, Botvinnik A, Shwartz A, Lerer E, Golding P, Buko A, Hamid E, Kahn D, Guralnick M, Blakolmer K, Wolf G, Lotan A, Lerer L, Lerer B, Lifschytz T. Effect of chemically synthesized psilocybin and psychedelic mushroom extract on molecular and metabolic profiles in mouse brain. Mol Psychiatry 2024; 29:2059-2073. [PMID: 38378926 PMCID: PMC11408259 DOI: 10.1038/s41380-024-02477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Psilocybin, a naturally occurring, tryptamine alkaloid prodrug, is currently being investigated for the treatment of a range of psychiatric disorders. Preclinical reports suggest that the biological effects of psilocybin-containing mushroom extract or "full spectrum" (psychedelic) mushroom extract (PME), may differ from those of chemically synthesized psilocybin (PSIL). We compared the effects of PME to those of PSIL on the head twitch response (HTR), neuroplasticity-related synaptic proteins and frontal cortex metabolomic profiles in male C57Bl/6j mice. HTR measurement showed similar effects of PSIL and PME over 20 min. Brain specimens (frontal cortex, hippocampus, amygdala, striatum) were assayed for the synaptic proteins, GAP43, PSD95, synaptophysin and SV2A, using western blots. These proteins may serve as indicators of synaptic plasticity. Three days after treatment, there was minimal increase in synaptic proteins. After 11 days, PSIL and PME significantly increased GAP43 in the frontal cortex (p = 0.019; p = 0.039 respectively) and hippocampus (p = 0.015; p = 0.027) and synaptophysin in the hippocampus (p = 0.041; p = 0.05) and amygdala (p = 0.035; p = 0.004). PSIL increased SV2A in the amygdala (p = 0.036) and PME did so in the hippocampus (p = 0.014). In the striatum, synaptophysin was increased by PME only (p = 0.023). There were no significant effects of PSIL or PME on PSD95 in any brain area when these were analyzed separately. Nested analysis of variance (ANOVA) showed a significant increase in each of the 4 proteins over all brain areas for PME versus vehicle control, while significant PSIL effects were observed only in the hippocampus and amygdala and were limited to PSD95 and SV2A. Metabolomic analyses of the pre-frontal cortex were performed by untargeted polar metabolomics utilizing capillary electrophoresis - Fourier transform mass spectrometry (CE-FTMS) and showed a differential metabolic separation between PME and vehicle groups. The purines guanosine, hypoxanthine and inosine, associated with oxidative stress and energy production pathways, showed a progressive decline from VEH to PSIL to PME. In conclusion, our synaptic protein findings suggest that PME has a more potent and prolonged effect on synaptic plasticity than PSIL. Our metabolomics data support a gradient of effects from inert vehicle via chemical psilocybin to PME further supporting differential effects. Further studies are needed to confirm and extend these findings and to identify the molecules that may be responsible for the enhanced effects of PME as compared to psilocybin alone.
Collapse
Affiliation(s)
- Orr Shahar
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Alexander Botvinnik
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Amit Shwartz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Elad Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
- Israel Institute for Biology, Nes Ziona, Israel
| | - Peretz Golding
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Alex Buko
- Human Metabolome Technologies, Boston, MA, USA
| | - Ethan Hamid
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Dani Kahn
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Miles Guralnick
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | | | - Gilly Wolf
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
- Achva Academic College, Beer Tuvia, Israel
| | - Amit Lotan
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Leonard Lerer
- Parow Entheobiosciences (ParowBio), Chicago, IL, USA
- Back of the Yards Algae Sciences (BYAS), Chicago, IL, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| | - Tzuri Lifschytz
- Biological Psychiatry Laboratory and Hadassah BrainLabs Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
9
|
Dou D, Aiken J, Holzbaur EL. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. J Cell Biol 2024; 223:e202307092. [PMID: 38512027 PMCID: PMC10959120 DOI: 10.1083/jcb.202307092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adaptor MADD, potentially preventing the formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erika L.F. Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis by sustaining the translation of cytokinin signaling inhibitor proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.07.536060. [PMID: 37066395 PMCID: PMC10104159 DOI: 10.1101/2023.04.07.536060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to constant size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 ( drmy1 ), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
|
12
|
Paulussen I, Beckert H, Musial TF, Gschossmann LJ, Wolf J, Schmitt M, Clasadonte J, Mairet-Coello G, Wolff C, Schoch S, Dietrich D. SV2B defines a subpopulation of synaptic vesicles. J Mol Cell Biol 2024; 15:mjad054. [PMID: 37682518 PMCID: PMC11184983 DOI: 10.1093/jmcb/mjad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.
Collapse
Affiliation(s)
- Isabelle Paulussen
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Hannes Beckert
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Timothy F Musial
- Microscopy Core Facility, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Lena J Gschossmann
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Wolf
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | | | | | | | | | - Susanne Schoch
- Synaptic Neuroscience Team, Department of Neuropathology, University Hospital Bonn, Bonn 53127, Germany
| | - Dirk Dietrich
- Synaptic Neuroscience Team, Department of Neurosurgery, University Hospital Bonn, Bonn 53127, Germany
| |
Collapse
|
13
|
Binotti B, Ninov M, Cepeda AP, Ganzella M, Matti U, Riedel D, Urlaub H, Sambandan S, Jahn R. ATG9 resides on a unique population of small vesicles in presynaptic nerve terminals. Autophagy 2024; 20:883-901. [PMID: 37881948 PMCID: PMC11062364 DOI: 10.1080/15548627.2023.2274204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
In neurons, autophagosome biogenesis occurs mainly in distal axons, followed by maturation during retrograde transport. Autophagosomal growth depends on the supply of membrane lipids which requires small vesicles containing ATG9, a lipid scramblase essential for macroautophagy/autophagy. Here, we show that ATG9-containing vesicles are enriched in synapses and resemble synaptic vesicles in size and density. The proteome of ATG9-containing vesicles immuno-isolated from nerve terminals showed conspicuously low levels of trafficking proteins except of the AP2-complex and some enzymes involved in endosomal phosphatidylinositol metabolism. Super resolution microscopy of nerve terminals and isolated vesicles revealed that ATG9-containing vesicles represent a distinct vesicle population with limited overlap not only with synaptic vesicles but also other membranes of the secretory pathway, uncovering a surprising heterogeneity in their membrane composition. Our results are compatible with the view that ATG9-containing vesicles function as lipid shuttles that scavenge membrane lipids from various intracellular membranes to support autophagosome biogenesis.Abbreviations: AP: adaptor related protein complex: ATG2: autophagy related 2; ATG9: autophagy related 9; DNA PAINT: DNA-based point accumulation for imaging in nanoscale topography; DyMIN STED: dynamic minimum stimulated emission depletion; EL: endosome and lysosome; ER: endoplasmic reticulum; GA: Golgi apparatus; iBAQ: intensity based absolute quantification; LAMP: lysosomal-associated membrane protein; M6PR: mannose-6-phosphate receptor, cation dependent; Minflux: minimal photon fluxes; Mito: mitochondria; MS: mass spectrometry; PAS: phagophore assembly site; PM: plasma membrane; Px: peroxisome; RAB26: RAB26, member RAS oncogene family; RAB3A: RAB3A, member RAS oncogene family; RAB5A: RAB5A, member RAS oncogene family; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment receptor; SVs: synaptic vesicles; SYP: synaptophysin; TGN: trans-Golgi network; TRAPP: transport protein particle; VTI1: vesicle transport through interaction with t-SNAREs.
Collapse
Affiliation(s)
- Beyenech Binotti
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Momchil Ninov
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andreia P. Cepeda
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ulf Matti
- Abberior Instruments GmbH, Göttingen, Germany
| | - Dietmar Riedel
- Facility for Transmission Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging : from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Sivakumar Sambandan
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Synaptic Metal Ion Dynamics and Signalin, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
14
|
Unterauer EM, Shetab Boushehri S, Jevdokimenko K, Masullo LA, Ganji M, Sograte-Idrissi S, Kowalewski R, Strauss S, Reinhardt SCM, Perovic A, Marr C, Opazo F, Fornasiero EF, Jungmann R. Spatial proteomics in neurons at single-protein resolution. Cell 2024; 187:1785-1800.e16. [PMID: 38552614 DOI: 10.1016/j.cell.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.
Collapse
Affiliation(s)
- Eduard M Unterauer
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Data & Analytics, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Munich, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mahipal Ganji
- Max Planck Institute of Biochemistry, Planegg, Germany; Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
15
|
Longfield SF, Gormal RS, Feller M, Parutto P, Reingruber J, Wallis TP, Joensuu M, Augustine GJ, Martínez-Mármol R, Holcman D, Meunier FA. Synapsin 2a tetramerisation selectively controls the presynaptic nanoscale organisation of reserve synaptic vesicles. Nat Commun 2024; 15:2217. [PMID: 38472171 PMCID: PMC10933366 DOI: 10.1038/s41467-024-46256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization has been suggested as a potential clustering mechanism. Here, we used Dual-pulse sub-diffractional Tracking of Internalised Molecules (DsdTIM) to simultaneously track single SVs from the recycling and the reserve pools, in live hippocampal neurons. The reserve pool displays a lower presynaptic mobility compared to the recycling pool and is also present in the axons. Triple knockout of Synapsin 1-3 genes (SynTKO) increased the mobility of reserve pool SVs. Re-expression of wild-type Syn2a (Syn2aWT), but not the tetramerization-deficient mutant K337Q (Syn2aK337Q), fully rescued these effects. Single-particle tracking revealed that Syn2aK337QmEos3.1 exhibited altered activity-dependent presynaptic translocation and nanoclustering. Therefore, Syn2a tetramerization controls its own presynaptic nanoclustering and thereby contributes to the dynamic immobilisation of the SV reserve pool.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matis Feller
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Pierre Parutto
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Jürgen Reingruber
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Holcman
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics (DAMPT) visitor, University of Cambridge, and Churchill College, CB30DS, Cambridge, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Lork AA, Rabasco S, Ernst C, du Toit A, Rizzoli SO, Phan NTN. Subcellular protein turnover in human neural progenitor cells revealed by correlative electron microscopy and nanoscale secondary ion mass spectrometry imaging. Chem Sci 2024; 15:3311-3322. [PMID: 38425528 PMCID: PMC10901485 DOI: 10.1039/d3sc05629e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024] Open
Abstract
Protein turnover is a critical process for accurate cellular function, in which damaged proteins in the cells are gradually replaced with newly synthesized ones. Many previous studies on cellular protein turnover have used stable isotopic labelling by amino acids in cell culture (SILAC), followed by proteomic bulk analysis. However, this approach does not take into account the heterogeneity observed at the single-cell and subcellular levels. To address this, we investigated the protein turnover of neural progenitor cells at the subcellular resolution, using correlative TEM and NanoSIMS imaging, relying on a pulse-chase analysis of isotopically-labelled protein precusors. Cellular protein turnover was found significantly heterogenous across individual organelles, which indicates a possible relation between protein turnover and subcellular activity. In addition, different isotopically-labelled amino acids provided different turnover patterns, in spite of all being protein precursors, suggesting that they undergo distinct protein synthesis and metabolic pathways at the subcellular level.
Collapse
Affiliation(s)
- Alicia A Lork
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| | - Carl Ernst
- Human Genetics, McGill University H4H1R3 Montreal Canada
| | - André du Toit
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration Göttingen Germany
| | - Nhu T N Phan
- Department of Chemistry and Molecular Biology University of Gothenburg SE-412 96 Gothenburg Sweden
| |
Collapse
|
17
|
Bonnin EA, Golmohammadi A, Rehm R, Tetzlaff C, Rizzoli SO. High-resolution analysis of bound Ca 2+ in neurons and synapses. Life Sci Alliance 2024; 7:e202302030. [PMID: 37833073 PMCID: PMC10575792 DOI: 10.26508/lsa.202302030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Calcium (Ca2+) is a well-known second messenger in all cells, and is especially relevant for neuronal activity. Neuronal Ca2+ is found in different forms, with a minority being freely soluble in the cell and more than 99% being bound to proteins. Free Ca2+ has received much attention over the last few decades, but protein-bound Ca2+ has been difficult to analyze. Here, we introduce correlative fluorescence and nanoscale secondary ion mass spectrometry imaging as a tool to describe bound Ca2+ As expected, bound Ca2+ is ubiquitous. It does not correlate to free Ca2+ dynamics at the whole-neuron level, but does correlate significantly to the intensity of markers for GABAergic pre-synapse and glutamatergic post-synapses. In contrast, a negative correlation to pre-synaptic activity was observed, with lower levels of bound Ca2+ observed in the more active synapses. We conclude that bound Ca2+ may regulate neuronal activity and should receive more attention in the future.
Collapse
Affiliation(s)
- Elisa A Bonnin
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Arash Golmohammadi
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronja Rehm
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Tetzlaff
- Group of Computational Synaptic Physiology, Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Excellence Cluster Multiscale Bioimaging (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Parkes M, Landers NL, Gramlich MW. Recently recycled synaptic vesicles use multi-cytoskeletal transport and differential presynaptic capture probability to establish a retrograde net flux during ISVE in central neurons. Front Cell Dev Biol 2023; 11:1286915. [PMID: 38020880 PMCID: PMC10657820 DOI: 10.3389/fcell.2023.1286915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Presynapses locally recycle synaptic vesicles to efficiently communicate information. During use and recycling, proteins on the surface of synaptic vesicles break down and become less efficient. In order to maintain efficient presynaptic function and accommodate protein breakdown, new proteins are regularly produced in the soma and trafficked to presynaptic locations where they replace older protein-carrying vesicles. Maintaining a balance of new proteins and older proteins is thus essential for presynaptic maintenance and plasticity. While protein production and turnover have been extensively studied, it is still unclear how older synaptic vesicles are trafficked back to the soma for recycling in order to maintain balance. In the present study, we use a combination of fluorescence microscopy, hippocampal cell cultures, and computational analyses to determine the mechanisms that mediate older synaptic vesicle trafficking back to the soma. We show that synaptic vesicles, which have recently undergone exocytosis, can differentially utilize either the microtubule or the actin cytoskeleton networks. We show that axonally trafficked vesicles traveling with higher speeds utilize the microtubule network and are less likely to be captured by presynapses, while slower vesicles utilize the actin network and are more likely to be captured by presynapses. We also show that retrograde-driven vesicles are less likely to be captured by a neighboring presynapse than anterograde-driven vesicles. We show that the loss of synaptic vesicle with bound molecular motor myosin V is the mechanism that differentiates whether vesicles will utilize the microtubule or actin networks. Finally, we present a theoretical framework of how our experimentally observed retrograde vesicle trafficking bias maintains the balance with previously observed rates of new vesicle trafficking from the soma.
Collapse
|
19
|
Cozzolino F, Canè L, Sacchettino L, Gatto MC, Iacobucci I, Gatta C, De Biase D, Di Napoli E, Paciello O, Avallone L, Monti M, d’Angelo D, Napolitano F. Preliminary evaluation of the proteomic profiling in the hippocampus of aged grazing cattle. Front Aging Neurosci 2023; 15:1274073. [PMID: 37965495 PMCID: PMC10641839 DOI: 10.3389/fnagi.2023.1274073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Brain aging is a physiological process associated with physical and cognitive decline; however, in both humans and animals, it can be regarded as a risk factor for neurodegenerative disorders, such as Alzheimer's disease. Among several brain regions, hippocampus appears to be more susceptible to detrimental effects of aging. Hippocampus belongs to limbic system and is mainly involved in declarative memories and context-dependent spatial-learning, whose integrity is compromised in an age-dependent manner. In the present work, taking advantage of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics, we sought to identify proteins differentially expressed in the hippocampus of the aged grazing milk cows. Our exploratory findings showed that, out of 707 identified proteins, 112 were significantly altered in old cattle, when compared to the adult controls, and functional clusterization highlighted their involvement in myelination, synaptic vesicle, metabolism, and calcium-related biological pathways. Overall, our preliminary data pave the way for the future studies, aimed at better characterizing the role of such a subcortical brain region in the age-dependent cognitive decline, as well as identifying early aging markers to improve animal welfare and husbandry practices of dairy cattle from intensive livestock.
Collapse
Affiliation(s)
- Flora Cozzolino
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Luisa Canè
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Claudia Gatto
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
| | - Ilaria Iacobucci
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Claudia Gatta
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Evaristo Di Napoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Monti
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Federico II, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Napolitano
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Bertin F, Jara-Wilde J, Auer B, Köhler-Solís A, González-Silva C, Thomas U, Sierralta J. Drosophila Atlastin regulates synaptic vesicle mobilization independent of bone morphogenetic protein signaling. Biol Res 2023; 56:49. [PMID: 37710314 PMCID: PMC10503011 DOI: 10.1186/s40659-023-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) contacts endosomes in all parts of a motor neuron, including the axon and presynaptic terminal, to move structural proteins, proteins that send signals, and lipids over long distances. Atlastin (Atl), a large GTPase, is required for membrane fusion and the structural dynamics of the ER tubules. Atl mutations are the second most common cause of Hereditary Spastic Paraplegia (HSP), which causes spasticity in both sexes' lower extremities. Through an unknown mechanism, Atl mutations stimulate the BMP (bone morphogenetic protein) pathway in vertebrates and Drosophila. Synaptic defects are caused by atl mutations, which affect the abundance and distribution of synaptic vesicles (SV) in the bouton. We hypothesize that BMP signaling, does not cause Atl-dependent SV abnormalities in Drosophila. RESULTS We show that atl knockdown in motor neurons (Atl-KD) increases synaptic and satellite boutons in the same way that constitutively activating the BMP-receptor Tkv (thick veins) (Tkv-CA) increases the bouton number. The SV proteins Cysteine string protein (CSP) and glutamate vesicular transporter are reduced in Atl-KD and Tkv-CA larvae. Reducing the activity of the BMP receptor Wishful thinking (wit) can rescue both phenotypes. Unlike Tkv-CA larvae, Atl-KD larvae display altered activity-dependent distributions of CSP staining. Furthermore, Atl-KD larvae display an increased FM 1-43 unload than Control and Tkv-CA larvae. As decreasing wit function does not reduce the phenotype, our hypothesis that BMP signaling is not involved is supported. We also found that Rab11/CSP colocalization increased in Atl-KD larvae, which supports the concept that late recycling endosomes regulate SV movements. CONCLUSIONS Our findings reveal that Atl modulates neurotransmitter release in motor neurons via SV distribution independently of BMP signaling, which could explain the observed SV accumulation and synaptic dysfunction. Our data suggest that Atl is involved in membrane traffic as well as formation and/or recycling of the late endosome.
Collapse
Affiliation(s)
- Francisca Bertin
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Jara-Wilde
- SCIAN-Lab, Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Computational Sciences, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Benedikt Auer
- Laboratory of Neuronal and Synaptic Signals, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Andrés Köhler-Solís
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carolina González-Silva
- Biomedical Neuroscience Institute (BNI), Santiago, Chile
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ulrich Thomas
- Functional Genetics of the Synapse, Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Jimena Sierralta
- Biomedical Neuroscience Institute (BNI), Santiago, Chile.
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Naia L, Shimozawa M, Bereczki E, Li X, Liu J, Jiang R, Giraud R, Leal NS, Pinho CM, Berger E, Falk VL, Dentoni G, Ankarcrona M, Nilsson P. Mitochondrial hypermetabolism precedes impaired autophagy and synaptic disorganization in App knock-in Alzheimer mouse models. Mol Psychiatry 2023; 28:3966-3981. [PMID: 37907591 PMCID: PMC10730401 DOI: 10.1038/s41380-023-02289-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Accumulation of amyloid β-peptide (Aβ) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aβ pathology, allowing elucidation of downstream effects of Aβ accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in AppNL-F and AppNL-G-F knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD. Strikingly, energy metabolism emerged as one of the most significantly altered pathways already at an early stage of pathology. Functional experiments in isolated mitochondria from hippocampus of both AppNL-F and AppNL-G-F mice confirmed an upregulation of oxidative phosphorylation driven by the activity of mitochondrial complexes I, IV and V, associated with higher susceptibility to oxidative damage and Ca2+-overload. Upon increasing pathologies, the brain shifts to a state of hypometabolism with reduced abundancy of mitochondria in presynaptic terminals. These late-stage mice also displayed enlarged presynaptic areas associated with abnormal accumulation of synaptic vesicles and autophagosomes, the latter ultimately leading to local autophagy impairment in the synapses. In summary, we report that Aβ-induced pathways in App knock-in mouse models recapitulate key pathologies observed in AD brain, and our data herein adds a comprehensive understanding of the pathologies including dysregulated metabolism and synapses and their timewise appearance to find new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Luana Naia
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Centre for Translational Microbiome Research and National Pandemic Center, Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xidan Li
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jianping Liu
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Romain Giraud
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Santos Leal
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Moreira Pinho
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Erik Berger
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Victoria Lim Falk
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Giacomo Dentoni
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Georgiev SV, Rizzoli SO. The long-loop recycling (LLR) of synaptic components as a question of economics. Mol Cell Neurosci 2023; 126:103862. [PMID: 37236414 DOI: 10.1016/j.mcn.2023.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pre- and post-synaptic compartments contain a variety of molecules that are known to recycle between the plasma membrane and intracellular organelles. The recycling steps have been amply described in functional terms, with, for example, synaptic vesicle recycling being essential for neurotransmitter release, and postsynaptic receptor recycling being a fundamental feature of synaptic plasticity. However, synaptic protein recycling may also serve a more prosaic role, simply ensuring the repeated use of specific components, thereby minimizing the energy expenditure on the synthesis of synaptic proteins. This type of process has been recently described for components of the extracellular matrix, which undergo long-loop recycling (LLR), to and from the cell body. Here we suggest that the energy-saving recycling of synaptic components may be more widespread than is generally acknowledged, potentially playing a role in both synaptic vesicle protein usage and postsynaptic receptor metabolism.
Collapse
Affiliation(s)
- Svilen Veselinov Georgiev
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; International Max Planck Research School for Neuroscience, Göttingen, Germany.
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, Göttingen, Germany.
| |
Collapse
|
23
|
Dou D, Aiken J, Holzbaur ELF. RAB3 phosphorylation by pathogenic LRRK2 impairs trafficking of synaptic vesicle precursors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550521. [PMID: 37546777 PMCID: PMC10402060 DOI: 10.1101/2023.07.25.550521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adapter MADD, potentially preventing formation of the RAB3A-MADD-KIF1A/1Bβ complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.
Collapse
Affiliation(s)
- Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jayne Aiken
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Vitet H, Bruyère J, Xu H, Séris C, Brocard J, Abada YS, Delatour B, Scaramuzzino C, Venance L, Saudou F. Huntingtin recruits KIF1A to transport synaptic vesicle precursors along the mouse axon to support synaptic transmission and motor skill learning. eLife 2023; 12:e81011. [PMID: 37431882 PMCID: PMC10365837 DOI: 10.7554/elife.81011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Neurotransmitters are released at synapses by synaptic vesicles (SVs), which originate from SV precursors (SVPs) that have traveled along the axon. Because each synapse maintains a pool of SVs, only a small fraction of which are released, it has been thought that axonal transport of SVPs does not affect synaptic function. Here, studying the corticostriatal network both in microfluidic devices and in mice, we find that phosphorylation of the Huntingtin protein (HTT) increases axonal transport of SVPs and synaptic glutamate release by recruiting the kinesin motor KIF1A. In mice, constitutive HTT phosphorylation causes SV over-accumulation at synapses, increases the probability of SV release, and impairs motor skill learning on the rotating rod. Silencing KIF1A in these mice restored SV transport and motor skill learning to wild-type levels. Axonal SVP transport within the corticostriatal network thus influences synaptic plasticity and motor skill learning.
Collapse
Affiliation(s)
- Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeuroscienceGrenobleFrance
| | - Julie Bruyère
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeuroscienceGrenobleFrance
| | - Hao Xu
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSLParisFrance
| | - Claire Séris
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeuroscienceGrenobleFrance
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeuroscienceGrenobleFrance
| | - Yah-Sé Abada
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U1127, CNRS UMR7225ParisFrance
| | - Benoît Delatour
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U1127, CNRS UMR7225ParisFrance
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeuroscienceGrenobleFrance
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSLParisFrance
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeuroscienceGrenobleFrance
| |
Collapse
|
25
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun 2023; 14:200. [PMID: 36639371 PMCID: PMC9839781 DOI: 10.1038/s41467-023-35806-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Immune system molecules are expressed by neurons, yet their functions are often unknown. We have identified IL-13 and its receptor IL-13Ra1 as neuronal, synaptic proteins in mouse, rat, and human brains, whose engagement upregulates the phosphorylation of NMDAR and AMPAR subunits and, in turn, increases synaptic activity and CREB-mediated transcription. We demonstrate that increased IL-13 is a hallmark of traumatic brain injury (TBI) in male mice as well as in two distinct cohorts of human patients. We also provide evidence that IL-13 upregulation protects neurons from excitotoxic death. We show IL-13 upregulation occurring in several cohorts of human brain samples and in cerebrospinal fluid (CSF). Thus, IL-13 is a physiological modulator of synaptic physiology of neuronal origin, with implications for the establishment of synaptic plasticity and the survival of neurons under injury conditions. Furthermore, we suggest that the neuroprotection afforded through the upregulation of IL-13 represents an entry point for interventions in the pathophysiology of TBI.
Collapse
|
27
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
28
|
Cesare E, Urciuolo A, Stuart HT, Torchio E, Gesualdo A, Laterza C, Gagliano O, Martewicz S, Cui M, Manfredi A, Di Filippo L, Sabatelli P, Squarzoni S, Zorzan I, Betto RM, Martello G, Cacchiarelli D, Luni C, Elvassore N. 3D ECM-rich environment sustains the identity of naive human iPSCs. Cell Stem Cell 2022; 29:1703-1717.e7. [PMID: 36459970 DOI: 10.1016/j.stem.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
The establishment of in vitro naive human pluripotent stem cell cultures opened new perspectives for the study of early events in human development. The role of several transcription factors and signaling pathways have been characterized during maintenance of human naive pluripotency. However, little is known about the role exerted by the extracellular matrix (ECM) and its three-dimensional (3D) organization. Here, using an unbiased and integrated approach combining microfluidic cultures with transcriptional, proteomic, and secretome analyses, we found that naive, but not primed, hiPSC colonies are characterized by a self-organized ECM-rich microenvironment. Based on this, we developed a 3D culture system that supports robust long-term feeder-free self-renewal of naive hiPSCs and also allows direct and timely developmental morphogenesis simply by modulating the signaling environment. Our study opens new perspectives for future applications of naive hiPSCs to study critical stages of human development in 3D starting from a single cell.
Collapse
Affiliation(s)
- Elisa Cesare
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Anna Urciuolo
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Institute of Pediatric Research IRP, Corso Stati Uniti, Padova 35127, Italy; Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Hannah T Stuart
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Erika Torchio
- Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Alessia Gesualdo
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy
| | - Cecilia Laterza
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Patrizia Sabatelli
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy; IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Zorzan
- Epigenetics Programme, Babraham Institute, CB22 3AT Cambridge, UK
| | - Riccardo M Betto
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Graziano Martello
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35131, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples "Federico II", Naples, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Terracini 28, Bologna 40131, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, 6/a Via Gradenigo, Padova 35131, Italy; Veneto Institute of Molecular Medicine, 2 Via Orus, Padova 35131, Italy; University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
29
|
Liu H, Zhang J, Wei C, Liu Z, Zhou W, Yang P, Gong Y, Zhao Y. Prognostic signature construction of energy metabolism-related genes in pancreatic cancer. Front Oncol 2022; 12:917897. [PMID: 36248974 PMCID: PMC9559226 DOI: 10.3389/fonc.2022.917897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer is the 7th leading cause of cancer death worldwide, and its incidence and mortality rate have been on the rise in recent years in Western developed countries. The specificity of the disease and the lack of appropriate treatments have resulted in a 5-year overall survival rate of only 9%. In this study, we conducted a study based on the TCGA database and GEO database and analyzed using the energy metabolism gene set to establish a prognostic model with the least absolute shrinkage and selection operator to identify 7-genes prognostic signature, and the gene expression was verified by Real-time PCR. The model was validated using a risk score calculation, and the OS rates of the 7 genes were analyzed using one-way Cox regression. The prognostic relationship between vesicle-associated membrane protein 2 (VAMP2) and pancreatic cancer patients was analyzed by OS and progression-free survival, and the prognosis was found to be significantly worse in the high-expression group. A Nomogram showed that VAMP2 was an independent prognostic factor in pancreatic cancer. Gene set enrichment analysis showed that VAMP2 upregulation was enriched in pathways associated with immune response and that VAMP2 downregulation was enriched in metabolism-related pathways. The association of VAMP2 with immune cell infiltration was analyzed for the enrichment results, and VAMP2 was found to be positively associated with all 6 immune cells. The results of this study suggest that VAMP2 is an independent prognostic factor associated with energy metabolism in pancreatic cancer and may be involved in the immune response.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Jianhua Zhang
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Chaoguang Wei
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
| | - Zhao Liu
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
| | - Wei Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pan Yang
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
- *Correspondence: Yuxiang Zhao, ; Yifu Gong,
| | - Yuxiang Zhao
- United New Drug Research and Development Center, Hunan Biotrans Technology Co., LTD., Changsha, China
- Institute of Bioengineering, Biotrans Technology Co., LTD., Shanghai, China
- *Correspondence: Yuxiang Zhao, ; Yifu Gong,
| |
Collapse
|
30
|
Lycas MD, Ejdrup AL, Sørensen AT, Haahr NO, Jørgensen SH, Guthrie DA, Støier JF, Werner C, Newman AH, Sauer M, Herborg F, Gether U. Nanoscopic dopamine transporter distribution and conformation are inversely regulated by excitatory drive and D2 autoreceptor activity. Cell Rep 2022; 40:111431. [PMID: 36170827 PMCID: PMC9617621 DOI: 10.1016/j.celrep.2022.111431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The nanoscopic organization and regulation of individual molecular components in presynaptic varicosities of neurons releasing modulatory volume neurotransmitters like dopamine (DA) remain largely elusive. Here we show, by application of several super-resolution microscopy techniques to cultured neurons and mouse striatal slices, that the DA transporter (DAT), a key protein in varicosities of dopaminergic neurons, exists in the membrane in dynamic equilibrium between an inward-facing nanodomain-localized and outward-facing unclustered configuration. The balance between these configurations is inversely regulated by excitatory drive and DA D2 autoreceptor activation in a manner dependent on Ca2+ influx via N-type voltage-gated Ca2+ channels. The DAT nanodomains contain tens of transporters molecules and overlap with nanodomains of PIP2 (phosphatidylinositol-4,5-bisphosphate) but show little overlap with D2 autoreceptor, syntaxin-1, and clathrin nanodomains. The data reveal a mechanism for rapid alterations of nanoscopic DAT distribution and show a striking link of this to the conformational state of the transporter.
Collapse
Affiliation(s)
- Matthew D Lycas
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Aske L Ejdrup
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Nicolai O Haahr
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Søren H Jørgensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Daryl A Guthrie
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonatan F Støier
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Freja Herborg
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7.5, 2200 Copenhagen, Denmark.
| |
Collapse
|
31
|
Deliu LP, Turingan M, Jadir D, Lee B, Ghosh A, Grewal SS. Serotonergic neuron ribosomal proteins regulate the neuroendocrine control of Drosophila development. PLoS Genet 2022; 18:e1010371. [PMID: 36048889 PMCID: PMC9473637 DOI: 10.1371/journal.pgen.1010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The regulation of ribosome function is a conserved mechanism of growth control. While studies in single cell systems have defined how ribosomes contribute to cell growth, the mechanisms that link ribosome function to organismal growth are less clear. Here we explore this issue using Drosophila Minutes, a class of heterozygous mutants for ribosomal proteins. These animals exhibit a delay in larval development caused by decreased production of the steroid hormone ecdysone, the main regulator of larval maturation. We found that this developmental delay is not caused by decreases in either global ribosome numbers or translation rates. Instead, we show that they are due in part to loss of Rp function specifically in a subset of serotonin (5-HT) neurons that innervate the prothoracic gland to control ecdysone production. We find that these effects do not occur due to altered protein synthesis or proteostasis, but that Minute animals have reduced expression of synaptotagmin, a synaptic vesicle protein, and that the Minute developmental delay can be partially reversed by overexpression of synaptic vesicle proteins in 5-HTergic cells. These results identify a 5-HT cell-specific role for ribosomal function in the neuroendocrine control of animal growth and development.
Collapse
Affiliation(s)
- Lisa Patricia Deliu
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Michael Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Deeshpaul Jadir
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Ghosh
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj Singh Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
32
|
Montenegro‐Venegas C, Guhathakurta D, Pina‐Fernandez E, Andres‐Alonso M, Plattner F, Gundelfinger ED, Fejtova A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and
cAMP. EMBO Rep 2022; 23:e53659. [PMID: 35766170 PMCID: PMC9346490 DOI: 10.15252/embr.202153659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
Neuronal presynaptic terminals contain hundreds of neurotransmitter‐filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well‐known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5‐dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release.
Collapse
Affiliation(s)
- Carolina Montenegro‐Venegas
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Maria Andres‐Alonso
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
33
|
Birdsall V, Kirwan K, Zhu M, Imoto Y, Wilson SM, Watanabe S, Waites CL. Axonal transport of Hrs is activity dependent and facilitates synaptic vesicle protein degradation. Life Sci Alliance 2022; 5:5/10/e202000745. [PMID: 35636965 PMCID: PMC9152131 DOI: 10.26508/lsa.202000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
This study describes an activity-dependent mechanism for transporting ESCRT-0 protein Hrs to synaptic vesicle (SV) pools, facilitating SV protein degradation in response to increased neuronal firing. Turnover of synaptic vesicle (SV) proteins is vital for the maintenance of healthy and functional synapses. SV protein turnover is driven by neuronal activity in an endosomal sorting complex required for transport (ESCRT)-dependent manner. Here, we characterize a critical step in this process: axonal transport of ESCRT-0 component Hrs, necessary for sorting proteins into the ESCRT pathway and recruiting downstream ESCRT machinery to catalyze multivesicular body (MVB) formation. We find that neuronal activity stimulates the formation of presynaptic endosomes and MVBs, as well as the motility of Hrs+ vesicles in axons and their delivery to SV pools. Hrs+ vesicles co-transport ESCRT-0 component STAM1 and comprise a subset of Rab5+ vesicles, likely representing pro-degradative early endosomes. Furthermore, we identify kinesin motor protein KIF13A as essential for the activity-dependent transport of Hrs to SV pools and the degradation of SV membrane proteins. Together, these data demonstrate a novel activity- and KIF13A-dependent mechanism for mobilizing axonal transport of ESCRT machinery to facilitate the degradation of SV membrane proteins.
Collapse
Affiliation(s)
- Veronica Birdsall
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Konner Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | - Mei Zhu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Scott M Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA.,Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA .,Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Kuijpers M. Keeping synapses in shape: degradation pathways in the healthy and aging brain. Neuronal Signal 2022; 6:NS20210063. [PMID: 35813265 PMCID: PMC9208270 DOI: 10.1042/ns20210063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Synapses maintain their molecular composition, plasticity and function through the concerted action of protein synthesis and removal. The complex and polarized neuronal architecture poses specific challenges to the logistics of protein and organelle turnover since protein synthesis and degradation mainly happen in the cell soma. In addition, post-mitotic neurons accumulate damage over a lifetime, challenging neuronal degradative pathways and making them particularly susceptible to the effects of aging. This review will summarize the current knowledge on neuronal protein turnover mechanisms with a particular focus on the presynapse, including the proteasome, autophagy and the endolysosomal route and their roles in regulating presynaptic proteostasis and function. In addition, the author will discuss how physiological brain aging, which entails a progressive decline in cognitive functions, affects synapses and the degradative machinery.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Kluever V, Russo B, Mandad S, Kumar NH, Alevra M, Ori A, Rizzoli SO, Urlaub H, Schneider A, Fornasiero EF. Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. SCIENCE ADVANCES 2022; 8:eabn4437. [PMID: 35594347 PMCID: PMC9122331 DOI: 10.1126/sciadv.abn4437] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Aging is a prominent risk factor for neurodegenerative disorders (NDDs); however, the molecular mechanisms rendering the aged brain particularly susceptible to neurodegeneration remain unclear. Here, we aim to determine the link between physiological aging and NDDs by exploring protein turnover using metabolic labeling and quantitative pulse-SILAC proteomics. By comparing protein lifetimes between physiologically aged and young adult mice, we found that in aged brains protein lifetimes are increased by ~20% and that aging affects distinct pathways linked to NDDs. Specifically, a set of neuroprotective proteins are longer-lived in aged brains, while some mitochondrial proteins linked to neurodegeneration are shorter-lived. Strikingly, we observed a previously unknown alteration in proteostasis that correlates to parsimonious turnover of proteins with high biosynthetic costs, revealing an overall metabolic adaptation that preludes neurodegeneration. Our findings suggest that future therapeutic paradigms, aimed at addressing these metabolic adaptations, might be able to delay NDD onset.
Collapse
Affiliation(s)
- Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Belisa Russo
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mihai Alevra
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
36
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Staudt A, Ratai O, Bouzouina A, Fecher-Trost C, Shaaban A, Bzeih H, Horn A, Shaib AH, Klose M, Flockerzi V, Lauterbach MA, Rettig J, Becherer U. Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini. Front Mol Neurosci 2022; 15:674243. [PMID: 35493323 PMCID: PMC9049930 DOI: 10.3389/fnmol.2022.674243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using – in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.
Collapse
Affiliation(s)
- Angelina Staudt
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Olga Ratai
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Aicha Bouzouina
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Hawraa Bzeih
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Alexander Horn
- Department of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Ali H. Shaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Margarete Klose
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Marcel A. Lauterbach
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- *Correspondence: Ute Becherer,
| |
Collapse
|
38
|
Nguyen TD, Mellander L, Lork A, Thomen A, Philipsen M, Kurczy ME, Phan NT, Ewing AG. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS NANO 2022; 16:4831-4842. [PMID: 35189057 PMCID: PMC8945366 DOI: 10.1021/acsnano.2c00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
For decades, "all-or-none" and "kiss-and-run" were thought to be the only major exocytotic release modes in cell-to-cell communication, while the significance of partial release has not yet been widely recognized and accepted owing to the lack of direct evidence for exocytotic partial release. Correlative imaging with transmission electron microscopy and NanoSIMS imaging and a dual stable isotope labeling approach was used to study the cargo status of vesicles before and after exocytosis; demonstrating a measurable loss of transmitter in individual vesicles following stimulation due to partial release. Model secretory cells were incubated with 13C-labeled l-3,4-dihydroxyphenylalanine, resulting in the loading of 13C-labeled dopamine into their vesicles. A second label, di-N-desethylamiodarone, having the stable isotope 127I, was introduced during stimulation. A significant drop in the level of 13C-labeled dopamine and a reduction in vesicle size, with an increasing level of 127I-, was observed in vesicles of stimulated cells. Colocalization of 13C and 127I- in several vesicles was observed after stimulation. Thus, chemical visualization shows transient opening of vesicles to the exterior of the cell without full release the dopamine cargo. We present a direct calculation for the fraction of neurotransmitter release from combined imaging data. The average vesicular release is 60% of the total catecholamine. An important observation is that extracellular molecules can be introduced to cells during the partial exocytotic release process. This nonendocytic transport process appears to be a general route of entry that might be exploited pharmacologically.
Collapse
Affiliation(s)
- Tho Duc
Khanh Nguyen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Lisa Mellander
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Alicia Lork
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Mai Philipsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
| | - Michael E. Kurczy
- DMPK,
Research and Early Development, Cardiovascular, Renal and Metabolism
(CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg S-431 83, Sweden
| | - Nhu T.N. Phan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
- E-mail:
| |
Collapse
|
39
|
Goldsmith J, Ordureau A, Harper JW, Holzbaur ELF. Brain-derived autophagosome profiling reveals the engulfment of nucleoid-enriched mitochondrial fragments by basal autophagy in neurons. Neuron 2022; 110:967-976.e8. [PMID: 35051374 PMCID: PMC8930448 DOI: 10.1016/j.neuron.2021.12.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
Neurons depend on autophagy to maintain cellular homeostasis, and defects in autophagy are pathological hallmarks of neurodegenerative disease. To probe the role of basal autophagy in the maintenance of neuronal health, we isolated autophagic vesicles from mouse brain tissue and used proteomics to identify the major cargos engulfed within autophagosomes, validating our findings in rodent primary and human iPSC-derived neurons. Mitochondrial proteins were identified as a major cargo in the absence of mitophagy adaptors such as OPTN. We found that nucleoid-associated proteins are enriched compared with other mitochondrial components. In the axon, autophagic engulfment of nucleoid-enriched mitochondrial fragments requires the mitochondrial fission machinery Drp1. We proposed that localized Drp1-dependent fission of nucleoid-enriched fragments in proximity to the sites of autophagosome biogenesis enhances their capture. The resulting efficient autophagic turnover of nucleoids may prevent accumulation of mitochondrial DNA in the neuron, thus mitigating activation of proinflammatory pathways that contribute to neurodegeneration.
Collapse
Affiliation(s)
- Juliet Goldsmith
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alban Ordureau
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Grochowska KM, Andres‐Alonso M, Karpova A, Kreutz MR. The needs of a synapse—How local organelles serve synaptic proteostasis. EMBO J 2022; 41:e110057. [PMID: 35285533 PMCID: PMC8982616 DOI: 10.15252/embj.2021110057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Maria Andres‐Alonso
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Anna Karpova
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
| | - Michael R Kreutz
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg Germany
| |
Collapse
|
41
|
Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022; 14:854956. [PMID: 35350469 PMCID: PMC8957932 DOI: 10.3389/fnsyn.2022.854956] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
In the adult brain, synapses are tightly enwrapped by lattices of the extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the extracellular matrix (ECM) at synapses. Here, we review recent evidence for such a process based on the constitutive recycling of synaptic ECM molecules. We discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen, Germany
- *Correspondence: Tal M. Dankovich Silvio O. Rizzoli
| |
Collapse
|
42
|
Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci 2022; 14:826098. [PMID: 35280702 PMCID: PMC8916035 DOI: 10.3389/fnsyn.2022.826098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
The endolysosomal system is present in all cell types. Within these cells, it performs a series of essential roles, such as trafficking and sorting of membrane cargo, intracellular signaling, control of metabolism and degradation. A specific compartment within central neurons, called the presynapse, mediates inter-neuronal communication via the fusion of neurotransmitter-containing synaptic vesicles (SVs). The localized recycling of SVs and their organization into functional pools is widely assumed to be a discrete mechanism, that only intersects with the endolysosomal system at specific points. However, evidence is emerging that molecules essential for endolysosomal function also have key roles within the SV life cycle, suggesting that they form a continuum rather than being isolated processes. In this review, we summarize the evidence for key endolysosomal molecules in SV recycling and propose an alternative model for membrane trafficking at the presynapse. This includes the hypotheses that endolysosomal intermediates represent specific functional SV pools, that sorting of cargo to SVs is mediated via the endolysosomal system and that manipulation of this process can result in both plastic changes to neurotransmitter release and pathophysiology via neurodegeneration.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Daniela Ivanova,
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Michael A. Cousin,
| |
Collapse
|
43
|
Dankovich TM, Kaushik R, Olsthoorn LHM, Petersen GC, Giro PE, Kluever V, Agüi-Gonzalez P, Grewe K, Bao G, Beuermann S, Hadi HA, Doeren J, Klöppner S, Cooper BH, Dityatev A, Rizzoli SO. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat Commun 2021; 12:7129. [PMID: 34880248 PMCID: PMC8654841 DOI: 10.1038/s41467-021-27462-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
The brain extracellular matrix (ECM) consists of extremely long-lived proteins that assemble around neurons and synapses, to stabilize them. The ECM is thought to change only rarely, in relation to neuronal plasticity, through ECM proteolysis and renewed protein synthesis. We report here an alternative ECM remodeling mechanism, based on the recycling of ECM molecules. Using multiple ECM labeling and imaging assays, from super-resolution optical imaging to nanoscale secondary ion mass spectrometry, both in culture and in brain slices, we find that a key ECM protein, Tenascin-R, is frequently endocytosed, and later resurfaces, preferentially near synapses. The TNR molecules complete this cycle within ~3 days, in an activity-dependent fashion. Interfering with the recycling process perturbs severely neuronal function, strongly reducing synaptic vesicle exo- and endocytosis. We conclude that the neuronal ECM can be remodeled frequently through mechanisms that involve endocytosis and recycling of ECM proteins.
Collapse
Affiliation(s)
- Tal M. Dankovich
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Rahul Kaushik
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Linda H. M. Olsthoorn
- grid.4372.20000 0001 2105 1091International Max Planck Research School for Neuroscience, Göttingen, Germany ,grid.418140.80000 0001 2104 4211Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gabriel Cassinelli Petersen
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Philipp Emanuel Giro
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Verena Kluever
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Katharina Grewe
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Guobin Bao
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute of Pharmacology and Toxicology, Göttingen, Germany
| | - Sabine Beuermann
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Hannah Abdul Hadi
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Jose Doeren
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Simon Klöppner
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany
| | - Benjamin H. Cooper
- grid.419522.90000 0001 0668 6902Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Alexander Dityatev
- grid.424247.30000 0004 0438 0426Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Silvio O. Rizzoli
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, Göttingen, Germany ,Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany
| |
Collapse
|
44
|
White DN, Stowell MHB. Room for Two: The Synaptophysin/Synaptobrevin Complex. Front Synaptic Neurosci 2021; 13:740318. [PMID: 34616284 PMCID: PMC8488437 DOI: 10.3389/fnsyn.2021.740318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
Abstract
Synaptic vesicle release is regulated by upwards of 30 proteins at the fusion complex alone, but disruptions in any one of these components can have devastating consequences for neuronal communication. Aberrant molecular responses to calcium signaling at the pre-synaptic terminal dramatically affect vesicle trafficking, docking, fusion, and release. At the organismal level, this is reflected in disorders such as epilepsy, depression, and neurodegeneration. Among the myriad pre-synaptic proteins, perhaps the most functionally mysterious is synaptophysin (SYP). On its own, this vesicular transmembrane protein has been proposed to function as a calcium sensor, a cholesterol-binding protein, and to form ion channels across the phospholipid bilayer. The downstream effects of these functions are largely unknown. The physiological relevance of SYP is readily apparent in its interaction with synaptobrevin (VAMP2), an integral element of the neuronal SNARE complex. SNAREs, soluble NSF attachment protein receptors, comprise a family of proteins essential for vesicle fusion. The complex formed by SYP and VAMP2 is thought to be involved in both trafficking to the pre-synaptic membrane as well as regulation of SNARE complex formation. Recent structural observations specifically implicate the SYP/VAMP2 complex in anchoring the SNARE assembly at the pre-synaptic membrane prior to vesicle fusion. Thus, the SYP/VAMP2 complex appears vital to the form and function of neuronal exocytotic machinery.
Collapse
Affiliation(s)
- Dustin N. White
- MCD Biology, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
45
|
Sertel SM, Blumenstein W, Mandad S, Shomroni O, Salinas G, Rizzoli SO. Differences in synaptic vesicle pool behavior between male and female hippocampal cultured neurons. Sci Rep 2021; 11:17374. [PMID: 34462487 PMCID: PMC8405817 DOI: 10.1038/s41598-021-96846-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
A strong focus on sex-related differences has arisen recently in neurobiology, but most investigations focus on brain function in vivo, ignoring common experimental models like cultured neurons. A few studies have addressed morphological differences between male and female neurons in culture, but very few works focused on functional aspects, and especially on presynaptic function. To fill this gap, we studied here functional parameters of synaptic vesicle recycling in hippocampal cultures from male and female rats, which are a standard model system for many laboratories. We found that, although the total vesicle pools are similar, the recycling pool of male synapses was larger, and was more frequently used. This was in line with the observation that the male synapses engaged in stronger local translation. Nevertheless, the general network activity of the neurons was similar, and only small differences could be found when stimulating the cultures. We also found only limited differences in several other assays. We conclude that, albeit these cultures are similar in behavior, future studies of synapse behavior in culture should take the sex of the animals into account.
Collapse
Affiliation(s)
- Sinem M Sertel
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37075, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany.
| | - Wiebke Blumenstein
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
| | - Sunit Mandad
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
| | - Orr Shomroni
- NGS-Integrative Genomics Core Unit Göttingen (NIG), Institute of Human Genetics, University Medical Center Göttingen, 37077, Göttingen, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit Göttingen (NIG), Institute of Human Genetics, University Medical Center Göttingen, 37077, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37075, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany.
| |
Collapse
|
46
|
Lange F, Agüi-Gonzalez P, Riedel D, Phan NTN, Jakobs S, Rizzoli SO. Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging. PLoS One 2021; 16:e0240768. [PMID: 33970908 PMCID: PMC8109779 DOI: 10.1371/journal.pone.0240768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Electron microscopy (EM) has been employed for decades to analyze cell structure. To also analyze the positions and functions of specific proteins, one typically relies on immuno-EM or on a correlation with fluorescence microscopy, in the form of correlated light and electron microscopy (CLEM). Nevertheless, neither of these procedures is able to also address the isotopic composition of cells. To solve this, a correlation with secondary ion mass spectrometry (SIMS) would be necessary. SIMS has been correlated in the past to EM or to fluorescence microscopy in biological samples, but not to CLEM. We achieved this here, using a protocol based on transmission EM, conventional epifluorescence microscopy and nanoSIMS. The protocol is easily applied, and enables the use of all three technologies at high performance parameters. We suggest that CLEM-SIMS will provide substantial information that is currently beyond the scope of conventional correlative approaches.
Collapse
Affiliation(s)
- Felix Lange
- Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Clinic for Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nhu T. N. Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Clinic for Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- * E-mail: (SJ); (SOR)
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- * E-mail: (SJ); (SOR)
| |
Collapse
|
47
|
Agüi-Gonzalez P, Guobin B, Gomes de Castro MA, Rizzoli SO, Phan NTN. Secondary Ion Mass Spectrometry Imaging Reveals Changes in the Lipid Structure of the Plasma Membranes of Hippocampal Neurons following Drugs Affecting Neuronal Activity. ACS Chem Neurosci 2021; 12:1542-1551. [PMID: 33896172 PMCID: PMC8154318 DOI: 10.1021/acschemneuro.1c00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular functions of lipids in the neuronal plasma membranes have been increasingly acknowledged, particularly their association to neuronal processes and synaptic plasticity. However, the knowledge of their regulatory mechanisms in neuronal cells remains sparse. To address this, we investigated the lipid organization of the plasma membranes of hippocampal neurons in relation to neuronal activity using secondary ion mass spectrometry imaging. The neurons were treated with drugs, particularly tetrodotoxin (TTX) and bicuculline (BIC), to induce chronic activation and silencing. Distinct lipid organization was found in the plasma membrane of the cell body and the neurites. Moreover, significant alterations of the levels of the membrane lipids, especially ceramides, phosphatidylserines, phosphatidic acids, and triacylglycerols, were observed under the TTX and BIC treatments. We suggest that many types of membrane lipids are affected by, and may be involved in, the regulation of neuronal function.
Collapse
Affiliation(s)
- Paola Agüi-Gonzalez
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen 37073, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Bao Guobin
- Department of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Maria A. Gomes de Castro
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen 37073, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Nhu T. N. Phan
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen 37073, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41296, Sweden
| |
Collapse
|
48
|
Yousefi R, Fornasiero EF, Cyganek L, Montoya J, Jakobs S, Rizzoli SO, Rehling P, Pacheu‐Grau D. Monitoring mitochondrial translation in living cells. EMBO Rep 2021; 22:e51635. [PMID: 33586863 PMCID: PMC8024989 DOI: 10.15252/embr.202051635] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondria possess a small genome that codes for core subunits of the oxidative phosphorylation system and whose expression is essential for energy production. Information on the regulation and spatial organization of mitochondrial gene expression in the cellular context has been difficult to obtain. Here we devise an imaging approach to analyze mitochondrial translation within the context of single cells, by following the incorporation of clickable non-canonical amino acids. We apply this method to multiple cell types, including specialized cells such as cardiomyocytes and neurons, and monitor with spatial resolution mitochondrial translation in axons and dendrites. We also show that translation imaging allows to monitor mitochondrial protein expression in patient fibroblasts. Approaching mitochondrial translation with click chemistry opens new avenues to understand how mitochondrial biogenesis is integrated into the cellular context and can be used to assess mitochondrial gene expression in mitochondrial diseases.
Collapse
Affiliation(s)
- Roya Yousefi
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| | - Eugenio F Fornasiero
- Department of Neuro‐ and Sensory PhysiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Lukas Cyganek
- Clinic for Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany
- German Center for Cardiovascular Research (DZHK)GöttingenGermany
| | - Julio Montoya
- Departamento de BioquímicaBiología Molecular y CelularUniversidad de ZaragozaZaragozaSpain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER)MadridSpain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)Universidad de ZaragozaZaragozaSpain
| | - Stefan Jakobs
- Department of NanoBiophotonicsMax Planck Institute for Biophysical ChemistryGöttingenGermany
- Clinic of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC)University of GoettingenGöttingenGermany
| | - Silvio O Rizzoli
- Department of Neuro‐ and Sensory PhysiologyUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC)University of GoettingenGöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC)University of GoettingenGöttingenGermany
- Max‐Planck Institute for Biophysical ChemistryGöttingenGermany
| | - David Pacheu‐Grau
- Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
49
|
Ivanova D, Dobson KL, Gajbhiye A, Davenport EC, Hacker D, Ultanir SK, Trost M, Cousin MA. Control of synaptic vesicle release probability via VAMP4 targeting to endolysosomes. SCIENCE ADVANCES 2021; 7:7/18/eabf3873. [PMID: 33931449 PMCID: PMC8087399 DOI: 10.1126/sciadv.abf3873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/11/2021] [Indexed: 05/03/2023]
Abstract
Synaptic vesicle (SV) release probability (Pr), determines the steady state and plastic control of neurotransmitter release. However, how diversity in SV composition arises and regulates the Pr of individual SVs is not understood. We found that modulation of the copy number of the noncanonical vesicular SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor), vesicle-associated membrane protein 4 (VAMP4), on SVs is key for regulating Pr. Mechanistically, this is underpinned by its reduced ability to form an efficient SNARE complex with canonical plasma membrane SNAREs. VAMP4 has unusually high synaptic turnover and is selectively sorted to endolysosomes during activity-dependent bulk endocytosis. Disruption of endolysosomal trafficking and function markedly increased the abundance of VAMP4 in the SV pool and inhibited SV fusion. Together, our results unravel a new mechanism for generating SV heterogeneity and control of Pr through coupling of SV recycling to a major clearing system that regulates protein homeostasis.
Collapse
Affiliation(s)
- Daniela Ivanova
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland.
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
| | - Katharine L Dobson
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
| | - Akshada Gajbhiye
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
| | - Daniela Hacker
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
| | - Sila K Ultanir
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthias Trost
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland.
- Muir Maxwell Epilepsy Centre, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, Scotland
| |
Collapse
|
50
|
Soykan T, Haucke V, Kuijpers M. Mechanism of synaptic protein turnover and its regulation by neuronal activity. Curr Opin Neurobiol 2021; 69:76-83. [PMID: 33744822 DOI: 10.1016/j.conb.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Neurons are long-lived cells with a complex architecture, in which synapses may be located far away from the cell body and are subject to plastic changes, thereby posing special challenges to the systems that maintain and dynamically regulate the synaptic proteome. These mechanisms include neuronal autophagy and the endolysosome pathway, as well as the ubiquitin/proteasome system, which cooperate in the constitutive and regulated turnover of presynaptic and postsynaptic proteins. Here, we summarize the pathways involved in synaptic protein degradation and the mechanisms underlying their regulation, for example, by neuronal activity, with an emphasis on the presynaptic compartment and outline perspectives for future research. Keywords: Synapse, Synaptic vesicle, Autophagy, Endolysosome, Proteasome, Protein turnover, Protein degradation, Endosome, Lysosome.
Collapse
Affiliation(s)
- Tolga Soykan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195, Berlin, Germany.
| | - Marijn Kuijpers
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|