1
|
Ning Z, Zhong X, Wang Y, Hu D, Tang X, Deng M. Cerebral ischemic injury impairs autophagy and exacerbates cognitive impairment in APP/PS1 mice. Int Immunopharmacol 2024; 143:113581. [PMID: 39522311 DOI: 10.1016/j.intimp.2024.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Autophagy plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Oxidative stress and neuroinflammation involved in autophagy are associated with the cerebral ischemia-induced exacerbation of cognitive deficits in individuals with AD. APP/PS1 mice underwent bilateral common carotid artery clamping for 15 min. The degrees of Aβ deposition, oxidative stress, neuroinflammation, and neuronal and synaptic loss after cerebral ischemia were detected. Autophagy levels were assessed by RT-qPCR, western blotting, immunofluorescence staining, and transmission electron microscopy. DPEs occurring in the hippocampus of APP/PS1 mice after cerebral ischemia were analyzed via label-free proteomics. The present study demonstrated that cerebral ischemia exacerbates learning and memory deficits in APP/PS1 mice. Cerebral ischemia aggravated the cognitive impairment in APP/PS1 mice by worsening neuronal and synaptic loss through damage to intracellular autophagy, increased oxidative stress, and neuroinflammation. Notably, cerebral ischemia interfered with mitochondrial and nuclear transport functions in APP/PS1 transgenic mice, thereby aggravating cognitive deficits. Cellular transport functions may be a target for preventing AD progression. In summary, autophagy is impaired in APP/PS1 mice compared with WT mice, and oxidative stress and neuroinflammation caused by cerebral ischemia exacerbate autophagy-induced damage and are responsible for cognitive decline. Label-free proteomics indicated that cerebral ischemia results in abnormal Abcb8, Sestd1, TPR, and Rab8a protein expression in the hippocampus of APP/PS1 transgenic mice and that an imbalance of mitochondrial transport and nuclear transport functions exacerbates cognitive deficits. Improving autophagy and restoring organelle transport may be targets for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Zhenqiu Ning
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, China, Guangzhou 510120, PR China
| | - Xiaoqin Zhong
- Department of Rheumatology, Baoan Hospital of Traditional Chinese Medicine Affiliated with Guangzhou University of Chinese Medicine, Shenzhen 518100, PR China; The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yu Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Dafeng Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Xialin Tang
- Department of Neurology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Minzhen Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine/Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| |
Collapse
|
2
|
Tan R, Ge C, Yan Y, Guo H, Han X, Zhu Q, Du Q. Deciphering ferroptosis in critical care: mechanisms, consequences, and therapeutic opportunities. Front Immunol 2024; 15:1511015. [PMID: 39737174 PMCID: PMC11682965 DOI: 10.3389/fimmu.2024.1511015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
Ischemia-reperfusion injuries (IRI) across various organs and tissues, along with sepsis, significantly contribute to the progression of critical illnesses. These conditions disrupt the balance of inflammatory mediators and signaling pathways, resulting in impaired physiological functions in human tissues and organs. Ferroptosis, a distinct form of programmed cell death, plays a pivotal role in regulating tissue damage and modulating inflammatory responses, thereby influencing the onset and progression of severe illnesses. Recent studies highlight that pharmacological agents targeting ferroptosis-related proteins can effectively mitigate oxidative stress caused by IRI in multiple organs, alleviating associated symptoms. This manuscript delves into the mechanisms and signaling pathways underlying ferroptosis, its role in critical illnesses, and its therapeutic potential in mitigating disease progression. We aim to offer a novel perspective for advancing clinical treatments for critical illnesses.
Collapse
Affiliation(s)
- Ruimin Tan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Chen Ge
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yating Yan
- School of Clinical Medical, North China University of Science and Technology, Tangshan, Hebei, China
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - He Guo
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumin Han
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qiong Zhu
- Department of Orthopaedics, The People’s Hospital Of Shizhu, Chongqing, China
| | - Quansheng Du
- Critical Care Department, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Liu L, Wang T, Zhou H, Zheng J, Liu Q, Wang W, Liu X, Zhang X, Ge D, Shi W, Sun Y. Protective and Damaging Mechanisms of Neuromelanin-Like Nanoparticles and Iron in Parkinson's Disease. Adv Healthc Mater 2024; 13:e2402718. [PMID: 39358952 DOI: 10.1002/adhm.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD) pathology speculates that neuromelanin (NM) and iron ions play a significant role in physiological and pathological conditions of PD. Because the difficult accessibility of NM has limited targeted research, synthetic melanin-like nanoparticles have been used to instead. In this report, the eumelanin and pheomelanin-like polydopamine (PDA) nanoparticles are prepared that can be used to simulate natural NM with or without chelating iron ion and studied the redox effects in vitro and in vivo on neuronal cells and PD. The synthetic pheomelanin-like PDA nanoparticles have much stronger redox activity than eumelanin-like PDA nanoparticles without or with iron ion. They can protect neurons by scavenging reactive oxygen species (ROS), while cause neuronal cell death and PD due to excessive binding of iron ions. This work provides new evidence for the relationship among two structural components of NM and iron in PD as well as displays the different effects on the roles of eumelanin and pheomelanin in redox activity under physiological or pathological conditions, which provide a new effective choice for cellular and animal models of PD and offer theoretical guidance for targeted treatment and mechanism research on PD.
Collapse
Affiliation(s)
- Lizhu Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Tianying Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hao Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinyang Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiang Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03640-4. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
6
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Fatima S, Zhou H, Chen Y, Liu Q. Role of ferroptosis in the pathogenesis of heart disease. Front Physiol 2024; 15:1450656. [PMID: 39318361 PMCID: PMC11420141 DOI: 10.3389/fphys.2024.1450656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Ferroptosis is a new form of regulated necrosis characterized by iron-dependent lipid peroxidation, leading to irreparable lipid damage, membrane permeabilization, and necrotic cell death. Ferroptosis has recently been implicated in the pathogenesis of multiple forms of heart disease such as myocardial infarction, cardiac hypertrophy, heart failure, and various cardiomyopathies. Important progress has also been made regarding how ferroptosis is regulated in vitro and in vivo as well as its role in cardiac homeostasis and disease pathogenesis. In this review, we discuss molecular mechanisms that regulates ferroptosis in the heart, including pathways leading to iron overload and lipid peroxidation as well as the roles of key organelles in this process. We also discuss recent findings pertaining to the new pathogenic role of ferroptosis in various forms of heart disease as well as genetic and pharmacologic strategies targeting ferroptosis in the heart.
Collapse
Affiliation(s)
| | | | | | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Polesel M, Wildschut MHE, Doucerain C, Kuhn M, Flace A, Sá Zanetti L, Steck AL, Wilhelm M, Ingles-Prieto A, Wiedmer T, Superti-Furga G, Manolova V, Dürrenberger F. Image-based quantification of mitochondrial iron uptake via Mitoferrin-2. Mitochondrion 2024; 78:101889. [PMID: 38692382 DOI: 10.1016/j.mito.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Iron is a trace element that is critical for most living organisms and plays a key role in a wide variety of metabolic processes. In the mitochondrion, iron is involved in producing iron-sulfur clusters and synthesis of heme and kept within physiological ranges by concerted activity of multiple molecules. Mitochondrial iron uptake is mediated by the solute carrier transporters Mitoferrin-1 (SLC25A37) and Mitoferrin-2 (SLC25A28). While Mitoferrin-1 is mainly involved in erythropoiesis, the cellular function of the ubiquitously expressed Mitoferrin-2 remains less well defined. Furthermore, Mitoferrin-2 is associated with several human diseases, including cancer, cardiovascular and metabolic diseases, hence representing a potential therapeutic target. Here, we developed a robust approach to quantify mitochondrial iron uptake mediated by Mitoferrin-2 in living cells. We utilize HEK293 cells with inducible expression of Mitoferrin-2 and measure iron-induced quenching of rhodamine B[(1,10-phenanthroline-5-yl)-aminocarbonyl]benzyl ester (RPA) fluorescence and validate this assay for medium-throughput screening. This assay may allow identification and characterization of Mitoferrin-2 modulators and could enable drug discovery for this target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alvaro Ingles-Prieto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
9
|
Zhang Y, Zou L, Li X, Guo L, Hu B, Ye H, Liu Y. SLC40A1 in iron metabolism, ferroptosis, and disease: A review. WIREs Mech Dis 2024; 16:e1644. [PMID: 38508867 DOI: 10.1002/wsbm.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Solute carrier family 40 member 1 (SLC40A1) plays an essential role in transporting iron from intracellular to extracellular environments. When SLC40A1 expression is abnormal, cellular iron metabolism becomes dysregulated, resulting in an overload of intracellular iron, which induces cell ferroptosis. Numerous studies have confirmed that ferroptosis is closely associated with the development of many diseases. Here, we review recent findings on SLC40A1 in ferroptosis and its association with various diseases, intending to explore new directions for research on disease pathogenesis and new therapeutic targets for prevention and treatment. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Yan Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liyi Zou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiaodan Li
- People's Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Long Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
10
|
Yahagi A, Mochizuki-Kashio M, Sorimachi Y, Takubo K, Nakamura-Ishizu A. Abcb10 regulates murine hematopoietic stem cell potential and erythroid differentiation. Exp Hematol 2024; 135:104191. [PMID: 38493949 DOI: 10.1016/j.exphem.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Erythropoiesis in the adult bone marrow relies on mitochondrial membrane transporters to facilitate heme and hemoglobin production. Erythrocytes in the bone marrow are produced although the differentiation of erythroid progenitor cells that originate from hematopoietic stem cells (HSCs). Whether and how mitochondria transporters potentiate HSCs and affect their differentiation toward erythroid lineage remains unclear. Here, we show that the ATP-binding cassette (ABC) transporter 10 (Abcb10), located on the inner mitochondrial membrane, is essential for HSC maintenance and erythroid-lineage differentiation. Induced deletion of Abcb10 in adult mice significantly increased erythroid progenitor cell and decreased HSC number within the bone marrow (BM). Functionally, Abcb10-deficient HSCs exhibited significant decreases in stem cell potential but with a skew toward erythroid-lineage differentiation. Mechanistically, deletion of Abcb10 rendered HSCs with excess mitochondrial iron accumulation and oxidative stress yet without alteration in mitochondrial bioenergetic function. However, impaired hematopoiesis could not be rescued through the in vivo administration of a mitochondrial iron chelator or antioxidant to Abcb10-deficient mice. Abcb10-mediated mitochondrial iron transfer is thus pivotal for the regulation of physiologic HSC potential and erythroid-lineage differentiation.
Collapse
Affiliation(s)
- Ayano Yahagi
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Makiko Mochizuki-Kashio
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
11
|
Liu X, Meng Q, Shi S, Geng X, Wang E, Li Y, Lin F, Liang X, Xi X, Han W, Fan H, Zhou X. Cardiac-derived extracellular vesicles improve mitochondrial function to protect the heart against ischemia/reperfusion injury by delivering ATP5a1. J Nanobiotechnology 2024; 22:385. [PMID: 38951822 PMCID: PMC11218245 DOI: 10.1186/s12951-024-02618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.
Collapse
Affiliation(s)
- Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yinzhen Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoling Xi
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China.
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China.
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
12
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
13
|
Liu J, Deng L, Qu L, Li X, Wang T, Chen Y, Jiang M, Zou W. Herbal medicines provide regulation against iron overload in cardiovascular diseases: Informing future applications. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117941. [PMID: 38387684 DOI: 10.1016/j.jep.2024.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Iron is an essential micronutrient for maintaining physiological activities, especially for highly active cardiomyocytes. Inappropriate iron overload or deficiency has a significant impact on the incidence and severity of cardiovascular diseases (CVD). Iron overload exerts potentially deleterious effects on doxorubicin (DOX) cardiomyopathy, atherosclerosis, and myocardial ischemia-reperfusion injury (MI/RI) by participating in lipid peroxides production. Notably, iron overload-associated cell death has been defined as a possible mechanism for ferroptosis. At present, some traditional herbal medicines and extracts have been included in the study of regulating iron overload and the subsequent therapeutic effect on CVD. AIM OF THE STUDY To give an outline of iron metabolism and ferroptosis in cardiomyocytes and to focus on herbal medicines and extracts to prevent iron overload in CVD. MATERIALS AND METHODS Literature information was systematically collected from ScienceDirect, PubMed, Google Scholar, Web of Science, China National Knowledge Infrastructure, WanFang data, as well as classic books and clinical reports. RESULTS After understanding the mechanism of iron overload on CVD, this paper reviews the therapeutic function of various herbal medicines in eliminating iron overload in CVD. These include Chinese herbal compound prescriptions (Salvia miltiorrhiza injection, Gegen Qinlian decoction, Tongxinluo, Banxia-Houpu decoction), plant extracts, phenylpropanoids, flavonoids, terpenoids, and polyphenols. Among them, flavonoids are considered to be the most promising compounds because of their prominent iron chelation. Mechanically, these herbal medicines act on the Nrf2 signaling pathway, AMPK signaling pathway, and KAT5/GPX4 signaling pathway, thereby attenuating iron overload and lipid peroxidation in CVD. CONCLUSION Our review provides up-to-date information on herbal medicines that exert cardiovascular protective effects by modulating iron overload and ferroptosis. These herbal medicines hold promise as a template for preventing iron overload in CVD.
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liangyan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Liping Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofen Li
- School of Basic Medicine Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Tao Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuanyuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Miao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
14
|
Yi W, Zhang J, Huang Y, Zhan Q, Zou M, Cheng X, Zhang X, Yin Z, Tao S, Cheng H, Wang F, Guo J, Ju Z, Chen Z. Ferritin-mediated mitochondrial iron homeostasis is essential for the survival of hematopoietic stem cells and leukemic stem cells. Leukemia 2024; 38:1003-1018. [PMID: 38402368 DOI: 10.1038/s41375-024-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
Iron metabolism plays a crucial role in cell viability, but its relationship with adult stem cells and cancer stem cells is not fully understood. The ferritin complex, responsible for intracellular iron storage, is important in this process. We report that conditional deletion of ferritin heavy chain 1 (Fth1) in the hematopoietic system reduced the number and repopulation capacity of hematopoietic stem cells (HSCs). These effects were associated with a decrease in cellular iron level, leading to impaired mitochondrial function and the initiation of apoptosis. Iron supplementation, antioxidant, and apoptosis inhibitors reversed the reduced cell viability of Fth1-deleted hematopoietic stem and progenitor cells (HSPCs). Importantly, leukemic stem cells (LSCs) derived from MLL-AF9-induced acute myeloid leukemia (AML) mice exhibited reduced Fth1 expression, rendering them more susceptible to apoptosis induced by the iron chelation compared to normal HSPCs. Modulating FTH1 expression using mono-methyl fumarate increased LSCs resistance to iron chelator-induced apoptosis. Additionally, iron supplementation, antioxidant, and apoptosis inhibitors protected LSCs from iron chelator-induced cell death. Fth1 deletion also extended the survival of AML mice. These findings unveil a novel mechanism by which ferritin-mediated iron homeostasis regulates the survival of both HSCs and LSCs, suggesting potential therapeutic strategies for blood cancer with iron dysregulation.
Collapse
Affiliation(s)
- Weiwei Yi
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinhua Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yingxin Huang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qiang Zhan
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Mi Zou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiang Cheng
- Department of Hematology, Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai, China
- Shanghai Institute of Nutrition and Health, The Chinese Academy of Sciences, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, Guangdong, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Guo
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
15
|
Zhou Q, Meng Y, Li D, Yao L, Le J, Liu Y, Sun Y, Zeng F, Chen X, Deng G. Ferroptosis in cancer: From molecular mechanisms to therapeutic strategies. Signal Transduct Target Ther 2024; 9:55. [PMID: 38453898 PMCID: PMC10920854 DOI: 10.1038/s41392-024-01769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 03/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death characterized by the lethal accumulation of iron-dependent membrane-localized lipid peroxides. It acts as an innate tumor suppressor mechanism and participates in the biological processes of tumors. Intriguingly, mesenchymal and dedifferentiated cancer cells, which are usually resistant to apoptosis and traditional therapies, are exquisitely vulnerable to ferroptosis, further underscoring its potential as a treatment approach for cancers, especially for refractory cancers. However, the impact of ferroptosis on cancer extends beyond its direct cytotoxic effect on tumor cells. Ferroptosis induction not only inhibits cancer but also promotes cancer development due to its potential negative impact on anticancer immunity. Thus, a comprehensive understanding of the role of ferroptosis in cancer is crucial for the successful translation of ferroptosis therapy from the laboratory to clinical applications. In this review, we provide an overview of the recent advancements in understanding ferroptosis in cancer, covering molecular mechanisms, biological functions, regulatory pathways, and interactions with the tumor microenvironment. We also summarize the potential applications of ferroptosis induction in immunotherapy, radiotherapy, and systemic therapy, as well as ferroptosis inhibition for cancer treatment in various conditions. We finally discuss ferroptosis markers, the current challenges and future directions of ferroptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yihuang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Furong Laboratory, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
16
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
17
|
Ye H, Hu H, Zhou X, Dong M, Ren J. Targeting ferroptosis in the maintenance of mitochondrial homeostasis in the realm of septic cardiomyopathy. Curr Opin Pharmacol 2024; 74:102430. [PMID: 38237386 DOI: 10.1016/j.coph.2023.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
Septic cardiomyopathy is one of the predominant culprit factors contributing to the rising mortality in patients with severe sepsis. Among various mechanisms responsible for the etiology of septic heart anomalies, disruption of mitochondrial homeostasis has gained much recent attention, resulting in myocardial inflammation and even cell death. Ferroptosis is a novel category of regulated cell death (RCD) provoked by iron-dependent phospholipid peroxidation through iron-mediated phospholipid (PL) peroxidation, enroute to the rupture of plasma membranes and eventually cell death. This review summarizes the recent progress of ferroptosis in mitochondrial homeostasis during septic cardiomyopathy. We will emphasize the role of mitochondrial iron transport channels and the antioxidant system in ferroptosis. Finally, we will summarize and discuss future research, which should help guide disease treatment.
Collapse
Affiliation(s)
- Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Huantao Hu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoliang Zhou
- Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, China
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
18
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
19
|
Feng R, Wang D, Li T, Liu X, Peng T, Liu M, Ren G, Xu H, Luo H, Lu D, Qi B, Zhang M, Li Y. Elevated SLC40A1 impairs cardiac function and exacerbates mitochondrial dysfunction, oxidative stress, and apoptosis in ischemic myocardia. Int J Biol Sci 2024; 20:414-432. [PMID: 38169607 PMCID: PMC10758104 DOI: 10.7150/ijbs.89368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
Iron homeostasis is crucial for optimal cardiac function. Iron deficiency and overload have been linked to the development of cardiomyopathy and heart failure (HF) via intricate mechanisms. Although the crucial role of SLC40A1 in iron metabolism by facilitating the efflux of cellular iron has been confirmed, its specific molecular functions in cardiovascular diseases remain poorly understood. In this study, we generated mice with inducible cardiomyocyte-specific overexpression of SLC40A1 for the first time. The overexpression of SLC40A1 in the cardiomyocytes of adult mice resulted in significant iron deficiency, leading to mitochondrial dysfunction, oxidative stress, and apoptosis, subsequently resulting in the development of fatal HF. Notably, SLC40A1 upregulation was observed in the ischemic region during the initial phase of myocardial infarction (MI), contributing to iron loss in the cardiomyocytes. Conversely, the cardiomyocyte-specific knockdown of SLC40A1 improved cardiac dysfunction after MI by enhancing mitochondrial function, suppressing oxidative stress, and reducing cardiomyocytes apoptosis. Mechanistically, Steap4 interacted with SLC40A1, facilitating SLC40A1-mediated iron efflux from cardiomyocytes. In short, our study presents evidence for the involvement of SLC40A1 in the regulation of myocardial iron levels and the therapeutic benefits of cardiomyocyte-specific knockdown of SLC40A1 in MI in mice.
Collapse
Affiliation(s)
- Renqian Feng
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Di Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tiantian Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xulin Liu
- Department of Orthodontics, Stomatology Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tingwei Peng
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Mingchuan Liu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Gaotong Ren
- Department of Cardiology, NO. 988 Hospital of Joint Logistic Sopport Force, Zhengzhou, 450007, China
| | - Haowei Xu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Haixia Luo
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, China
| |
Collapse
|
20
|
Gao D, Hu L, Lv H, Lian L, Wang M, Fan X, Xie Y, Zhang J. Ferroptosis Involved in Cardiovascular Diseases: Mechanism Exploration of Ferroptosis' Role in Common Pathological Changes. J Cardiovasc Pharmacol 2024; 83:33-42. [PMID: 37890084 DOI: 10.1097/fjc.0000000000001507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Regulated cell death is a controlled form of cell death that protects cells by adaptive responses in pathophysiological states. Ferroptosis has been identified as a novel method of controlling cell death in recent years. Several cardiovascular diseases (CVDs) are shown to be profoundly influenced by ferroptosis, and ferroptosis is directly linked to the majority of cardiovascular pathological alterations. Despite this, it is still unclear how ferroptosis affects the pathogenic alterations that take place in CVDs. Based on a review of the mechanisms that regulate ferroptosis, this review explores the most recent research on the role of ferroptosis in the major pathological changes associated with CVDs, to provide new perspectives and strategies for cardiovascular research and clinical treatment.
Collapse
Affiliation(s)
- Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Mousavi-Aghdas SA, Farashi E, Naderi N. Iron Dyshomeostasis and Mitochondrial Function in the Failing Heart: A Review of the Literature. Am J Cardiovasc Drugs 2024; 24:19-37. [PMID: 38157159 DOI: 10.1007/s40256-023-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Cardiac contraction and relaxation require a substantial amount of energy provided by the mitochondria. The failing heart is adenosine triphosphate (ATP)- and creatine-depleted. Studies have found iron is involved in almost every aspect of mitochondrial function, and previous studies have shown myocardial iron deficiency in heart failure (HF). Many clinicians advocated intravenous iron repletion for HF patients meeting the conventional criteria for systemic iron deficiency. While clinical trials showed improved quality of life, iron repletion failed to significantly impact survival or significant cardiovascular adverse events. There is evidence that in HF, labile iron is trapped inside the mitochondria causing oxidative stress and lipid peroxidation. There is also compelling preclinical evidence demonstrating the detrimental effects of both iron overload and depletion on cardiomyocyte function. We reviewed the mechanisms governing myocardial and mitochondrial iron content. Mitochondrial dynamics (i.e., fusion, fission, mitophagy) and the role of iron were also investigated. Ferroptosis, as an important regulated cell death mechanism involved in cardiomyocyte loss, was reviewed along with agents used to manipulate it. The membrane stability and iron content of mitochondria can be altered by many agents. Some studies are showing promising improvement in the cardiomyocyte function after iron chelation by deferiprone; however, whether the in vitro and in vivo findings will be reflected on on clinical grounds is still unclear. Finally, we briefly reviewed the clinical trials on intravenous iron repletion. There is a need for more well-simulated animal studies to shed light on the safety and efficacy of chelation agents and pave the road for clinical studies.
Collapse
Affiliation(s)
- Seyed Ali Mousavi-Aghdas
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Farashi
- Department of Cardiothoracic Surgery, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Department of Cardiothoracic Surgery, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Tam E, Sweeney G. MitoNEET Provides Cardioprotection via Reducing Oxidative Damage and Conserving Mitochondrial Function. Int J Mol Sci 2023; 25:480. [PMID: 38203651 PMCID: PMC10779211 DOI: 10.3390/ijms25010480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Cardiometabolic diseases exert a significant health impact, leading to a considerable economic burden globally. The metabolic syndrome, characterized by a well-defined cluster of clinical parameters, is closely linked to an elevated risk of cardiovascular disease. Current treatment strategies often focus on addressing individual aspects of metabolic syndrome. We propose that exploring novel therapeutic approaches that simultaneously target multiple facets may prove more effective in alleviating the burden of cardiometabolic disease. There is a growing body of evidence suggesting that mitochondria can serve as a pivotal target for the development of therapeutics aimed at resolving both metabolic and vascular dysfunction. MitoNEET was identified as a binding target for the thiazolidinedione (TZD) class of antidiabetic drugs and is now recognized for its role in regulating various crucial cellular processes. Indeed, mitoNEET has demonstrated promising potential as a therapeutic target in various chronic diseases, encompassing cardiovascular and metabolic diseases. In this review, we present a thorough overview of the molecular mechanisms of mitoNEET, with an emphasis on their implications for cardiometabolic diseases in more recent years. Furthermore, we explore the potential impact of these findings on the development of novel therapeutic strategies and discuss potential directions for future research.
Collapse
Affiliation(s)
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
23
|
Zhou N, Wei S, Sun T, Xie S, Liu J, Li W, Zhang B. Recent progress in the role of endogenous metal ions in doxorubicin-induced cardiotoxicity. Front Pharmacol 2023; 14:1292088. [PMID: 38143497 PMCID: PMC10748411 DOI: 10.3389/fphar.2023.1292088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Doxorubicin is a widely used anticancer drug in clinical practice for the treatment of various human tumors. However, its administration is associated with cardiotoxicity. Administration of doxorubicin with low side effects for cancer treatment and prevention are, accordingly, urgently required. The human body harbors various endogenous metal ions that exert substantial influences. Consequently, extensive research has been conducted over several decades to investigate the potential of targeting endogenous metal ions to mitigate doxorubicin's side effects and impede tumor progression. In recent years, there has been a growing body of research indicating the potential efficacy of metal ion-associated therapeutic strategies in inhibiting doxorubicin-induced cardiotoxicity (DIC). These strategies offer a combination of favorable safety profiles and potential clinical utility. Alterations in intracellular levels of metal ions have been found to either facilitate or mitigate the development of DIC. For instance, ferroptosis, a cellular death mechanism, and metal ions such as copper, zinc, and calcium have been identified as significant contributors to DIC. This understanding can contribute to advancements in cancer treatment and provide valuable insights for mitigating the cardiotoxic effects of other therapeutic drugs. Furthermore, potential therapeutic strategies have been investigated to alleviate DIC in clinical settings. The ultimate goal is to improve the efficacy and safety of Dox and offer valuable insights for future research in this field.
Collapse
Affiliation(s)
- Ni Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- School of Pharmacy, Central South University, Changsha, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
- School of Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Yagi M, Do Y, Hirai H, Miki K, Toshima T, Fukahori Y, Setoyama D, Abe C, Nabeshima YI, Kang D, Uchiumi T. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance 2023; 6:e202302116. [PMID: 37793777 PMCID: PMC10551641 DOI: 10.26508/lsa.202302116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Myocardial mitochondria are primary sites of myocardial energy metabolism. Mitochondrial disorders are associated with various cardiac diseases. We previously showed that mice with cardiomyocyte-specific knockout of the mitochondrial translation factor p32 developed heart failure from dilated cardiomyopathy. Mitochondrial translation defects cause not only mitochondrial dysfunction but also decreased nicotinamide adenine dinucleotide (NAD+) levels, leading to impaired lysosomal acidification and autophagy. In this study, we investigated whether nicotinamide mononucleotide (NMN) administration, which compensates for decreased NAD+ levels, improves heart failure because of mitochondrial dysfunction. NMN administration reduced damaged lysosomes and improved autophagy, thereby reducing heart failure and extending the lifespan in p32cKO mice. We found that lysosomal damage due to mitochondrial dysfunction induced ferroptosis, involving the accumulation of iron in lysosomes and lipid peroxide. The ameliorative effects of NMN supplementation were found to strongly affect lysosomal function rather than mitochondrial function, particularly lysosome-mediated ferroptosis. NMN supplementation can improve lysosomal, rather than mitochondrial, function and prevent chronic heart failure.
Collapse
Affiliation(s)
- Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Haruka Hirai
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Toshima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukina Fukahori
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chiaki Abe
- Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Yo-Ichi Nabeshima
- Department of Aging Science and Medicine, Graduate School of Medicine Kyoto University Medical Innovation Center, Kyoto, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Wagdy R, Fathy A, Elnekidy A, Salaheldin G, Nazir H, Fahmy R, Elkafrawy H, Elkafrawy F. Evaluation of cardiac fibrosis and subclinical cardiac changes in children with sickle cell disease using magnetic resonance imaging, echocardiography, and serum galectin-3. Pediatr Radiol 2023; 53:2515-2527. [PMID: 37715793 PMCID: PMC10635955 DOI: 10.1007/s00247-023-05750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Myocardial fibrosis has recently been proposed as one of the contributing factors to the diverse pathogenicity of cardiomyopathy in sickle cell disease. OBJECTIVE In this study, cardiac fibrosis and subclinical cardiac changes in children with sickle cell disease were evaluated using cardiac magnetic resonance imaging (MRI), tissue Doppler echocardiography and serum galectin-3. MATERIALS AND METHODS The study included 34 children with sickle cell disease who were compared with a similar number of healthy controls. Cardiac MRI was used to evaluate late gadolinium enhancement, native T1 mapping, extracellular volume, and T2* for estimation of iron load. Cardiac function and myocardial performance index (MPI, evaluated by tissue Doppler echocardiography) and serum galectin-3 were compared to controls. RESULTS The mean age of the included patients was 13.3 ± 3.2 years. Myocardial iron load by T2* was normal. The mean level of extracellular volume (35.41 ± 5.02%) was significantly associated with the frequency of vaso-occlusive crises (P = 0.017) and negatively correlated with hemoglobin levels (P = 0.005). Galectin-3 levels were significantly higher among cases than controls (P = 0.00), at a cutoff value on the receiver operating characteristic curve of 6.5 ng/ml, sensitivity of 82.5% and specificity of 72.8%. The extracellular volume was significantly higher in cases, with a MPI > 0.4. CONCLUSION Diffuse interstitial myocardial fibrosis can be detected early in children with sickle cell disease using T1 mapping and is associated with a high frequency of vaso-occlusive crisis. MPI of the left ventricle and serum galectin-3 are recommended screening tools for subclinical cardiac abnormalities.
Collapse
Affiliation(s)
- Reham Wagdy
- Department of Pediatrics, Pediatrics Cardiology Unit, Faculty of Medicine, Alexandria University, Alexandria, 21648, Egypt.
| | - Alaa Fathy
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Abdelaziz Elnekidy
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Geylan Salaheldin
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan Nazir
- Department of Pediatrics, Faculty of Medicine, Hematology Unit, Alexandria University, Alexandria, Egypt
| | - Rana Fahmy
- Department of Pediatrics, Pediatrics Cardiology Unit, Faculty of Medicine, Alexandria University, Alexandria, 21648, Egypt
| | - Hagar Elkafrawy
- Department of Medial Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma Elkafrawy
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Chen Y, Guo X, Zeng Y, Mo X, Hong S, He H, Li J, Steinmetz R, Liu Q. Ferroptosis contributes to catecholamine-induced cardiotoxicity and pathological remodeling. Free Radic Biol Med 2023; 207:227-238. [PMID: 37499888 PMCID: PMC10529955 DOI: 10.1016/j.freeradbiomed.2023.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
High levels of circulating catecholamines cause cardiac injury, pathological remodeling, and heart failure, but the underlying mechanisms remain elusive. Here we provide both in vitro and in vivo evidence that excessive β-adrenergic stimulation induces ferroptosis in cardiomyocytes, revealing a novel mechanism for catecholamine-induced cardiotoxicity and remodeling. We found that isoproterenol, a synthetic catecholamine, promoted glutathione depletion and glutathione peroxidase 4 (GPX4) degradation in cardiomyocytes, leading to GPX4 inactivation and enhanced lipid peroxidation. Isoproterenol also promoted heme oxygenase 1 (HO-1) expression by downregulating the transcription suppressor BTB and CNC homology 1 (Bach1), leading to increased labile iron accumulation through heme degradation. Moreover, isoproterenol markedly induced the accumulation of free iron and lipid reactive oxygen species (ROS) in the mitochondria, while targeted inhibition of iron overload and ROS accumulation within mitochondria effectively inhibited ferroptosis in cardiomyocytes. Importantly, isoproterenol administration markedly induced ferroptosis in the myocardium in vivo, associated with elevated non-heme iron accumulation driven by HO-1 upregulation. Strikingly, blockade of ferroptosis with ferrostatin-1 or inhibition of HO-1 activity with zinc protoporphyrin (ZnPP) effectively alleviated cardiac necrosis, pathological remodeling, and heart failure induced by isoproterenol administration. Taken together, our results reveal that catecholamine stimulation primarily induces ferroptotic cell death in cardiomyocyte through GPX4 and Bach1-HO-1 dependent signaling pathways. Targeting ferroptosis may represent a novel therapeutic strategy for catecholamine overload-induced myocardial injury and heart failure.
Collapse
Affiliation(s)
- Yi Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoyun Guo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Yachang Zeng
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Xiaoliang Mo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Siqi Hong
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Hui He
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Jing Li
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Rachel Steinmetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
27
|
Zhao K, Chen X, Bian Y, Zhou Z, Wei X, Zhang J. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2269-2286. [PMID: 37119287 DOI: 10.1007/s00210-023-02506-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) discovered in recent years, where abnormal intracellular iron accumulation leads to the onset of lipid peroxidation, which further leads to the disruption of intracellular redox homeostasis and triggers cell death. Iron accumulation with lipid peroxidation is considered a hallmark of ferroptosis that distinguishes it from other RCDs. Myocardial ischemia-reperfusion injury (MIRI) is a process of increased myocardial cell injury that occurs during coronary reperfusion after myocardial ischemia and is associated with high post-infarction mortality. Multiple experiments have shown that ferroptosis plays an important role in MIRI pathophysiology. This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the possible link between the occurrence of MIRI and ferroptosis in cardiomyocytes. Finally, we discuss and analyze the related drugs that target ferroptosis to attenuate MIRI and its action targets, and point out the shortcomings of the current state of relevant research and possible future research directions. It is hoped to provide a new avenue for improving the prognosis of the acute coronary syndrome.
Collapse
Affiliation(s)
- Ke Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yujing Bian
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zhou Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xijin Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| |
Collapse
|
28
|
Chen Y, Guo X, Zeng Y, Mo X, Hong S, He H, Li J, Fatima S, Liu Q. Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci Rep 2023; 13:15515. [PMID: 37726294 PMCID: PMC10509277 DOI: 10.1038/s41598-023-42760-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Oxidative stress has been shown to induce cell death in a wide range of human diseases including cardiac ischemia/reperfusion injury, drug induced cardiotoxicity, and heart failure. However, the mechanism of cell death induced by oxidative stress remains incompletely understood. Here we provide new evidence that oxidative stress primarily induces ferroptosis, but not apoptosis, necroptosis, or mitochondria-mediated necrosis, in cardiomyocytes. Intriguingly, oxidative stress induced by organic oxidants such as tert-butyl hydroperoxide (tBHP) and cumene hydroperoxide (CHP), but not hydrogen peroxide (H2O2), promoted glutathione depletion and glutathione peroxidase 4 (GPX4) degradation in cardiomyocytes, leading to increased lipid peroxidation. Moreover, elevated oxidative stress is also linked to labile iron overload through downregulation of the transcription suppressor BTB and CNC homology 1 (Bach1), upregulation of heme oxygenase 1 (HO-1) expression, and enhanced iron release via heme degradation. Strikingly, oxidative stress also promoted HO-1 translocation to mitochondria, leading to mitochondrial iron overload and lipid reactive oxygen species (ROS) accumulation. Targeted inhibition of mitochondrial iron overload or ROS accumulation, by overexpressing mitochondrial ferritin (FTMT) or mitochondrial catalase (mCAT), respectively, markedly inhibited oxidative stress-induced ferroptosis. The levels of mitochondrial iron and lipid peroxides were also markedly increased in cardiomyocytes subjected to simulated ischemia and reperfusion (sI/R) or the chemotherapeutic agent doxorubicin (DOX). Overexpressing FTMT or mCAT effectively prevented cardiomyocyte death induced by sI/R or DOX. Taken together, oxidative stress induced by organic oxidants but not H2O2 primarily triggers ferroptotic cell death in cardiomyocyte through GPX4 and Bach1/HO-1 dependent mechanisms. Our results also reveal mitochondrial iron overload via HO-1 mitochondrial translocation as a key mechanism as well as a potential molecular target for oxidative stress-induced ferroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Yi Chen
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Xiaoyun Guo
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Yachang Zeng
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Xiaoliang Mo
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Siqi Hong
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Hui He
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Jing Li
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Sulail Fatima
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA
| | - Qinghang Liu
- Department of Physiology and Biophysics, School of Medicine, University of Washington, 1705 NE Pacific Street, G424, Box 357290, Seattle, WA, 98195-7290, USA.
| |
Collapse
|
29
|
Wang R, Chen X, Li X, Wang K. Molecular therapy of cardiac ischemia-reperfusion injury based on mitochondria and ferroptosis. J Mol Med (Berl) 2023; 101:1059-1071. [PMID: 37505243 DOI: 10.1007/s00109-023-02346-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Excessive death of myocardial cells can lead to various cardiovascular diseases and even develop into heart failure, so developing ideal treatment plans based on pathogenesis is of great significance for cardiopathy. After the heart undergoes ischemia‒reperfusion (I/R), myocardial cells accumulate a large amount of peroxides, leading to mitochondrial dysfunction and inducing ferroptosis. Ferroptosis is a form of iron-dependent regulatory cell death (RCD) caused by imbalanced redox and iron metabolism that leads to severe cell damage through the accumulation of peroxides. The mechanism of ferroptosis is highly correlated with mitochondrial metabolism. Myocardial cells are rich in a large number of mitochondria, which serve as energy supply centers and are prone to producing reactive oxygen species (ROS), providing opportunities for oxidative stress caused by ferroptosis. Ferroptosis is related to various cardiovascular diseases, and potential treatment methods designed around ferroptosis may alter the pathological progression of cardiovascular diseases. Therefore, this review investigates the regulatory mechanisms of ferroptosis, exploring the close pathological and physiological connections between ferroptosis and mitochondrial and cardiac I/R injury. Targeting ferroptosis and mitochondria for intervention may be an effective plan for preventing and treating cardiac I/R injury.
Collapse
Affiliation(s)
- Ruiquan Wang
- Key Laboratory of Birth Regulation and Control Technologyof , National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xinmin Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Key Laboratory of Birth Regulation and Control Technologyof , National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
30
|
Qi Y, Hu M, Wang Z, Shang W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem Pharmacol 2023; 215:115725. [PMID: 37524207 DOI: 10.1016/j.bcp.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The injury caused by ischemia and subsequent reperfusion (I/R) is inevitable during kidney transplantation and its current management remains unsatisfactory. Iron is considered to play a remarkable pathologic role in the initiation or progression of tissue damage induced by I/R, whereas the effects of iron-related therapy remain controversial owing to the complicated nature of iron's involvement in multiple biological processes. A significant portion of the cellular iron is located in the mitochondria, which exerts a central role in the development and progression of I/R injury. Recent studies of iron regulation associated with mitochondrial function represents a unique opportunity to improve our knowledge on the pathophysiology of I/R injury. However, the molecular mechanisms linking mitochondria to the iron homeostasis remain unclear. In this review, we provide a comprehensive analysis of the alterations to iron metabolism in I/R injury during kidney transplantation, analyze the current understanding of mitochondrial regulation of iron homeostasis and discussed its potential application in I/R injury. The elucidation of regulatory mechanisms regulating mitochondrial iron homeostasis will offer valuable insights into potential therapeutic targets for alleviating I/R injury with the ultimate aim of improving kidney graft outcomes, with potential implications that could also extend to acute kidney injury or other I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
31
|
Chung B, Wang Y, Thiel M, Rostami F, Rogoll A, Hirsch VG, Malik Z, Bührke A, Bär C, Klintschar M, Schmitto JD, Vogt C, Werlein C, Jonigk D, Bauersachs J, Wollert KC, Kempf T. Pre-emptive iron supplementation prevents myocardial iron deficiency and attenuates adverse remodelling after myocardial infarction. Cardiovasc Res 2023; 119:1969-1980. [PMID: 37315201 DOI: 10.1093/cvr/cvad092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 06/16/2023] Open
Abstract
AIMS Heart failure (HF) after myocardial infarction (MI) is a major cause of morbidity and mortality. We sought to investigate the functional importance of cardiac iron status after MI and the potential of pre-emptive iron supplementation in preventing cardiac iron deficiency (ID) and attenuating left ventricular (LV) remodelling. METHODS AND RESULTS MI was induced in C57BL/6J male mice by left anterior descending coronary artery ligation. Cardiac iron status in the non-infarcted LV myocardium was dynamically regulated after MI: non-haem iron and ferritin increased at 4 weeks but decreased at 24 weeks after MI. Cardiac ID at 24 weeks was associated with reduced expression of iron-dependent electron transport chain (ETC) Complex I compared with sham-operated mice. Hepcidin expression in the non-infarcted LV myocardium was elevated at 4 weeks and suppressed at 24 weeks. Hepcidin suppression at 24 weeks was accompanied by more abundant expression of membrane-localized ferroportin, the iron exporter, in the non-infarcted LV myocardium. Notably, similarly dysregulated iron homeostasis was observed in LV myocardium from failing human hearts, which displayed lower iron content, reduced hepcidin expression, and increased membrane-bound ferroportin. Injecting ferric carboxymaltose (15 µg/g body weight) intravenously at 12, 16, and 20 weeks after MI preserved cardiac iron content and attenuated LV remodelling and dysfunction at 24 weeks compared with saline-injected mice. CONCLUSION We demonstrate, for the first time, that dynamic changes in cardiac iron status after MI are associated with local hepcidin suppression, leading to cardiac ID long term after MI. Pre-emptive iron supplementation maintained cardiac iron content and attenuated adverse remodelling after MI. Our results identify the spontaneous development of cardiac ID as a novel disease mechanism and therapeutic target in post-infarction LV remodelling and HF.
Collapse
Affiliation(s)
- Bomee Chung
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Marleen Thiel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Fatemeh Rostami
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Anika Rogoll
- Institute for Analytical Chemistry, TU Bergakademie, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Valentin G Hirsch
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Zulaikha Malik
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Anne Bührke
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Michael Klintschar
- Institute of Forensic Medicine, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Jan D Schmitto
- Department of Cardiac-, Thoracic-, Transplantation, and Vascular Surgery, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Carla Vogt
- Institute for Analytical Chemistry, TU Bergakademie, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Christopher Werlein
- Institute of Pathology and German Centre for Lung Research, Biomedical Research in End-stage and Obstructive Lung Disease Hannover, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology and German Centre for Lung Research, Biomedical Research in End-stage and Obstructive Lung Disease Hannover, Hannover Medical School, Carl-Neuberger-Straße 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Tibor Kempf
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Molecular and Translational Cardiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
32
|
Fan C, Chu G, Yu Z, Ji Z, Kong F, Yao L, Wang J, Geng D, Wu X, Mao H. The role of ferroptosis in intervertebral disc degeneration. Front Cell Dev Biol 2023; 11:1219840. [PMID: 37576601 PMCID: PMC10413580 DOI: 10.3389/fcell.2023.1219840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Nucleus pulposus, annulus fibrosus, and cartilage endplate constitute an avascular intervertebral disc (IVD), which is crucial for spinal and intervertebral joint mobility. As one of the most widespread health issues worldwide, intervertebral disc degeneration (IVDD) is recognized as a key contributor to back and neck discomfort. A number of degenerative disorders have a strong correlation with ferroptosis, a recently identified novel regulated cell death (RCD) characterized by an iron-dependent mechanism and a buildup of lipid reactive oxygen species (ROS). There is growing interest in the part ferroptosis plays in IVDD pathophysiology. Inhibiting ferroptosis has been shown to control IVDD development. Several studies have demonstrated that in TBHP-induced oxidative stress models, changes in ferroptosis marker protein levels and increased lipid peroxidation lead to the degeneration of intervertebral disc cells, which subsequently aggravates IVDD. Similarly, IVDD is significantly relieved with the use of ferroptosis inhibitors. The purpose of this review was threefold: 1) to discuss the occurrence of ferroptosis in IVDD; 2) to understand the mechanism of ferroptosis and its role in IVDD pathophysiology; and 3) to investigate the feasibility and prospect of ferroptosis in IVDD treatment.
Collapse
Affiliation(s)
- Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Pain Management, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fanchen Kong
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lingye Yao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
33
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
34
|
Fefelova N, Wongjaikam S, Pamarthi SH, Siri-Angkul N, Comollo T, Kumari A, Garg V, Ivessa A, Chattipakorn SC, Chattipakorn N, Gwathmey JK, Xie LH. Deficiency of mitochondrial calcium uniporter abrogates iron overload-induced cardiac dysfunction by reducing ferroptosis. Basic Res Cardiol 2023; 118:21. [PMID: 37227592 PMCID: PMC10589903 DOI: 10.1007/s00395-023-00990-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Suwakon Wongjaikam
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sri Harika Pamarthi
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thomas Comollo
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Anshu Kumari
- Department of Physiology, University of Maryland, Baltimore, MD, USA
| | - Vivek Garg
- Department of Physiology, University of Maryland, Baltimore, MD, USA
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
35
|
Wang X, Zhou Y, Min J, Wang F. Zooming in and out of ferroptosis in human disease. Front Med 2023; 17:173-206. [PMID: 37121959 DOI: 10.1007/s11684-023-0992-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/12/2023] [Indexed: 05/02/2023]
Abstract
Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.
Collapse
Affiliation(s)
- Xue Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, 315000, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
36
|
Sato T, Chang HC, Sawicki KT, Ardehali H. Optimized protocol for quantification of mitochondrial non-heme and heme iron content in mouse tissues and cultured cells. STAR Protoc 2023; 4:102064. [PMID: 36853672 PMCID: PMC9881402 DOI: 10.1016/j.xpro.2023.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Impaired mitochondrial iron metabolism is associated with aging and a variety of diseases, and there is a growing need to accurately quantify mitochondrial iron levels. This protocol provides an optimized method for evaluating non-heme and heme iron in mitochondrial and cytosolic fractions of tissues and cultured cells. Our protocol consists of three steps: sample fractionation, non-heme iron measurement, and heme iron measurement. For complete details on the use and execution of this protocol, please refer to Sato et al. (2022).1.
Collapse
Affiliation(s)
- Tatsuya Sato
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL, USA; Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL, USA
| | - Konrad T Sawicki
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
37
|
Wang J, Wang J, Qiu T, Wu J, Sun X, Jiang L, Liu X, Yang G, Cao J, Yao X. Mitochondrial iron overload mediated by cooperative transfer of plasma membrane ATP5B and TFR2 to mitochondria triggers hepatic insulin resistance under PFOS exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114662. [PMID: 36801541 DOI: 10.1016/j.ecoenv.2023.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In general populations, insulin resistance (IR) is related to perfluorooctane sulfonate (PFOS), a persistent organic pollutant. However, the underlying mechanism remains unclear. In this study, PFOS induced mitochondrial iron accumulation in the liver of mice and human hepatocytes L-O2. In the PFOS-treated L-O2 cells, mitochondrial iron overload preceded the occurrence of IR, and pharmacological inhibition of mitochondrial iron relieved PFOS-caused IR. Both transferrin receptor 2 (TFR2) and ATP synthase β subunit (ATP5B) were redistributed from the plasma membrane to mitochondria with PFOS treatment. Inhibiting the translocation of TFR2 to mitochondria reversed PFOS-induced mitochondrial iron overload and IR. In the PFOS-treated cells, ATP5B interacted with TFR2. Stabilizing ATP5B on the plasma membrane or knockdown of ATP5B disturbed the translocation of TFR2. PFOS inhibited the activity of plasma-membrane ATP synthase (ectopic ATP synthase, e-ATPS), and activating e-ATPS prevented the translocation of ATP5B and TFR2. Consistently, PFOS induced ATP5B/TFR2 interaction and redistribution of ATP5B and TFR2 to mitochondria in the liver of mice. Thus, our results indicated that mitochondrial iron overload induced by collaborative translocation of ATP5B and TFR2 was an up-stream and initiating event for PFOS-related hepatic IR, providing novel understandings of the biological function of e-ATPS, the regulatory mechanism for mitochondrial iron and the mechanism underlying PFOS toxicity.
Collapse
Affiliation(s)
- Jianyu Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jinling Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jialu Wu
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofang Liu
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Food Nutrition and Safety Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jun Cao
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
38
|
Lupu M, Coada CA, Tudor DV, Baldea I, Florea A, Toma VA, Lupsor A, Moldovan R, Decea N, Filip GA. Iron chelation alleviates multiple pathophysiological pathways in a rat model of cardiac pressure overload. Free Radic Biol Med 2023; 200:1-10. [PMID: 36822542 DOI: 10.1016/j.freeradbiomed.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Iron dysmetabolism affects a great proportion of heart failure patients, while chronic hypertension is one of the most common risk factors for heart failure and death in industrialized countries. Serum data from reduced ejection fraction heart failure patients show a relative or absolute iron deficiency, whereas cellular myocardial analyses field equivocal data. An observed increase in organellar iron deposits was incriminated to cause reactive oxygen species formation, lipid peroxidation, and cell death. Therefore, we studied the effects of iron chelation on a rat model of cardiac hypertrophy. Suprarenal abdominal aortic constriction was achieved surgically, with a period of nine weeks to accommodate the development of chronic pressure overload. Next, deferiprone (100 mg/kg/day), a lipid-permeable iron chelator, was administered for two weeks. Pressure overload resulted in increased inflammation, fibrotic remodeling, lipid peroxidation, left ventricular hypertrophy and mitochondrial iron derangements. Deferiprone reduced cardiac inflammation, lipid peroxidation, mitochondrial iron levels, and hypertrophy, without affecting circulating iron levels or ejection fraction. In conclusion, metallic molecules may pose ambivalent effects within the cardiovascular system, with beneficial effects of iron redistribution, chiefly in the mitochondria.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Camelia Alexandra Coada
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Molecular Sciences, 400394, Cluj-Napoca, Romania; University of Bologna, Department of Medical and Surgical Sciences (DIMEC), 40138, Bologna, Italy
| | - Diana-Valentina Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Ioana Baldea
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Adrian Florea
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Cell and Molecular Biology, Cluj-Napoca, Romania.
| | - Vlad-Alexandru Toma
- Babeș-Bolyai University, Department of Molecular Biology and Biotechnologies, Clinicilor Street No. 4-6, 400000, Cluj-Napoca, Cluj County, Romania; Institute of Biological Research, Republicii Street No. 48, 400015, Cluj-Napoca, Cluj County, Romania
| | - Ana Lupsor
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Remus Moldovan
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Nicoleta Decea
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Dept. of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
39
|
Abstract
The cardiovascular system requires iron to maintain its high energy demands and metabolic activity. Iron plays a critical role in oxygen transport and storage, mitochondrial function, and enzyme activity. However, excess iron is also cardiotoxic due to its ability to catalyze the formation of reactive oxygen species and promote oxidative damage. While mammalian cells have several redundant iron import mechanisms, they are equipped with a single iron-exporting protein, which makes the cardiovascular system particularly sensitive to iron overload. As a result, iron levels are tightly regulated at many levels to maintain homeostasis. Iron dysregulation ranges from iron deficiency to iron overload and is seen in many types of cardiovascular disease, including heart failure, myocardial infarction, anthracycline-induced cardiotoxicity, and Friedreich's ataxia. Recently, the use of intravenous iron therapy has been advocated in patients with heart failure and certain criteria for iron deficiency. Here, we provide an overview of systemic and cellular iron homeostasis in the context of cardiovascular physiology, iron deficiency, and iron overload in cardiovascular disease, current therapeutic strategies, and future perspectives.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
40
|
Zhang J, Song Y, Li Y, Lin HB, Fang X. Iron homeostasis in the heart: Molecular mechanisms and pharmacological implications. J Mol Cell Cardiol 2023; 174:15-24. [PMID: 36375319 DOI: 10.1016/j.yjmcc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Iron is necessary for the life of practically all living things, yet it may also harm people toxically. Accordingly, humans and other mammals have evolved an effective and tightly regulatory system to maintain iron homeostasis in healthy tissues, including the heart. Iron deficiency is common in patients with heart failure, and is associated with worse prognosis in this population; while the prevalence of iron overload-related cardiovascular disorders is also increasing. Therefore, enhancing the therapy of patients with cardiovascular disorders requires a thorough understanding of iron homeostasis. Here, we give readers an overview of the fundamental mechanisms governing systemic iron homeostasis as well as the most recent knowledge about the intake, storage, use, and export of iron from the heart. Genetic mouse models used for investigation of iron metabolism in various in vivo scenarios are summarized and highlighted. We also go through different clinical conditions and therapeutic approaches that target cardiac iron dyshomeostasis. Finally, we conclude the review by outlining the present knowledge gaps and important open questions in this field in order to guide future research on cardiac iron metabolism.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Yijing Song
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - You Li
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xuexian Fang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University, Hangzhou, China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
41
|
Duan G, Li J, Duan Y, Zheng C, Guo Q, Li F, Zheng J, Yu J, Zhang P, Wan M, Long C. Mitochondrial Iron Metabolism: The Crucial Actors in Diseases. Molecules 2022; 28:29. [PMID: 36615225 PMCID: PMC9822237 DOI: 10.3390/molecules28010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Iron is a trace element necessary for cell growth, development, and cellular homeostasis, but insufficient or excessive level of iron is toxic. Intracellularly, sufficient amounts of iron are required for mitochondria (the center of iron utilization) to maintain their normal physiologic function. Iron deficiency impairs mitochondrial metabolism and respiratory activity, while mitochondrial iron overload promotes ROS production during mitochondrial electron transport, thus promoting potential disease development. This review provides an overview of iron homeostasis, mitochondrial iron metabolism, and how mitochondrial iron imbalances-induced mitochondrial dysfunction contribute to diseases.
Collapse
Affiliation(s)
- Geyan Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changbing Zheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuping Guo
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengna Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Yu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiwen Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Mengliao Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cimin Long
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Lupu M, Tudor D, Filip A. Iron metabolism and cardiovascular disease: Basic to translational purviews and therapeutical approach. Rev Port Cardiol 2022; 41:1037-1046. [PMID: 36228833 DOI: 10.1016/j.repc.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Iron interactions with the cardiovascular system were proposed about half a century ago, yet a clear-cut understanding of this micronutrient and its intricacies with acute and chronic events is still lacking. In chronic heart failure, patients with decreased iron stores appear to benefit from intravenous administration of metallic formulations, whereas acute diseases (e.g., myocardial infarction, stroke) are barely studied in randomized controlled trials in humans. However, proof-of-concept studies have indicated that the dual redox characteristics of iron could be involved in atherosclerosis, necrosis, and ferroptosis. To this end, we sought to review the currently available body of literature pertaining to these temporal profiles of heart diseases, as well as the pathophysiologic mechanism by which iron enacts, underlining key points related to treatment options.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania.
| | - Diana Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| | - Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
43
|
Song JX, Zhao YS, Zhen YQ, Yang XY, Chen Q, An JR, Ji ES. Banxia-Houpu decoction diminishes iron toxicity damage in heart induced by chronic intermittent hypoxia. PHARMACEUTICAL BIOLOGY 2022; 60:609-620. [PMID: 35286247 PMCID: PMC8928803 DOI: 10.1080/13880209.2022.2043392] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/12/2022] [Indexed: 05/04/2023]
Abstract
CONTEXT Obstructive sleep apnoea (OSA) causes chronic intermittent hypoxia (CIH), which results in mitochondrial dysfunction and generates reactive oxygen species (ROS) in the heart. Excessive free iron could accelerate oxidative damage, which may be involved in this process. Banxia-Houpu decoction (BHD) was reported to improve the apnoea hypopnoea index in OSA patients, but the specific mechanism was still unclear. OBJECTIVE To investigate whether BHD could reduce CIH-induced heart damage by regulating iron metabolism and mitochondrial function. MATERIALS AND METHODS C57BL/6N mice were randomly divided into control, CIH and BHD groups. Mice were exposed to CIH (21 - 5% O2, 20 times/h, 8 h/d) and administered BHD (3.51, 7.01 and 14.02 g/kg, intragastrically) for 21 d. Cardiac and mitochondrial function, iron levels, apoptosis and mitophagy were determined. RESULTS BHD (7.01 g/kg) significantly improved cardiac dysfunction, pathological change and mitochondrial structure induced by CIH. BHD increased the Bcl-2/Bax ratio (1.4-fold) and inhibited caspase 3 cleavage in CIH mice (0.45-fold). BHD activated mitophagy by upregulating Parkin (1.94-fold) and PINK1 (1.26-fold), inhibiting the PI3K-AKT-mTOR pathway. BHD suppressed ROS generation by decreasing NOX2 (0.59-fold) and 4-HNE (0.83-fold). BHD reduced the total iron in myocardial cells (0.72-fold) and mitochondrial iron by downregulating Mfrn2 (0.81-fold) and MtFt (0.78-fold) proteins, and upregulating ABCB8 protein (1.33-fold). Rosmarinic acid, the main component of Perilla Leaf in BHD, was able to react with Fe2+ and Fe3+ in vitro. DISCUSSION AND CONCLUSIONS These findings encourage the use of BHD to resist cardiovascular injury and provide the theoretical basis for clinical treatment in OSA patients.
Collapse
Affiliation(s)
- Ji-Xian Song
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Ya-Shuo Zhao
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Ya-Qin Zhen
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Xin-Yue Yang
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Qi Chen
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| | - Ji-Ren An
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
- First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - En-Sheng Ji
- Department of Physiology, Institute of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, PR China
| |
Collapse
|
44
|
Abstract
Metabolic changes frequently occur in patients with chronic heart failure (HF). Therefore, detailed identification of these metabolic changes, and complementing them, will provide new therapeutic approaches. Here, using a mouse model, we demonstrated that succinyl-CoA levels are reduced in the myocardial mitochondria of hearts undergoing chronic HF, and this reduction impairs mitochondrial oxidative phosphorylation capacity. We identified increased heme synthesis as a cause of this succinyl-CoA reduction and demonstrated a method that can compensate substantially for the increased succinyl-CoA consumption. Reduction in succinyl-CoA levels has also been reported in HF patients. Our results provide an academic basis for the development of new treatment methodologies against HF, which target the altered metabolic activities that occur in HF by nutritional interventions. Heart failure (HF) is a leading cause of death and repeated hospitalizations and often involves cardiac mitochondrial dysfunction. However, the underlying mechanisms largely remain elusive. Here, using a mouse model in which myocardial infarction (MI) was induced by coronary artery ligation, we show the metabolic basis of mitochondrial dysfunction in chronic HF. Four weeks after ligation, MI mice showed a significant decrease in myocardial succinyl-CoA levels, and this decrease impaired the mitochondrial oxidative phosphorylation (OXPHOS) capacity. Heme synthesis and ketolysis, and protein levels of several enzymes consuming succinyl-CoA in these events, were increased in MI mice, while enzymes synthesizing succinyl-CoA from α-ketoglutarate and glutamate were also increased. Furthermore, the ADP-specific subunit of succinyl-CoA synthase was reduced, while its GDP-specific subunit was almost unchanged. Administration of 5-aminolevulinic acid, an intermediate in the pathway from succinyl-CoA to heme synthesis, appreciably restored succinyl-CoA levels and OXPHOS capacity and prevented HF progression in MI mice. Previous reports also suggested the presence of succinyl-CoA metabolism abnormalities in cardiac muscles of HF patients. Our results identified that changes in succinyl-CoA usage in different metabolisms of the mitochondrial energy production system is characteristic to chronic HF, and although similar alterations are known to occur in healthy conditions, such as during strenuous exercise, they may often occur irreversibly in chronic HF leading to a decrease in succinyl-CoA. Consequently, nutritional interventions compensating the succinyl-CoA consumption are expected to be promising strategies to treat HF.
Collapse
|
45
|
Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5124553. [PMID: 36120592 PMCID: PMC9473912 DOI: 10.1155/2022/5124553] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Iron is indispensable in numerous biologic processes, but abnormal iron regulation and accumulation is related to pathological processes in cardiovascular diseases. However, the underlying mechanisms still need to be further explored. Iron plays a key role in metal-catalyzed oxidative reactions that generate reactive oxygen species (ROS), which can cause oxidative stress. As the center for oxygen and iron utilization, mitochondria are vulnerable to damage from iron-induced oxidative stress and participate in processes involved in iron-related damage in cardiovascular disease, although the mechanism remains unclear. In this review, the pathological roles of iron-related oxidative stress in cardiovascular diseases are summarized, and the potential effects and mechanisms of mitochondrial iron homeostasis and dysfunction in these diseases are especially highlighted.
Collapse
|
46
|
Molecular Mechanisms of Ferroptosis and Relevance to Cardiovascular Disease. Cells 2022; 11:cells11172726. [PMID: 36078133 PMCID: PMC9454912 DOI: 10.3390/cells11172726] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/23/2022] Open
Abstract
Ferroptosis has recently been demonstrated to be a novel regulated non-apoptotic cell death characterized by iron-dependence and the accumulation of lipid peroxidation that results in membrane damage. Excessive iron induces ferroptosis by promoting the generation of both soluble and lipid ROS via an iron-dependent Fenton reaction and lipoxygenase (LOX) enzyme activity. Cytosolic glutathione peroxidase 4 (cGPX4) pairing with ferroptosis suppressor protein 1 (FSP1) and mitochondrial glutathione peroxidase 4 (mGPX4) pairing with dihydroorotate dehydrogenase (DHODH) serve as two separate defense systems to detoxify lipid peroxidation in the cytoplasmic as well as the mitochondrial membrane, thereby defending against ferroptosis in cells under normal conditions. However, disruption of these defense systems may cause ferroptosis. Emerging evidence has revealed that ferroptosis plays an essential role in the development of diverse cardiovascular diseases (CVDs), such as hemochromatosis-associated cardiomyopathy, doxorubicin-induced cardiotoxicity, ischemia/reperfusion (I/R) injury, heart failure (HF), atherosclerosis, and COVID-19–related arrhythmias. Iron chelators, antioxidants, ferroptosis inhibitors, and genetic manipulations may alleviate the aforementioned CVDs by blocking ferroptosis pathways. In conclusion, ferroptosis plays a critical role in the pathogenesis of various CVDs and suppression of cardiac ferroptosis is expected to become a potential therapeutic option. Here, we provide a comprehensive review on the molecular mechanisms involved in ferroptosis and its implications in cardiovascular disease.
Collapse
|
47
|
Hackett PT, Jia X, Li L, Ward DM. Posttranslational regulation of mitochondrial frataxin and identification of compounds that increase frataxin levels in Friedreich's ataxia. J Biol Chem 2022; 298:101982. [PMID: 35472330 PMCID: PMC9127368 DOI: 10.1016/j.jbc.2022.101982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a degenerative disease caused by a decrease in the mitochondrial protein frataxin (Fxn), which is involved in iron-sulfur cluster (ISC) synthesis. Diminutions in Fxn result in decreased ISC synthesis, increased mitochondrial iron accumulation, and impaired mitochondrial function. Here, we show that conditions that result in increased mitochondrial reactive oxygen species in yeast or mammalian cell culture give rise to increased turnover of Fxn but not of other ISC synthesis proteins. We demonstrate that the mitochondrial Lon protease is involved in Fxn degradation and that iron export through the mitochondrial metal transporter Mmt1 protects yeast Fxn from degradation. We also determined that when FRDA fibroblasts were grown in media containing elevated iron, mitochondrial reactive oxygen species increased and Fxn decreased compared to WT fibroblasts. Furthermore, we screened a library of FDA-approved compounds and identified 38 compounds that increased yeast Fxn levels, including the azole bifonazole, antiparasitic fipronil, antitumor compound dibenzoylmethane, antihypertensive 4-hydroxychalcone, and a nonspecific anion channel inhibitor 4,4-diisothiocyanostilbene-2,2-sulfonic acid. We show that top hits 4-hydroxychalcone and dibenzoylmethane increased mRNA levels of transcription factor nuclear factor erythroid 2-related factor 2 in FRDA patient-derived fibroblasts, as well as downstream antioxidant targets thioredoxin, glutathione reductase, and superoxide dismutase 2. Taken together, these findings reveal that FRDA progression may be in part due to oxidant-mediated decreases in Fxn and that some approved compounds may be effective in increasing mitochondrial Fxn in FRDA, delaying disease progression.
Collapse
Affiliation(s)
- Peter T Hackett
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liangtao Li
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diane M Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
48
|
Liesa M. The goodies of chelated fat: iron-regulated lipid droplet biogenesis precedes and preserves mitophagy. EMBO J 2022; 41:e111238. [PMID: 35451092 PMCID: PMC9108591 DOI: 10.15252/embj.2022111238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
The role of iron-regulated mitophagy in lipid metabolism is unclear. Recent work by Long, Sanchez-Martinez et al (2022) shows that iron chelation induces a primary change in lipid metabolism that promotes fat accumulation and precedes mitophagy.
Collapse
Affiliation(s)
- Marc Liesa
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain.,Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
49
|
Hong M, Rong J, Tao X, Xu Y. The Emerging Role of Ferroptosis in Cardiovascular Diseases. Front Pharmacol 2022; 13:822083. [PMID: 35153792 PMCID: PMC8826236 DOI: 10.3389/fphar.2022.822083] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 01/31/2023] Open
Abstract
Ferroptosis is one type of programmed cell death discovered in recent years, which is characterized by iron-dependent lipid peroxidation and participating in iron, lipid and antioxidant metabolism. Ferroptosis is different from the traditional cell death types such as apoptosis, necroptosis and autophagy in morphology, biochemistry and genetics. Cardiovascular diseases are considered as an important cause of death from non-communicable diseases in the global population and poses a serious threat to human health. Apoptosis has long been thought to be the major type of cardiomyocyte death, but now ferroptosis has been shown to play a major role in cardiovascular diseases as well. This review will discuss related issues such as the mechanisms of ferroptosis and its effects on the occurrence and development of cardiovascular diseases, aiming to provide a novel target for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Min Hong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabing Rong
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinran Tao
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinchuan Xu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Platt E, Klootwijk E, Salama A, Davidson B, Robertson F. Literature review of the mechanisms of acute kidney injury secondary to acute liver injury. World J Nephrol 2022; 11:13-29. [PMID: 35117976 PMCID: PMC8790308 DOI: 10.5527/wjn.v11.i1.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
People exposed to liver ischaemia reperfusion (IR) injury often develop acute kidney injury and the combination is associated with significant morbidity and mortality. Molecular mediators released by the liver in response to IR injury are the likely cause of acute kidney injury (AKI) in this setting, but the mediators have not yet been identified. Identifying the mechanism of injury will allow the identification of therapeutic targets which may modulate both liver IR injury and AKI following liver IR injury.
Collapse
Affiliation(s)
- Esther Platt
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Enriko Klootwijk
- Department of Renal Medicine, University College London, London NW3 2PF, United Kingdom
| | - Alan Salama
- Department of Renal Medicine, University College London, London NW3 2PF, United Kingdom
| | - Brian Davidson
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Francis Robertson
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| |
Collapse
|