1
|
Zhang D, Shi C, Wang Y, Guo J, Gong Z. Metabolic Dysregulation and Metabolite Imbalances in Acute-on-chronic Liver Failure: Impact on Immune Status. J Clin Transl Hepatol 2024; 12:865-877. [PMID: 39440217 PMCID: PMC11491507 DOI: 10.14218/jcth.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Liver failure encompasses a range of severe clinical syndromes resulting from the deterioration of liver function, triggered by factors both within and outside the liver. While the definition of acute-on-chronic liver failure (ACLF) may vary by region, it is universally recognized for its association with multiorgan failure, a robust inflammatory response, and high short-term mortality rates. Recent advances in metabolomics have provided insights into energy metabolism and metabolite alterations specific to ACLF. Additionally, immunometabolism is increasingly acknowledged as a pivotal mechanism in regulating immune cell functions. Therefore, understanding the energy metabolism pathways involved in ACLF and investigating how metabolite imbalances affect immune cell functionality are crucial for developing effective treatment strategies for ACLF. This review methodically examined the immune and metabolic states of ACLF patients and elucidated how alterations in metabolites impact immune functions, offering novel perspectives for immune regulation and therapeutic management of liver failure.
Collapse
Affiliation(s)
- Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024:10.1038/s44321-024-00155-6. [PMID: 39468303 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Halimi F, Vanderhaeghen T, Timmermans S, Croubels S, Libert C, Vandewalle J. Comparative Analysis of Hepatic Gene Expression Profiles in Murine and Porcine Sepsis Models. Int J Mol Sci 2024; 25:11079. [PMID: 39456859 PMCID: PMC11507144 DOI: 10.3390/ijms252011079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis remains a huge unmet medical need for which no approved drugs, besides antibiotics, are on the market. Despite the clinical impact of sepsis, its molecular mechanism remains inadequately understood. Recent insights have shown that profound hepatic transcriptional reprogramming, leading to fatal metabolic abnormalities, might open a new avenue to treat sepsis. Translation of experimental results from rodents to larger animal models of higher relevance for human physiology, such as pigs, is critical and needs exploration. We performed a comparative analysis of the transcriptome profiles in murine and porcine livers using the following sepsis models: cecal ligation and puncture (CLP) in mice and fecal instillation (FI) in pigs, both of which induce polymicrobial septic peritonitis, and lipopolysaccharide (LPS)-induced endotoxemia in pigs, inducing sterile inflammation. Using bulk RNA sequencing, Metascape pathway analysis, and HOMER transcription factor motif analysis, we were able to identify key genes and pathways affected in septic livers. Conserved upregulated pathways in murine CLP and porcine LPS and FI generally comprise typical inflammatory pathways, except for ER stress, which was only found in the murine CLP model. Conserved pathways downregulated in sepsis comprise almost exclusively metabolic pathways such as monocarboxylic acid, steroid, biological oxidation, and small-molecule catabolism. Even though the upregulated inflammatory pathways were equally induced in the two porcine models, the porcine FI model more closely resembles the metabolic dysfunction observed in the CLP liver compared to the porcine LPS model. This comprehensive comparison focusing on the hepatic responses in mouse CLP versus LPS or FI in pigs shows that the two porcine sepsis models generally resemble quite well the mouse CLP model, with a typical inflammatory signature amongst the upregulated genes and metabolic dysfunction amongst the downregulated genes. The hepatic ER stress observed in the murine model could not be replicated in the porcine models. When studying metabolic dysfunction in the liver upon sepsis, the porcine FI model more closely resembles the mouse CLP model compared to the porcine LPS model.
Collapse
Affiliation(s)
- Fëllanza Halimi
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (F.H.); (S.C.)
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, 9000 Ghent, Belgium; (T.V.); (S.T.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, 9000 Ghent, Belgium; (T.V.); (S.T.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (F.H.); (S.C.)
| | - Claude Libert
- VIB Center for Inflammation Research, 9000 Ghent, Belgium; (T.V.); (S.T.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, 9000 Ghent, Belgium; (T.V.); (S.T.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Yumoto T, Coopersmith CM. Targeting AMP-activated protein kinase in sepsis. Front Endocrinol (Lausanne) 2024; 15:1452993. [PMID: 39469575 PMCID: PMC11513325 DOI: 10.3389/fendo.2024.1452993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a global health challenge marked by limited clinical options and high mortality rates. AMP-activated protein kinase (AMPK) is a cellular energy sensor that mediates multiple crucial metabolic pathways that may be an attractive therapeutic target in sepsis. Pre-clinical experimental studies have demonstrated that pharmacological activation of AMPK can offer multiple potential benefits during sepsis, including anti-inflammatory effects, induction of autophagy, promotion of mitochondrial biogenesis, enhanced phagocytosis, antimicrobial properties, and regulation of tight junction assembly. This review aims to discuss the existing evidence supporting the therapeutic potential of AMPK activation in sepsis management.
Collapse
Affiliation(s)
- Tetsuya Yumoto
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Wallaeys C, Garcia-Gonzalez N, Timmermans S, Vandewalle J, Vanderhaeghen T, De Beul S, Dufoor H, Eggermont M, Moens E, Bosteels V, De Rycke R, Thery F, Impens F, Verbanck S, Lienenklaus S, Janssens S, Blumberg RS, Iwawaki T, Libert C. Paneth cell TNF signaling induces gut bacterial translocation and sepsis. Cell Host Microbe 2024; 32:1725-1743.e7. [PMID: 39243761 DOI: 10.1016/j.chom.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/20/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Charlotte Wallaeys
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Natalia Garcia-Gonzalez
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Somara De Beul
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Hester Dufoor
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Elise Moens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium
| | - Victor Bosteels
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Laboratory for ER Stress and Inflammation, VIB-UniversityGent Center for Inflammation Research, Ghent 9052, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium; VIB Center for Inflammation Research and Bioimaging Core, VIB, Ghent 9052, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9052, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent 9052, Belgium; VIB Proteomics Core, VIB, Ghent 9052, Belgium
| | - Serge Verbanck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| | - Sophie Janssens
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Laboratory for ER Stress and Inflammation, VIB-UniversityGent Center for Inflammation Research, Ghent 9052, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9052, Belgium.
| |
Collapse
|
6
|
Van Dender C, Timmermans S, Paakinaho V, Vanderhaeghen T, Vandewalle J, Claes M, Garcia B, Roman B, De Waele J, Croubels S, De Bosscher K, Meuleman P, Herpain A, Palvimo JJ, Libert C. A critical role for HNF4α in polymicrobial sepsis-associated metabolic reprogramming and death. EMBO Mol Med 2024; 16:2485-2515. [PMID: 39261648 PMCID: PMC11473810 DOI: 10.1038/s44321-024-00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
In sepsis, limited food intake and increased energy expenditure induce a starvation response, which is compromised by a quick decline in the expression of hepatic PPARα, a transcription factor essential in intracellular catabolism of free fatty acids. The mechanism upstream of this PPARα downregulation is unknown. We found that sepsis causes a progressive hepatic loss-of-function of HNF4α, which has a strong impact on the expression of several important nuclear receptors, including PPARα. HNF4α depletion in hepatocytes dramatically increases sepsis lethality, steatosis, and organ damage and prevents an adequate response to IL6, which is critical for liver regeneration and survival. An HNF4α agonist protects against sepsis at all levels, irrespectively of bacterial loads, suggesting HNF4α is crucial in tolerance to sepsis. In conclusion, hepatic HNF4α activity is decreased during sepsis, causing PPARα downregulation, metabolic problems, and a disturbed IL6-mediated acute phase response. The findings provide new insights and therapeutic options in sepsis.
Collapse
Affiliation(s)
- Céline Van Dender
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maarten Claes
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, Center Hospitalier Universitaire de Lille, 59000, Lille, France
| | - Bart Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, St.-Pierre University Hospital, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit Care 2024; 28:292. [PMID: 39227925 PMCID: PMC11373266 DOI: 10.1186/s13054-024-05069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
9
|
Wang S, Link F, Munker S, Wang W, Feng R, Liebe R, Li Y, Yao Y, Liu H, Shao C, Ebert MP, Ding H, Dooley S, Weng HL, Wang SS. Retinoic acid generates a beneficial microenvironment for liver progenitor cell activation in acute liver failure. Hepatol Commun 2024; 8:e0483. [PMID: 39023343 PMCID: PMC11262820 DOI: 10.1097/hc9.0000000000000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-β-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ye Yao
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Matthias P.A. Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hong-Lei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan-Shan Wang
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kar E, Kar F, Can B, Çakır Gündoğdu A, Özbayer C, Koçak FE, Şentürk H. Prophylactic and Therapeutic Efficacy of Boric Acid on Lipopolysaccharide-Induced Liver and Kidney Inflammation in Rats. Biol Trace Elem Res 2024; 202:3701-3713. [PMID: 37910263 DOI: 10.1007/s12011-023-03941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
In our study, we aimed to examine possible prophylactic (P) or therapeutic (T) effects of boric acid (BA) on lipopolysaccharide (LPS) induced liver and kidney damages. Thirty-two rats were divided into four groups as control, LPS, BAP+LPS, and LPS+BAT. BA was given orally to the rats one hour before the intraperitoneal LPS administration in the BAP+LPS group and one hour after the LPS administration in the LPS+BAT group. Malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-6 (IL-6), IL-10, reduced glutathione (GSH), total oxidant and antioxidant status (TOS and TAS), semaphorin-3A (SEMA3A), cytochrome c (CYCS), and caspase-3 (CASP3) parameters were determined by ELISA method to monitor inflammation, oxidative stress, and apoptosis in the liver and kidney tissues of rats. In addition, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, creatinine (CREA), C-reactive protein (CRP), gamma glutamyl transferase (GGT), glucose (GLU), sodium (Na), potassium (K), and chlorine (Cl) biochemical parameters were measured in rat serums to monitor liver and kidney functions. Liver and kidney tissues were also examined histopathologically and immunohistochemically. All data were statistically analyzed. Our histological, biochemical, inflammatory, oxidative stress, and apoptotic findings showed that LPS causes serious damage to liver and kidney tissues. Boric acid application brought about significant improvements on the parameters. However, this improvement was seen in the BAP+LPS group, and the results of the LPS+BAT group were insufficient to improve. Our results showed that boric acid administration is effective on severe liver and kidney damage caused by LPS. It has been concluded that prophylactic application is more effective, while therapeutic application is insufficient.
Collapse
Affiliation(s)
- Ezgi Kar
- Training and Research Center, Kutahya Health Sciences University, Kutahya, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Betül Can
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Fatma Emel Koçak
- Department of Medical Biochemistry, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Hakan Şentürk
- Department of Biology, Faculty of Art and Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
11
|
Liang S, Zhou J, Cao C, Liu Y, Ming S, Liu X, Shang Y, Lao J, Peng Q, Yang J, Wu M. GITR exacerbates lysophosphatidylcholine-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. Cell Mol Immunol 2024; 21:674-688. [PMID: 38740925 PMCID: PMC11214634 DOI: 10.1038/s41423-024-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The NLRP3 inflammasome functions as an inflammatory driver, but its relationship with lipid metabolic changes in early sepsis remains unclear. Here, we found that GITR expression in monocytes/macrophages was induced by lysophosphatidylcholine (LPC) and was positively correlated with the severity of sepsis. GITR is a costimulatory molecule that is mainly expressed on T cells, but its function in macrophages is largely unknown. Our in vitro data showed that GITR enhanced LPC uptake by macrophages and specifically enhanced NLRP3 inflammasome-mediated macrophage pyroptosis. Furthermore, in vivo studies using either cecal ligation and puncture (CLP) or LPS-induced sepsis models demonstrated that LPC exacerbated sepsis severity/lethality, while conditional knockout of GITR in myeloid cells or NLRP3/caspase-1/IL-1β deficiency attenuated sepsis severity/lethality. Mechanistically, GITR specifically enhanced inflammasome activation by regulating the posttranslational modification (PTM) of NLRP3. GITR competes with NLRP3 for binding to the E3 ligase MARCH7 and recruits MARCH7 to induce deacetylase SIRT2 degradation, leading to decreasing ubiquitination but increasing acetylation of NLRP3. Overall, these findings revealed a novel role of macrophage-derived GITR in regulating the PTM of NLRP3 and systemic inflammatory injury, suggesting that GITR may be a potential therapeutic target for sepsis and other inflammatory diseases. GITR exacerbates LPC-induced macrophage pyroptosis in sepsis via posttranslational regulation of NLRP3. According to the model, LPC levels increase during the early stage of sepsis, inducing GITR expression on macrophages. GITR not only competes with NLRP3 for binding to the E3 ligase MARCH7 but also recruits MARCH7 to induce the degradation of the deacetylase SIRT2, leading to decreasing ubiquitination but increasing acetylation of NLRP3 and therefore exacerbating LPC-induced NLRP3 inflammasome activation, macrophage pyroptosis and systemic inflammatory injury.
Collapse
Affiliation(s)
- Siping Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jinyu Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Can Cao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yiting Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siqi Ming
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yuqi Shang
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juanfeng Lao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qin Peng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiahui Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
12
|
Shi Y, Wu D, Wang Y, Shao Y, Zeng F, Zhou D, Zhang H, Miao C. Treg and neutrophil extracellular trap interaction contributes to the development of immunosuppression in sepsis. JCI Insight 2024; 9:e180132. [PMID: 38888975 PMCID: PMC11383165 DOI: 10.1172/jci.insight.180132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
The excessive formation and release of neutrophil extracellular traps (NETs) in sepsis may represent a substantial mechanism contributing to multiorgan damage, which is associated with a poor prognosis. However, the precise role of NETs in mediating the transition from innate immunity to adaptive immunity during the progression of inflammation and sepsis remains incompletely elucidated. In this study, we provide evidence that, despite a reduction in the number of CD4+ T cells in the late stage of sepsis, there is a notable upregulation in the proportion of Tregs. Mechanistically, we have identified that NETs can induce metabolic reprogramming of naive CD4+ T cells through the Akt/mTOR/SREBP2 pathway, resulting in enhanced cholesterol metabolism, thereby promoting their conversion into Tregs and augmenting their functional capacity. Collectively, our findings highlight the potential therapeutic strategy of targeting intracellular cholesterol normalization for the management of immunosuppressed patients with sepsis.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Shao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu Zeng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Zhou
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Quan H, Yu H, Liu XL, Xiong FX, Hou YX, Wang XB, Yang ZY, Jiang YY. Development and validation of a prognostic model for 90-day survival in patients with alcohol-associated cirrhosis and acute decompensation. Hepatol Res 2024; 54:588-599. [PMID: 38241146 DOI: 10.1111/hepr.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND/PURPOSE Patients with alcohol-associated cirrhosis and acute decompensation are considered critically ill and have a higher risk of short-term mortality. This study aimed to establish a nomogram to evaluate their 90-day survival and identify factors that affect disease progression. METHODS We included patients from September 2008 to December 2016 (n = 387 in the derivation group) and from January 2017 to August 2020 (n = 157 in the validation group). LASSO regression and Cox multivariate risk regression were used to analyze the influencing factors of the 90-day mortality risk, and a nomogram was constructed. The performance of a model was analyzed based on the C-index, area under the receiver operating curve, calibration curve, and decision curve analysis. RESULTS Total bilirubin >10 upper limit of normal, high-density lipoprotein cholesterol, lymphocyte and monocyte ratios ≤2.33, white blood cells, and hemoglobin were identified as independent risk factors affecting the 90-day mortality risk of patients and the nomogram was developed. A nomogram demonstrated excellent model predictive accuracy in both the derivation and validation cohorts (C-index: 0.976 and 0.945), which was better than other commonly used liver scoring models (p < 0.05). The nomogram also performed good calibration ability and more clinical net benefit. According to the nomogram score, patients were divided into high- and low-risk groups. Mortality was significantly higher in the high-risk group than in the low-risk group (p < 0.0001). CONCLUSION The nomogram could accurately predict the 90-day mortality risk in patients with alcohol-associated cirrhosis and acute decompensation, helping to identify high-risk patients and personalize treatment at their first admission.
Collapse
Affiliation(s)
- Hui Quan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Li Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fei-Xiang Xiong
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Xin Hou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xian-Bo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Yun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu-Yong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Mathew B, Tripathi G, Gautam V, Bindal V, Sharma N, Yadav M, Pandey S, Sharma N, Gupta AC, Bhat SH, Saini AK, Sood V, Lal BB, Alam S, Khanna R, Maras JS. Circulating bacterial peptides and linked metabolomic signatures are indicative of early mortality in pediatric cirrhosis. Hepatol Commun 2024; 8:e0440. [PMID: 38836842 PMCID: PMC11155604 DOI: 10.1097/hc9.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.
Collapse
Affiliation(s)
- Babu Mathew
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaurav Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vipul Gautam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vasundhra Bindal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nupur Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Yadav
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sushmita Pandey
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Neha Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Abhishak C. Gupta
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sadam H. Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akhilesh K. Saini
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
15
|
Willmann K, Moita LF. Physiologic disruption and metabolic reprogramming in infection and sepsis. Cell Metab 2024; 36:927-946. [PMID: 38513649 DOI: 10.1016/j.cmet.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024]
Abstract
Effective responses against severe systemic infection require coordination between two complementary defense strategies that minimize the negative impact of infection on the host: resistance, aimed at pathogen elimination, and disease tolerance, which limits tissue damage and preserves organ function. Resistance and disease tolerance mostly rely on divergent metabolic programs that may not operate simultaneously in time and space. Due to evolutionary reasons, the host initially prioritizes the elimination of the pathogen, leading to dominant resistance mechanisms at the potential expense of disease tolerance, which can contribute to organ failure. Here, we summarize our current understanding of the role of physiological perturbations resulting from infection in immune response dynamics and the metabolic program requirements associated with resistance and disease tolerance mechanisms. We then discuss how insight into the interplay of these mechanisms could inform future research aimed at improving sepsis outcomes and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Katharina Willmann
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal; Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
16
|
Gong T, Liu YT, Fan J. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction. Mil Med Res 2024; 11:24. [PMID: 38644472 PMCID: PMC11034107 DOI: 10.1186/s40779-024-00527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Sepsis, a severe systemic inflammatory response to infection, remains a leading cause of morbidity and mortality worldwide. Exosomes, as mediators of intercellular communication, play a pivotal role in the pathogenesis of sepsis through modulating immune responses, metabolic reprogramming, coagulopathy, and organ dysfunction. This review highlights the emerging significance of exosomes in these processes. Initially, it provides an in-depth insight into exosome biogenesis and characterization, laying the groundwork for understanding their diverse and intricate functions. Subsequently, it explores the regulatory roles of exosomes in various immune cells such as neutrophils, macrophages, dendritic cells, T cells, and B cells. This analysis elucidates how exosomes are pivotal in modulating immune responses, thus contributing to the complexity of sepsis pathophysiology. Additionally, this review delves into the role of exosomes in the regulation of metabolism and subsequent organ dysfunction in sepsis. It also establishes a connection between exosomes and the coagulation cascade, which affects endothelial integrity and promotes thrombogenesis in sepsis. Moreover, the review discusses the dual role of exosomes in the progression and resolution of sepsis, exploring their complex involvement in inflammation and healing processes. Furthermore, it underscores their potential as biomarkers and therapeutic targets. Understanding these mechanisms presents new opportunities for novel interventions to mitigate the severe outcomes of sepsis, emphasizing the therapeutic promise of exosome research in critical care settings.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China.
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangzhou, 518110, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
17
|
Feng A, Pokharel MD, Liang Y, Ma W, Aggarwal S, Black SM, Wang T. Free Radical-Associated Gene Signature Predicts Survival in Sepsis Patients. Int J Mol Sci 2024; 25:4574. [PMID: 38674159 PMCID: PMC11049877 DOI: 10.3390/ijms25084574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis continues to overwhelm hospital systems with its high mortality rate and prevalence. A strategy to reduce the strain of sepsis on hospital systems is to develop a diagnostic/prognostic measure that identifies patients who are more susceptible to septic death. Current biomarkers fail to achieve this outcome, as they only have moderate diagnostic power and limited prognostic capabilities. Sepsis disrupts a multitude of pathways in many different organ systems, making the identification of a single powerful biomarker difficult to achieve. However, a common feature of many of these perturbed pathways is the increased generation of reactive oxygen species (ROS), which can alter gene expression, changes in which may precede the clinical manifestation of severe sepsis. Therefore, the aim of this study was to evaluate whether ROS-related circulating molecular signature can be used as a tool to predict sepsis survival. Here we created a ROS-related gene signature and used two Gene Expression Omnibus datasets from whole blood samples of septic patients to generate a 37-gene molecular signature that can predict survival of sepsis patients. Our results indicate that peripheral blood gene expression data can be used to predict the survival of sepsis patients by assessing the gene expression pattern of free radical-associated -related genes in patients, warranting further exploration.
Collapse
Affiliation(s)
- Anlin Feng
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Marissa D. Pokharel
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Ying Liang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Wenli Ma
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Saurabh Aggarwal
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Department of Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
18
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
19
|
Zhu J, Jin Z, Wang J, Wu Z, Xu T, Tong G, Shen E, Fan J, Jiang C, Wang J, Li X, Cong W, Lin L. FGF21 ameliorates septic liver injury by restraining proinflammatory macrophages activation through the autophagy/HIF-1α axis. J Adv Res 2024:S2090-1232(24)00134-6. [PMID: 38599281 DOI: 10.1016/j.jare.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Sepsis, a systemic immune syndrome caused by severe trauma or infection, poses a substantial threat to the health of patients worldwide. The progression of sepsis is heavily influenced by septic liver injury, which is triggered by infection and cytokine storms, and has a significant impact on the tolerance and prognosis of septic patients. The objective of our study is to elucidate the biological role and molecular mechanism of fibroblast growth factor 21 (FGF21) in the process of sepsis. OBJECTIVES This study was undertaken in an attempt to elucidate the function and molecular mechanism of FGF21 in therapy of sepsis. METHODS Serum concentrations of FGF21 were measured in sepsis patients and septic mice. Liver injury was compared between mice FGF21 knockout (KO) mice and wildtype (WT) mice. To assess the therapeutic potential, recombinant human FGF21 was administered to septic mice. Furthermore, the molecular mechanism of FGF21 was investigated in mice with myeloid-cell specific HIF-1α overexpression mice (LyzM-CreDIO-HIF-1α) and myeloid-cell specific Atg7 knockout mice (Atg7△mye). RESULTS Serum level of FGF21 was significantly increased in sepsis patients and septic mice. Through the use of recombinant human FGF21 (rhFGF21) and FGF21 KO mice, we found that FGF21 mitigated septic liver injury by inhibiting the initiation and propagation of inflammation. Treatment with rhFGF21 effectively suppressed the activation of proinflammatory macrophages by promoting macroautophagy/autophagy degradation of hypoxia-inducible factor-1α (HIF-1α). Importantly, the therapeutic effect of rhFGF21 against septic liver injury was nullified in LyzM-CreDIO-HIF-1α mice and Atg7△mye mice. CONCLUSIONS Our findings demonstrate that FGF21 considerably suppresses inflammation upon septic liver injury through the autophagy/ HIF-1α axis.
Collapse
Affiliation(s)
- Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jie Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Enzhao Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Chunhui Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China; Haihe Laboratory of Cell Ecosystem, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Li Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
20
|
Chen YT, Lohia GK, Chen S, Riquelme SA. Immunometabolic Regulation of Bacterial Infection, Biofilms, and Antibiotic Susceptibility. J Innate Immun 2024; 16:143-158. [PMID: 38310854 PMCID: PMC10914382 DOI: 10.1159/000536649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Upon infection, mucosal tissues activate a brisk inflammatory response to clear the pathogen, i.e., resistance to disease. Resistance to disease is orchestrated by tissue-resident macrophages, which undergo profound metabolic reprogramming after sensing the pathogen. These metabolically activated macrophages release many inflammatory factors, which promote their bactericidal function. However, in immunocompetent individuals, pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella evade this type of immunity, generating communities that thrive for the long term. SUMMARY These organisms develop features that render them less susceptible to eradication, such as biofilms and increased tolerance to antibiotics. Furthermore, after antibiotic therapy withdrawal, "persister" cells rapidly upsurge, triggering inflammatory relapses that worsen host health. How these pathogens persisted in inflamed tissues replete with activated macrophages remains poorly understood. KEY MESSAGES In this review, we discuss recent findings indicating that the ability of P. aeruginosa, S. aureus, and Salmonella to evolve biofilms and antibiotic tolerance is promoted by the similar metabolic routes that regulate macrophage metabolic reprogramming.
Collapse
Affiliation(s)
- Ying-Tsun Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Gaurav Kumar Lohia
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Samantha Chen
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, Division of Infectious Diseases, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Teixeira L, Pereira-Dutra FS, Reis PA, Cunha-Fernandes T, Yoshinaga MY, Souza-Moreira L, Souza EK, Barreto EA, Silva TP, Espinheira-Silva H, Igreja T, Antunes MM, Bombaça ACS, Gonçalves-de-Albuquerque CF, Menezes GB, Hottz ED, Menna-Barreto RF, Maya-Monteiro CM, Bozza FA, Miyamoto S, Melo RC, Bozza PT. Prevention of lipid droplet accumulation by DGAT1 inhibition ameliorates sepsis-induced liver injury and inflammation. JHEP Rep 2024; 6:100984. [PMID: 38293685 PMCID: PMC10827501 DOI: 10.1016/j.jhepr.2023.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Background & Aims Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.
Collapse
Affiliation(s)
- Lívia Teixeira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patrícia A. Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcos Y. Yoshinaga
- Laboratory of Modified Lipids, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Luciana Souza-Moreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ellen K. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ester A. Barreto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago P. Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Hugo Espinheira-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tathiany Igreja
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Maísa M. Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina S. Bombaça
- Laboratory of Cellular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Parasitic Disease, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo B. Menezes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eugênio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
- Intensive Care Medicine Laboratory, INI, FIOCRUZ, Rio de Janeiro, Brazil
- D'Or Institute Research and Education (IDOr), Rio de Janeiro, Brazil
| | - Sayuri Miyamoto
- Laboratory of Modified Lipids, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Rossana C.N. Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Dyck B, Unterberg M, Adamzik M, Koos B. The Impact of Pathogens on Sepsis Prevalence and Outcome. Pathogens 2024; 13:89. [PMID: 38276162 PMCID: PMC10818280 DOI: 10.3390/pathogens13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Sepsis, a severe global healthcare challenge, is characterized by significant morbidity and mortality. The 2016 redefinition by the Third International Consensus Definitions Task Force emphasizes its complexity as a "life-threatening organ dysfunction caused by a dysregulated host response to infection". Bacterial pathogens, historically dominant, exhibit geographic variations, influencing healthcare strategies. The intricate dynamics of bacterial immunity involve recognizing pathogen-associated molecular patterns, triggering innate immune responses and inflammatory cascades. Dysregulation leads to immunothrombosis, disseminated intravascular coagulation, and mitochondrial dysfunction, contributing to the septic state. Viral sepsis, historically less prevalent, saw a paradigm shift during the COVID-19 pandemic, underscoring the need to understand the immunological response. Retinoic acid-inducible gene I-like receptors and Toll-like receptors play pivotal roles, and the cytokine storm in COVID-19 differs from bacterial sepsis. Latent viruses like human cytomegalovirus impact sepsis by reactivating during the immunosuppressive phases. Challenges in sepsis management include rapid pathogen identification, antibiotic resistance monitoring, and balancing therapy beyond antibiotics. This review highlights the evolving sepsis landscape, emphasizing the need for pathogen-specific therapeutic developments in a dynamic and heterogeneous clinical setting.
Collapse
Affiliation(s)
| | | | | | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44801 Bochum, Germany; (B.D.)
| |
Collapse
|
23
|
Daubney ER, D'Urso S, Cuellar-Partida G, Rajbhandari D, Peach E, de Guzman E, McArthur C, Rhodes A, Meyer J, Finfer S, Myburgh J, Cohen J, Schirra HJ, Venkatesh B, Evans DM. A Genome-Wide Association Study of Serum Metabolite Profiles in Septic Shock Patients. Crit Care Explor 2024; 6:e1030. [PMID: 38239409 PMCID: PMC10796137 DOI: 10.1097/cce.0000000000001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVES We sought to assess whether genetic associations with metabolite concentrations in septic shock patients could be used to identify pathways of potential importance for understanding sepsis pathophysiology. DESIGN Retrospective multicenter cohort studies of septic shock patients. SETTING All participants who were admitted to 27 participating hospital sites in three countries (Australia, New Zealand, and the United Kingdom) were eligible for inclusion. PATIENTS Adult, critically ill, mechanically ventilated patients with septic shock (n = 230) who were a subset of the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock trial (ClinicalTrials.gov number: NCT01448109). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A genome-wide association study was conducted for a range of serum metabolite levels for participants. Genome-wide significant associations (p ≤ 5 × 10-8) were found for the two major ketone bodies (3-hydroxybutyrate [rs2456680] and acetoacetate [rs2213037] and creatinine (rs6851961). One of these single-nucleotide polymorphisms (SNPs) (rs2213037) was located in the alcohol dehydrogenase cluster of genes, which code for enzymes related to the metabolism of acetoacetate and, therefore, presents a plausible association for this metabolite. None of the three SNPs showed strong associations with risk of sepsis, 28- or 90-day mortality, or Acute Physiology and Chronic Health Evaluation score (a measure of sepsis severity). CONCLUSIONS We suggest that the genetic associations with metabolites may reflect a starvation response rather than processes involved in sepsis pathophysiology. However, our results require further investigation and replication in both healthy and diseased cohorts including those of different ancestry.
Collapse
Affiliation(s)
- Emily R Daubney
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Shannon D'Urso
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Elizabeth Peach
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
| | - Erika de Guzman
- Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD, Australia
| | - Colin McArthur
- Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Andrew Rhodes
- Department of Adult Critical Care, St George's University Hospitals NHS Foundation Trust and St George's University of London, London, United Kingdom
| | - Jason Meyer
- The George Institute for Global Health, Sydney, NSW, Australia
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Finfer
- The George Institute for Global Health, Sydney, NSW, Australia
- School of Public Health, Imperial College London, London, United Kingdom
| | - John Myburgh
- The George Institute for Global Health, Sydney, NSW, Australia
- St George Hospital, Sydney, NSW, Australia
| | - Jeremy Cohen
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Griffith School of Environment and Science-Chemical Sciences, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Balasubramanian Venkatesh
- The George Institute for Global Health, Sydney, NSW, Australia
- Intensive Care Unit, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Faculty of Health, University of New South Wales, Sydney, NSW, Australia
| | - David M Evans
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Xu Y, Zhang X, Tang X, Zhang C, Cahoon JG, Wang Y, Li H, Lv X, Wang Y, Wang Z, Wang H, Yang D. Dexmedetomidine post-treatment exacerbates metabolic disturbances in septic cardiomyopathy via α 2A-adrenoceptor. Biomed Pharmacother 2024; 170:115993. [PMID: 38091635 DOI: 10.1016/j.biopha.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyopathy is a common complication and significantly increases the risk of death in septic patients. Our previous study demonstrated that post-treatment with dexmedetomidine (DEX) aggravates septic cardiomyopathy. However, the mechanisms for the side effect of DEX post-treatment on septic cardiomyopathy are not well-defined. Here we employed a cecal ligation and puncture (CLP) model and α2A-adrenoceptor deficient (Adra2a-/-) mice to observe the effects of DEX post-treatment on myocardial metabolic disturbances in sepsis. CLP mice displayed significant cardiac dysfunction, altered mitochondrial dynamics, reduced cardiac lipid and glucose uptake, impaired fatty acid and glucose oxidation, enhanced glycolysis and decreased ATP production in the myocardium, almost all of which were dramatically enhanced by DEX post-treatment in septic mice. In Adra2a-/- mice, DEX post-treatment did not affect cardiac dysfunction and metabolic disruptions in CLP-induced sepsis. Additionally, Adra2a-/- mice exhibited impaired cardiac function, damaged myocardial mitochondrial structures, and disturbed fatty acid metabolism and glucose oxidation. In sum, DEX post-treatment exacerbates metabolic disturbances in septic cardiomyopathy in a α2A-adrenoceptor dependent manner.
Collapse
Affiliation(s)
- Yaqian Xu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xue Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Yingwei Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou 510620, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
25
|
Feng R, Tong C, Lin T, Liu H, Shao C, Li Y, Sticht C, Kan K, Li X, Liu R, Wang S, Wang S, Munker S, Niess H, Meyer C, Liebe R, Ebert MP, Dooley S, Wang H, Ding H, Weng HL. Insulin Determines Transforming Growth Factor β Effects on Hepatocyte Nuclear Factor 4α Transcription in Hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:52-70. [PMID: 37820926 DOI: 10.1016/j.ajpath.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/19/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-β. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-β did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-β incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.
Collapse
Affiliation(s)
- Rilu Feng
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chenhao Tong
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Lin
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hui Liu
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Yujia Li
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaofeng Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sai Wang
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Stefan Munker
- Department of Medicine II, Liver Centre Munich, University Hospital, Campus Großhadern, Ludwig-Maximilians-University Munich, Munich, Germany; Liver Centre Munich, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hanno Niess
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Biobank of the Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christoph Meyer
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hong-Lei Weng
- Section Molecular Hepatology, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
26
|
Abudurexiti S, Xu S, Sun Z, Jiang Y, Gong P. Glucose metabolic reprogramming-related parameters for the prediction of 28-day neurological prognosis and all-cause mortality in patients after cardiac arrest: a prospective single-center observational study. World J Emerg Med 2024; 15:197-205. [PMID: 38855365 PMCID: PMC11153361 DOI: 10.5847/wjem.j.1920-8642.2024.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND We aimed to observe the dynamic changes in glucose metabolic reprogramming-related parameters and their ability to predict neurological prognosis and all-cause mortality in cardiac arrest patients after the restoration of spontaneous circulation (ROSC). METHODS Adult cardiac arrest patients after ROSC who were admitted to the emergency or cardiac intensive care unit of the First Affiliated Hospital of Dalian Medical University from August 1, 2017, to May 30, 2021, were enrolled. According to 28-day survival, the patients were divided into a non-survival group (n=82) and a survival group (n=38). Healthy adult volunteers (n=40) of similar ages and sexes were selected as controls. The serum levels of glucose metabolic reprogramming-related parameters (lactate dehydrogenase [LDH], lactate and pyruvate), neuron-specific enolase (NSE) and interleukin 6 (IL-6) were measured on days 1, 3, and 7 after ROSC. The Acute Physiology and Chronic Health Evaluation II (APACHE II) score and Sequential Organ Failure Assessment (SOFA) score were calculated. The Cerebral Performance Category (CPC) score was recorded on day 28 after ROSC. RESULTS Following ROSC, the serum LDH (607.0 U/L vs. 286.5 U/L), lactate (5.0 mmol/L vs. 2.0 mmol/L), pyruvate (178.0 μmol/L vs. 70.9 μmol/L), and lactate/pyruvate ratio (34.1 vs. 22.1) significantly increased and were higher in the non-survivors than in the survivors on admission (all P<0.05). Moreover, the serum LDH, pyruvate, IL-6, APACHE II score, and SOFA score on days 1, 3 and 7 after ROSC were significantly associated with 28-day poor neurological prognosis and 28-day all-cause mortality (all P<0.05). The serum LDH concentration on day 1 after ROSC had an area under the receiver operating characteristic curve (AUC) of 0.904 [95% confidence interval [95% CI]: 0.851-0.957]) with 96.8% specificity for predicting 28-day neurological prognosis and an AUC of 0.950 (95% CI: 0.911-0.989) with 94.7% specificity for predicting 28-day all-cause mortality, which was the highest among the glucose metabolic reprogramming-related parameters tested. CONCLUSION Serum parameters related to glucose metabolic reprogramming were significantly increased after ROSC. Increased serum LDH and pyruvate levels, and lactate/pyruvate ratio may be associated with 28-day poor neurological prognosis and all-cause mortality after ROSC, and the predictive efficacy of LDH during the first week was superior to others.
Collapse
Affiliation(s)
- Subi Abudurexiti
- Department of Emergency Medicine, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shihai Xu
- Department of Emergency Medicine, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Zhangping Sun
- Department of Emergency Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Jiang
- Department of Emergency Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China
| | - Ping Gong
- Department of Emergency Medicine, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| |
Collapse
|
27
|
Lira Chavez FM, Gartzke LP, van Beuningen FE, Wink SE, Henning RH, Krenning G, Bouma HR. Restoring the infected powerhouse: Mitochondrial quality control in sepsis. Redox Biol 2023; 68:102968. [PMID: 38039825 PMCID: PMC10711241 DOI: 10.1016/j.redox.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.
Collapse
Affiliation(s)
- F M Lira Chavez
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands.
| | - L P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - F E van Beuningen
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - S E Wink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - G Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Sulfateq B.V, Admiraal de Ruyterlaan 5, 9726, GN Groningen, the Netherlands
| | - H R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| |
Collapse
|
28
|
Müller J, Radej J, Horak J, Karvunidis T, Valesova L, Kriz M, Matejovic M. Lactate: The Fallacy of Oversimplification. Biomedicines 2023; 11:3192. [PMID: 38137413 PMCID: PMC10741081 DOI: 10.3390/biomedicines11123192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Almost a quarter of a millennium after the discovery of an acidic substance in sour milk by Swedish chemist Carl Wilhelm Scheele and more than 100 years after the demonstration of a tight connection between this lactic acid and tissue hypoxia in shock, we are still surrounded by false beliefs and misunderstandings regarding this fascinating molecule. Common perceptions of lactate, the conjugate base of lactic acid, as a plain waste product of anaerobic metabolism and a marker of cellular distress could not be further from the truth. Lactate is formed and utilized continuously by our cells, even under fully aerobic conditions, in large quantities, and although marked hyperlactatemia is always a red flag in our patients, not all these conditions are life-threatening and vice versa-not all critically ill patients have hyperlactatemia. Lactate also does not promote acidosis by itself; it is not toxic, nor is it a metabolic renegade. On the contrary, it has many beneficial properties, and an interpretation of hyperlactatemia might be trickier than we tend to think. The aim of this article is to debunk some of the deeply rooted myths regarding this fascinating molecule.
Collapse
Affiliation(s)
- Jiri Müller
- Department of Internal Medicine, Faculty of Medicine in Pilsen, Charles University, Teaching Hospital Pilsen, Alej Svobody 80, 32300 Pilsen, Czech Republic (L.V.); (M.M.)
| | | | | | | | | | | | | |
Collapse
|
29
|
Cortés M, Brischetto A, Martinez-Campanario MC, Ninfali C, Domínguez V, Fernández S, Celis R, Esteve-Codina A, Lozano JJ, Sidorova J, Garrabou G, Siegert AM, Enrich C, Pintado B, Morales-Ruiz M, Castro P, Cañete JD, Postigo A. Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation. Nat Commun 2023; 14:7471. [PMID: 37978290 PMCID: PMC10656499 DOI: 10.1038/s41467-023-42277-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
Acute inflammation can either resolve through immunosuppression or persist, leading to chronic inflammation. These transitions are driven by distinct molecular and metabolic reprogramming of immune cells. The anti-diabetic drug Metformin inhibits acute and chronic inflammation through mechanisms still not fully understood. Here, we report that the anti-inflammatory and reactive-oxygen-species-inhibiting effects of Metformin depend on the expression of the plasticity factor ZEB1 in macrophages. Using mice lacking Zeb1 in their myeloid cells and human patient samples, we show that ZEB1 plays a dual role, being essential in both initiating and resolving inflammation by inducing macrophages to transition into an immunosuppressed state. ZEB1 mediates these diverging effects in inflammation and immunosuppression by modulating mitochondrial content through activation of autophagy and inhibition of mitochondrial protein translation. During the transition from inflammation to immunosuppression, Metformin mimics the metabolic reprogramming of myeloid cells induced by ZEB1. Mechanistically, in immunosuppression, ZEB1 inhibits amino acid uptake, leading to downregulation of mTORC1 signalling and a decrease in mitochondrial translation in macrophages. These results identify ZEB1 as a driver of myeloid cell metabolic plasticity, suggesting that targeting its expression and function could serve as a strategy to modulate dysregulated inflammation and immunosuppression.
Collapse
Affiliation(s)
- Marlies Cortés
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
| | - Agnese Brischetto
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - M C Martinez-Campanario
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Chiara Ninfali
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain
| | - Verónica Domínguez
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Sara Fernández
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Raquel Celis
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | | | - Juan J Lozano
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Julia Sidorova
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
| | - Gloria Garrabou
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB1 0QQ, UK
| | - Carlos Enrich
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
| | - Belén Pintado
- National Center of Biotechnology (CSIC-CNB) and Center for Molecular Biology Severo Ochoa (CSIC/UAM-CBMSO) Transgenesis Facility, Higher Research Council (CSIC) and Autonomous University of Madrid (UAM), Cantoblanco, 28049, Madrid, Spain
| | - Manuel Morales-Ruiz
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain
- Department of Biomedicine, University of Barcelona School of Medicine and Health Sciences, 08036, Barcelona, Spain
- Department of Biochemistry and Molecular Genetics, Hospital Clínic of Barcelona and IDIBAPS, 08036, Barcelona, Spain
| | - Pedro Castro
- Medical Intensive Care Unit and Department of Internal Medicine, Hospital Clínic of Barcelona, Group of Muscle Research and Mitochondrial Function, IDIBAPS, and CIBERER, 08036, Barcelona, Spain
| | - Juan D Cañete
- Arthritis Unit, Dept. of Rheumathology, Hospital Clínic and IDIBAPS, 08036, Barcelona, Spain
| | - Antonio Postigo
- Group of Gene Regulation in Stem Cells, Cell Plasticity, Differentiation, and Cancer, IDIBAPS, 08036, Barcelona, Spain.
- Biomedical Research Networking Centers in Digestive and Hepatic Diseases (CIBERehd), Carlos III Health Institute, 08036, Barcelona, Spain.
- Molecular Targets Program, Division of Oncology, Department of Medicine, J.G. Brown Cancer Center, Louisville, KY, 40202, USA.
- ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
30
|
Cleuren A, Molema G. Organotypic heterogeneity in microvascular endothelial cell responses in sepsis-a molecular treasure trove and pharmacological Gordian knot. Front Med (Lausanne) 2023; 10:1252021. [PMID: 38020105 PMCID: PMC10665520 DOI: 10.3389/fmed.2023.1252021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the last decades, it has become evident that endothelial cells (ECs) in the microvasculature play an important role in the pathophysiology of sepsis-associated multiple organ dysfunction syndrome (MODS). Studies on how ECs orchestrate leukocyte recruitment, control microvascular integrity and permeability, and regulate the haemostatic balance have provided a wealth of knowledge and potential molecular targets that could be considered for pharmacological intervention in sepsis. Yet, this information has not been translated into effective treatments. As MODS affects specific vascular beds, (organotypic) endothelial heterogeneity may be an important contributing factor to this lack of success. On the other hand, given the involvement of ECs in sepsis, this heterogeneity could also be leveraged for therapeutic gain to target specific sites of the vasculature given its full accessibility to drugs. In this review, we describe current knowledge that defines heterogeneity of organ-specific microvascular ECs at the molecular level and elaborate on studies that have reported EC responses across organ systems in sepsis patients and animal models of sepsis. We discuss hypothesis-driven, single-molecule studies that have formed the basis of our understanding of endothelial cell engagement in sepsis pathophysiology, and include recent studies employing high-throughput technologies. The latter deliver comprehensive data sets to describe molecular signatures for organotypic ECs that could lead to new hypotheses and form the foundation for rational pharmacological intervention and biomarker panel development. Particularly results from single cell RNA sequencing and spatial transcriptomics studies are eagerly awaited as they are expected to unveil the full spatiotemporal signature of EC responses to sepsis. With increasing awareness of the existence of distinct sepsis subphenotypes, and the need to develop new drug regimen and companion diagnostics, a better understanding of the molecular pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt the detrimental processes that lead to MODS.
Collapse
Affiliation(s)
- Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Grietje Molema
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Zhu Z, Jiang H. Identification of oxidative stress-related biomarkers associated with the development of acute-on-chronic liver failure using bioinformatics. Sci Rep 2023; 13:17073. [PMID: 37816833 PMCID: PMC10564851 DOI: 10.1038/s41598-023-44343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a serious stage of chronic liver disease with high short-term mortality and no definitely effective treatment. Oxidative stress (OS) is involved in the development of ACLF. OS-related genes targeted therapy may provide additional assistance for the treatment of ACLF. ACLF related gene sets and oxidative stress-related genes (OSGs) were respectively downloaded from gene expression omnibus (GEO) database and GeneCards database for integrated bioinformatics analyses (functional enrichment, weighted gene co-expression network and immune cells infiltration). Immune-related differentially expressed oxidative stress-related genes (DEOSGs) in ACLF were used for construction of protein-protein interaction (PPI) network in which hub genes were screened out. Hub genes with consistently good diagnostic or prognostic value for ACLF in four gene sets were named as key genes. DEOSGs were significantly enriched in biological process and signaling pathways related to inflammation, immune response and oxidative stress. Six key genes (MPO, CCL5, ITGAM, TLR2, TLR4, and TIMP1) were identified and found to be highly correlated with immune response and metabolic process. This study deepened our understanding of the impact of oxidative stress on the pathogenesis and prognosis of ACLF and provided more insights into the prediction of prognosis and molecular targeted therapy in ACLF.
Collapse
Affiliation(s)
- Zongyi Zhu
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Gastroenterology, Weixian People's Hospital, Xingtai, Hebei, China
| | - Huiqing Jiang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
32
|
Pinheiro da Silva F, Gonçalves ANA, Duarte‐Neto AN, Dias TL, Barbeiro HV, Breda CNS, Breda LCD, Câmara NOS, Nakaya HI. Transcriptome analysis of six tissues obtained post-mortem from sepsis patients. J Cell Mol Med 2023; 27:3157-3167. [PMID: 37731199 PMCID: PMC10568675 DOI: 10.1111/jcmm.17938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Septic shock is a life-threatening clinical condition characterized by a robust immune inflammatory response to disseminated infection. Little is known about its impact on the transcriptome of distinct human tissues. To address this, we performed RNA sequencing of samples from the prefrontal cortex, hippocampus, heart, lung, kidney and colon of seven individuals who succumbed to sepsis and seven uninfected controls. We identified that the lungs and colon were the most affected organs. While gene activation dominated, strong inhibitory signals were also detected, particularly in the lungs. We found that septic shock is an extremely heterogeneous disease, not only when different individuals are investigated, but also when comparing different tissues of the same patient. However, several pathways, such as respiratory electron transport and other metabolic functions, revealed distinctive alterations, providing evidence that tissue specificity is a hallmark of sepsis. Strikingly, we found evident signals of accelerated ageing in our sepsis population.
Collapse
Affiliation(s)
| | | | | | | | - Hermes Vieira Barbeiro
- Laboratório de Emergências Clínicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | | | | | | | - Helder I. Nakaya
- Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
- Hospital Israelita Albert EinsteinSão PauloBrazil
| |
Collapse
|
33
|
Cheng XP, Wang XW, Sun HF, Xu L, Olatunji OJ, Li Y, Lin JT, Zuo J. NAMPT/SIRT1 Expression Levels in White Blood Cells Differentiate the Different Rheumatoid Arthritis Subsets: An Inspiration from Traditional Chinese Medicine. J Inflamm Res 2023; 16:4271-4285. [PMID: 37791116 PMCID: PMC10543492 DOI: 10.2147/jir.s431600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Background Rheumatoid arthritis (RA) patients are prone to developing different metabolic complications. Traditional Chinese Medicine attributes this uncertainty to varied syndrome types. Methods and Results We retrospectively analyzed some serological indicators of active RA patients and healthy individuals. Randomly selected RA patients were divided into three groups according to NAMPT and SIRT1 expression levels in white blood cells (WBCs). Their disease severity and metabolic status were compared. Representative blood samples were subjected to a UPLC-MS/MS-based metabolomics analysis. Different human WBCs were treated with oleic acid and palmitic acid in vitro. The results indicated that blood glucose and lipid levels were decreased in RA patients, but their decrease was not in accordance with disease severity. Nutrients in the patients highly expressing SIRT1 were well preserved, with the lowest levels of RF and β-CTX and the highest levels of adiponectin and resistin. Most of them exhibited cold symptoms. When SIRT1 deficiency was obvious, lipid depletion became evident, irrespective of expression levels of NAMPT. Simultaneous high-expression of SIRT1 and NAMPT coincided with the increase in production of lactic acid and the prevalence of hot symptoms. Despite the low levels of IL-6, joint injuries were severe. The corresponding WBCs were especially sensitive to fatty acids anti-inflammatory treatments. The levels of CCL27, CCL11, CCL5, AKP, CRP and ESR were similar among all the groups. Conclusion NAMPT overexpression is a risk factor for joint injuries and nutrient depletion in RA. Supplementation with lipids would exert beneficial effects on these RA patients. Its aftermath would cause even severe inflammation. Contrarily, SIRT1 up-regulation restrains inflammation and lipid depletion.
Collapse
Affiliation(s)
- Xiu-Ping Cheng
- Xin’an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Xiao-Wan Wang
- Department of Rheumatology, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
| | - Han-Fei Sun
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Liang Xu
- Department of Rheumatology, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
| | | | - Yan Li
- Xin’an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, People’s Republic of China
| | - Jia-Ting Lin
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Department of Stomatology, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, People’s Republic of China
| |
Collapse
|
34
|
An AY, Baghela A, Zhang P, Falsafi R, Lee AH, Trahtemberg U, Baker AJ, dos Santos CC, Hancock REW. Persistence is key: unresolved immune dysfunction is lethal in both COVID-19 and non-COVID-19 sepsis. Front Immunol 2023; 14:1254873. [PMID: 37822940 PMCID: PMC10562687 DOI: 10.3389/fimmu.2023.1254873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features, suggesting that severe COVID-19 is a form of viral sepsis. Our objective was to identify shared gene expression trajectories strongly associated with eventual mortality between severe COVID-19 patients and contemporaneous non-COVID-19 sepsis patients in the intensive care unit (ICU) for potential therapeutic implications. Methods Whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Using systems biology methods, drug candidates targeting key genes in the pathophysiology of COVID-19 and sepsis were identified. Results When compared to survivors, non-survivors (irrespective of COVID-19 status) had 3.6-fold more "persistent" genes (genes that stayed up/downregulated at both timepoints) (4,289 vs. 1,186 genes); these included persistently downregulated genes in T-cell signaling and persistently upregulated genes in select innate immune and metabolic pathways, indicating unresolved immune dysfunction in non-survivors, while resolution of these processes occurred in survivors. These findings of persistence were further confirmed using two publicly available datasets of COVID-19 and sepsis patients. Systems biology methods identified multiple immunomodulatory drug candidates that could target this persistent immune dysfunction, which could be repurposed for possible therapeutic use in both COVID-19 and sepsis. Discussion Transcriptional evidence of persistent immune dysfunction was associated with 28-day mortality in both COVID-19 and non-COVID-19 septic patients. These findings highlight the opportunity for mitigating common mechanisms of immune dysfunction with immunomodulatory therapies for both diseases.
Collapse
Affiliation(s)
- Andy Y. An
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Peter Zhang
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Uriel Trahtemberg
- Keenan Research Center for Biomedical Science and the Department of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
- Department of Critical Care, Galilee Medical Center, Nahariya, Israel
| | - Andrew J. Baker
- Keenan Research Center for Biomedical Science and the Department of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia C. dos Santos
- Keenan Research Center for Biomedical Science and the Department of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Robert E. W. Hancock
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Na AY, Choi SY, Paudel S, Bae JS, Tan M, Lee S. Integrative Profiling of Lysine Acylome in Sepsis-Induced Liver Injury. J Proteome Res 2023; 22:2860-2870. [PMID: 37523266 DOI: 10.1021/acs.jproteome.3c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Sepsis is one of the life-threatening diseases worldwide. Despite the continuous progress in medicine, the specific mechanism of sepsis remains unclear. A key strategy of pathogens is to use post-translational modification to modulate host factors critical for infection. We employed global immunoprecipitation technology for lysine acetylation (Kac), succinylation (Ksu), and malonylation (Kmal) for the first global lysine acylation (Kacy) analysis in a cecum ligation and puncture (CLP) model in mouse. This was performed to reveal the pathogenic mechanism of integrative Kacy and the changes in modification sites. In total, 2230 sites of 1,235 Kac proteins, 1,887 sites of 433 Ksu proteins, and 499 sites of 276 Kmal proteins were quantified and normalized by their protein levels. We focused on 379 sites in 219 upregulated proteins as the integrative Kacy sites of Kac, Ksu, and Kmal on the basis of sirtuins decreased in the CLP group. KEGG pathway analysis of integrative Kacy in 219 upregulated proteins revealed three central metabolic pathways: glycolysis/gluconeogenesis, pyruvate metabolism, and tricarboxylic acid cycle. These findings reveal the key pathogenic mechanism of integrative PTM alteration in terms of the decreased sirtuins level and provide an important foundation for an in-depth study of the biological function of Kacy in sepsis.
Collapse
Affiliation(s)
- Ann-Yae Na
- Global Drug Development Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - So Young Choi
- Mass Spectrometry Convergence Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sanjita Paudel
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sangkyu Lee
- Global Drug Development Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
36
|
Muniz-Santos R, Lucieri-Costa G, de Almeida MAP, Moraes-de-Souza I, Brito MADSM, Silva AR, Gonçalves-de-Albuquerque CF. Lipid oxidation dysregulation: an emerging player in the pathophysiology of sepsis. Front Immunol 2023; 14:1224335. [PMID: 37600769 PMCID: PMC10435884 DOI: 10.3389/fimmu.2023.1224335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by abnormal host response to infection. Millions of people are affected annually worldwide. Derangement of the inflammatory response is crucial in sepsis pathogenesis. However, metabolic, coagulation, and thermoregulatory alterations also occur in patients with sepsis. Fatty acid mobilization and oxidation changes may assume the role of a protagonist in sepsis pathogenesis. Lipid oxidation and free fatty acids (FFAs) are potentially valuable markers for sepsis diagnosis and prognosis. Herein, we discuss inflammatory and metabolic dysfunction during sepsis, focusing on fatty acid oxidation (FAO) alterations in the liver and muscle (skeletal and cardiac) and their implications in sepsis development.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanna Lucieri-Costa
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus Augusto P. de Almeida
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Isabelle Moraes-de-Souza
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adriana Ribeiro Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratory of Immunopharmacology, Department of Physiology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroscience Graduate Program, Federal Fluminense University, Niteroi, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Vanderhaeghen T, Vandewalle J, Libert C. Spns2/S1P: it takes two to tango with inflammation and metabolic rewiring during sepsis. EMBO Rep 2023; 24:e57615. [PMID: 37358010 PMCID: PMC10398644 DOI: 10.15252/embr.202357615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
Sepsis is the result of a dysregulated host response to an infection and causes high morbidity and mortality at the intensive care units worldwide. Despite intensive research, the current management of sepsis is supportive rather than curative. Therefore, new therapeutic interventions for sepsis and septic shock patients are urgently needed. In this issue of EMBO Reports, Fang et al have used rat sepsis models to show that macrophage-expressed SPNS2, a major transporter of S1P, is a crucial mediator of metabolic reprogramming of macrophages during sepsis which regulates inflammation via the lactate-ROS axis.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Center for Inflammation ResearchVIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Jolien Vandewalle
- Center for Inflammation ResearchVIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Claude Libert
- Center for Inflammation ResearchVIBGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| |
Collapse
|
38
|
Fu Z, Cheng P, Jian Q, Wang H, Ma Y. High Systemic Immune-Inflammation Index, Predicting Early Allograft Dysfunction, Indicates High 90-Day Mortality for Acute-On-Chronic Liver Failure after Liver Transplantation. Dig Dis 2023; 41:938-945. [PMID: 37494918 DOI: 10.1159/000532110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION The aim of the study was to investigate the relationship between systemic immune-inflammation index (SII) and early allograft dysfunction (EAD) and 90-day mortality after liver transplantation (LT) in acute-on-chronic liver failure (ACLF). METHODS Retrospective record analysis was done on 114 patients who had LT for ACLF. To identify the ideal SII, the receiver operating characteristic curve was used. The incidence of EAD and 90-day mortality following LT were calculated. The prognostic value of SII was assessed using the Kaplan-Meier technique and the Cox proportional hazards model. RESULTS The cut-off for SII was 201.5 (AUC = 0.728, p < 0.001). EAD occurred in 40 (35.1%) patients of the high SII group and 5 (4.4%) patients of the normal SII group, p < 0.001. 18 (15.8%) deaths occurred in the high SII group and 2 (1.8%) deaths occurred in the normal SII group, p = 0.008. The multivariate analysis demonstrated that SII ≥201.5, MELD ≥27 were independent prognostic factors for 90-day mortality after LT. CONCLUSION SII predicts the occurrence of EAD and is an independent risk factor for 90-day mortality after LT.
Collapse
Affiliation(s)
- Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Jian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanyu Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Marginean CM, Pirscoveanu D, Popescu M, Vasile CM, Docea AO, Mitruț R, Mărginean IC, Iacob GA, Firu DM, Mitruț P. Challenges in Diagnosis and Therapeutic Approach of Acute on Chronic Liver Failure-A Review of Current Evidence. Biomedicines 2023; 11:1840. [PMID: 37509478 PMCID: PMC10376368 DOI: 10.3390/biomedicines11071840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome characterized by acute and severe decompensation of chronic liver disease (CLD) correlated with multiple organ failure, poor prognosis, and increased mortality. In 40-50% of ACLF cases, the trigger is not recognized; for many of these patients, bacterial translocation associated with systemic inflammation is thought to be the determining factor; in the other 50% of patients, sepsis, alcohol consumption, and reactivation of chronic viral hepatitis are the most frequently described trigger factors. Other conditions considered precipitating factors are less common, including acute alcoholic hepatitis, major surgery, TIPS insertion, or inadequate paracentesis without albumin substitution. Host response is likely the primary factor predicting ACLF severity and prognosis, the host immune response having a particular significance in this syndrome, together with the inflammatory cascade. The management of ACLF includes both the prevention of the precipitating factors that lead to acute liver decompensation and the support of vital functions, the prevention and management of complications, the estimation of prognosis, and the opportunity for liver transplantation.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Denisa Pirscoveanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Corina Maria Vasile
- Department of Pediatric Cardiology, "Marie Curie" Emergency Children's Hospital, 041451 Bucharest, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radu Mitruț
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan Mihai Firu
- Ph.D. School Department, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Paul Mitruț
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
40
|
Mohanty T, Karlsson CAQ, Chao Y, Malmström E, Bratanis E, Grentzmann A, Mørch M, Nizet V, Malmström L, Linder A, Shannon O, Malmström J. A pharmacoproteomic landscape of organotypic intervention responses in Gram-negative sepsis. Nat Commun 2023; 14:3603. [PMID: 37330510 PMCID: PMC10276868 DOI: 10.1038/s41467-023-39269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Sepsis is the major cause of mortality across intensive care units globally, yet details of accompanying pathological molecular events remain unclear. This knowledge gap has resulted in ineffective biomarker development and suboptimal treatment regimens to prevent and manage organ dysfunction/damage. Here, we used pharmacoproteomics to score time-dependent treatment impact in a murine Escherichia coli sepsis model after administering beta-lactam antibiotic meropenem (Mem) and/or the immunomodulatory glucocorticoid methylprednisolone (Gcc). Three distinct proteome response patterns were identified, which depended on the underlying proteotype for each organ. Gcc enhanced some positive proteome responses of Mem, including superior reduction of the inflammatory response in kidneys and partial restoration of sepsis-induced metabolic dysfunction. Mem introduced sepsis-independent perturbations in the mitochondrial proteome that Gcc counteracted. We provide a strategy for the quantitative and organotypic assessment of treatment effects of candidate therapies in relationship to dosing, timing, and potential synergistic intervention combinations during sepsis.
Collapse
Affiliation(s)
- Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Christofer A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Yashuan Chao
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Erik Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
- Emergency Medicine, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Andrietta Grentzmann
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Martina Mørch
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Adam Linder
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden.
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden.
| |
Collapse
|
41
|
Lotsios NS, Keskinidou C, Jahaj E, Mastora Z, Dimopoulou I, Orfanos SE, Vassilaki N, Vassiliou AG, Kotanidou A. Prognostic Value of HIF-1α-Induced Genes in Sepsis/Septic Shock. Med Sci (Basel) 2023; 11:41. [PMID: 37367740 DOI: 10.3390/medsci11020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Hypoxia is characterized as one of the main consequences of sepsis, which is recognized as the leading cause of death in intensive care unit (ICU) patients. In this study, we aimed to examine whether the expression levels of genes regulated under hypoxia could be utilized as novel biomarkers for sepsis prognosis in ICU patients. Whole blood expression levels of hypoxia-inducible factor-1α (HIF1A), interferon-stimulated gene 15 (ISG15), hexokinase 2 (HK2), lactate dehydrogenase (LDHA), heme oxygenase-1 (HMOX1), erythropoietin (EPO), and the vascular endothelial growth factor A (VEGFA) were measured on ICU admission in 46 critically ill, initially non-septic patients. The patients were subsequently divided into two groups, based on the development of sepsis and septic shock (n = 25) or lack thereof (n = 21). HMOX1 mRNA expression was increased in patients who developed sepsis/septic shock compared to the non-septic group (p < 0.0001). The ROC curve, multivariate logistic regression, and Kaplan-Meier analysis demonstrated that HMOX1 expression could be utilized for sepsis and septic shock development probability. Overall, our results indicate that HMOX1 mRNA levels have the potential to be a valuable predictive factor for the prognosis of sepsis and septic shock in ICU patients.
Collapse
Affiliation(s)
- Nikolaos S Lotsios
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Chrysi Keskinidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Zafeiria Mastora
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| |
Collapse
|
42
|
STARK RYAN. Protein-mediated interactions in the dynamic regulation of acute inflammation. BIOCELL 2023; 47:1191-1198. [PMID: 37261220 PMCID: PMC10231872 DOI: 10.32604/biocell.2023.027838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 06/02/2023]
Abstract
Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease. These interactions require physical contact between proteins and their respective targets of interest. These targets include not only other proteins but also nucleic acids and other important molecules as well. These proteins are often involved in multibody complexes that work dynamically to regulate cellular health and function. Various techniques have been adapted to study these important interactions, such as affinity-based assays, mass spectrometry, and fluorescent detection. The application of these techniques has led to a greater understanding of how protein interactions are responsible for both the instigation and resolution of acute inflammatory diseases. These pursuits aim to provide opportunities to target specific protein interactions to alleviate acute inflammation.
Collapse
Affiliation(s)
- RYAN STARK
- Department of Pediatric Critical Care Medicine, Vanderbilt University Medical Center, 2200 Children’s Way, 5121 Doctors’ Office Tower, Nashville, TN 37232-9075
| |
Collapse
|
43
|
Weerasinghe H, Simm C, Djajawi TM, Tedja I, Lo TL, Simpson DS, Shasha D, Mizrahi N, Olivier FAB, Speir M, Lawlor KE, Ben-Ami R, Traven A. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep 2023; 42:112522. [PMID: 37204928 DOI: 10.1016/j.celrep.2023.112522] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/21/2023] Open
Abstract
Metabolic adaptations regulate the response of macrophages to infection. The contributions of metabolism to macrophage interactions with the emerging fungal pathogen Candida auris are poorly understood. Here, we show that C. auris-infected macrophages undergo immunometabolic reprogramming and increase glycolysis but fail to activate a strong interleukin (IL)-1β cytokine response or curb C. auris growth. Further analysis shows that C. auris relies on its own metabolic capacity to escape from macrophages and proliferate in vivo. Furthermore, C. auris kills macrophages by triggering host metabolic stress through glucose starvation. However, despite causing macrophage cell death, C. auris does not trigger robust activation of the NLRP3 inflammasome. Consequently, inflammasome-dependent responses remain low throughout infection. Collectively, our findings show that C. auris uses metabolic regulation to eliminate macrophages while remaining immunologically silent to ensure its own survival. Thus, our data suggest that host and pathogen metabolism could represent therapeutic targets for C. auris infections.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Claudia Simm
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Tirta Mario Djajawi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Irma Tedja
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Tricia L Lo
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Daniel S Simpson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - David Shasha
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Mizrahi
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | - Françios A B Olivier
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Ronen Ben-Ami
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Traven
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
44
|
She H, Tan L, Wang Y, Du Y, Zhou Y, Zhang J, Du Y, Guo N, Wu Z, Li Q, Bao D, Mao Q, Hu Y, Liu L, Li T. Integrative single-cell RNA sequencing and metabolomics decipher the imbalanced lipid-metabolism in maladaptive immune responses during sepsis. Front Immunol 2023; 14:1181697. [PMID: 37180171 PMCID: PMC10172510 DOI: 10.3389/fimmu.2023.1181697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Background To identify differentially expressed lipid metabolism-related genes (DE-LMRGs) responsible for immune dysfunction in sepsis. Methods The lipid metabolism-related hub genes were screened using machine learning algorithms, and the immune cell infiltration of these hub genes were assessed by CIBERSORT and Single-sample GSEA. Next, the immune function of these hub genes at the single-cell level were validated by comparing multiregional immune landscapes between septic patients (SP) and healthy control (HC). Then, the support vector machine-recursive feature elimination (SVM-RFE) algorithm was conducted to compare the significantly altered metabolites critical to hub genes between SP and HC. Furthermore, the role of the key hub gene was verified in sepsis rats and LPS-induced cardiomyocytes, respectively. Results A total of 508 DE-LMRGs were identified between SP and HC, and 5 hub genes relevant to lipid metabolism (MAPK14, EPHX2, BMX, FCER1A, and PAFAH2) were screened. Then, we found an immunosuppressive microenvironment in sepsis. The role of hub genes in immune cells was further confirmed by the single-cell RNA landscape. Moreover, significantly altered metabolites were mainly enriched in lipid metabolism-related signaling pathways and were associated with MAPK14. Finally, inhibiting MAPK14 decreased the levels of inflammatory cytokines and improved the survival and myocardial injury of sepsis. Conclusion The lipid metabolism-related hub genes may have great potential in prognosis prediction and precise treatment for sepsis patients.
Collapse
Affiliation(s)
- Han She
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Tan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanqun Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yunxia Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ningke Guo
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhengbin Wu
- Department of Intensive Care Unit, Daping Hospital, Army Medical University, Chongqing, China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Daiqin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Vanderhaeghen T, Timmermans S, Eggermont M, Watts D, Vandewalle J, Wallaeys C, Nuyttens L, De Temmerman J, Hochepied T, Dewaele S, Berghe JV, Sanders N, Wielockx B, Beyaert R, Libert C. The impact of hepatocyte-specific deletion of hypoxia-inducible factors on the development of polymicrobial sepsis with focus on GR and PPARα function. Front Immunol 2023; 14:1124011. [PMID: 37006237 PMCID: PMC10060827 DOI: 10.3389/fimmu.2023.1124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPolymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known.Methods & resultsWe investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function.ConclusionWe conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Deepika Watts
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jolien Vandewalle
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte Wallaeys
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Louise Nuyttens
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joyca De Temmerman
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joke Vanden Berghe
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rudi Beyaert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- *Correspondence: Claude Libert,
| |
Collapse
|
46
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Wang S, Feng R, Wang SS, Liu H, Shao C, Li Y, Link F, Munker S, Liebe R, Meyer C, Burgermeister E, Ebert M, Dooley S, Ding H, Weng H. FOXA2 prevents hyperbilirubinaemia in acute liver failure by maintaining apical MRP2 expression. Gut 2023; 72:549-559. [PMID: 35444014 DOI: 10.1136/gutjnl-2022-326987] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. DESIGN Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr -/- mice and lipopolysaccharide (LPS)-treated mice. RESULTS Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr-/- mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr -/- and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. CONCLUSION FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan Shan Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Christoph Meyer
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Honglei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
48
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
49
|
Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023; 26:105948. [PMID: 36756375 PMCID: PMC9900520 DOI: 10.1016/j.isci.2023.105948] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.
Collapse
|
50
|
Wei JX, Jiang HL, Chen XH. Endothelial cell metabolism in sepsis. World J Emerg Med 2023; 14:10-16. [PMID: 36713343 PMCID: PMC9842459 DOI: 10.5847/wjem.j.1920-8642.2023.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/10/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Endothelial dysfunction in sepsis is a pathophysiological feature of septic organ failure. Endothelial cells (ECs) exhibit specific metabolic traits and release metabolites to adapt to the septic state in the blood to maintain vascular homeostasis. METHODS Web of Science and PubMed were searched from inception to October 1, 2022. The search was limited to the English language only. Two reviewers independently identified studies related to EC metabolism in sepsis. The exclusion criteria were duplicate articles according to multiple search criteria. RESULTS Sixty articles were included, and most of them were cell and animal studies. These studies reported the role of glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism in EC homeostasis. including glycolysis, oxidative phosphorylation, fatty acid metabolism and amino acid metabolism. However, dysregulation of EC metabolism can contribute to sepsis progression. CONCLUSION There are few clinical studies on EC metabolism in sepsis. Related research mainly focuses on basic research, but some scientific problems have also been clarified. Therefore, this review may provide an overall comprehension and novel aspects of EC metabolism in sepsis.
Collapse
Affiliation(s)
- Jue-xian Wei
- Emergency Department, the Second Affi liated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Hui-lin Jiang
- Emergency Department, the Second Affi liated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-hui Chen
- Emergency Department, the Second Affi liated Hospital, Guangzhou Medical University, Guangzhou 510260, China,Corresponding Author: Xiao-hui Chen,
| |
Collapse
|