1
|
Zhang L, Wang D, Shi S, Wu S, Li Z, Nan J, Lan Y. Mechanisms of delta opioid receptor inhibition of parallel fibers-purkinje cell synaptic transmission in the mouse cerebellar cortex. Brain Res 2024; 1849:149374. [PMID: 39638084 DOI: 10.1016/j.brainres.2024.149374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Delta opioid receptors (DORs) are widely expressed throughout the central nervous system, including the cerebellum, where they play a regulatory role in neurogenesis. In the cerebellar cortex, Purkinje cells (PCs), the sole output neurons, receive glutamatergic synaptic input from parallel fibers (PFs)-the axonal extensions of granule cells-forming PF-PC synapses. However, the precise distribution of DORs within these synapses and their impact on synaptic transmission remain unclear. In this study, we utilized whole-cell patch-clamp recordings and neuropharmacological approaches to explore the effects of DORs activation on PF-PC synaptic transmission in the mouse cerebellar cortex and to elucidate the underlying mechanisms. We found that the selective DORs agonist DPDPE significantly reduced the amplitude and area under the curve (AUC) of PF-PC evoked excitatory postsynaptic currents (eEPSCs), accompanied by an increase in the paired-pulse ratio (PPR). This inhibitory effect was blocked by the DORs antagonist Naltrindole. Additionally, DPDPE decreased the frequency of PF-PC miniature excitatory postsynaptic currents (mEPSCs) without affecting their amplitude, indicating a presynaptic site of action. When the protein kinase A (PKA) inhibitor PKI was added to the internal solution of the recording electrode, it did not alter the DPDPE-induced suppression of PF-PC mEPSC frequency. However, this suppression was reversed by KT5720, a cell-permeable PKA-specific inhibitor. These findings suggest that DPDPE inhibits PF-PC synaptic transmission through the preferential activation of presynaptic DORs, with this process being dependent on the cyclic adenosine monophosphate (cAMP)-PKA signaling pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Dan Wang
- Department of Pharmacology, Medical College of Dalian University, Dalian City, Liaoning Province, 116000, China
| | - Shuang Shi
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Shuang Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Zhi Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, 133000, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, 133002, China.
| |
Collapse
|
2
|
Seedat F, Kandzija N, Ellis M, Jiang S, Sarbalina A, Bancroft J, Drydale E, Hester S, Fischer R, Wade A, Stefana M, Todd J, Vatish M. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells. Clin Sci (Lond) 2024; 138:1481-1502. [PMID: 39432712 PMCID: PMC11579211 DOI: 10.1042/cs20241782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Insulin secretion increases progressively during pregnancy to maintain normal maternal blood glucose levels. The placenta plays a crucial role in this process by releasing hormones and extracellular vesicles into the maternal circulation, which drive significant changes in pregnancy physiology. Placental extracellular vesicles, which are detectable in the plasma of pregnant women, have been shown to signal peripheral tissues and contribute to pregnancy-related conditions. While studies using murine models have demonstrated that extracellular vesicles can modulate insulin secretion in pancreatic islets, it remains unclear whether these effects translate to human biology. Understanding how placental signals enhance insulin synthesis and secretion from β cells could be pivotal in developing new therapies for diabetes. In our study, we isolated placental small extracellular vesicles from human placentae and utilised the human β cell line, EndoC-βH3, to investigate their effects on β-cell function in vitro. Our results indicate that human β cells internalise placental small extracellular vesicles, leading to enhanced insulin gene expression and increased insulin content within the β cells. Moreover, these vesicles up-regulated the expression of Annexin A1, a protein known to increase insulin content. This up-regulation of Annexin A1 holds promise as a potential mechanism by which placental small extracellular vesicles enhance insulin biosynthesis.
Collapse
Affiliation(s)
- Faheem Seedat
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Neva Kandzija
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Michael J. Ellis
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Shuhan Jiang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Asselzhan Sarbalina
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Edward Drydale
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Svenja S. Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Alisha N. Wade
- Research in Metabolism and Endocrinology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, U.S.A
| | - M. Irina Stefana
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - John A. Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Manu Vatish
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| |
Collapse
|
3
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
4
|
Chen D, Wang J, Cao J, Zhu G. cAMP-PKA signaling pathway and anxiety: Where do we go next? Cell Signal 2024; 122:111311. [PMID: 39059755 DOI: 10.1016/j.cellsig.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Cyclic adenosine monophosphate (cAMP) is an intracellular second messenger that is derived from the conversion of adenosine triphosphate catalysed by adenylyl cyclase (AC). Protein kinase A (PKA), the main effector of cAMP, is a dimeric protein kinase consisting of two catalytic subunits and two regulatory subunits. When cAMP binds to the regulatory subunits of PKA, it leads to the dissociation and activation of PKA, which allows the catalytic subunit of PKA to phosphorylate target proteins, thereby regulating various physiological functions and metabolic processes in cellular function. Recent researches also implicate the involvement of cAMP-PKA signaling in the pathologenesis of anxiety disorder. However, there are still debates on the prevention and treatment of anxiety disorders from this signaling pathway. To review the function of cAMP-PKA signaling in anxiety disorder, we searched the publications with the keywords including "cAMP", "PKA" and "Anxiety" from Pubmed, Embase, Web of Science and CNKI databases. The results showed that the number of publications on cAMP-PKA pathway in anxiety disorder tended to increase. Bioinformatics results displayed a close association between the cAMP-PKA pathway and the occurrence of anxiety. Mechanistically, cAMP-PKA signaling could influence brain-derived neurotrophic factor and neuropeptide Y and participate in the regulation of anxiety. cAMP-PKA signaling could also oppose the dysfunctions of gamma-aminobutyric acid (GABA), intestinal flora, hypothalamic-pituitary-adrenal axis, neuroinflammation, and signaling proteins (MAPK and AMPK) in anxiety. In addition, chemical agents with the ability to activate cAMP-PKA signaling demonstrated therapy potential against anxiety disorders. This review emphasizes the central roles of cAMP-PKA signaling in anxiety and the targets of the cAMP-PKA pathway would be potential candidates for treatment of anxiety. Nevertheless, more laboratory investigations to improve the therapeutic effect and reduce the adverse effect, and continuous clinical research will warrant the drug development.
Collapse
Affiliation(s)
- Daokang Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei 230061, China.
| | - Jian Cao
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
5
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
7
|
Zhao J, Fang Z. Alterations of the gut microbiota and metabolites by ShenZhu TiaoPi granule alleviates hyperglycemia in GK rats. Front Microbiol 2024; 15:1420103. [PMID: 39372266 PMCID: PMC11451479 DOI: 10.3389/fmicb.2024.1420103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 10/08/2024] Open
Abstract
ShenZhu TiaoPi granule (STG) is a compound prescription that is used in Chinese medicine for the treatment of type 2 diabetes mellitus (T2DM). Previous studies have indicated a hypoglycaemic effect, but the underlying mechanism remains unclear. Goto-Kakizaki (GK) rats were used to establish an in vivo T2DM model (Mod). The metformin (Met) and STG treatment time was 12 weeks. Fasting blood glucose (FBG) and insulin levels and the area under the glucose curve (GAUC) were measured. Intestinal pathology and permeability were observed. Microbial diversity analysis and metabolomics were used to investigate the underlying mechanisms. Compared with the Con group, the T2DM Mod group presented significant differences in weight, FBG, GAUC, and homeostasis model assessment-insulin resistance (HOMA-IR) indices (p < 0.01). Met and STG improved these indicators (p < 0.01). The pathological morphology and zonula occludens 1 protein levels in the intestines of the Mod group of rats were altered, leading to increases in the lipopolysaccharide (LPS) and interleukin-1β (IL-1β) levels. In the Met and STG groups, the intestinal conditions improved, and the LPS and IL-1β levels significantly decreased (p < 0.01). Changes in the gut microbiota and metabolites occurred in the Mod group. In the STG group, the abundance of Intestinimonas increased, and the abundance of Eubacterium coprostanoligenes decreased significantly (p < 0.05). Moreover, STG also altered 2-deoxyglucose, beta-muricholic acid and dioxolithocholic acid production. In addition, the main metabolic pathways affected by STG were bile acid biosynthesis and cholesterol metabolism. Intestinimonas, D-maltose_and_alpha-lactose may be potential biomarkers for the effects of STG. STG alleviates hyperglycaemia via the gut microbiota and metabolites in GK rats.
Collapse
Affiliation(s)
- Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernizatison of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernizatison of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
8
|
Shahab F, Hameed A, Ali A, Imad R, Hafizur RM. Apigenin potentiates glucose-stimulated insulin secretion through the PKA-MEK kinase signaling pathway independent of K-ATP channels. Biomed Pharmacother 2024; 177:116986. [PMID: 38906017 DOI: 10.1016/j.biopha.2024.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
AIM Apigenin, a natural bioflavonoid, is reported as an anti-diabetic agent since it possesses the ability to inhibit α-glucosidase activity, cause stimulation of insulin action and secretion, manage ROS, and prevent diabetes complications. Apigenin was identified as a new insulin secretagogue that enhances glucose-stimulated insulin secretion and seems like a better antidiabetic drug candidate. Here we explored the insulinotropic mechanism(s) of apigenin in vitro in mice islets and in vivo in diabetic rats. METHODS Size-matched pancreatic islets were divided into groups and incubated in the presence or absence of apigenin and agonists or antagonists of major insulin signaling pathways. The secreted insulin was measured by ELISA. The intracellular cAMP was estimated by cAMP acetylation assay. The acute and chronic effects of apigenin were evaluated in diabetic rats. RESULTS apigenin dose-dependently enhanced insulin secretion in isolated mice islets, and its insulinotropic effect was exerted at high glucose concentrations distinctly different from glibenclamide. Furthermore, apigenin amplified glucose-induced insulin secretion in depolarized and glibenclamide-treated islets. Apigenin showed no effect on intracellular cAMP concentration; however, an additive effect was observed by apigenin in both forskolin and IBMX-induced insulin secretion. Interestingly, H89, a PKA inhibitor, and U0126, a MEK kinase inhibitor, significantly inhibited apigenin-induced insulin secretion; however, no significant effect was observed by using ESI-05, an epac2 inhibitor. Apigenin improved glucose tolerance and increased glucose-stimulated plasma insulin levels in diabetic rats. Apigenin also lowered blood glucose in diabetic rats upon chronic treatment. CONCLUSION Apigenin exerts glucose-stimulated insulin secretion by modulating the PKA-MEK kinase signaling cascade independent of K-ATP channels.
Collapse
Affiliation(s)
- Falak Shahab
- Ziauddin College of Molecular Medicine, Ziauddin University Karachi, Pakistan
| | - Abdul Hameed
- Ziauddin College of Molecular Medicine, Ziauddin University Karachi, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Akhtar Ali
- Department of Pharmacology, Ziauddin University Karachi, Pakistan
| | - Rehan Imad
- Ziauddin College of Molecular Medicine, Ziauddin University Karachi, Pakistan
| | - Rahman M Hafizur
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry and Molecular Biology, Dhaka International University, Dhaka, Bangladesh; Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| |
Collapse
|
9
|
Huang X, Yip K, Nie H, Chen R, Wang X, Wang Y, Lin W, Li R. ChIP-seq and RNA-seq Reveal the Involvement of Histone Lactylation Modification in Gestational Diabetes Mellitus. J Proteome Res 2024. [PMID: 38776154 DOI: 10.1021/acs.jproteome.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Lactylation is a novel post-translational modification of proteins. Although the histone lactylation modification has been reported to be involved in glucose metabolism, its role and molecular pathways in gestational diabetes mellitus (GDM) are still unclear. This study aims to elucidate the histone lactylation modification landscapes of GDM patients and explore lactylation-modification-related genes involved in GDM. We employed a combination of RNA-seq analysis and chromatin immunoprecipitation sequencing (ChIP-seq) analysis to identify upregulated differentially expressed genes (DEGs) with hyperhistone lactylation modification in GDM. We demonstrated that the levels of lactate and histone lactylation were significantly elevated in GDM patients. DEGs were involved in diabetes-related pathways, such as the PI3K-Akt signaling pathway, Jak-STAT signaling pathway, and mTOR signaling pathway. ChIP-seq analysis indicated that histone lactylation modification in the promoter regions of the GDM group was significantly changed. By integrating the results of RNA-seq and ChIP-seq analysis, we found that CACNA2D1 is a key gene for histone lactylation modification and is involved in the progression of GDM by promoting cell vitality and proliferation. In conclusion, we identified the key gene CACNA2D1, which upregulated and exhibited hypermodification of histone lactylation in GDM. These findings establish a theoretical groundwork for the targeted therapy of GDM.
Collapse
Affiliation(s)
- Xiaman Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - KaCheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hanhui Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiping Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weizhao Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
10
|
Feichtner A, Enzler F, Kugler V, Hoppe K, Mair S, Kremser L, Lindner H, Huber RG, Stelzl U, Stefan E, Torres-Quesada O. Phosphorylation of the compartmentalized PKA substrate TAF15 regulates RNA-protein interactions. Cell Mol Life Sci 2024; 81:162. [PMID: 38568213 PMCID: PMC10991009 DOI: 10.1007/s00018-024-05204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Spatiotemporal-controlled second messengers alter molecular interactions of central signaling nodes for ensuring physiological signal transmission. One prototypical second messenger molecule which modulates kinase signal transmission is the cyclic-adenosine monophosphate (cAMP). The main proteinogenic cellular effectors of cAMP are compartmentalized protein kinase A (PKA) complexes. Their cell-type specific compositions precisely coordinate substrate phosphorylation and proper signal propagation which is indispensable for numerous cell-type specific functions. Here we present evidence that TAF15, which is implicated in the etiology of amyotrophic lateral sclerosis, represents a novel nuclear PKA substrate. In cross-linking and immunoprecipitation experiments (iCLIP) we showed that TAF15 phosphorylation alters the binding to target transcripts related to mRNA maturation, splicing and protein-binding related functions. TAF15 appears to be one of multiple PKA substrates that undergo RNA-binding dynamics upon phosphorylation. We observed that the activation of the cAMP-PKA signaling axis caused a change in the composition of a collection of RNA species that interact with TAF15. This observation appears to be a broader principle in the regulation of molecular interactions, as we identified a significant enrichment of RNA-binding proteins within endogenous PKA complexes. We assume that phosphorylation of RNA-binding domains adds another layer of regulation to binary protein-RNAs interactions with consequences to RNA features including binding specificities, localization, abundance and composition.
Collapse
Affiliation(s)
- Andreas Feichtner
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Katharina Hoppe
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sophia Mair
- Department of Cardiac Surgery, Medical University of Innsbruck, Innrain 66/66a, 6020, Innsbruck, Austria
- Vascage, Center of Clinical Stroke Research, 6020, Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, 138671, Singapore
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - Omar Torres-Quesada
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020, Innsbruck, Austria.
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
11
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Hu M, Cai JY, He Y, Chen K, Hao F, Kang JS, Pan Y, Tie L, Li XJ. Protective effects of curcumin on desipramine-induced islet β-cell damage via AKAP150/PKA/PP2B complex. Acta Pharmacol Sin 2024; 45:327-338. [PMID: 37845344 PMCID: PMC10789796 DOI: 10.1038/s41401-023-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Tricyclic antidepressants (TCAs) are widely used to treat depression and anxiety-related mood disorders. But evidence shows that TCAs elevate blood glucose levels and inhibit insulin secretion, suggesting that TCAs are a risk factor, particularly for individuals with diabetes. Curcumin is a bioactive molecule from the rhizome of the Curcuma longa plant, which has shown both antidepressant and anti-diabetic activities. In the present study, we investigated the protective effect of curcumin against desipramine-induced apoptosis in β cells and the underlying molecular mechanisms. In the mouse forced swimming test (FST), we found that lower doses of desipramine (5 and 10 mg/kg) or curcumin (2.5 mg/kg) alone did not affect the immobility time, whereas combined treatment with curcumin (2.5 mg/kg) and desipramine (5, 10 mg/kg) significantly decreased the immobility time. Furthermore, desipramine dose-dependently inhibited insulin secretion and elevated blood glucose levels, whereas the combined treatment normalized insulin secretion and blood glucose levels. In RIN-m5F pancreatic β-cells, desipramine (10 μM) significantly reduced the cell viability, whereas desipramine combined with curcumin dose-dependently prevented the desipramine-induced impairment in glucose-induced insulin release, most effectively with curcumin (1 and 10 μM). We demonstrated that desipramine treatment promoted the cleavage and activation of Caspase 3 in RIN-m5F cells. Curcumin treatment inhibited desipramine-induced apoptosis, increased mitochondrial membrane potential and Bcl-2/Bax ratio. Desipramine increased the generation of reactive oxygen species, which was reversed by curcumin treatment. Curcumin also inhibited the translocation of forkhead box protein O1 (FOXO1) from the cytoplasm to the nucleus and suppressed the binding of A-kinase anchor protein 150 (AKAP150) to protein phosphatase 2B (PP2B, known as calcineurin) that was induced by desipramine. These results suggest that curcumin protects RIN-m5F pancreatic β-cells against desipramine-induced apoptosis by inhibiting the phosphoinositide 3-kinase/AKT/FOXO1 pathway and the AKAP150/PKA/PP2B interaction. This study suggests that curcumin may have therapeutic potential as an adjunct to antidepressant treatment.
Collapse
Affiliation(s)
- Min Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jia-Ying Cai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yao He
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Kui Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Feng Hao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Jin-Sen Kang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
| | - Xue-Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University & Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, 100191, China.
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
13
|
Ouassou H, Elhouda Daoudi N, Bouknana S, Abdnim R, Bnouham M. A Review of Antidiabetic Medicinal Plants as a Novel Source of Phosphodiesterase Inhibitors: Future Perspective of New Challenges Against Diabetes Mellitus. Med Chem 2024; 20:467-486. [PMID: 38265379 DOI: 10.2174/0115734064255060231116192839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 01/25/2024]
Abstract
Intracellular glucose concentration plays a crucial role in initiating the molecular secretory process of pancreatic β-cells through multiple messengers and signaling pathways. Cyclic nucleotides are key physiological regulators that modulate pathway interactions in β -cells. An increase of cyclic nucleotides is controled by hydrolysed phosphodiesterases (PDEs), which degrades cyclic nucleotides into inactive metabolites. Despite the undeniable therapeutic potential of PDE inhibitors, they are associated with several side effects. The treatment strategy for diabetes based on PDE inhibitors has been proposed for a long time. Hence, the world of natural antidiabetic medicinal plants represents an ideal source of phosphodiesterase inhibitors as a new strategy for developing novel agents to treat diabetes mellitus. This review highlights medicinal plants traditionally used in the treatment of diabetes mellitus that have been proven to have inhibitory effects on PDE activity. The contents of this review were sourced from electronic databases, including Science Direct, PubMed, Springer Link, Web of Science, Scopus, Wiley Online, Scifinder and Google Scholar. These databases were consulted to collect information without any limitation date. After comprehensive literature screening, this paper identified 27 medicinal plants that have been reported to exhibit anti-phosphodiesterase activities. The selection of these plants was based on their traditional uses in the treatment of diabetes mellitus. The review emphasizes the antiphosphodiesterase properties of 31 bioactive components derived from these plant extracts. Many phenolic compounds have been identified as PDE inhibitors: Brazilin, mesozygin, artonin I, chalcomaracin, norartocarpetin, moracin L, moracin M, moracin C, curcumin, gallic acid, caffeic acid, rutin, quercitrin, quercetin, catechin, kaempferol, chlorogenic acid, and ellagic acid. Moreover, smome lignans have reported as PDE inhibitors: (+)-Medioresinol di-O-β-d-glucopyranoside, (+)- Pinoresinol di-O-β-d-glucopyranoside, (+)-Pinoresinol-4-O-β-d-glucopyranosyl (1→6)-β-dglucopyranoside, Liriodendrin, (+)-Pinoresinol 4'-O-β-d-glucopyranoside, and forsythin. This review provides a promising starting point of medicinal plants, which could be further studied for the development of natural phosphodiesterase inhibitors to treat diabetes mellitus. Therefore, it is important to consider clinical studies for the identification of new targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Hayat Ouassou
- Higher Institute of Nurses Professions and Health Techniques, Oujda 60000, Morocco
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Saliha Bouknana
- Department of Biology, Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60040, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| |
Collapse
|
14
|
Kaviani F, Baratpour I, Ghasemi S. The Antidiabetic Mechanisms of Hesperidin: Hesperidin Nanocarriers as Promising Therapeutic Options for Diabetes. Curr Mol Med 2024; 24:1483-1493. [PMID: 37986269 DOI: 10.2174/0115665240268940231113044317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 11/22/2023]
Abstract
A natural flavonoid with exceptional medicinal capabilities, hesperidin, has shown encouraging results in the treatment of diabetes. Thoughts are still being held on the particular processes through which hesperidin exerts its anti-diabetic effects. This work clarifies the complex antidiabetic mechanisms of hesperidin by investigating the molecular pathways involved in glucose homeostasis, insulin signaling, and oxidative stress control. Additionally, the article explores the newly developing field of nanocarrier-based systems as a prospective means of boosting the therapeutic efficiency of hesperidin in the treatment of diabetes. This is because there are difficulties connected with the efficient delivery of hesperidin. These cutting-edge platforms show enormous potential for changing diabetes therapy by utilizing the benefits of nanocarriers, such as enhanced solubility, stability, and targeted delivery. In conclusion, our comprehensive review emphasizes the antidiabetic potential of hesperidin and underscores the intriguing possibilities provided by hesperidin nanocarriers in the search for more effective and individualized diabetes therapies.
Collapse
Affiliation(s)
- Fatemeh Kaviani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Baratpour
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Abbas A, Hammad AS, Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108487. [PMID: 38103632 DOI: 10.1016/j.mrrev.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND GNAS (guanine nucleotide-binding protein, alpha stimulating) is an imprinted gene that encodes Gsα, the α subunit of the heterotrimeric stimulatory G protein. This subunit mediates the signalling of a diverse array of G protein-coupled receptors (GPCRs), including the melanocortin 4 receptor (MC4R) that serves a pivotal role in regulating food intake, energy homoeostasis, and body weight. Genetic or epigenetic alterations in GNAS are known to cause pseudohypoparathyroidism in its different subtypes and have been recently associated with isolated, early-onset, severe obesity. Given the diverse biological functions that Gsα serves, multiple molecular mechanisms involving various GPCRs, such as MC4R, β2- and β3-adrenoceptors, and corticotropin-releasing hormone receptor, have been implicated in the pathophysiology of severe, early-onset obesity that results from genetic or epigenetic GNAS changes. SCOPE OF REVIEW This review examines the structure and function of GNAS and provides an overview of the disorders that are caused by defects in this gene and may feature early-onset obesity. Moreover, it elucidates the potential molecular mechanisms underlying Gsα deficiency-induced early-onset obesity, highlighting some of their implications for the diagnosis, management, and treatment of this complex condition. MAJOR CONCLUSIONS Gsα deficiency is an underappreciated cause of early-onset, severe obesity. Therefore, screening children with unexplained, severe obesity for GNAS defects is recommended, to enhance the molecular diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alaa Abbas
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
16
|
Adam M, Ozcan S, Dalkilic S, Tektemur NK, Tekin S, Bilgin B, Hekim MG, Bulut F, Kelestemur MM, Canpolat S, Ozcan M. Modulation of Neuronal Damage in DRG by Asprosin in a High-Glucose Environment and Its Impact on miRNA181-a Expression in Diabetic DRG. Neurotox Res 2023; 42:5. [PMID: 38133838 DOI: 10.1007/s12640-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Asprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.
Collapse
Affiliation(s)
- Muhammed Adam
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, University of Firat, Elazig, Turkey
| | - Semih Dalkilic
- Department of Biology, University of Firat, Elazig, Turkey
| | | | - Suat Tekin
- Department of Physiology, University of Inonu, Malatya, Turkey
| | - Batuhan Bilgin
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Ferah Bulut
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Sinan Canpolat
- Department of Physiology, University of Firat, Elazig, Turkey
| | - Mete Ozcan
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey.
| |
Collapse
|
17
|
Akoonjee A, Lanrewaju AA, Balogun FO, Makunga NP, Sabiu S. Waste to Medicine: Evidence from Computational Studies on the Modulatory Role of Corn Silk on the Therapeutic Targets Implicated in Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:1509. [PMID: 38132335 PMCID: PMC10740667 DOI: 10.3390/biology12121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and/or defective insulin production in the human body. Although the antidiabetic action of corn silk (CS) is well-established, the understanding of the mechanism of action (MoA) behind this potential is lacking. Hence, this study aimed to elucidate the MoA in different samples (raw and three extracts: aqueous, hydro-ethanolic, and ethanolic) as a therapeutic agent for the management of T2DM using metabolomic profiling and computational techniques. Ultra-performance liquid chromatography-mass spectrometry (UP-LCMS), in silico techniques, and density functional theory were used for compound identification and to predict the MoA. A total of 110 out of the 128 identified secondary metabolites passed the Lipinski's rule of five. The Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis revealed the cAMP pathway as the hub signaling pathway, in which ADORA1, HCAR2, and GABBR1 were identified as the key target genes implicated in the pathway. Since gallicynoic acid (-48.74 kcal/mol), dodecanedioc acid (-34.53 kcal/mol), and tetradecanedioc acid (-36.80 kcal/mol) interacted well with ADORA1, HCAR2, and GABBR1, respectively, and are thermodynamically stable in their formed compatible complexes, according to the post-molecular dynamics simulation results, they are suggested as potential drug candidates for T2DM therapy via the maintenance of normal glucose homeostasis and pancreatic β-cell function.
Collapse
Affiliation(s)
- Ayesha Akoonjee
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Adedayo Ayodeji Lanrewaju
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| | - Nokwanda Pearl Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa; (A.A.); (A.A.L.); (F.O.B.)
| |
Collapse
|
18
|
Bloyd M, Sinaii N, Faucz FR, Iben J, Coon SL, Caprio S, Santoro N, Stratakis CA, London E. High-frequency variants in PKA signaling-related genes within a large pediatric cohort with obesity or metabolic abnormalities. Front Endocrinol (Lausanne) 2023; 14:1272939. [PMID: 38027204 PMCID: PMC10679389 DOI: 10.3389/fendo.2023.1272939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Pediatric obesity has steadily increased in recent decades. Large-scale genome-wide association studies (GWAS) conducted primarily in Eurocentric adult populations have identified approximately 100 loci that predispose to obesity and type II diabetes. GWAS in children and individuals of non-European descent, both disproportionately affected by obesity, are fewer. Rare syndromic and monogenic obesities account for only a small portion of childhood obesity, so understanding the role of other genetic variants and their combinations in heritable obesities is key to developing targeted and personalized therapies. Tight and responsive regulation of the cAMP-dependent protein kinase (PKA) signaling pathway is crucial to maintaining healthy energy metabolism, and mutations in PKA-linked genes represent the most common cause of monogenic obesity. Methods For this study, we performed targeted exome sequencing of 53 PKA signaling-related genes to identify variants in genomic DNA from a large, ethnically diverse cohort of obese or metabolically challenged youth. Results We confirmed 49 high-frequency variants, including a novel variant in the PDE11A gene (c.152C>T). Several other variants were associated with metabolic characteristics within ethnic groups. Discussion We conclude that a PKA pathway-specific variant search led to the identification of several new genetic associations with obesity in an ethnically diverse population.
Collapse
Affiliation(s)
- Michelle Bloyd
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
| | - Fabio Rueda Faucz
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Sonia Caprio
- Section on Pediatric Endocrinology and Diabetes, Yale University, New Haven, CT, United States
| | - Nicola Santoro
- Section on Pediatric Endocrinology and Diabetes, Yale University, New Haven, CT, United States
- Department of Medicine and Health Sciences, “V. Tiberio” University of Molise, Campobasso, Italy
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
- Human Genetics and Precision Medicine, Institute for Molecular Biology and Biotechnology (IMBB), Foundation for Research & Technology Hellas (FORTH), Heraklion, ELPEN Research Institute, Athens, Greece
| | - Edra London
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
19
|
Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2023; 63:12372-12397. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
20
|
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer's disease and diabetes. Ageing Res Rev 2023; 90:101999. [PMID: 37414154 DOI: 10.1016/j.arr.2023.101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Accumulation of amyloid-β in the central nervous system is a common feature of Alzheimer's disease (AD) and diabetes-related cognitive impairment. Since the insulin-degrading enzyme (IDE) can break down amyloid-β plaques, there is considerable interest in using this enzyme to treat both neurological disorders. In this review, we have summarized the pre-clinical and clinical research on the potential application of IDE for the improvement of cognitive impairment. Furthermore, we have presented an overview of the main pathways that can be targeted to mitigate the progression of AD and the cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
21
|
Pan Q, Ai W, Chen Y, Kim DM, Shen Z, Yang W, Jiang W, Sun Y, Safe S, Guo S. Reciprocal Regulation of Hepatic TGF-β1 and Foxo1 Controls Gluconeogenesis and Energy Expenditure. Diabetes 2023; 72:1193-1206. [PMID: 37343276 PMCID: PMC10450826 DOI: 10.2337/db23-0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Obesity and insulin resistance are risk factors for the pathogenesis of type 2 diabetes (T2D). Here, we report that hepatic TGF-β1 expression positively correlates with obesity and insulin resistance in mice and humans. Hepatic TGF-β1 deficiency decreased blood glucose levels in lean mice and improved glucose and energy dysregulations in diet-induced obese (DIO) mice and diabetic mice. Conversely, overexpression of TGF-β1 in the liver exacerbated metabolic dysfunctions in DIO mice. Mechanistically, hepatic TGF-β1 and Foxo1 are reciprocally regulated: fasting or insulin resistance caused Foxo1 activation, increasing TGF-β1 expression, which, in turn, activated protein kinase A, stimulating Foxo1-S273 phosphorylation to promote Foxo1-mediated gluconeogenesis. Disruption of TGF-β1→Foxo1→TGF-β1 looping by deleting TGF-β1 receptor II in the liver or by blocking Foxo1-S273 phosphorylation ameliorated hyperglycemia and improved energy metabolism in adipose tissues. Taken together, our studies reveal that hepatic TGF-β1→Foxo1→TGF-β1 looping could be a potential therapeutic target for prevention and treatment of obesity and T2D. ARTICLE HIGHLIGHTS Hepatic TGF-β1 levels are increased in obese humans and mice. Hepatic TGF-β1 maintains glucose homeostasis in lean mice and causes glucose and energy dysregulations in obese and diabetic mice. Hepatic TGF-β1 exerts an autocrine effect to promote hepatic gluconeogenesis via cAMP-dependent protein kinase-mediated Foxo1 phosphorylation at serine 273, endocrine effects on brown adipose tissue action, and inguinal white adipose tissue browning (beige fat), causing energy imbalance in obese and insulin-resistant mice. TGF-β1→Foxo1→TGF-β1 looping in hepatocytes plays a critical role in controlling glucose and energy metabolism in health and disease.
Collapse
Affiliation(s)
- Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yunmei Chen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Da Mi Kim
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
22
|
Christiansen CE, Arathimos R, Pain O, Molokhia M, Bell JT, Lewis CM. Stratified genome-wide association analysis of type 2 diabetes reveals subgroups with genetic and environmental heterogeneity. Hum Mol Genet 2023; 32:2638-2645. [PMID: 37364045 PMCID: PMC10407708 DOI: 10.1093/hmg/ddad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Type 2 diabetes (T2D) is a heterogeneous illness caused by genetic and environmental factors. Previous genome-wide association studies (GWAS) have identified many genetic variants associated with T2D and found evidence of differing genetic profiles by age-at-onset. This study seeks to explore further the genetic and environmental drivers of T2D by analyzing subgroups on the basis of age-at-onset of diabetes and body mass index (BMI). In the UK Biobank, 36 494 T2D cases were stratified into three subgroups, and GWAS was performed for all T2D cases and for each subgroup relative to 421 021 controls. Altogether, 18 single nucleotide polymorphisms were significantly associated with T2D genome-wide in one or more subgroups and also showed evidence of heterogeneity between the subgroups (Cochrane's Q P < 0.01), with two SNPs remaining significant after multiple testing (in CDKN2B and CYTIP). Combined risk scores, on the basis of genetic profile, BMI and age, resulted in excellent diabetes prediction [area under the ROC curve (AUC) = 0.92]. A modest improvement in prediction (AUC = 0.93) was seen when the contribution of genetic and environmental factors was evaluated separately for each subgroup. Increasing sample sizes of genetic studies enables us to stratify disease cases into subgroups, which have sufficient power to highlight areas of genetic heterogeneity. Despite some evidence that optimizing combined risk scores by subgroup improves prediction, larger sample sizes are likely needed for prediction when using a stratification approach.
Collapse
Affiliation(s)
- Colette E Christiansen
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH, UK
- School of Mathematics and Statistics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Ryan Arathimos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing’s College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust UK, London, SE5 8AF, UK
| | - Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing’s College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust UK, London, SE5 8AF, UK
| | - Mariam Molokhia
- School of Population Health and Environmental Sciences, King’s College London, London, SE1 1UL, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH, UK
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing’s College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust UK, London, SE5 8AF, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London, SE1 9RT, UK
| |
Collapse
|
23
|
Iyer DR, Arige V, Ananthamohan K, Venkatasubramaniam S, Tokinoya K, Akoi K, Kurtz CL, Sethupathy P, Takekoshi K, Mahapatra NR. Cyclic-AMP response element binding protein (CREB) and microRNA miR-29b regulate renalase gene expression under catecholamine excess conditions. Life Sci 2023:121859. [PMID: 37315838 DOI: 10.1016/j.lfs.2023.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
AIMS Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. MATERIALS AND METHODS Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. KEY FINDINGS CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproteronol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. SIGNIFICANCE This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Venkatasubramaniam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Katsuyuki Tokinoya
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kai Akoi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - C Lisa Kurtz
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kazuhiro Takekoshi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
24
|
Sypniewski M, Szydlowski M. A Study of 41 Canine Orthologues of Human Genes Involved in Monogenic Obesity Reveals Marker in the ADCY3 for Body Weight in Labrador Retrievers. Vet Sci 2023; 10:390. [PMID: 37368776 DOI: 10.3390/vetsci10060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity and overweight are common conditions in dogs, but individual susceptibility varies with numerous risk factors, including diet, age, sterilization, and gender. In addition to environmental and biological factors, genetic and epigenetic risk factors can influence predisposition to canine obesity, however, they remain unknown. Labrador Retrievers are one of the breeds that are prone to obesity. The purpose of this study was to analyse 41 canine orthologues of human genes linked to monogenic obesity in humans to identify genes associated with body weight in Labrador Retriever dogs. We analysed 11,520 variants from 50 dogs using a linear mixed model with sex, age, and sterilization as covariates and population structure as a random effect. Estimates obtained from the model were subjected to a maxT permutation procedure to adjust p-values for FWER < 0.05. Only the ADCY3 gene showed statistically significant association: TA>T deletion located at 17:19,222,459 in 1/20 intron (per allele effect of 5.56 kg, SE 0.018, p-value = 5.83 × 10-5, TA/TA: 11 dogs; TA/T: 32 dogs; T/T: 7 dogs). Mutations in the ADCY3 gene have already been associated with obesity in mice and humans, making it a promising marker for canine obesity research. Our results provide further evidence that the genetic makeup of obesity in Labrador Retriever dogs contains genes with large effect sizes.
Collapse
Affiliation(s)
- Mateusz Sypniewski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland
| |
Collapse
|
25
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
26
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
27
|
Yang M, Pan M, Huang D, Liu J, Guo Y, Liu Y, Zhang W. Glucagon Promotes Gluconeogenesis through the GCGR/PKA/CREB/PGC-1α Pathway in Hepatocytes of the Japanese Flounder Paralichthys olivaceus. Cells 2023; 12:cells12071098. [PMID: 37048171 PMCID: PMC10093564 DOI: 10.3390/cells12071098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
In order to investigate the mechanism of glucagon regulation of gluconeogenesis, primary hepatocytes of the Japanese flounder (Paralichthys olivaceus) were incubated with synthesized glucagon, and methods based on inhibitors and gene overexpression were employed. The results indicated that glucagon promoted glucose production and increased the mRNA levels of glucagon receptor (gcgr), guanine nucleotide-binding protein Gs α subunit (gnas), adenylate cyclase 2 (adcy2), protein kinase A (pka), cAMP response element-binding protein 1 (creb1), peroxisome proliferator-activated receptor-γ coactivator 1α (pgc-1α), phosphoenolpyruvate carboxykinase 1 (pck1), and glucose-6-phosphatase (g6pc) in the hepatocytes. An inhibitor of GCGR decreased the mRNA expression of gcgr, gnas, adcy2, pka, creb1, pgc-1α, pck1, g6pc, the protein expression of phosphorylated CREB and PGC-1α, and glucose production. The overexpression of gcgr caused the opposite results. An inhibitor of PKA decreased the mRNA expression of pgc-1α, pck1, g6pc, the protein expression of phosphorylated-CREB, and glucose production in hepatocytes. A CREB-targeted inhibitor significantly decreased the stimulation by glucagon of the mRNA expression of creb1, pgc-1α, and gluconeogenic genes, and glucose production decreased accordingly. After incubating the hepatocytes with an inhibitor of PGC-1α, the glucagon-activated mRNA expression of pck1 and g6pc was significantly down-regulated. Together, these results demonstrate that glucagon promotes gluconeogenesis through the GCGR/PKA/CREB/PGC-1α pathway in the Japanese flounder.
Collapse
Affiliation(s)
- Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanlin Guo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
28
|
An L, Li M, Zou C, Wang K, Zhang W, Huang X, Wang Y. Walnut polyphenols and the active metabolite urolithin A improve oxidative damage in SH-SY5Y cells by up-regulating PKA/CREB/BDNF signaling. Food Funct 2023; 14:2698-2709. [PMID: 36847209 DOI: 10.1039/d2fo03310k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Accumulating evidence has confirmed the health benefits of walnut diets in maintaining brain function with age. Recent studies have indicated that walnut polyphenols (WP) and their active metabolites urolithins may play an important role in the health benefits of walnut diets. In the present study, we evaluated the protective effect of WP and urolithin A (UroA) on H2O2-induced damage in human neuroblastoma (SH-SY5Y) cells, and investigated its mechanisms in the cAMP-response element binding protein (CREB)-mediated signaling pathway, which is tightly involved in neurodegenerative and neurological diseases. The results demonstrated that both WP (50 and 100 μg mL-1) and UroA (5 and 10 μM) treatment significantly reversed the decrease of cell viability, the leakage of extracellular lactate dehydrogenase (LDH), the overload of intracellular calcium and cell apoptosis induced by H2O2 treatment. Moreover, WP and UroA treatment also relieved H2O2-induced oxidative stress including overproduction of intracellular reactive oxygen species (ROS) and reduced activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, western blot analysis showed that WP and UroA treatment significantly increased the activity of cAMP-dependent protein kinase A (PKA) and the expression of pCREB (Ser133) and its downstream molecule brain-derived neurotrophic factor (BDNF), which were decreased by H2O2 treatment. Furthermore, pretreatment with the PKA inhibitor H89 abolished the protective effects of WP and UroA, indicating that up-regulation of the PKA/CREB/BDNF neurotrophic signaling pathway is required for their neuroprotective effects against oxidative stress. The current work provides new perspectives for understanding the beneficial effects of WP and UroA on brain function, which warrants further investigation.
Collapse
Affiliation(s)
- Lei An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Mengxue Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, Shandong, China
- Shandong KEEPFIT Biotech. Co., Ltd, Rizhao, Shandong, China
| | - Cunen Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, Shandong, China
- Shandong KEEPFIT Biotech. Co., Ltd, Rizhao, Shandong, China
| | - Ke Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, Shandong, China
- Shandong KEEPFIT Biotech. Co., Ltd, Rizhao, Shandong, China
| | - Wei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Xiaolong Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| | - Yousheng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, Shandong, China
- Shandong KEEPFIT Biotech. Co., Ltd, Rizhao, Shandong, China
| |
Collapse
|
29
|
Xiao Y, Wang Y, Ryu J, Liu W, Zou H, Zhang R, Yan Y, Dai Z, Zhang D, Sun LZ, Liu F, Zhou Z, Dong LQ. Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling. Diabetologia 2023; 66:1142-1155. [PMID: 36917279 DOI: 10.1007/s00125-023-05889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-stimulated hepatic gluconeogenesis contributes to endogenous glucose production during fasting. Recent studies suggest that TGF-β is able to promote hepatic gluconeogenesis in mice. However, the physiological relevance of serum TGF-β levels to human glucose metabolism and the mechanism by which TGF-β enhances gluconeogenesis remain largely unknown. As enhanced gluconeogenesis is a signature feature of type 2 diabetes, elucidating the molecular mechanisms underlying TGF-β-promoted hepatic gluconeogenesis would allow us to better understand the process of normal glucose production and the pathophysiology of this process in type 2 diabetes. This study aimed to investigate the contribution of upregulated TGF-β1 in human type 2 diabetes and the molecular mechanism underlying the action of TGF-β1 in glucose metabolism. METHODS Serum levels of TGF-β1 were measured by ELISA in 74 control participants with normal glucose tolerance and 75 participants with type 2 diabetes. Human liver tissue was collected from participants without obesity and with or without type 2 diabetes for the measurement of TGF-β1 and glucagon signalling. To investigate the role of Smad3, a key signalling molecule downstream of the TGF-β1 receptor, in mediating the effect of TGF-β1 on glucagon signalling, we generated Smad3 knockout mice. Glucose levels in Smad3 knockout mice were measured during prolonged fasting and a glucagon tolerance test. Mouse primary hepatocytes were isolated from Smad3 knockout and wild-type (WT) mice to investigate the underlying molecular mechanisms. Smad3 phosphorylation was detected by western blotting, levels of cAMP were detected by ELISA and levels of protein kinase A (PKA)/cAMP response element-binding protein (CREB) phosphorylation were detected by western blotting. The dissociation of PKA subunits was measured by immunoprecipitation. RESULTS We observed higher levels of serum TGF-β1 in participants without obesity and with type 2 diabetes than in healthy control participants, which was positively correlated with HbA1c and fasting blood glucose levels. In addition, hyperactivation of the CREB and Smad3 signalling pathways was observed in the liver of participants with type 2 diabetes. Treating WT mouse primary hepatocytes with TGF-β1 greatly potentiated glucagon-stimulated PKA/CREB phosphorylation and hepatic gluconeogenesis. Mechanistically, TGF-β1 treatment induced the binding of Smad3 to the regulatory subunit of PKA (PKA-R), which prevented the association of PKA-R with the catalytic subunit of PKA (PKA-C) and led to the potentiation of glucagon-stimulated PKA signalling and gluconeogenesis. CONCLUSIONS/INTERPRETATION The hepatic TGF-β1/Smad3 pathway sensitises the effect of glucagon/PKA signalling on gluconeogenesis and synergistically promotes hepatic glucose production. Reducing serum levels of TGF-β1 and/or preventing hyperactivation of TGF-β1 signalling could be a novel approach for alleviating hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Yang Xiao
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanfei Wang
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Endocrinology, The First People's Hospital of Foshan, Foshan, China
| | - Jiyoon Ryu
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Wei Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Division of Biliopancreatic Surgery and Bariatric Surgery, Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hailan Zou
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Zhang
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yin Yan
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deling Zhang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
30
|
Shangguan R, Hu Z, Luo Y, Chen M, Lai X, Sun J, Chen S. Intramuscular mitochondrial and lipid metabolic changes of rats after regular high-intensity interval training (HIIT) of different training periods. Mol Biol Rep 2023; 50:2591-2601. [PMID: 36626064 DOI: 10.1007/s11033-022-08205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND High-intensity Interval Training (HIIT) is a time-efficient form of exercise and has gained popularity in recent years. However, at molecular level, the understanding about the effects of HIIT is not comprehensive, and even less is elucidated about HIIT of different training duration cycles, although different durations always lead to different post-training consequences. METHOD In this study, by training SD rats using HIIT protocols lasting for different training duration cycles, we investigated the adaptive response of intramuscular triglyceride abundance as well as mitochondrial and lipid metabolic changes after HIIT training (2, 4, 6, 8, and 10 weeks). We selected 72 h after the last session of training as the time point of sacrifice. RESULTS The suppressed activation of the cAMP-PKA pathway indicates that skeletal muscle was in the recovery phase at this time point. Intramuscular triglyceride abundance was significantly elevated after 2, 4, and 10 weeks of HIIT. However, the lipid metabolism-related proteins inconsistently changed in a chaotic trend (see Table 1). The expression levels of PGC1-α and COX IV decreased after 2 and 4 weeks of training and raised after 6 and 8 weeks of training. The expression level of citrate synthase (CS) decreased after 2, 4, 8, and 10 weeks of training, and showed an upward trend after 6 weeks of training. While the activity of CS decreased after 2 and 8 weeks of training and showed an upward trend after 6 weeks of HIIT. CONCLUSION Given the abovementioned changing trends, we propose two speculations: (A) the damaged mitochondria oxidation capacity might be one of the causes of IMTG accumulation observed after 2 and 4 weeks of HIIT. This phase might be similar to the condition of type 2 diabetes. (B) after 6-week HIIT, mitochondria function and biogenesis might be improved and the IMTG contents declined to baseline. This might be explained as: mitochondrial enhancement increased the capacity of lipid oxidation and then offset the increase in IMTG achieved during the first 4 weeks. For HIIT Rat Modelling, if the aim is to observe HIIT-induced positive effects, caution should be exercised when considering 2 and 4 weeks of training under our HIIT frame. Also, implementing six-week training is at least effective for mitochondrial enhancement when using similar HIIT frame of this study.
Collapse
Affiliation(s)
- Ruonan Shangguan
- Department of Physical Education, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Zhiqiang Hu
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yuzhen Luo
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Min Chen
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Xiangdeng Lai
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jingquan Sun
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China.,Department of Physical Education, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Siyu Chen
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China.
| |
Collapse
|
31
|
Lee MH, Thomas JL, Lin CY, Li YCE, Lin HY. Nanoparticle-mediated CRISPR/dCas9a activation of multiple transcription factors to engineer insulin-producing cells. J Mater Chem B 2023; 11:1866-1870. [PMID: 36789698 DOI: 10.1039/d2tb02431d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Insulin may help to control blood glucose levels in diabetes; however, the long-term release of insulin is important for therapy. In this work, four guide RNAs (gRNA) for factors that promote specification and maturation of insulin-producing cells were synthesized: pancreatic and duodenal homeobox 1 (PDX1), protoendocrine factor (neurogenin 3, NGN3), NK6 homeobox 1 (NKX6.1), and musculoaponeurotic fibrosarcoma oncogene family A (MAFA). These gRNAs were used to form ribonucleoproteins (RNPs) with tracRNA and dCas9-VPR, and were then immobilized on magnetic peptide-imprinted chitosan nanoparticles, which enhanced transfection. The production and release of insulin from transfected cells were then measured using ELISA and staining with anti-insulin antibodies. The expression of the genes was evaluated using qRT-PCR; this was also used to investigate the cascade of additional transcriptional regulators. The magnitude and duration of insulin production were evaluated for single and repeated transfections (using different transfection schedules) to identify the most promising protocol.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chien-Yu Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan.
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan.
| |
Collapse
|
32
|
Irelan D, Boyd A, Fiedler E, Lochmaier P, McDonough W, Aragon IV, Rachek L, Abou Saleh L, Richter W. Acute PDE4 Inhibition Induces a Transient Increase in Blood Glucose in Mice. Int J Mol Sci 2023; 24:ijms24043260. [PMID: 36834669 PMCID: PMC9963939 DOI: 10.3390/ijms24043260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
cAMP-phosphodiesterase 4 (PDE4) inhibitors are currently approved for the treatment of inflammatory diseases. There is interest in expanding the therapeutic application of PDE4 inhibitors to metabolic disorders, as their chronic application induces weight loss in patients and animals and improves glucose handling in mouse models of obesity and diabetes. Unexpectedly, we have found that acute PDE4 inhibitor treatment induces a temporary increase, rather than a decrease, in blood glucose levels in mice. Blood glucose levels in postprandial mice increase rapidly upon drug injection, reaching a maximum after ~45 min, and returning to baseline within ~4 h. This transient blood glucose spike is replicated by several structurally distinct PDE4 inhibitors, suggesting that it is a class effect of PDE4 inhibitors. PDE4 inhibitor treatment does not reduce serum insulin levels, and the subsequent injection of insulin potently reduces PDE4 inhibitor-induced blood glucose levels, suggesting that the glycemic effects of PDE4 inhibition are independent of changes in insulin secretion and/or sensitivity. Conversely, PDE4 inhibitors induce a rapid reduction in skeletal muscle glycogen levels and potently inhibit the uptake of 2-deoxyglucose into muscle tissues. This suggests that reduced glucose uptake into muscle tissue is a significant contributor to the transient glycemic effects of PDE4 inhibitors in mice.
Collapse
Affiliation(s)
- Daniel Irelan
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Edward Fiedler
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Peter Lochmaier
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ileana V. Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lyudmila Rachek
- Department of Pharmacology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
33
|
Yang X, Fan X, Feng J, Fan T, Li J, Huang L, Wan L, Yang H, Li H, Gong J, Zhang Y, Gao Q, Zheng F, Xu L, Lin H, Zhang D, Song H, Wang Y, Ma X, Sun Z, Cao C, Yang X, Zhong H, Fang Y, Wei C. GP73 blockade alleviates abnormal glucose homeostasis in diabetic mice. J Mol Endocrinol 2023; 70:JME-22-0103. [PMID: 36394986 DOI: 10.1530/jme-22-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Golgi protein 73 (GP73), also called Golgi membrane protein 1 (GOLM1), is a resident Golgi type II transmembrane protein and is considered as a serum marker for the detection of a variety of cancers. A recent work revealed the role of the secreted GP73 in stimulating liver glucose production and systemic glucose homeostasis. Since exaggerated hepatic glucose production plays a key role in the pathogenesis of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), GP73 may thus represent a potential therapeutic target for treating diabetic patients with pathologically elevated levels. Here, in this study, we found that the circulating GP73 levels were significantly elevated in T2DM and positively correlated with hemoglobin A1c. Notably, the aberrantly upregulated GP73 levels were indispensable for the enhanced protein kinase A signaling pathway associated with diabetes. In diet-induced obese mouse model, GP73 siRNA primarily targeting liver tissue was potently effective in alleviating abnormal glucose metabolism. Ablation of GP73 from whole animals also exerted a profound glucose-lowering effect. Importantly, neutralizing circulating GP73 improved glucose metabolism in streptozotocin (STZ) and high-fat diet/STZ-induced diabetic mice. We thus concluded that GP73 was a feasible therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Xiaopan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaojing Fan
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiangyue Feng
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Tinghui Fan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jingfei Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Linfei Huang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Luming Wan
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Huan Yang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Huilong Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jing Gong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yanhong Zhang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Fei Zheng
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Lei Xu
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Haotian Lin
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Dandan Zhang
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Hongbin Song
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Yufei Wang
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Xueping Ma
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co. Ltd., Beijing, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoli Yang
- Department of Laboratory, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Laboratory, General Hospital of Armed Police Forces, Anhui Medical University, Hefei, China
| | - Hui Zhong
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yi Fang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Congwen Wei
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Wang B, Zhao M, Su Z, Jin B, Yang X, Zhang C, Guo B, Li J, Hong W, Liu J, Zhao Y, Hou Y, Lai F, Zhang W, Qin L, Zhang W, Luo J, Zheng R. RIIβ-PKA in GABAergic Neurons of Dorsal Median Hypothalamus Governs White Adipose Browning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205173. [PMID: 36529950 PMCID: PMC9929258 DOI: 10.1002/advs.202205173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The RIIβ subunit of cAMP-dependent protein kinase A (PKA) is expressed in the brain and adipose tissue. RIIβ-knockout mice show leanness and increased UCP1 in brown adipose tissue. The authors have previously reported that RIIβ reexpression in hypothalamic GABAergic neurons rescues the leanness. However, whether white adipose tissue (WAT) browning contributes to the leanness and whether RIIβ-PKA in these neurons governs WAT browning are unknown. Here, this work reports that RIIβ-KO mice exhibit a robust WAT browning. RIIβ reexpression in dorsal median hypothalamic GABAergic neurons (DMH GABAergic neurons) abrogates WAT browning. Single-cell sequencing, transcriptome sequencing, and electrophysiological studies show increased GABAergic activity in DMH GABAergic neurons of RIIβ-KO mice. Activation of DMH GABAergic neurons or inhibition of PKA in these neurons elicits WAT browning and thus lowers body weight. These findings reveal that RIIβ-PKA in DMH GABAergic neurons regulates WAT browning. Targeting RIIβ-PKA in DMH GABAergic neurons may offer a clinically useful way to promote WAT browning for treating obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Bingwei Wang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Miao Zhao
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhijie Su
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Baohua Jin
- Department of PharmacologyInstitution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017P. R. China
| | - Xiaoning Yang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Chenyu Zhang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Bingbing Guo
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jiebo Li
- Institute of Medical PhotonicsBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Weili Hong
- Institute of Medical PhotonicsBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Jiarui Liu
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Yun Zhao
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Yujia Hou
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Futing Lai
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Wei Zhang
- Department of PharmacologyInstitution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017P. R. China
| | - Lihua Qin
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Weiguang Zhang
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Jianyuan Luo
- Department of Medical GeneticsSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Ruimao Zheng
- Department of AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
- Neuroscience Research InstituteKey Laboratory for Neuroscience of Ministry of EducationKey Laboratory for Neuroscience of National Health Commission of the People's Republic of ChinaPeking UniversityBeijing100191P. R. China
| |
Collapse
|
35
|
Lin Y, Pan J, Liu Y, Yang H, Wu G, Pan Y. Acanthopanax trifoliatus (L.) Merr polysaccharides ameliorates hyperglycemia by regulating hepatic glycogen metabolism in type 2 diabetic mice. Front Nutr 2023; 10:1111287. [PMID: 36845056 PMCID: PMC9948035 DOI: 10.3389/fnut.2023.1111287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Drug monotherapy was inadequate in controlling blood glucose levels and other comorbidities. An agent that selectively tunes multiple targets was regarded as a new therapeutic strategy for type 2 diabetes. Acanthopanax trifoliatus (L.) Merr polysaccharide (ATMP) is a bio-macromolecule isolated from Acanthopanax trifoliatus (L.) Merr and has therapeutic potential for diabetes management due to its anti-hyperglycemia activity. METHODS Type 2 diabetes mellitus was induced in mice using streptozotocin, and 40 and 80 mg/kg ATMP was administered daily via the intragastric route for 8 weeks. Food intake, water intake, and body weight were recorded. The fasting blood glucose (FBG), fasting insulin (FINS) and an oral glucose tolerance test (OGTT) were performed. Histological changes in the liver and pancreas were analyzed by H&E staining. The mRNA and the protein levels of key factors involved in glycogen synthesis, glycogenolysis, and gluconeogenesis were measured by quantitative real time PCR and Western blotting. RESULTS In this study, we found that ATMP could effectively improve glucose tolerance and alleviate insulin resistance by promoting insulin secretion and inhibiting glucagon secretion. In addition, ATMP decreases glycogen synthesis by inhibiting PI3K/Akt/GSK3β signaling, reduces glycogenolysis via suppressing cAMP/PKA signaling, and suppresses liver gluconeogenesis by activating AMPK signaling. CONCLUSION Together, ATMP has the potential to be developed as a new multitargets therapeutics for type 2 diabetes.
Collapse
Affiliation(s)
- Yuzi Lin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinghua Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoyu Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Guoyu Wu, ✉
| | - Yufang Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
- Yufang Pan, ✉
| |
Collapse
|
36
|
Sun HJ, Xiong SP, Wang ZC, Nie XW, Bian JS. Hydrogen Sulfide in Diabetic Complications Revisited: The State of the Art, Challenges, and Future Directions. Antioxid Redox Signal 2023; 38:18-44. [PMID: 36310428 DOI: 10.1089/ars.2022.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Diabetes and its related complications are becoming an increasing public health problem that affects hundreds of millions of people globally. Increased disability and mortality rate of diabetic individuals are closely associated with various life-threatening complications, such as atherosclerosis, nephropathy, retinopathy, and cardiomyopathy. Recent Advances: Conventional treatments for diabetes are still limited because of undesirable side effects, including obesity, hypoglycemia, and hepatic and renal toxicity. Studies have shown that hydrogen sulfide (H2S) plays a critical role in the modulation of glycolipid metabolism, pancreatic β cell functions, and diabetic complications. Critical Issues: Preservation of endogenous H2S systems and supplementation of H2S donors are effective in attenuating diabetes-induced complications, thus representing a new avenue to treat diabetes and its associated complications. Future Directions: This review systematically recapitulates and discusses the most recent updates regarding the therapeutic effects of H2S on diabetes and its various complications, with an emphasis on the molecular mechanisms that underlie H2S-mediated protection against diabetic complications. Furthermore, current clinical trials of H2S in diabetic populations are highlighted, and the challenges and solutions to the clinical transformation of H2S-derived therapies in diabetes are proposed. Finally, future research directions of the pharmacological actions of H2S in diabetes and its related complications are summarized. Antioxid. Redox Signal. 38, 18-44.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Si-Ping Xiong
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Zi-Chao Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
37
|
Wang X, Liu J, Wang Q, Chen Q. The transcriptomic and epigenetic alterations in type 2 diabetes mellitus patients of Chinese Tibetan and Han populations. Front Endocrinol (Lausanne) 2023; 14:1122047. [PMID: 36891054 PMCID: PMC9987421 DOI: 10.3389/fendo.2023.1122047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Due to the distinctive living environment, lifestyle, and diet, the Tibetan community in China has the lowest prevalence of T2DM and prediabetes among numerous ethnic groups, while Han community shows the highest statistic. In this study, we aim to conclude the clinical manifestations of both Tibetan and Han T2DM patients and their association with transcriptomic and epigenetic alterations. METHODS A cross-sectional study including 120 T2DM patients from Han and Tibetan ethnic groups were conducted between 2019 to 2021 at the Hospital of Chengdu University of Traditional Chinese Medicine. The various clinical features and laboratory tests were recorded and analyzed between the two groups. The genome-wide methylation pattern and RNA expression were determined by Reduced Representation Bisulfite Sequencing (RBBS) and Poly (A) RNA sequencing (RNA-seq) from leucocytes of peripheral blood samples in 6 Han and 6 Tibetan patients. GO analysis and KEGG analysis were conducted in differentially expressed genes and those with differentially methylated regions. RESULTS Compared to Han, Tibetan T2DM individuals intake more coarse grains, meat and yak butter, but less refined grains, vegetables and fruit. They also showed increased BMI, Hb, HbA1c, LDL, ALT, GGT and eGFR, and decreased level of BUN. Among the 12 patients in the exploratory cohort, we identified 5178 hypomethylated and 4787 hypermethylated regions involving 1613 genes in the Tibetan group. RNA-seq showed a total of 947 differentially expressed genes (DEGs) between the two groups, with 523 up-regulated and 424 down-regulated in Tibetan patients. By integrating DNA methylation and RNA expression data, we identified 112 DEGs with differentially methylated regions (overlapping genes) and 14 DEGs with promoter-related DMRs. The functional enrichment analysis demonstrated that the overlapping genes were primarily involved in metabolic pathways, PI3K-Akt signaling pathway, MAPK signaling pathway, pathways in cancer and Rap1 signaling pathway. CONCLUSION Our study demonstrates the clinical characteristics of T2DM differ subtly between various ethnic groups that may be related to epigenetic modifications, thus providing evidence and ideas for additional research on the genetic pattern of T2DM.
Collapse
Affiliation(s)
- Xian Wang
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, United Kingdom
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Liu
- Department of Endocrinology, Kunming Municipal Hospital of Traditional Chinese Medicine, Kumning, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qiuhong Wang, ; Qiu Chen,
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiuhong Wang, ; Qiu Chen,
| |
Collapse
|
38
|
Small Hepatitis B Virus Surface Antigen Promotes Hepatic Gluconeogenesis via Enhancing Glucagon/cAMP/Protein Kinase A/CREB Signaling. J Virol 2022; 96:e0102022. [PMID: 36394315 PMCID: PMC9749458 DOI: 10.1128/jvi.01020-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatitis B virus (HBV) is a major risk factor for serious liver diseases. The liver plays a unique role in controlling carbohydrate metabolism to maintain the glucose level within the normal range. Chronic HBV infection has been reported to associate with a high prevalence of diabetes. However, the detailed molecular mechanism underlying the potential association remains largely unknown. Here, we report that liver-targeted delivery of small HBV surface antigen (SHBs), the most abundant viral protein of HBV, could elevate blood glucose levels and impair glucose and insulin tolerance in mice by promoting hepatic gluconeogenesis. Hepatocytes with SHB expression also exhibited increased glucose production and expression of gluconeogenic genes glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase (PEPCK) in response to glucagon stimulation. Mechanistically, SHBs increased cellular levels of cyclic AMP (cAMP) and consequently activated protein kinase A (PKA) and its downstream effector cAMP-responsive element binding protein (CREB). SHBs-induced activation of CREB enhanced transcripts of gluconeogenic genes, thus promoting hepatic gluconeogenesis. The elevated cAMP level resulted from increased transcription activity and expression of adenylyl cyclase 1 (AC1) by SHBs through a binary E-box factor binding site (BEF). Taken together, we unveiled a novel pathogenic role and mechanism of SHBs in hepatic gluconeogenesis, and these results might highlight a potential target for preventive and therapeutic intervention in the development and progression of HBV-associated diabetes. IMPORTANCE Chronic HBV infection causes progressive liver damage and is found to be a risk factor for diabetes. However, the mechanism in the regulation of glucose metabolism by HBV remains to be established. In the current study, we demonstrate for the first time that the small hepatitis B virus surface antigen (SHBs) of HBV elevates AC1 transcription and expression to activate cAMP/PKA/CREB signaling and subsequently induces the expression of gluconeogenic genes and promotes hepatic gluconeogenesis both in vivo and in vitro. This study provides a direct link between HBV infection and diabetes and implicates that SHBs may represent a potential target for the treatment of HBV-induced metabolic disorders.
Collapse
|
39
|
Wang X, Li Y, Qiang G, Wang K, Dai J, McCann M, Munoz MD, Gil V, Yu Y, Li S, Yang Z, Xu S, Cordoba-Chacon J, De Jesus DF, Sun B, Chen K, Wang Y, Liu X, Miao Q, Zhou L, Hu R, Ding Q, Kulkarni RN, Gao D, Blüher M, Liew CW. Secreted EMC10 is upregulated in human obesity and its neutralizing antibody prevents diet-induced obesity in mice. Nat Commun 2022; 13:7323. [PMID: 36443308 PMCID: PMC9705309 DOI: 10.1038/s41467-022-34259-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is a poorly characterized secreted protein of largely unknown physiological function. Here we demonstrate that scEMC10 is upregulated in people with obesity and is positively associated with insulin resistance. Consistent with a causal role for scEMC10 in obesity, Emc10-/- mice are resistant to diet-induced obesity due to an increase in energy expenditure, while scEMC10 overexpression decreases energy expenditure, thus promoting obesity in mouse. Furthermore, neutralization of circulating scEMC10 using a monoclonal antibody reduces body weight and enhances insulin sensitivity in obese mice. Mechanistically, we provide evidence that scEMC10 can be transported into cells where it binds to the catalytic subunit of PKA and inhibits its stimulatory action on CREB while ablation of EMC10 promotes thermogenesis in adipocytes via activation of the PKA signalling pathway and its downstream targets. Taken together, our data identify scEMC10 as a circulating inhibitor of thermogenesis and a potential therapeutic target for obesity and its cardiometabolic complications.
Collapse
Affiliation(s)
- Xuanchun Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yanliang Li
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Guifen Qiang
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiarong Dai
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Maximilian McCann
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Marcos D Munoz
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria Gil
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yifei Yu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengxian Li
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Yang
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Transplant Surgery, Mass General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shanshan Xu
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dario F De Jesus
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Kuangyang Chen
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yahao Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Liu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Miao
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Linuo Zhou
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Renming Hu
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rohit N Kulkarni
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Chong Wee Liew
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Li C, Chen Q, Liu Y, Sun Z, Shen Z, Li S, Cha D, Sun C. Methionine enkephalin promotes white fat browning through cAMP/PKA pathway. Life Sci 2022; 312:121189. [PMID: 36396109 DOI: 10.1016/j.lfs.2022.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
AIMS Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Chaowei Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Qi Chen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Yanrong Liu
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhuwen Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhentong Shen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Shuhan Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Dingrui Cha
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Chao Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
41
|
Su W, Wu S, Yang Y, Guo Y, Zhang H, Su J, Chen L, Mao Z, Lan R, Cao R, Wang C, Xu H, Zhang C, Li S, Gao M, Chen X, Zheng Z, Wang B, Liu Y, Liu Z, Wang Z, Liu B, Fan X, Zhang X, Guan Y. Phosphorylation of 17β-hydroxysteroid dehydrogenase 13 at serine 33 attenuates nonalcoholic fatty liver disease in mice. Nat Commun 2022; 13:6577. [PMID: 36323699 PMCID: PMC9630536 DOI: 10.1038/s41467-022-34299-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
17β-hydroxysteroid dehydrogenase-13 is a hepatocyte-specific, lipid droplet-associated protein. A common loss-of-function variant of HSD17B13 (rs72613567: TA) protects patients against non-alcoholic fatty liver disease with underlying mechanism incompletely understood. In the present study, we identify the serine 33 of 17β-HSD13 as an evolutionally conserved PKA target site and its phosphorylation facilitates lipolysis by promoting its interaction with ATGL on lipid droplets. Targeted mutation of Ser33 to Ala (S33A) decreases ATGL-dependent lipolysis in cultured hepatocytes by reducing CGI-58-mediated ATGL activation. Importantly, a transgenic knock-in mouse strain carrying the HSD17B13 S33A mutation (HSD17B1333A/A) spontaneously develops hepatic steatosis with reduced lipolysis and increased inflammation. Moreover, Hsd17B1333A/A mice are more susceptible to high-fat diet-induced nonalcoholic steatohepatitis. Finally, we find reproterol, a potential 17β-HSD13 modulator and FDA-approved drug, confers a protection against nonalcoholic steatohepatitis via PKA-mediated Ser33 phosphorylation of 17β-HSD13. Therefore, targeting the Ser33 phosphorylation site could represent a potential approach to treat NASH.
Collapse
Affiliation(s)
- Wen Su
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Sijin Wu
- grid.9227.e0000000119573309State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116024 China
| | - Yongliang Yang
- grid.30055.330000 0000 9247 7930Laboratoy of Innovative Drug Discovery, School of Bioengineering, Dalian University of Technology, Dalian, 116023 China
| | - Yanlin Guo
- grid.22069.3f0000 0004 0369 6365Health Science Center, East China Normal University, Shanghai, 200241 China
| | - Haibo Zhang
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Jie Su
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Lei Chen
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zhuo Mao
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Rongfeng Lan
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Rong Cao
- grid.263488.30000 0001 0472 9649Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035 China
| | - Chunjiong Wang
- grid.265021.20000 0000 9792 1228Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Hu Xu
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Cong Zhang
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Sha Li
- grid.412028.d0000 0004 1757 5708Medical College, Hebei University of Engineering, Handan, China
| | - Min Gao
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xiaocong Chen
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zhiyou Zheng
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Bing Wang
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China
| | - Yi’ao Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zuojun Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Zimei Wang
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Baohua Liu
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xinmin Fan
- grid.263488.30000 0001 0472 9649Department of Pathophysiology, Shenzhen University, Shenzhen, 518060 China ,Shenzhen University Health Science Center, Shenzhen University, Shenzhen, 518060 China
| | - Xiaoyan Zhang
- grid.22069.3f0000 0004 0369 6365Health Science Center, East China Normal University, Shanghai, 200241 China
| | - Youfei Guan
- grid.411971.b0000 0000 9558 1426Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044 China ,grid.411971.b0000 0000 9558 1426Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044 China
| |
Collapse
|
42
|
Akoonjee A, Rampadarath A, Aruwa CE, Ajiboye TA, Ajao AAN, Sabiu S. Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care. Metabolites 2022; 12:1013. [PMID: 36355096 PMCID: PMC9692680 DOI: 10.3390/metabo12111013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2023] Open
Abstract
The medicinal herb Aspalathus linearis (rooibos) is globally recognized in type-2 diabetes mellitus (T2DM) treatment due to its known and distinctive compounds. This work utilized network pharmacology (NP) coupled with molecular dynamics simulation in gaining new insight into the anti-diabetic molecular mechanism of action of rooibos teas. It looked at the interactions between rooibos constituents with various relevant protein receptors and signaling routes associated with T2DM progression. The initial analysis revealed 197 intersecting gene targets and 13 bioactive rooibos constituents linked to T2DM. The interactions between proteins and compounds to the target matrix were generated with the Cystoscope platform and STRING database. These analyses revealed intersecting nodes active in T2DM and hypoxia-inducible factor 1 (HIF-1) as an integral receptors target. In addition, KEGG analysis identified 11 other pathways besides the hub HIF-1 signaling route which may also be targeted in T2DM progression. In final molecular docking and dynamics simulation analysis, a significant binding affinity was confirmed for key compound-protein matrices. As such, the identified rooibos moieties could serve as putative drug candidates for T2DM control and therapy. This study shows rooibos constituents' interaction with T2DM-linked signaling pathways and target receptors and proposes vitexin, esculin and isovitexin as well as apigenin and kaempferol as respective pharmacologically active rooibos compounds for the modulation of EGFR and IGF1R in the HIF-1 signaling pathway to maintain normal homeostasis and function of the pancreas and pancreatic β-cells in diabetics.
Collapse
Affiliation(s)
- Ayesha Akoonjee
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Athika Rampadarath
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | | - Abdulwakeel Ayokun-nun Ajao
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
43
|
Natural polysaccharides as potential anti-fibrotic agents: A review of their progress. Life Sci 2022; 308:120953. [PMID: 36103957 DOI: 10.1016/j.lfs.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
Fibrosis, as a common disease which could be found in nearly all organs, is normally initiated by organic injury and eventually ended in cellular dysfunction and organ failure. Currently, effective and safe therapeutic strategies targeting fibrogenesis still in highly demand. Natural polysaccharides derived from natural resources possess promising anti-fibrosis potential, with no deleterious side effects. Based on the etiology and pathogenesis of fibrosis, this review summarizes the intervention effects and mechanisms of natural polysaccharides in the prevention and treatment of fibrosis. Natural polysaccharides are able to regulate each phase of the fibrogenic response, including primary injury to organs, activation of effector cells, the elaboration of extracellular matrix (ECM) and dynamic deposition. In addition, polysaccharides significantly reduce fibrosis levels in multiple organs including heart, lung, liver and kidney. The investigation of the pathogenesis of fibrosis indicates that mechanisms including the inhibition of TGF-β/Smad, NF-κB, HMGB1/TLR4, cAMP/PKA signaling pathways, MMPs/TIMPs system as well as microRNAs are promising therapeutic targets. Natural polysaccharides can target these mediators or pathways to alleviate fibrosis. The information reviewed here offer new insights into the understanding the protective role of natural polysaccharides against fibrosis, help design further experimental studies related to polysaccharides and fibrotic responses, and shed light on a potential treatment for fibrosis.
Collapse
|
44
|
Liu B, Chen F. Neuropeptide Y promotes hepatic apolipoprotein A1 synthesis and secretion through neuropeptide Y Y5 receptor. Peptides 2022; 154:170824. [PMID: 35660638 DOI: 10.1016/j.peptides.2022.170824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apolipoprotein A1 (ApoA1), a major component of high-density lipoprotein (HDL), is a protective factor against cardiovascular disease (CVD). A recent epidemiological study found an association between neuropeptide Y (NPY) gene polymorphism and serum HDL levels. However, the direct effect of NPY on ApoA1 expression remains unknown. This study was designed to investigate the molecular mechanisms underlying the NPY-mediated regulation of hepatic ApoA1. METHODS Serum ApoA1, total cholesterol, and HDL-c and hepatic ApoA1 levels were measured after intraperitoneal administration of NPY or an NPY Y5 receptor (NPY5R) agonist in vivo. HepG2 and BRL-3A hepatocytes were treated in vitro with NPY in the presence or absence of NPY receptor antagonists, agonists, or signal transduction pathway inhibitors. Subsequently, the protein and mRNA expression of cellular and secreted ApoA1 were determined. RESULTS NPY considerably upregulated hepatic ApoA1 expression and stimulated ApoA1 secretion, both in vivo and in vitro. NPY5R inhibition blocked NPY-induced upregulation of ApoA1 expression, and NPY5R activation stimulated ApoA1 expression and secretion in hepatocytes. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and protein kinase A (PKA) inhibition almost completely blocked the upregulation of ApoA1 expression and secretion induced by NPY5R. CONCLUSIONS For the first time, we demonstrated that NPY5R activation promotes hepatic ApoA1 synthesis and secretion through the ERK1/2 and PKA signal transduction pathways. Thus, NPY5R may be a potential therapeutic target for treating CVD by promoting cholesterol reverse transport.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
45
|
Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders? Antioxid Redox Signal 2022; 37:370-393. [PMID: 34605675 PMCID: PMC9398489 DOI: 10.1089/ars.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The mitochondrial oxidative phosphorylation (OXPHOS) system, comprising the electron transport chain and ATP synthase, generates membrane potential, drives ATP synthesis, governs energy metabolism, and maintains redox balance. OXPHOS dysfunction is associated with a plethora of diseases ranging from rare inherited disorders to common conditions, including diabetes, cancer, neurodegenerative diseases, as well as aging. There has been great interest in studying regulators of OXPHOS. Among these, ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of ATP synthase that has long been thought to avoid the consumption of cellular ATP when ATP synthase acts as an ATP hydrolysis enzyme. Recent Advances: Recent data indicate that IF1 inhibits ATP synthesis and is involved in a multitude of mitochondrial-related functions, such as mitochondrial quality control, energy metabolism, redox balance, and cell fate. IF1 also inhibits the ATPase activity of cell-surface ATP synthase, and it is used as a cardiovascular disease biomarker. Critical Issues: Although recent data have led to a paradigm shift regarding IF1 functions, these have been poorly studied in entire organisms and in different organs. The understanding of the cellular biology of IF1 is, therefore, still limited. The aim of this review was to provide an overview of the current understanding of the role of IF1 in mitochondrial functions, health, and diseases. Future Directions: Further investigations of IF1 functions at the cell, organ, and whole-organism levels and in different pathophysiological conditions will help decipher the controversies surrounding its involvement in mitochondrial function and could unveil therapeutic strategies in human pathology. Antioxid. Redox Signal. 37, 370-393.
Collapse
Affiliation(s)
- Emilia Gore
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Thibaut Duparc
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Annelise Genoux
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Souad Najib
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
46
|
Rashidmayvan M, Sahebi R, Ghayour-Mobarhan M. Long non-coding RNAs: a valuable biomarker for metabolic syndrome. Mol Genet Genomics 2022; 297:1169-1183. [PMID: 35854006 DOI: 10.1007/s00438-022-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become important regulators of gene expression because they affect a wide range of biological processes, such as cell growth, death, differentiation, and aging. More and more evidence suggests that lncRNAs play a role in maintaining metabolic homeostasis. When certain lncRNAs are out of balance, metabolic disorders like diabetes, obesity, and heart disease get worse. In this review, we talk about what we know about how lncRNAs control metabolism, with a focus on diseases caused by long-term inflammation and the characteristics of the metabolic syndrome. We looked at lncRNAs and their molecular targets in the pathogenesis of signaling pathways. We also talked about how lncRNAs are becoming more and more interesting as diagnostic and therapeutic targets for improving metabolic homeostasis.
Collapse
Affiliation(s)
- Mohammad Rashidmayvan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Sahebi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Investigation of the mechanism of Shen Qi Wan prescription in the treatment of T2DM via network pharmacology and molecular docking. In Silico Pharmacol 2022; 10:9. [PMID: 35673584 DOI: 10.1007/s40203-022-00124-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/16/2022] [Indexed: 10/18/2022] Open
Abstract
Shen Qi Wan (SQW) prescription has been used to treat type 2 diabetes mellitus (T2DM) for thousands of years, but its pharmacological mechanism is still unclear. The network pharmacology method was used to reveal the potential pharmacological mechanism of SQW in the treatment of T2DM in this study. Nine core targets were identified through protein-protein interaction (PPI) network analysis and KEGG pathway enrichment analysis, which were AKT1, INSR, SLC2A1, EGFR, PPARG, PPARA, GCK, NOS3, and PTPN1. Besides, this study found that SQW treated the T2DM through insulin resistance (has04931), insulin signaling pathway (has04910), adipocytokine signaling pathway (has04920), AMPK signaling pathway (has04152) and FoxO signaling pathway (has04068) via ingredient-hub target-pathway network analysis. Finally, molecular docking was used to verify the drug-target interaction network in this research. This study provides a certain explanation for treating T2DM by SQW prescription, and provides a certain angle and method for researchers to study the mechanism of TCM in the treatment of complex diseases. Supplementary information The online version contains supplementary material available at 10.1007/s40203-022-00124-2.
Collapse
|
48
|
Li Q, Yang Y, Wang H, Jiang Z, Ma H. Genistein accelerates glucose catabolism via activation the GPER-mediated cAMP/PKA-AMPK signaling pathway in broiler chickens. Life Sci 2022; 303:120676. [PMID: 35640778 DOI: 10.1016/j.lfs.2022.120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022]
Abstract
Genistein, the most abundance of phytoestrogens in soybeans, has beneficial effects in regulating metabolism-related disease; however, there is few available literatures about whether genistein regulates glucose metabolism that in turn affects the lipid accumulation in animals or humans. The current study showed that genistein promoted glucose uptake by enhancing glucose transporter-2 (GLUT2) protein level; and it also increased the activity of phosphofructokinase-1 (PFK) and pyruvate dehydrogenase (PDH), and the mRNA level of succinate dehydrogenase (SDH) both in broiler chickens or hepatocytes. Moreover, genistein obviously increased the p-LKB1 and p-AMPKα protein levels both in vivo and in vitro. Furthermore, the enhancement of genistein on glucose uptake and catabolism were reversed in hepatocytes pre-treated with AMPK inhibitor Compound C, and the increasing of genistein on the p-LKB1 and p-AMPKα protein levels were also reversed in hepatocytes pre-treated with PKA inhibitor H89. Importantly, the results showed that genistein simultaneously increased the estrogen receptor β (ERβ) and G protein-coupled estrogen receptor (GPER) protein levels, but the elevation effect of genistein on cAMP content was completely reversed in hepatocytes pre-treated with GPER antagonist G15, rather than ERβ inhibitor PHTPP. Meanwhile, the increasing of p-LKB1 and p-AMPKα protein levels induced by genistein were also reversed in hepatocytes pre-treated with G15. Collectively, our data demonstrated that genistein improves glucose metabolism via activating the GPER-mediated cAMP/PKA-AMPK signaling pathway. These findings provide theoretical basis for genistein as a promising nutritional supplemental to alleviate metabolism disorders and related diseases in animals or even humans.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huihui Wang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
49
|
Rodgers RL. Glucagon, cyclic AMP, and hepatic glucose mobilization: A half‐century of uncertainty. Physiol Rep 2022; 10:e15263. [PMID: 35569125 PMCID: PMC9107925 DOI: 10.14814/phy2.15263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
For at least 50 years, the prevailing view has been that the adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A pathway is the predominant signal mediating the hepatic glucose‐mobilizing actions of glucagon. A wealth of evidence, however, supports the alternative, that the operative signal most of the time is the phospholipase C (PLC)/inositol‐phosphate (IP3)/calcium/calmodulin pathway. The evidence can be summarized as follows: (1) The consensus threshold glucagon concentration for activating AC ex vivo is 100 pM, but the statistical hepatic portal plasma glucagon concentration range, measured by RIA, is between 28 and 60 pM; (2) Within that physiological concentration range, glucagon stimulates the PLC/IP3 pathway and robustly increases glucose output without affecting the AC/cAMP pathway; (3) Activation of a latent, amplified AC/cAMP pathway at concentrations below 60 pM is very unlikely; and (4) Activation of the PLC/IP3 pathway at physiological concentrations produces intracellular effects that are similar to those produced by activation of the AC/cAMP pathway at concentrations above 100 pM, including elevated intracellular calcium and altered activities and expressions of key enzymes involved in glycogenolysis, gluconeogenesis, and glycogen synthesis. Under metabolically stressful conditions, as in the early neonate or exercising adult, plasma glucagon concentrations often exceed 100 pM, recruiting the AC/cAMP pathway and enhancing the activation of PLC/IP3 pathway to boost glucose output, adaptively meeting the elevated systemic glucose demand. Whether the AC/cAMP pathway is consistently activated in starvation or diabetes is not clear. Because the importance of glucagon in the pathogenesis of diabetes is becoming increasingly evident, it is even more urgent now to resolve lingering uncertainties and definitively establish glucagon’s true mechanism of glycemia regulation in health and disease.
Collapse
Affiliation(s)
- Robert L. Rodgers
- Department of Biomedical and Pharmaceutical Sciences College of Pharmacy University of Rhode Island Kingston Rhode Island USA
| |
Collapse
|
50
|
Shamshoum H, Medak KD, McKie GL, Hahn MK, Wright DC. Fasting or the short-term consumption of a ketogenic diet protects against antipsychotic-induced hyperglycemia in mice. J Physiol 2022; 600:2713-2728. [PMID: 35507699 DOI: 10.1113/jp282922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Antipsychotic medications cause rapid and robust increases in blood glucose Cotreatment approaches to offset these harmful metabolic side effects have not been identified We demonstrate that fasting or the consumption or a short-term ketogenic diet, but not treatment with βHB or oral ketone esters, protects against acute antipsychotic induced hyperglycemia Protective effects of fasting and ketogenic diets were paralleled by reductions in serum glucagon, but not improvements in whole body insulin action ABSTRACT: Antipsychotic (AP) medications, such as olanzapine (OLZ), are used in the treatment of schizophrenia and a growing number of "off-label" conditions. A single dose of OLZ causes robust increases in blood glucose within minutes following treatment. The purpose of the current study was to investigate if interventions which increase circulating ketone bodies (fasting, βHB, ketone esters or a ketogenic diet) would be sufficient to protect against acute metabolic side effects of OLZ. We demonstrate that fasting or the short-term consumption of a ketogenic diet (KD) protects against OLZ-induced hyperglycemia, independent of alterations in whole body insulin action, and in parallel with a blunted rise in serum glucagon. Interestingly, the effects of fasting and ketogenic diets were not recapitulated by acutely increasing circulating concentrations of ketone bodies through treatment with βHB or oral ketone esters, approaches which increase ketone bodies to physiological or supra-physiological levels respectively. Collectively our findings demonstrate that fasting and the short-term consumption of a KD can protect against acute AP-induced perturbations in glucose homeostasis, whereas manipulations which acutely increase circulating ketone bodies do not elicit the same beneficial effects. Abstract figure legend Model for fasting and ketogenic diet to protect against OLZ-induced hyperglycemia. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Greg L McKie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, Toronto, ON.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|