1
|
Ge Y. Integrating New Approach Methodologies to Address Environmental Pancreatic Toxicity and Metabolic Disorders. BIOLOGY 2025; 14:85. [PMID: 39857315 PMCID: PMC11762660 DOI: 10.3390/biology14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Advancing our understanding of pancreatic toxicity and metabolic disorders caused by environmental exposures requires innovative approaches. The pancreas, a vital organ for glucose regulation, is increasingly recognized as a target of harm from environmental chemicals and dietary factors. Traditional toxicological methods, while foundational, often fail to address the mechanistic complexities of pancreatic dysfunction, particularly under real-world conditions involving multiple exposures. New Approach Methodologies (NAMs)-including high-throughput screening (HTS), OMICS technologies, computational modeling, and advanced in vitro systems-offer transformative tools to tackle these challenges. NAMs enable the identification of mechanistic pathways, improve testing efficiency, and reduce reliance on animal testing. This commentary explores the integration of NAMs into pancreatic toxicity screening, addresses critical gaps in evaluating the cumulative risks of chemical and dietary exposures, and proposes solutions for integrating the pancreas into toxicity screening through NAMs. By highlighting recent advancements and emphasizing their adoption in environmental toxicity assessment frameworks, this work demonstrates the potential of NAMs to revolutionize environmental health research, inspire interdisciplinary collaboration, and protect public health.
Collapse
Affiliation(s)
- Yue Ge
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
2
|
Koushki M, Doustimotlagh AH, Amiri-Dashatan N, Farahani M, Chiti H, Vanda R, Aramesh S. Impact of bisphenol A exposure on the risk of gestational diabetes: a meta-analysis of observational studies. J Diabetes Metab Disord 2024; 23:2173-2182. [PMID: 39610499 PMCID: PMC11599497 DOI: 10.1007/s40200-024-01485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 11/30/2024]
Abstract
Purpose A growing number of evidence have assessed the association between bisphenol A (BPA) as an endocrine-disrupting agent and the risk of gestational diabetes (GDM). This meta-analysis aimed to reassess the data on the association of BPA levels in women with GDM compared to the control. Methods A comprehensive literature search was conducted in Medline, Embase, Scopus, and Web of Science to extract relevant published studies up to May 2024. 12 articles were included in the meta-analysis. DerSimonian and Liard random-effects model was used to estimate the pooled odds ratio (OR). Sensitivity analysis was conducted to assess the robustness of the pooled results by removing each study from the pooled effect size. Subgroup analyses were performed depending on the subgroups of gestational age, GDM trimester, BMI, study design and geographical area. Results The results showed that there was no significant association between circulating and urinary BPA concentrations with the risk of GDM (OR: 0.79; 95% CI 0.60-1.04; P = 0.095). No significant heterogeneity was found among the studies. Using Begg's correlation (P = 0.95) and Egger's linear regression (P = 0.86) tests, no publication bias was observed. The sensitivity analysis shows that our findings were completely robust and stable. Meta-regression indicated a significant association between BPA levels and study design and geometric mean as an index of the risk of GDM. Conclusion The present meta-analysis demonstrates exposure to BPA was associated with a reduced risk of GDM. Further studies are needed for obtain the reliable results. Graphical Abstract
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Razieh Vanda
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shahintaj Aramesh
- Department of Obstetrics and Gynecology, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
3
|
Kobroob A, Kumfu S, Chattipakorn N, Wongmekiat O. Modulation of Sirtuin 3 by N-Acetylcysteine Preserves Mitochondrial Oxidative Phosphorylation and Restores Bisphenol A-Induced Kidney Damage in High-Fat-Diet-Fed Rats. Curr Issues Mol Biol 2024; 46:4935-4950. [PMID: 38785564 PMCID: PMC11119914 DOI: 10.3390/cimb46050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Bisphenol A (BPA) and high-fat diets (HFD) are known to adversely affect the kidneys. However, the combined effects of both cases on kidney health and the potential benefits of N-acetylcysteine (NAC) in mitigating these effects have not been investigated. To explore these aspects, male Wistar rats were fed with HFD and allocated to receive a vehicle or BPA. At week twelve, the BPA-exposed rats were subdivided to receive a vehicle or NAC along with BPA until week sixteen. Rats fed HFD and exposed to BPA showed renal dysfunction and structural abnormalities, oxidative stress, inflammation, and mitochondrial dysfunction, with alterations in key proteins related to mitochondrial oxidative phosphorylation (OXPHOS), bioenergetics, oxidative balance, dynamics, apoptosis, and inflammation. Treatment with NAC for 4 weeks significantly improved these conditions. The findings suggest that NAC is beneficial in protecting renal deterioration brought on by prolonged exposure to BPA in combination with HFD, and modulation of sirtuin 3 (SIRT3) signaling by NAC appears to play a key role in the preservation of homeostasis and integrity within the mitochondria by enhancing OXPHOS activity, maintaining redox balance, and reducing inflammation. This study provides valuable insights into potential therapeutic strategies for preserving kidney health in the face of environmental and dietary challenges.
Collapse
Affiliation(s)
- Anongporn Kobroob
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (N.C.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Abulehia H, Mohd Nor NS, Sheikh Abdul Kadir SH, Abdul Aziz M, Zulkifli S. The effects of trans fat diet intake on metabolic parameters and pancreatic tissue in offspring of prenatal bisphenol A exposed rats. Sci Rep 2023; 13:9322. [PMID: 37291156 PMCID: PMC10250527 DOI: 10.1038/s41598-023-36043-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
Bisphenol A (BPA) is a plasticiser used in the manufacturing of many products and its effects on human health remain controversial. Up till now, BPA involvement in metabolic syndrome risk and development is still not fully understood. In this study, we aimed to investigate the effect of prenatal BPA exposure with postnatal trans-fat diet intake on metabolic parameters and pancreatic tissue histology. Eighteen pregnant rats were divided into control (CTL), vehicle tween 80 (VHC), and BPA (5 mg/kg/day) from gestational day (GD) 2 until GD 21, then their weaning rat's offspring were fed with normal diet (ND) or trans-fat diet (TFD) from postnatal week (PNW) 3 until PNW 14. The rats were then sacrificed and the blood (biochemical analysis) and pancreatic tissues (histological analysis) were collected. Glucose, insulin, and lipid profile were measured. The study has shown that there was no significant difference between groups with regard to glucose, insulin, and lipid profiles (p > 0.05). All pancreatic tissues showed normal architecture with irregular islets of Langerhans in TFD intake groups compared to offspring that consumed ND. Furthermore, the pancreatic histomorphometry was also affected whereby the study findings revealed that there was a significant increase in the mean number of pancreatic islets in rats from BPA-TFD group (5.987 ± 0.3159 islets/field, p = 0.0022) compared to those fed with ND and BPA non-exposed. In addition, the results have found that prenatal BPA exposure resulted in a significant decrease in the pancreatic islets diameter of the BPA-ND group (183.3 ± 23.28 µm, p = 0.0022) compared to all other groups. In conclusion, prenatal BPA exposure with postnatal TFD in the offspring may affect glucose homeostasis and pancreatic islets in adulthood, and the effect may be more aggravated in late adulthood.
Collapse
Affiliation(s)
- Hala Abulehia
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Noor Shafina Mohd Nor
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia.
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| | - Mardiana Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh, 47000, Selangor, Malaysia
| | - Sarah Zulkifli
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000, Sungai Buloh, Malaysia
| |
Collapse
|
5
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
6
|
Gong P, Bailbé D, Tolu S, Pommier G, Liu J, Movassat J. Preconceptional exposure of adult male rats to bisphenol S impairs insulin sensitivity and glucose tolerance in their male offspring. CHEMOSPHERE 2023; 314:137691. [PMID: 36592828 DOI: 10.1016/j.chemosphere.2022.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Since the use of bisphenol A (BPA) has been restricted because of its endocrine disruptor properties, bisphenol S (BPS) has been widely used as a substitute of BPA. However, BPS exerts similar effects on metabolic health as BPA. The effects of maternal exposure to BPA and BPS on the metabolic health of offspring have been largely documented during the past decade. However, the impact of preconceptional paternal exposure to BPS on progenies remains unexplored. In this study we investigated the impact of paternal exposure to BPS before conception, on the metabolic phenotype of offspring. Male Wistar rats were administered BPS through drinking water at the dose of 4 μg/kg/day (BPS-4 sires) or 40 μg/kg/day (BPS-40 sires) for 2 months before mating with females. The progenies (F1) were studied at fetal stage and in adulthood. We showed that preconceptional paternal exposure to BPS for 2 months did not alter the metabolic status of sires. The female offspring of sires exposed to lower or higher doses of BPS showed no alteration of their metabolic phenotype compared to females from control sires. In contrast, male offspring of BPS-4 sires exhibited increased body weight and body fat/lean ratio, decreased insulin sensitivity and increased glucose-induced insulin secretion at adult age, compared to the male offspring of control sires. Moreover, male offspring of BPS-4 sires developed glucose intolerance later in life. None of these effects were apparent in male offspring of BPS-40 sires. In conclusion, our study provides the first evidence of the non-monotonic and sex-specific effects of preconceptional paternal exposure to BPS on the metabolic health of offspring, suggesting that BPS is not a safe BPA substitute regarding the inter-generational transmission of metabolic disorders through the paternal lineage.
Collapse
Affiliation(s)
- Pengfei Gong
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Danielle Bailbé
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Stefania Tolu
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Gaëlle Pommier
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France; Université Paris Cité, UFR Sciences Du Vivant, F-75013, Paris, France
| | - Junjun Liu
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Jamileh Movassat
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France. http://bfa.univ-paris-diderot.fr
| |
Collapse
|
7
|
Tang P, Liang J, Liao Q, Huang H, Guo X, Lin M, Liu B, Wei B, Zeng X, Liu S, Huang D, Qiu X. Associations of bisphenol exposure with the risk of gestational diabetes mellitus: a nested case-control study in Guangxi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25170-25180. [PMID: 34837624 DOI: 10.1007/s11356-021-17794-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
A growing number of epidemiologic studies have estimated the associations between endocrine-disrupting chemicals and gestational diabetes mellitus (GDM). However, reports on the association between bisphenol A (BPA) substitutes and GDM are limited. This investigation aimed to explore the associations of maternal serum BPA, bisphenol B (BPB), bisphenol F (BPF), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) with the risk of GDM. A nested case-control study was performed among 500 pregnant women. In conditional logistic regression models, the OR for BPS was significantly increased in the medium exposure groups (OR = 1.77; 95% CI: 1.01, 3.13) compared with the reference group, while BPA (OR: 0.38, 95%CI: 0.29, 0.50) and TBBPA (OR: 0.67, 95%CI: 0.54, 0.85) were negatively associated with the risk of GDM. In the Bayesian kernel machine regression (BKMR) analysis, the joint effect of bisphenols was positively associated with the risk of GDM. BPS showed positively relationship, while BPA and TBBPA showed negatively relationship, respectively. The quantile g-computation revealed a statistically significant and negative joint effect of the five bisphenols on the risk of GDM (OR: 0.57; 95% CI: 0.46, 0.72) with BPA (70.2%), TBBPA (21.3%), and BPB (8.5%) had positive contribution to the overall effect. These findings suggested that BPS had a positive effect on the risk of GDM, while BPA and TBBPA had negative effect on the risk of GDM. Moreover, exposure to the mixture of the five bisphenols was negatively associated with the risk of GDM.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Bincai Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Sirasanagandla SR, Sofin RS, Al-Huseini I, Das S. Role of Bisphenol A in Autophagy Modulation: Understanding the Molecular Concepts and Therapeutic Options. Mini Rev Med Chem 2022; 22:2213-2223. [DOI: 10.2174/1389557522666220214094055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Bisphenol A (4,4′-isopropylidenediphenol) is an organic compound, commonly used in the plastic bottles, packaging containers, beverages and resin industry. The adverse effects of bisphenol A were studied in various systems of the body. Autophagy is a lysosomal degradation process meant for the regeneration of new cells. The role of bisphenol A on autophagy modulation in the pathogenesis of diseases is still debatable. Few research studies showed that bisphenol A-induced adverse effects were associated with autophagy dysregulation, while few showed the activation of autophagy by bisphenol A. Such contrasting views make the subject more interesting and debatable. In the present review, we discuss the different steps of autophagy, genes involved, and the effect of bisphenol A in autophagy modulation on different systems of the body. We also discuss the methods for monitoring autophagy and the roles of drugs such as chloroquine, verteporfin, and rapamycin in autophagy. Proper understanding of the role of bisphenol A in the modulation of autophagy may be important for future treatment and drug discovery.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - R.G. Sumesh Sofin
- Department of Physics, College of Science, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
9
|
Huang R, Li J, Liao M, Ma L, Laurent I, Lin X, Zhang Y, Gao R, Ding Y, Xiao X. Combinational exposure to Bisphenol A and a high-fat diet causes trans-generational Malfunction of the female reproductive system in mice. Mol Cell Endocrinol 2022; 541:111507. [PMID: 34785282 DOI: 10.1016/j.mce.2021.111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA) is a common endocrine disruptor and a high-fat diet (HFD) also affects fertility. However, little is known about the long-term consequences of simultaneous exposure to BPA and a HFD on reproductive health. Herein, we assessed the effects of maternal exposure to BPA in combination with a HFD on reproductive function in subsequent generations of female mice and evaluated its effects on the hypothalamic-pituitary-gonadal axis. We found that the combination of maternal exposure to BPA and a HFD led to increased urine BPA levels, precocious puberty, altered estrous cyclicity, decreased follicle numbers, and altered hypothalamic Kiss1 methylation status in F1 and F2 mice. Therefore, we demonstrated that maternal exposure to BPA in combination with a HFD exerts a trans-generational effect on female reproduction.
Collapse
Affiliation(s)
- Rongfeng Huang
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayu Li
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maolin Liao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ma
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Irakoze Laurent
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqi Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Obstetrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China; State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Schaffert A, Krieg L, Weiner J, Schlichting R, Ueberham E, Karkossa I, Bauer M, Landgraf K, Junge KM, Wabitsch M, Lehmann J, Escher BI, Zenclussen AC, Körner A, Blüher M, Heiker JT, von Bergen M, Schubert K. Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. ENVIRONMENT INTERNATIONAL 2021; 156:106730. [PMID: 34186270 DOI: 10.1016/j.envint.2021.106730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA), which is used in a variety of consumer-related plastic products, was reported to cause adverse effects, including disruption of adipocyte differentiation, interference with obesity mechanisms, and impairment of insulin- and glucose homeostasis. Substitute compounds are increasingly emerging but are not sufficiently investigated.We aimed to investigate the mode of action of BPA and four of its substitutes during the differentiation of human preadipocytes to adipocytes and their molecular interaction with peroxisome proliferator-activated receptor γ (PPARγ), a pivotal regulator of adipogenesis.Binding and effective biological activation of PPARγ were investigated by surface plasmon resonance and reporter gene assay, respectively. Human preadipocytes were continuously exposed to BPA, BPS, BPB, BPF, BPAF, and the PPARγ-antagonist GW9662. After 12 days of differentiation, lipid production was quantified via Oil Red O staining, and global protein profiles were assessed using LC-MS/MS-based proteomics. All tested bisphenols bound to human PPARγ with similar efficacy as the natural ligand 15d-PGJ2in vitroand provoked an antagonistic effect on PPARγ in the reporter gene assay at non-cytotoxic concentrations. During the differentiation of human preadipocytes, all bisphenols decreased lipid production. Global proteomics displayed a down-regulation of adipogenesis and metabolic pathways, similar to GW9662. Interestingly, pro-inflammatory pathways were up-regulated, MCP1 release was increased, and adiponectin decreased. pAKT/AKT ratios revealed significantly reduced insulin sensitivity by BPA, BPB, and BPS upon insulin stimulation.Thus, our results show that not only BPA but also its substitutes disrupt crucial metabolic functions and insulin signaling in adipocytes under low, environmentally relevant concentrations. This effect, mediated through inhibition of PPARγ, may promote hypertrophy of adipose tissue and increase the risk of developing metabolic syndrome, including insulin resistance.
Collapse
Affiliation(s)
- Alexandra Schaffert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Juliane Weiner
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Elke Ueberham
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Kristin M Junge
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany
| | - Jörg Lehmann
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany; Department of Endocrinology, Nephrology Rheumatology, University Hospital Leipzig Medical Research Center, Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| |
Collapse
|
11
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
12
|
Kanthe PS, Patil BS, Das KK. Terminalia arjuna supplementation ameliorates high fat diet-induced oxidative stress in nephrotoxic rats. J Basic Clin Physiol Pharmacol 2021; 33:409-417. [PMID: 33743558 DOI: 10.1515/jbcpp-2020-0106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/24/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Dietary high fat possibly causes oxidative stress; also it makes deleterious effect on kidney functions and land up in lipotoxicity in renal tissue. Lipotoxicity is the pathological situation where lipid Peroxidation occurs and generates reactive oxygen species (ROS). Overproduction of ROS than antioxidant present in tissues cause oxidative stress. Terminalia arjuna is found to be potential antioxidant that counteract oxidative stress and possibly maintain glomerular integrity. METHODS Ethanolic extract of T. arjuna (ETO) was prepared and phytochemical analysis was done. Rats were divided into four groups, having six rats in each group as following; group 1-Control (20% fat); group 2 (ETO 100 mg/kg/b.wt); group 3 (30% fat) and group 4 (30% fat + ETO 100 mg/kg/b.wt). Dietary and ETO supplementation were continued for 21 days. Gravimetric, kidney functions (blood urea and serum creatinine) and oxidative stress markers like MDA, SOD and GSH were evaluated. Histopathological analysis was done on kidney along with measurement of glomerular integrity. Morphometrical analysis of glomerular integrity was evaluated by measuring glomerular length, width, glomerular area and Bowman's capsule radius. One way ANOVA was done for analysis of data. RESULTS Blood urea and serum creatinine levels were significantly higher in high fat fed rats indicating renal dysfunction. High fat diet showed significant increase in MDA, decrease in SOD and GSH in rats fed with high fat diet, which indicate generation of oxidative stress. Supplementation of ETO showed amelioratic effect against high fat diet induced renal dysfunction and oxidative stress. Histopathological findings were significantly corroborated with morphometrical analysis of glomerular integrity. CONCLUSIONS Ethanolic extracts of T. arjuna supplementation found to be beneficial against high fat induced renal alterations in terms of functions and architecture.
Collapse
Affiliation(s)
- Pallavi S Kanthe
- Physiology, Shri BM Patil Medical College, Bijapur, Karnataka, India
| | | | - Kusal K Das
- Physiology, Shri BM Patil Medical College, Bijapur, Karnataka, India
| |
Collapse
|
13
|
Farrugia F, Aquilina A, Vassallo J, Pace NP. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E716. [PMID: 33467592 PMCID: PMC7830729 DOI: 10.3390/ijerph18020716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance and eventual pancreatic β-cell dysfunction, resulting in persistent high blood glucose levels. Endocrine disrupting chemicals (EDCs) such as bisphenol A (BPA) are currently under scrutiny as they are implicated in the development of metabolic diseases, including T2DM. BPA is a pervasive EDC, being the main constituent of polycarbonate plastics. It can enter the human body by ingestion, through the skin, and cross from mother to offspring via the placenta or breast milk. BPA is a xenoestrogen that alters various aspects of beta cell metabolism via the modulation of oestrogen receptor signalling. In vivo and in vitro models reveal that varying concentrations of BPA disrupt glucose homeostasis and pancreatic β-cell function by altering gene expression and mitochondrial morphology. BPA also plays a role in the development of insulin resistance and has been linked to long-term adverse metabolic effects following foetal and perinatal exposure. Several epidemiological studies reveal a significant association between BPA and the development of insulin resistance and impaired glucose homeostasis, although conflicting findings driven by multiple confounding factors have been reported. In this review, the main findings of epidemiological and functional studies are summarised and compared, and their respective strengths and limitations are discussed. Further research is essential for understanding the exact mechanism of BPA action in various tissues and the extent of its effects on humans at environmentally relevant doses.
Collapse
Affiliation(s)
- Francesca Farrugia
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Alexia Aquilina
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
| | - Josanne Vassallo
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| | - Nikolai Paul Pace
- Department of Physiology and Biochemistry, University of Malta, MSD 2080 Msida, Malta; (F.F.); (A.A.); (J.V.)
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malt
| |
Collapse
|
14
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Conde KN, Roepke TA. The interactions of diet-induced obesity and organophosphate flame retardant exposure on energy homeostasis in adult male and female mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:438-455. [PMID: 32546061 PMCID: PMC7337410 DOI: 10.1080/15287394.2020.1777235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previously, sex-dependent alterations in energy homeostasis were reported in adult mice fed a standard chow attributed to exposure to a mixture of organophosphate flame retardants (OPFRs) via estrogen receptors (ERα). In this study, adult male and female mice (C57BL/6J; Taconic) were treated with the same mixture of OPFRs (1 mg/kg each of tricresyl phosphate (TCP), triphenyl phosphate (TPP), and tris(1-3-dichloro-2propyl)phosphate (TDCPP)) for 7 weeks on a low-fat diet (LFD, 10% kcal fat) or a high fat (HFD, 45% kcal fat) in a diet-induced obesity model. Consistent with our previous observations, OPFRs altered weight gain in males, differentially with diet, while females remained unaffected. OPFR treatment also revealed sex-dependent perturbations in metabolic activity. During the night (approximately 0100-0400 hr), males exhibited elevated activity and oxygen consumption, while in females these parameters were decreased, irrespective of diet. OPFR disrupted feeding behavior and abolished diurnal water intake patterns in females while increasing nighttime fluid consumption in males. Despite no marked effect of OPFRs on glucose or insulin tolerance, OPFR treatment altered circulating insulin and leptin in females and ghrelin in males. Data indicate that adult OPFR exposure might influence, and perhaps exacerbate, the effects of diet-induced obesity in adult mice by altering activity, ingestive behavior, and metabolism.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Kristie N. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
16
|
Hagobian TA, Brunner-Gaydos H, Seal A, Schaffner A, Kitts C, Hubbard R, Malin SK, La Frano MR, Bennion KA, Phelan S. Rationale and design of a randomized controlled trial examining oral administration of bisphenol A on hepatic glucose production and skeletal muscle insulin sensitivity in adults. Contemp Clin Trials Commun 2020; 17:100549. [PMID: 32154432 PMCID: PMC7052501 DOI: 10.1016/j.conctc.2020.100549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 01/15/2023] Open
Abstract
Previous observational studies have shown that the endocrine disrupting chemical bisphenol A (BPA) is associated with type 2 diabetes, but few studies have examined direct effects of BPA on human health. The purpose of this study is to determine whether orally administered BPA at the US Environmental Protection Agency (EPA) safe dose of 50 μg/kg body weight has an adverse effect on hepatic glucose production and skeletal muscle insulin sensitivity. Forty, non-habitually active, healthy adults of normal weight will be enrolled. Participants will begin with a 2-day baseline energy balance diet low in bisphenols in which urine and blood will be collected, and standard tests performed to assess the primary outcome measures of hepatic glucose production (via [6,6-2H] glucose infusion) and skeletal muscle insulin sensitivity (via euglycemic hyperinsulinemic clamp technique). Secondary outcome measures are fasting hormones/endocrine factors (insulin, glucose, C-peptide, Pro-insulin, adiponectin, 17-beta-estradiol, free fatty acids) related to the pathogenesis of type 2 diabetes. Participants will then be randomly assigned to a 4-day energy balance diet plus oral administration of BPA at 50 μg/kg body weight (Diet + BPA) or 4-day energy balance diet plus oral administration of placebo (Diet + No BPA); all outcome measures will be reassessed after 4 days. Findings from this study will provide a framework for other studies in this area, and provide much needed experimental evidence using gold standard measures as to whether oral BPA administration over several days poses any risk of type 2 diabetes. Bisphenol A is associated with type 2 diabetes. Few studies have examined oral bisphenol A administration on the pathogenesis of type 2 diabetes. This study will examine oral bisphenol A administration on hepatic glucose [6,6-2H] suppression. This study will examine insulin sensitivity (euglycemic hyperinsulinemic clamp technique).
Collapse
Affiliation(s)
- Todd A Hagobian
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| | - Hannah Brunner-Gaydos
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| | - Adam Seal
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| | - Andrew Schaffner
- Center for Health Research, California Polytechnic State University, USA.,Department of Statistics, California Polytechnic State University, USA
| | - Chris Kitts
- Department of Biology, California Polytechnic State University, USA
| | - Ryan Hubbard
- Campus Health and Wellbeing, California Polytechnic State University, USA
| | | | - Michael R La Frano
- Center for Health Research, California Polytechnic State University, USA.,Department of Food Science and Nutrition, California Polytechnic State University, USA
| | - Kelly A Bennion
- Center for Health Research, California Polytechnic State University, USA.,Department of Psychology and Child Development, California Polytechnic State University, USA
| | - Suzanne Phelan
- Center for Health Research, California Polytechnic State University, USA.,Department of Kinesiology and Public Health, California Polytechnic State University, USA
| |
Collapse
|
17
|
Song D, Chen Y, Wang B, Li D, Xu C, Huang H, Huang S, Liu R. Bisphenol A inhibits autophagosome-lysosome fusion and lipid droplet degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109492. [PMID: 31421534 DOI: 10.1016/j.ecoenv.2019.109492] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/06/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an artificial xenoestrogen widely used in consumer products containing polycarbonate plastics and epoxy resins. Exposure to BPA occurs through various channels, including ingestion of contaminated food and water. Autophagy is an important catabolic pathway that plays an important role in liver lipid metabolism. Evidence suggests that BPA exposure causes abnormal lipid droplet accumulation in liver, but the mechanism remains unknown. Here, we investigate the function of BPA in lipid metabolism and autophagy. BPA exposure increases lipid droplet and ROS accumulation which is accompanied by a defect in the fusion of the autophagosome to the lysosome. BPA exposure decreases the translocation of Stx17 to lysosome resulting in the autophagogome-lysosome fusion defect. There is no defect in the formation of the autophagosome indicated by increased LC3-II, p62 level, GFP/mRFP-LC3 ratios and decreased colocalization between LAMP2 with LC3. Mechanistically, BPA exposure reduces autophagy SNARE complex formation. Promoting autophagy by autophagy inducer (Torin2) partially reverses lipid droplet accumulation caused by BPA exposure. In summary, our results demonstrate BPA exposure inhibits autophagy resulting in decreased lipid droplet degradation and increased ROS levels. These results also provide a novel implication between autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Dan Song
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Chen
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Binran Wang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Diana Li
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Chao Xu
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Huang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Saifei Huang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Liu
- Nanjing Agricultural University, Nanjing, 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, China.
| |
Collapse
|
18
|
Sargis RM, Simmons RA. Environmental neglect: endocrine disruptors as underappreciated but potentially modifiable diabetes risk factors. Diabetologia 2019; 62:1811-1822. [PMID: 31451869 PMCID: PMC7462102 DOI: 10.1007/s00125-019-4940-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes prevalence is increasing dramatically across the globe, imposing a tremendous toll on individuals and healthcare systems. Reversing these trends requires comprehensive approaches to address both classical and emerging diabetes risk factors. Recently, environmental toxicants acting as endocrine-disrupting chemicals (EDCs) have emerged as novel metabolic disease risk factors. EDCs implicated in diabetes pathogenesis include various inorganic and organic molecules of both natural and synthetic origin, including arsenic, bisphenol A, phthalates, polychlorinated biphenyls and organochlorine pesticides. Indeed, evidence implicates EDC exposures across the lifespan in metabolic dysfunction; moreover, specific developmental windows exhibit enhanced sensitivity to EDC-induced metabolic disruption, with potential impacts across generations. Importantly, differential exposures to diabetogenic EDCs likely also contribute to racial/ethnic and economic disparities. Despite these emerging links, clinical practice guidelines fail to address this underappreciated diabetes risk factor. Comprehensive approaches to stem the tide of diabetes must include efforts to address its environmental drivers.
Collapse
Affiliation(s)
- Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625; M/C 640, Chicago, IL, 60612, USA.
- ChicAgo Center for Health and EnvironmenT (CACHET), University of Illinois at Chicago, Chicago, IL, USA.
| | - Rebecca A Simmons
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Hagobian TA, Bird A, Stanelle S, Williams D, Schaffner A, Phelan S. Pilot Study on the Effect of Orally Administered Bisphenol A on Glucose and Insulin Response in Nonobese Adults. J Endocr Soc 2019; 3:643-654. [PMID: 30842988 PMCID: PMC6397423 DOI: 10.1210/js.2018-00322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine the effects of varying doses of orally administered BPA on indices of glucose metabolism. METHODS Eleven college students (21.0 ± 0.8 years; 24.2 ± 3.9 kg/m2) were randomized in a double-blinded, crossover fashion separated by >1 week to placebo (PL), deuterated BPA at 4 µg/kg body weight (BPA-4), and deuterated BPA at 50 µg/kg body weight (BPA-50). Total BPA, glucose, insulin, and C-peptide were assessed at baseline, minutes 15, 30, 45, 60, and every 30 minutes for 2 hours in response to a glucose tolerance test. RESULTS There was a significant condition × time interaction for total BPA (P < 0.001) such that BPA increased more rapidly in BPA-50 than BPA-4 and PL (P = 0.003) and increased more rapidly in BPA-4 than PL (P < 0.001). There were no significant condition × time interactions on glucose, insulin, and C-peptide. Significant condition main effects were observed for glucose such that BPA-50 was significantly lower than PL (P = 0.036) and nearly lower for BPA-4 vs PL (P = 0.056). Significant condition main effects were observed such that insulin in BPA-50 was lower than BPA-4 (P = 0.021), and C-peptide in BPA-50 was lower than BPA-4 (t18 = 3.95; Tukey-adjusted P = 0.003). Glucose, insulin, and C-peptide areas under the curve for the 3-hour profile were significantly lower in BPA-50 vs PL (P < 0.05). CONCLUSION Orally administered BPA protocol appeared feasible and has immediate effects on glucose, insulin, and C-peptide concentrations.
Collapse
Affiliation(s)
- Todd Alan Hagobian
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| | - Alyssa Bird
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Sean Stanelle
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Dana Williams
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
| | - Andrew Schaffner
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California
- Department of Statistics, California Polytechnic State University, San Luis Obispo, California
| | - Suzanne Phelan
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California
| |
Collapse
|
20
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
21
|
Zhang W, Xia W, Liu W, Li X, Hu J, Zhang B, Xu S, Zhou Y, Li J, Cai Z, Li Y. Exposure to Bisphenol a Substitutes and Gestational Diabetes Mellitus: A Prospective Cohort Study in China. Front Endocrinol (Lausanne) 2019; 10:262. [PMID: 31114544 PMCID: PMC6503732 DOI: 10.3389/fendo.2019.00262] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background: The association of bisphenol A (BPA) and gestational diabetes mellitus (GDM) has been investigated in only a small number of studies, and research on the associations between BPA substitutes and GDM is scarce. Objective: We aimed to investigate the associations of four bisphenols [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF)] levels in urine sample with the risk of gestational diabetes mellitus (GDM) and plasma glucose levels. Methods: A total of 1,841 pregnant women from a cohort study were recruited at their first prenatal examination between 2013 and 2015 in Wuhan, China. Concentrations of four bisphenols (BPA, BPS, BPF, BPAF) were measured in first-trimester urine samples using Ultra-high performance liquid chromatography system coupled to a Triple Quadrupole mass spectrometer (UHPLC-TQMS). An oral glucose tolerance test (OGTT) was performed at 24-28 gestational weeks and GDM was diagnosed post hoc using International Association of Diabetes and Pregnancy Study Groups criteria. We used multivariable logistic regression models to examine the associations of urinary bisphenols with the risk of GDM, and multiple linear regression models to determine the associations between bisphenols exposure and plasma glucose levels. Results: Urinary BPAF was associated with increased odds of GDM among women with normal pre-pregnancy BMI [adjusted odds ratio (aOR) = 1.70 (95% CI: 1.08, 2.67) for the highest group compared to the lowest group], and the association remained significant after additional adjustment for other bisphenols [aOR = 1.68 (95% CI: 1.03, 2.72)]. No significant associations were observed for other bisphenols and GDM. Consistent with the result of GDM, women in the highest BPAF category had a mean of 0.05 mmol/L (95% CI: 0.01, 0.09) higher fasting plasma glucose (FPG) levels than women in the lowest category. For BPA and plasma glucose, non-linear associations were observed between urinary BPA and FPG and the sum of the PG z-score among women who were overweight (p for non-linear association < 0.05). We also found that the per-unit increase in natural log transformed specific gravity adjusted BPS [ln (SG-adj BPS)] was associated with a 0.03 mmol/L (95% CI: 0.01, 0.04) increase in FPG levels and the associations might be modified by fetal sex (p for interaction < 0.05). Among women with female fetus, a per-unit increase in ln (SG-adj BPS) was associated with a 0.04 mmol/L (95% CI: 0.02, 0.06) increase in FPG, a 0.11 mmol/L (95% CI: 0.04, 0.17) increase in 1 h-PG and a 0.19 mmol/L (95% CI: 0.08, 0.30) increase in the sum of PG z-score. Conclusions: Our results provide evidence that BPAF and BPS might be potential risk factors of GDM, which require to be studied further.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinping Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Hu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Zongwei Cai
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Yuanyuan Li
| |
Collapse
|
22
|
Desai M, Ferrini MG, Jellyman JK, Han G, Ross MG. In vivo and in vitro bisphenol A exposure effects on adiposity. J Dev Orig Health Dis 2018; 9:678-687. [PMID: 30156179 PMCID: PMC6363869 DOI: 10.1017/s2040174418000600] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As adipogenesis is a critical factor contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn adipose tissue at the stem-cell level. For in vivo studies, female rats received BPA before and during pregnancy and lactation via drinking water, and offspring were studied for measures of adiposity signals. For in vitro BPA exposure, primary pre-adipocyte cell cultures from healthy newborns were utilized. We studied pre-adipocyte proliferative and differentiation effects of BPA and explored putative signal factors which partly explain adipose responses and underlying epigenetic mechanisms mediated by BPA. Maternal BPA-induced offspring adiposity, hypertrophic adipocytes and increased adipose tissue protein expression of pro-adipogenic and lipogenic factors. Consistent with in vivo data, in vitro BPA exposure induced a dose-dependent increase in pre-adipocyte proliferation and increased adipocyte lipid content. In vivo and in vitro BPA exposure promotes the proliferation and differentiation of adipocytes, contributing to an enhanced capacity for lipid storage. These findings reinforce the marked effects of BPA on adipogenesis and highlight the susceptibility of stem-cell populations during early life with long-term consequence on metabolic homeostasis.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Monica G. Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA
| | - Juanita K. Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
| | - Michael G. Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Obstetrics and Gynaecology, Charles R. Drew University, Los Angeles, CA
| |
Collapse
|
23
|
Transgenerational effects of maternal bisphenol: a exposure on offspring metabolic health. J Dev Orig Health Dis 2018; 10:164-175. [PMID: 30362448 DOI: 10.1017/s2040174418000764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exposure to the endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with health abnormalities that persist in subsequent generations. However, transgenerational effects of BPA on metabolic health are not widely studied. In a maternal C57BL/6J mice (F0) exposure model using BPA doses that are relevant to human exposure levels (10 μg/kg/day, LowerB; 10 mg/kg/day, UpperB), we showed male- and dose-specific effects on pancreatic islets of the first (F1) and second generation (F2) offspring relative to controls (7% corn oil diet; control). In this study, we determined the transgenerational effects (F3) of BPA on metabolic health and pancreatic islets in our model. Adult F3 LowerB and UpperB male offspring had increased body weight relative to Controls, however glucose tolerance was similar in the three groups. F3 LowerB, but not UpperB, males had reduced β-cell mass and smaller islets which was associated with increased glucose-stimulated insulin secretion. Similar to F1 and F2 BPA male offspring, staining for markers of T-cells and macrophages (CD3 and F4/80) was increased in pancreas of F3 LowerB and UpperB male offspring, which was associated with changes in cytokine levels. In contrast to F3 BPA males, LowerB and UpperB female offspring had comparable body weight, glucose tolerance and insulin secretion as Controls. Thus, maternal BPA exposure resulted in fewer metabolic defects in F3 than F1 and F2 offspring, and these were sex- and dose-specific.
Collapse
|
24
|
Zhao M, Yuan L, Yuan MM, Huang LL, Su C, Chen YH, Yang YY, Hu Y, Xu DX. Maternal lipopolysaccharide exposure results in glucose metabolism disorders and sex hormone imbalance in male offspring. Mol Cell Endocrinol 2018; 474:272-283. [PMID: 29614340 DOI: 10.1016/j.mce.2018.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
Abstract
An adverse intrauterine environment may be an important factor contributing to the development of type 2 diabetes in later life. The present study investigated the longitudinal effects of maternal lipopolysaccharide (LPS) exposure during the third trimester on glucose metabolism and sex hormone balance in the offspring. Pregnant mice were intraperitoneally injected with LPS (50 μg/kg) daily from gestational day (GD) 15 to GD17. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were assessed at postnatal day (PND) 60 and PND120. Sex hormones, their receptors, and metabolic enzymes (aromatase) were measured in male offspring at different phases of development (PND14: juvenile; PND35: adolescence; PND60: adulthood; and PND120: middle age). LPS-exposed male offspring exhibited glucose intolerance and insulin resistance by GTT and ITT at middle age, accompanied by an increase in fasting blood glucose and reductions in serum insulin levels and hepatic phosphorylated (p) -AKT/AKT ratio. However, glucose intolerance and insulin resistance were not observed in LPS-exposed female offspring. Maternal LPS exposure upregulated hepatic aromatase proteins and mRNA levels in male offspring at all time points. At adolescence, the testosterone/estradiol ratio (T/E2) was markedly reduced in LPS-exposed male offspring. Moreover, maternal LPS exposure significantly increased hepatic estrogen receptor (ER) α expressions and decreased hepatic androgen receptor (AR) expressions in male offspring. At adulthood, maternal LPS exposure increased serum estradiol levels, decreased serum testosterone levels and elevated hepatic ERβ expressions in male offspring. In conclusion, maternal LPS exposure upregulated aromatase expressions, followed by a reduction in the T/E2 ratio and an alteration in sex hormone receptor activity, which might be involved in the development of glucose metabolism disorders in middle-aged male offspring. This study provides a novel clue and direction to clarify the pathogenesis of maternal infection-related diabetes in male offspring.
Collapse
Affiliation(s)
- Mei Zhao
- School of Nursing, Anhui Medical University, Hefei 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China.
| | - Li Yuan
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Man-Man Yuan
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Li-Li Huang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Chang Su
- The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yuan-Hua Chen
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China; Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Yu-Ying Yang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Yan Hu
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China; Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
25
|
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. ENVIRONMENTAL RESEARCH 2018; 164:45-52. [PMID: 29476947 PMCID: PMC8085909 DOI: 10.1016/j.envres.2018.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/01/2023]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Monica G Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA, USA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Juanita K Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
26
|
Ding S, Jiang J, Wang Z, Zhang G, Yin J, Wang X, Wang S, Yu Z. Resveratrol reduces the inflammatory response in adipose tissue and improves adipose insulin signaling in high-fat diet-fed mice. PeerJ 2018; 6:e5173. [PMID: 29967759 PMCID: PMC6027658 DOI: 10.7717/peerj.5173] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Background Obesity-induced glucose metabolism disorder is associated with chronic, low-grade, systemic inflammation and is considered a risk factor for diabetes and metabolic syndrome. Resveratrol (RES), a natural anti-inflammatory compound, is observed to improve glucose tolerance and insulin sensitivity in obese rodents and humans. This study aimed to test the effects of RES administration on insulin signaling and the inflammatory response in visceral white adipose tissue (WAT) caused by a high-fat diet (HFD) in mice. Methods A total of 40 wild-type C57BL/6 male mice were divided into four groups (10 in each group): the standard chow diet (STD) group was fed a STD; the HFD group was fed a HFD; and the HFD-RES/L and HFD-RES/H groups were fed a HFD plus RES (200 and 400 mg/kg/day, respectively). The L and H in RES/L and RES/H stand for low and high, respectively. Glucose tolerance, insulin sensitivity, circulating inflammatory biomarkers and lipid profile were determined. Quantitative PCR and Western blot were used to determine the expression of CC-chemokine receptor 2 (CCR2), other inflammation markers, glucose transporter 4 (GLUT4), insulin receptor substrate 1 (IRS-1) and pAkt/Akt and to assess targets of interest involving glucose metabolism and inflammation in visceral WAT. Results HFD increased the levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and proinflammatory cytokines in serum, decreased the high-density lipoprotein cholesterol level in serum, and induced insulin resistance and WAT inflammation in mice. However, RES treatment alleviated insulin resistance, increased the expressions of pAkt, GLUT4 and IRS-1 in WAT, and decreased serum proinflammatory cytokine levels, macrophage infiltration and CCR2 expression in WAT. Conclusion Our results indicated that WAT CCR2 may play a vital role in macrophage infiltration and the inflammatory response during the development of insulin resistance in HFD-induced obesity. These data suggested that administration of RES offers protection against abnormal glucose metabolism and inflammatory adaptations in visceral WAT in mice with HFD-induced obesity.
Collapse
Affiliation(s)
- Shibin Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jinjin Jiang
- School of Public Health, Capital Medical University, Beijing, PR China
| | - Zhe Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianli Yin
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Xiaoya Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sui Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Zengli Yu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan, PR China
| |
Collapse
|
27
|
Urinary Bisphenol A Concentration and Gestational Diabetes Mellitus in Chinese Women. Epidemiology 2018; 28 Suppl 1:S41-S47. [PMID: 29028674 DOI: 10.1097/ede.0000000000000730] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bisphenol A (BPA) has been associated with variable metabolic effects in animal models. It is unknown whether BPA exposure affects glucose tolerance in pregnancy. We aimed to investigate whether maternal urinary BPA concentration is associated with gestational diabetes mellitus (GDM). METHODS This study included 620 pregnant women from Shanghai, China 2012-2013. Maternal urinary BPA concentration was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). GDM (n = 79) was diagnosed according to the criteria of the International Association of Diabetes and Pregnancy Study Groups (IADPSG). Multivariate regressions were used to explore the relationships of urinary BPA with GDM, plasma glucose levels in the 75-g 2-hour oral glucose tolerance test (OGTT), birth weight, and ponder index. RESULTS The geometric mean of BPA was 1.32 μg/L. After adjustment for maternal age, education, husband smoking status, prepregnancy body mass index (BMI), and urinary creatinine concentration, plasma glucose at 2 hours in the 75-g OGTT was 0.36 mmol/L lower (95% confidence index [CI] = -0.73, 0.01) for women with urine BPA in the high versus the low tertile. For each unit increase in natural log-transformed BPA, the odds of GDM was reduced by 27% (odds ratio (OR) = 0.73; 95% CI = 0.56, 0.97), the birth weight decreased by 25.70 g (95% CI = -54.48, 3.07), and ponder index was decreased by 0.02 (100 g/cm) (95% CI = -0.03, 0.00). CONCLUSIONS Higher maternal urinary BPA concentrations were associated with reduced risk of GDM and marginally lower birth weight and ponder index.
Collapse
|
28
|
Ding S, Yu L, An B, Zhang G, Yu P, Wang Z. Combination effects of airborne particulate matter exposure and high-fat diet on hepatic fibrosis through regulating the ROS-endoplasmic reticulum stress-TGFβ/SMADs axis in mice. CHEMOSPHERE 2018; 199:538-545. [PMID: 29455124 DOI: 10.1016/j.chemosphere.2018.02.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hepatic fibrosis, characterized by an excessive accumulation of extracellular matrix, is associated with toxic substance exposure, chronic infections, mechanical injury, airborne fine particulate matter (PM2.5) exposure and metabolic disease. This study aimed to investigate the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on hepatic fibrosis and further explored whether combination treatment of PM exposure and high-fat diet (HFD) aggravate the adverse effects in mice. METHODS AND RESULTS Six-week-old male C57BL/6J mice fed with either a standard chow diet (STD) or an HFD were treated with either filtered air (FA) or PM for 18 weeks. Metabolic parameters, histological examination, gene expression analysis, and Western blot analysis were utilized to measure the effect and mechanism of PM exposure on hepatic fibrosis and to further analyze the synergistic effect of HFD. Subchronic airborne PM exposure induces hepatic fibrosis in mice, and combination treatment of PM exposure and HFD accelerate the adverse effect. Meanwhile, subchronic exposure to real-world PM increased the level of hepatic ROS, and the expression of endoplasmic reticulum (ER) stress markers (GRP78 and CHOP), p-SMAD2 and p-SMAD3, as well as up-regulated TGFβ and collagen 1 in liver tissues. Furthermore, PM exposure and HFD displayed the synergistic effects on these changes in liver. CONCLUSION Our findings indicate that airborne PM exposure aggravates HFD -induced hepatic fibrosis. The ROS-ER stress-TGFβ/SMADs regulatory axis mediates the effects of airborne PM exposure on accelerating hepatic fibrosis.
Collapse
Affiliation(s)
- Shibin Ding
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Lanlan Yu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Baijie An
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Pengxin Yu
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| | - Zhe Wang
- School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang 453003, PR China
| |
Collapse
|
29
|
Aherfi S, Nappez C, Lepidi H, Bedotto M, Barassi L, Jardot P, Colson P, La Scola B, Raoult D, Bregeon F. Experimental Inoculation in Rats and Mice by the Giant Marseillevirus Leads to Long-Term Detection of Virus. Front Microbiol 2018; 9:463. [PMID: 29619012 PMCID: PMC5871663 DOI: 10.3389/fmicb.2018.00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The presence of the giant virus of amoeba Marseillevirus has been identified at many different sites on the human body, including in the bloodstream of asymptomatic subjects, in the lymph nodes of a child with adenitis, in one adult with Hodgkin's disease, and in the pharynx of an adult. A high seroprevalence of the Marseillevirus has been recorded in the general population. Whether Marseillevirus can disseminate and persist within a mammal after entry remains unproven. We aimed to assess the ability of the virus to disseminate and persist into healthy organisms, especially in the lymphoid organs. Parenteral inoculations were performed by intraperitoneal injection (in rats and mice) or intravenous injection (in rats). Airway inoculation was performed by aerosolization (in mice). Dissemination and persistence were assessed by using PCR and amebal co-culture. Serologies were performed by immunofluorescent assay. Pathological examination was conducted after standard and immunohistochemistry staining. After intraperitoneal inoculation in mice and rats, Marseillevirus was detected in the bloodstream during the first 24 h. Persistence was noted until the end of the experiment, i.e., at 14 days in rats. After intravenous inoculation in rats, the virus was first detected in the blood until 48 h and then in deep organs with infectious virus detected until 14 and 21 days in the liver and the spleen, respectively. Its DNA was detected for up to 30 days in the liver and the spleen. After aerosolization in mice, infectious Marseillevirus was present in the lungs and nasal associated lymphoid tissue until 30 days post inoculation but less frequently and at a lower viral load in the lung than in the nasal associated lymphoid tissue. No other site of dissemination was found after aerosol exposure. Despite no evidence of disease being observed, the 30-day long persistence of Marseillevirus in rats and mice, regardless of the route of inoculation, supports the hypothesis of an infective potential of the virus in certain conditions. Its constant and long-term detection in nasal associated lymphoid tissue in mice after an aerosol exposure suggests the involvement of naso-pharyngeal associated lymphoid tissues in protecting the host against environmental Marseillevirus.
Collapse
Affiliation(s)
- Sarah Aherfi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Claude Nappez
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Hubert Lepidi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France.,Laboratoire d'Anatomopathologie, Centre Hospitalo Universitaire Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Marielle Bedotto
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Lina Barassi
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Priscilla Jardot
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Philippe Colson
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Bernard La Scola
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Didier Raoult
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France
| | - Fabienne Bregeon
- Institut Hospitalo Universitaire Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Marseille, France.,Service des Explorations Fonctionnelles Respiratoires Centre Hospitalo Universitaire Nord, Pôle Cardio-Vasculaire et thoracique, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
30
|
Facina CH, Campos SGP, Gonçalves BF, Góes RM, Vilamaior PSL, Taboga SR. Long-term oral exposure to safe dose of bisphenol A in association with high-fat diet stimulate the prostatic lesions in a rodent model for prostate cancer. Prostate 2018; 78:152-163. [PMID: 29148069 DOI: 10.1002/pros.23458] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/31/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND Studies have shown that exposure to environmental chemicals known as endocrine disruptors can cause permanent changes in genital organs, such as the prostate. Among these environmental chemicals stands out bisphenol A (BPA). Another factor associated with prostate changes is the consumption of a high-fat diet. Although the relationship between the consumption of a high-fat diet and an increased risk of prostate cancer is well established, the mechanisms that lead to the establishment of this disease are not completely understood, nor the simultaneous action of BPA and high-fat diet. METHODS Adult gerbils (100 days old) were divided in four groups (n = 6 per group): Control (C): animals that received a control diet and filtered water; Diet (D): animals that received a high-fat diet and filtered water; BPA: animals that received a control diet and BPA - 50 µg kg-1 day-1 in drinking water; BPA + Diet (BPA + D): animals that received a high-fat diet + BPA - 50 µg kg-1 day-1 in drinking water. After the experimental period (6 months), the dorsolateral and ventral prostate lobes were removed, and analyzed by several methods. RESULTS Histological analysis indicated premalignant and malignant lesions in both prostatic lobes. However, animals of the D, BPA, and BPA + D groups showed a higher incidence and larger number of prostatic lesions; inflammatory foci were also common. Markers to assess prostate lesions, such as increased activation of the DNA repair system (PCNA-positive cells), androgen receptor (AR), and number of basal cells, confirmed the histology. However, serum levels of testosterone did not change under the experimental conditions. CONCLUSIONS The results indicated that the methodology used was effective in generating metabolic changes, which directly compromised prostatic homeostasis. Diet and BPA appear to modulate the activation of the AR pathway and thereby optimize tumor establishment in the gerbil prostate.
Collapse
Affiliation(s)
- Camila H Facina
- Departamento de Biologia, Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE - Laboratório de Microscopia e Microanálise, São José do Rio Preto, São Paulo, Brazil
| | - Silvana G P Campos
- Departamento de Biologia, Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE - Laboratório de Microscopia e Microanálise, São José do Rio Preto, São Paulo, Brazil
| | - Bianca F Gonçalves
- Departamento de Biologia, Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE - Laboratório de Microscopia e Microanálise, São José do Rio Preto, São Paulo, Brazil
| | - Rejane M Góes
- Departamento de Biologia, Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE - Laboratório de Microscopia e Microanálise, São José do Rio Preto, São Paulo, Brazil
- Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas - UNICAMP, Instituto de Biologia - IB, Campinas, São Paulo, Brazil
| | - Patricia S L Vilamaior
- Departamento de Biologia, Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE - Laboratório de Microscopia e Microanálise, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Departamento de Biologia, Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE - Laboratório de Microscopia e Microanálise, São José do Rio Preto, São Paulo, Brazil
- Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas - UNICAMP, Instituto de Biologia - IB, Campinas, São Paulo, Brazil
| |
Collapse
|
31
|
Regnier SM, Kirkley AG, Ruiz D, Kamau W, Wu Q, Kannan K, Sargis RM. Diet-dependence of metabolic perturbations mediated by the endocrine disruptor tolylfluanid. Endocr Connect 2018; 7:159-168. [PMID: 29187361 PMCID: PMC5776670 DOI: 10.1530/ec-17-0320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Abstract
Emerging evidence implicates environmental endocrine-disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes; however, the interactions between EDCs and traditional risk factors in disease pathogenesis remain incompletely characterized. The present study interrogates the interaction of the EDC tolylfluanid (TF) and traditional dietary stressors in the promotion of metabolic dysfunction. Eight-week-old male C57BL/6 mice were fed a high-fat, high-sucrose diet (HFHSD) or a high-sucrose diet (HSD), with or without TF supplementation at 100 μg/g, for 12 weeks. Food intake, body weight and visceral adiposity were quantified. Glucose homeostasis was interrogated by intraperitoneal glucose and insulin tolerance tests at 9 and 10 weeks of exposure, respectively. After 12 weeks of dietary exposure, metabolic cage analyses were performed to interrogate nutrient handling and energy expenditure. In the background of an HFHSD, TF promoted glucose intolerance; however, weight gain and insulin sensitivity were unchanged, and visceral adiposity was reduced. In the background of an HSD, TF increased visceral adiposity; however, glucose tolerance and insulin sensitivity were unchanged, while weight gain was reduced. Thus, these analyses reveal that the metabolic perturbations induced by dietary exposure to TF, including the directionality of alterations in body weight gain, visceral adiposity and glucose homeostasis, are influenced by dietary macronutrient composition, suggesting that populations may exhibit distinct metabolic risks based on their unique dietary characteristics.
Collapse
Affiliation(s)
- Shane M Regnier
- Committee on Molecular Metabolism and NutritionChicago, Illinois, USA
- Pritzker School of MedicineChicago, Illinois, USA
- University of ChicagoChicago, Illinois, USA
| | - Andrew G Kirkley
- University of ChicagoChicago, Illinois, USA
- Committee on Molecular Pathogenesis and Molecular MedicineChicago, Illinois, USA
| | - Daniel Ruiz
- Committee on Molecular Metabolism and NutritionChicago, Illinois, USA
- University of ChicagoChicago, Illinois, USA
| | | | - Qian Wu
- Wadsworth CenterNew York Department of Health, Albany, New York, USA
| | | | - Robert M Sargis
- Division of EndocrinologyDiabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
32
|
Carlsson A, Sørensen K, Andersson AM, Frederiksen H, Juul A. Bisphenol A, phthalate metabolites and glucose homeostasis in healthy normal-weight children. Endocr Connect 2018; 7:232-238. [PMID: 29237763 PMCID: PMC5793810 DOI: 10.1530/ec-17-0344] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Bisphenol A and several of the most commonly used phthalates have been associated with adverse metabolic health effects such as obesity and diabetes. Therefore, we analyzed these man-made chemicals in first morning urine samples from 107 healthy normal-weight Danish children and adolescents. METHOD This was a cross-sectional study. Participants were recruited as part of the Copenhagen Puberty Study. The subjects were evaluated by an oral glucose tolerance test (OGTT), a dual-energy X-ray absorptiometry (DXA) scan, direct oxygen uptake measurement during cycle ergometry and fasting blood samples. First morning urine was collected and phthalate metabolites and BPA were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with prior enzymatic deconjugation. Individual chemical concentrations were divided into tertiles and analyzed in relation to biological outcome. RESULTS Children in the lowest tertile of urinary BPA had significantly higher peak insulin levels during OGTT (P = 0.01), lower insulin sensitivity index (P < 0.01), higher leptin (P = 0.03), triglyceride (P < 0.01) and total cholesterol levels (P = 0.04), lower aerobic fitness (P = 0.02) and a tendency toward higher fat mass index (P = 0.1) compared with children in the highest tertile for uBPA. No significant differences in anthropometrics, body composition or glucose metabolism were associated with any of the phthalate metabolites measured. CONCLUSION This pilot study on healthy normal-weight children suggests an inverse association between BPA and insulin resistance. Our findings contrast other cross-sectional studies showing a positive association for BPA, which may be due to confounding or reverse causation because diet is an important source of both BPA exposure and obesity.
Collapse
Affiliation(s)
- Amalie Carlsson
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen, Denmark
| | - Kaspar Sørensen
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- The Child and Youth ClinicRigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Copenhagen, Denmark
| |
Collapse
|
33
|
Pu Y, Gingrich JD, Steibel JP, Veiga-Lopez A. Sex-Specific Modulation of Fetal Adipogenesis by Gestational Bisphenol A and Bisphenol S Exposure. Endocrinology 2017; 158:3844-3858. [PMID: 28938450 PMCID: PMC5695840 DOI: 10.1210/en.2017-00615] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
Abstract
The endocrine-disrupting chemical bisphenol A (BPA) increases adipose tissue mass in vivo and promotes adipogenesis in vitro; however, mechanisms explaining BPA's obesogenic effect remain unknown. We investigated the effects of gestational BPA and its analog, bisphenol S (BPS), exposure on the adipogenic differentiation ability of fetal preadipocytes and the role of endoplasmic reticulum stress in regulating this process. Pregnant sheep (n = 7 to 8 per group) mated to the same male were exposed to BPA or BPS from days 30 to 100 of gestation; pregnancies were terminated 20 days later. Adipose tissue was harvested and fetal preadipocytes isolated. Adipose tissue gene expression, adipocyte size, preadipocyte gene expression, adipogenic differentiation, and dynamic expression of genes involved in adipogenesis and endoplasmic reticulum stress were assessed. Gestational BPA enhanced adipogenic differentiation in female, but not male, preadipocytes. The unfolded protein response (UPR) pathway was upregulated in BPA-exposed female preadipocytes supportive of a higher endoplasmic reticulum stress. Increased expression of estradiol receptor 1 and glucocorticoid receptor in female preadipocytes suggests that this may be a potential cause behind the sex-specific effects observed upon BPA exposure. Gestational BPS affected adipogenic terminal differentiation gene expression in male preadipocytes, but not adipogenic differentiation potential. We demonstrate that gestational BPA exposure can modulate the differentiation ability of fetal preadipocytes. UPR upregulation in gestationally BPA-exposed female preadipocytes may contribute to the increased preadipocyte's adipogenic ability. The marked sex-specific effect of BPA highlights higher susceptibility of females to bisphenol A and potentially, a higher risk to develop obesity in adulthood.
Collapse
Affiliation(s)
- Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jeremy D. Gingrich
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Juan P. Steibel
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
34
|
Yang S, Zhang A, Li T, Gao R, Peng C, Liu L, Cheng Q, Mei M, Song Y, Xiang X, Wu C, Xiao X, Li Q. Dysregulated Autophagy in Hepatocytes Promotes Bisphenol A-Induced Hepatic Lipid Accumulation in Male Mice. Endocrinology 2017; 158:2799-2812. [PMID: 28323964 DOI: 10.1210/en.2016-1479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/16/2017] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that bisphenol A (BPA) exposure is associated with nonalcoholic fatty liver disease. Disruption of autophagy causes lipid accumulation in hepatocytes. Whether and how BPA regulates autophagy remains to be explored. We investigated the effect of BPA on autophagy in hepatocytes and examined the influence of BPA-regulated autophagy on hepatic lipid accumulation. Male CD1 mice were treated with BPA for 8 weeks, followed by histological and biochemical evaluation of liver lipids and autophagy. Also, the effects of BPA on autophagy and hepatic lipid accumulation were examined in primary hepatocytes and HepG2 cells. Lipid content in HepG2 cells and/or primary hepatocytes was increased obviously after BPA exposure. In addition, BPA exposure caused accumulation of autophagosomes in HepG2 cells and enhanced colocalization of Bodipy 493/503 with microtubule associated protein light-chain 3. These changes were accompanied with increased expression levels of p-mammalian target of rapamycin, p-p70S6 kinase, p-ULK1 and decreased expression levels of Atg5. BPA exposure also downregulated the expression of cathepsin L and decreased cytoplasmic retention of acridine orange in HepG2 cells. The impaired autophagic degradation was further evidenced by increased levels of p62 in BPA-treated HepG2 cells. At the whole animal level, BPA treatment induced lipid accumulation in livers of male CD1 mice, which was accompanied with changes in hepatic autophagy-related proteins. Moreover, induction of autophagy by Torin1 protected against BPA-induced lipid accumulation whereas suppression of autophagy by chloroquine exacerbated BPA-induced lipid accumulation in HepG2 cells. BPA dysregulates autophagy in hepatocytes, which is linked to BPA-induced hepatic lipid accumulation.
Collapse
Affiliation(s)
- Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Aipin Zhang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Endocrinology, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Rufei Gao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Chuan Peng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipids and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lulu Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mei Mei
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Song
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiao Xiang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipids and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
35
|
Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats. PLoS One 2017; 12:e0183541. [PMID: 28817690 PMCID: PMC5560739 DOI: 10.1371/journal.pone.0183541] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/07/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. METHODS AND RESULTS Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. CONCLUSION We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a pharmacological SIRT1 activator) supplementation against HFD-induced hepatic steatosis.
Collapse
|
36
|
Abstract
Bisphenol A (BPA) is an endocrine disruptor with an oestrogenic activity that is widely produced for the manufacture of polycarbonate plastic, epoxy resin, and thermal paper. Its ubiquitous presence in the environment contributes to broad and continuous human exposure, which has been associated with deleterious health effects. Despite numerous controversial discussions and a lack of consensus about BPA's safety, growing evidence indicates that BPA exposure positively correlates with an increased risk of developing obesity. An updated analysis of the epidemiological, in vivo, and in vitro studies indicates that BPA should be considered an obesogenic environmental compound. Precisely, BPA exposure during all life stages correlates with increased body weight and/or body mass index. Developmental periods that include prenatal, infancy, and childhood appear to be critical windows with increased sensitivity to BPA effects. Finally, blood analysis and in vitro data clearly demonstrate that BPA promotes adipogenesis, lipid and glucose dysregulation, and adipose tissue inflammation, thus contributing to the pathophysiology of obesity. Future prevention efforts should now be employed to avoid BPA exposure, and more research to determine in depth the critical time windows, doses, and impact of long-term exposure of BPA is warranted in order to clarify its risk assessment.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| |
Collapse
|
37
|
Zhang Z, Yu Y, Xu H, Wang C, Ji M, Gu J, Yang L, Zhu J, Dong H, Wang SL. High-fat diet aggravates 2,2′,4,4′-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats. Toxicol Appl Pharmacol 2017; 323:1-8. [DOI: 10.1016/j.taap.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 01/19/2023]
|
38
|
Abstract
Red meat (beef, veal, pork, lamb and mutton) consumption contributes several important nutrients to the diet, for example essential amino acids, vitamins (including B12) and minerals (including iron and zinc). Processed red meat (ham, sausages, bacon, frankfurters, salami, etc.) undergoes treatment (curing, smoking, salting or the use of chemical preservatives and additives) to improve its shelf life and/or taste. During recent decades, consumption of red meat has been increasing globally, especially in developing countries. At the same time, there has been growing evidence that high consumption of red meat, especially of processed meat, may be associated with an increased risk of several major chronic diseases. Here, a comprehensive summary is provided of the accumulated evidence based on prospective cohort studies regarding the potential adverse health effects of red meat consumption on major chronic diseases, such as diabetes, coronary heart disease, heart failure, stroke and cancer at several sites, and mortality. Risk estimates from pooled analyses and meta-analyses are presented together with recently published findings. Based on at least six cohorts, summary results for the consumption of unprocessed red meat of 100 g day-1 varied from nonsignificant to statistically significantly increased risk (11% for stroke and for breast cancer, 15% for cardiovascular mortality, 17% for colorectal and 19% for advanced prostate cancer); for the consumption of 50 g day-1 processed meat, the risks were statistically significantly increased for most of the studied diseases (4% for total prostate cancer, 8% for cancer mortality, 9% for breast, 18% for colorectal and 19% for pancreatic cancer, 13% for stroke, 22% for total and 24% for cardiovascular mortality and 32% for diabetes). Potential biological mechanisms underlying the observed risks and the environmental impact of red meat production are also discussed. The evidence-based integrated message is that it is plausible to conclude that high consumption of red meat, and especially processed meat, is associated with an increased risk of several major chronic diseases and preterm mortality. Production of red meat involves an environmental burden. Therefore, some European countries have already integrated these two issues, human health and the 'health of the planet', into new dietary guidelines and recommended limiting consumption of red meat.
Collapse
Affiliation(s)
- A Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Chen Z, Zuo X, He D, Ding S, Xu F, Yang H, Jin X, Fan Y, Ying L, Tian C, Ying C. Long-term exposure to a 'safe' dose of bisphenol A reduced protein acetylation in adult rat testes. Sci Rep 2017; 7:40337. [PMID: 28067316 PMCID: PMC5220302 DOI: 10.1038/srep40337] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.,MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science &Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Dongliang He
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Shibin Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Fangyi Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Huiqin Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Xin Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Ying Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Li Ying
- School of Stomatology, Wenzhou Medical University, Wenzhou 325003, PR China
| | - Chong Tian
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, PR China.,MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science &Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| |
Collapse
|
40
|
Choi BI, Harvey AJ, Green MP. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor. Sci Rep 2016; 6:29318. [PMID: 27384909 PMCID: PMC4935887 DOI: 10.1038/srep29318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual.
Collapse
Affiliation(s)
- Bom-Ie Choi
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| |
Collapse
|
41
|
Ding S, Zuo X, Fan Y, Li H, Zhao N, Yang H, Ye X, He D, Yang H, Jin X, Tian C, Ying C. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein's Beneficial Roles on Lipid Metabolism. PLoS One 2016; 11:e0155352. [PMID: 27171397 PMCID: PMC4865196 DOI: 10.1371/journal.pone.0155352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/27/2016] [Indexed: 02/05/2023] Open
Abstract
Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein’s beneficial function on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Shibin Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
- Department of Nutrition and Food Hygiene, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Ying Fan
- Department of Psychiatry, The Fifth Hospital of Xiamen, Xiamen, 361101, PR China
| | - Hongyu Li
- Department of Nosocomial Infection Management, Central Hospital of Suizhou, Suizhou, 441300, PR China
| | - Nana Zhao
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Huiqin Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| | - Xiaolei Ye
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Dongliang He
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| | - Hui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| | - Xin Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
| | - Chong Tian
- Department of Nursing, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
- MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, PR China
- * E-mail:
| |
Collapse
|
42
|
Veiga-Lopez A, Moeller J, Sreedharan R, Singer K, Lumeng C, Ye W, Pease A, Padmanabhan V. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. Am J Physiol Endocrinol Metab 2016; 310:E238-47. [PMID: 26646100 PMCID: PMC4888526 DOI: 10.1152/ajpendo.00425.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023]
Abstract
Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy.
Collapse
Affiliation(s)
- Almudena Veiga-Lopez
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan; Department of Animal Sciences, Michigan State University, East Lansing, Michigan
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Rohit Sreedharan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Carey Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Wen Ye
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Anthony Pease
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | | |
Collapse
|
43
|
Agarwal S, Tiwari SK, Seth B, Yadav A, Singh A, Mudawal A, Chauhan LKS, Gupta SK, Choubey V, Tripathi A, Kumar A, Ray RS, Shukla S, Parmar D, Chaturvedi RK. Activation of Autophagic Flux against Xenoestrogen Bisphenol-A-induced Hippocampal Neurodegeneration via AMP kinase (AMPK)/Mammalian Target of Rapamycin (mTOR) Pathways. J Biol Chem 2015; 290:21163-21184. [PMID: 26139607 PMCID: PMC4543672 DOI: 10.1074/jbc.m115.648998] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/21/2015] [Indexed: 12/11/2022] Open
Abstract
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell's compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Shashi Kant Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Anshuman Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Anubha Mudawal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | | | - Shailendra Kumar Gupta
- Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India; Systems Toxicology and Health Risk Assessment Group, CSIR-IITR, Lucknow 226001, India
| | - Vinay Choubey
- Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, 50050 Estonia
| | - Anurag Tripathi
- Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India; Food Drug and Chemical Toxicology Group, CSIR-IITR, Lucknow 226001, India
| | - Amit Kumar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Ratan Singh Ray
- Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India; Systems Toxicology and Health Risk Assessment Group, CSIR-IITR, Lucknow 226001, India
| | - Shubha Shukla
- Department of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India.
| |
Collapse
|
44
|
Kim Y, Keogh J, Clifton P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism 2015; 64:768-79. [PMID: 25838035 DOI: 10.1016/j.metabol.2015.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 01/12/2023]
Abstract
Epidemiological studies suggest that red and processed meat consumption is related to an increased risk of type 2 diabetes. However, it is not clearly understood which components of red and processed meat contribute to this increased risk. This review examines potential mechanisms addressing the role of saturated fatty acid, sodium, advanced glycation end products (AGEs), nitrates/nitrites, heme iron, trimethylamine N-oxide (TMAO), branched amino acids (BCAAs) and endocrine disruptor chemicals (EDCs) in the development of type 2 diabetes based on data from published clinical trials and animal models. TMAO which is derived from dietary carnitine and choline by the action of bacterial enzymes followed by oxidation in the liver may be a strong candidate molecule mediating the risk of type 2 diabetes. BCAAs may induce insulin resistance via the mammalian target of rapamycin complex 1 (mTORC1) and ribosomal protein S6 kinase β 1 (S6k1)-associated pathways. The increased risk associated with processed meat compared with red meat suggests that there are interactions between the saturated fat, salt, and nitrates in processed meat and iron, AGEs and TMAO. Intervention studies are required to clarify potential mechanisms and explore interactions among components, in order to make firm recommendations on red and processed meat consumption.
Collapse
Affiliation(s)
- Yoona Kim
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - Jennifer Keogh
- School of Pharmacy and Medical Science, University of South Australia, Australia
| | - Peter Clifton
- School of Pharmacy and Medical Science, University of South Australia, Australia.
| |
Collapse
|
45
|
Alonso-Magdalena P, Quesada I, Nadal Á. Prenatal Exposure to BPA and Offspring Outcomes: The Diabesogenic Behavior of BPA. Dose Response 2015; 13:1559325815590395. [PMID: 26676280 PMCID: PMC4674176 DOI: 10.1177/1559325815590395] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are the most common metabolic disorders, with prevalence rates that are reaching epidemic proportions. Both are complex conditions affecting virtually all ages and with serious health consequences. The underlying cause of the problem is still puzzling, but both genetic and environmental factors including unhealthy diet, sedentary lifestyle, or the exposure to some environmental endocrine disrupting chemicals (EDCs) are thought to have a causal influence. In addition, the impact of early environment has recently emerged as an important factor responsible for the increased propensity to develop adult-onset metabolic disease. Suboptimal maternal nutrition during critical windows in fetal development is the most commonly studied factor affecting early programming of obesity and T2DM. In recent years, increasing experimental evidence shows that exposure to EDCs could also account for this phenomenon. In the present review, we will overview the most relevant findings that confirm the critical role of bisphenol-A, one of the most widespread EDCs, in the development of metabolic disorders.
Collapse
Affiliation(s)
- Paloma Alonso-Magdalena
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Iván Quesada
- Departamento de Biología Aplicada, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain ; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Ángel Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain ; Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| |
Collapse
|
46
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
47
|
Sargis RM. Metabolic disruption in context: Clinical avenues for synergistic perturbations in energy homeostasis by endocrine disrupting chemicals. ENDOCRINE DISRUPTORS (AUSTIN, TEX.) 2015; 3:e1080788. [PMID: 27011951 PMCID: PMC4801233 DOI: 10.1080/23273747.2015.1080788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.
Collapse
Affiliation(s)
- Robert M Sargis
- Committee on Molecular Metabolism and Nutrition; Kovler Diabetes Center; Section of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Chicago; Chicago, IL USA
| |
Collapse
|