1
|
Oyedokun PA, Akangbe MA, Akhigbe TM, Akhigbe RE. Regulatory Involvement of Kisspeptin in Energy Balance and Reproduction. Cell Biochem Biophys 2024:10.1007/s12013-024-01537-w. [PMID: 39327386 DOI: 10.1007/s12013-024-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The hypothalamic-pituitary-gonadal axis, which regulates steroidogenesis and germ cell formation, closely regulates the reproduction process. Nonetheless, other chemical mediators, such as kisspeptin, influence this axis. Kisspeptin is a hypothalamic neuropeptide that modulates the function of this axis and also plays a central role in energy balance. The present study reviews the impact and associated mechanisms of kisspeptin on male and female reproduction based on available evidence in the literature. Kisspeptin and its neurons exert anorexigenic activity, thus maintaining adequate energy balance for optimal reproductive function. Also, they stimulate the release of GnRH, resulting in the optimal performance of gonadal physiological processes viz. production of steroid sex hormones and germ cells. However, studies linking kisspeptin to reproduction are yet scanty. Hence, studies exploring the upstream and downstream signaling pathways activated by kisspeptin concerning reproduction in an attempt to better understand the associated mechanisms of the regulatory activities of kisspeptin on reproduction are recommended. In addition, potential factors that may modulate kisspeptin activities may be useful in the management of infertility and perhaps, in the development of contraceptives for those who do not intend to achieve conception.
Collapse
Affiliation(s)
- P A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria.
| |
Collapse
|
2
|
Shi H, Yan Z, Du H, Tang Y, Song K, Yang Q, Huang X, Wang P, Gao X, Yang J, Gun S. Regulatory Effects of the Kiss1 Gene in the Testis on Puberty and Reproduction in Hezuo and Landrance Boars. Int J Mol Sci 2023; 24:16700. [PMID: 38069021 PMCID: PMC10705963 DOI: 10.3390/ijms242316700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Kisspeptin, a neuropeptide encoded by the Kiss1 gene, combines with its receptor Kiss1R to regulate the onset of puberty and male fertility by the hypothalamic-pituitary-gonadal axis. However, little is known regarding the expression signatures and molecular functions of Kiss1 in the testis. H&E staining revealed that well-arranged spermatogonia, spermatocytes, round and elongated spermatids, and spermatozoa, were observed in 4-, 6-, and 8-month-old testes compared to 1- and 3-month-old testes of Hezuo pigs; however, these were not observed in Landrance until 6 months. The diameter, perimeter, and cross-sectional area of seminiferous tubules and the perimeter and area of the tubular lumen increased gradually with age in both pigs. Still, Hezuo pigs grew faster than Landrance. The cloning results suggested that the Hezuo pigs' Kiss1 CDS region is 417 bp in length, encodes 138 amino acids, and is highly conserved in the kisspeptin-10 region. qRT-PCR and Western blot indicated that the expression trends of Kiss1 mRNA and protein were essentially identical, with higher expression levels at post-pubertal stages. Immunohistochemistry demonstrated that the Kiss1 protein was mainly located in Leydig cells and post-pubertal spermatogenic cells, ranging from round spermatids to spermatozoa. These studies suggest that Kiss1 is an essential regulator in the onset of puberty and spermatogenesis of boars.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
3
|
Marino M, D’Auria R, Mele E, Pastorino GMG, Di Pietro P, D’Angelo S, Della Rocca N, Operto FF, Vecchione C, Fasano S, Pierantoni R, Viggiano A, Meccariello R, Santoro A. The interplay between kisspeptin and endocannabinoid systems modulates male hypothalamic and gonadic control of reproduction in vivo. Front Endocrinol (Lausanne) 2023; 14:1269334. [PMID: 37900144 PMCID: PMC10602894 DOI: 10.3389/fendo.2023.1269334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Raffaella D’Auria
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Grazia Maria Giovanna Pastorino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
- Unità Operativa Complessa (U.O.C.) Neuropsichiatria Infantile, Azienda Ospedaliero Universitaria San Giovanni di Dio Ruggi d’Aragona, “Scuola Medica Salernitana”, Salerno, Italy
| | - Paola Di Pietro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Stefania D’Angelo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Natalia Della Rocca
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | | | - Carmine Vecchione
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| |
Collapse
|
4
|
Di Giorgio NP, Bizzozzero-Hiriart M, Surkin PN, Repetto E, Bonaventura MM, Tabares FN, Bourguignon NS, Converti A, Gomez JMR, Bettler B, Lux-Lantos V. Deletion of GABAB receptors from Kiss1 cells affects glucose homeostasis without altering reproduction in male mice. Am J Physiol Endocrinol Metab 2023; 324:E314-E329. [PMID: 36652400 DOI: 10.1152/ajpendo.00129.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Kisspeptin and γ-amino butyric acid (GABA), synthesized in the central nervous system, are critical for reproduction. Both are also expressed in peripheral organs/tissues critical to metabolic control (liver/pancreas/adipose). Many kisspeptin neurons coexpress GABAB receptors (GABABR) and GABA controls kisspeptin expression and secretion. We developed a unique mouse lacking GABABR exclusively from kisspeptin cells/neurons (Kiss1-GABAB1KO) to evaluate the impact on metabolism/reproduction. We confirmed selective deletion of GABABR from Kiss1 cells in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPV/PeN; immunofluorescence and PCR) and arcuate nucleus (ARC), medial amygdala (MeA), pituitary, liver, and testes (PCR). Young Kiss1-GABAB1KO males were fertile, with normal LH and testosterone. Kiss1 expression was similar between genotypes in AVPV/PeN, ARC, MeA, bed nucleus of the stria terminalis (BNST), and peripheral organs (testis, liver, pituitary). Kiss1-GABAB1KO males presented higher fasted glycemia and insulin levels, an impaired response to a glucose overload, reduced insulin sensitivity, and marked insulin resistance. Interestingly, when Kiss1-GABAB1KO males got older (9 mo old) their body weight (BW) increased, in part due to an increase in white adipose tissue (WAT). Old Kiss1-GABAB1KO males showed higher fasted insulin, increased pancreatic insulin content, insulin resistance, and significantly decreased pancreatic kisspeptin levels. In sum, lack of GABABR specifically in Kiss1 cells severely impacts glucose homeostasis in male mice, reinforcing kisspeptin involvement in metabolic regulation. These alterations in glucose homeostasis worsened with aging. We highlight the impact of GABA through GABABR in the regulation of the pancreas kisspeptin system in contrast to liver kisspeptin that was not affected.NEW & NOTEWORTHY We developed a unique mouse lacking GABAB receptors specifically in Kiss1 cells to evaluate the impact on reproduction and metabolism. Knockout males showed a severe impact on glucose homeostasis, which worsened with aging. These results reinforce the proposed kisspeptin involvement in metabolic regulation and highlight the impact of GABA through GABABR in the regulation of the peripheral pancreas kisspeptin system.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Marianne Bizzozzero-Hiriart
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Pablo N Surkin
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Esteban Repetto
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María M Bonaventura
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia N Tabares
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nadia S Bourguignon
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Ayelén Converti
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Juan M Riaño Gomez
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Victoria Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Kermani T, Hosseini SF, Talaei-Khozani T, Aliabadi E. Effect of Pre-Incubation of Cryopreserved Sperm with either Kisspeptin or Glutathione to Mitigate Freeze-Thaw Damage. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:198-208. [PMID: 36895454 PMCID: PMC9989238 DOI: 10.30476/ijms.2022.92300.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 03/11/2023]
Abstract
Background Sperm cryopreservation reduces sperm quality. Kisspeptin (KP) has beneficial effects on sperm functions. This study compares the effect of KP and Glutathione (GSH) on mitigating the detrimental effects of the freeze-thaw cycle on sperm. Methods An experimental study was conducted in Birjand (Iran) during 2018-2020. Thirty normal swim-up semen samples were treated with Ham's F10 medium (negative control), 1 mM GSH (positive control), or KP (10 µM) for 30 min before freezing. The motility, acrosome reaction, capacitation, and DNA quality of the frozen-thawed sperms were assessed according to the WHO guidelines. Statistical analysis was performed using paired t test, one-way analysis of variance, and least significant difference. Results Pre-incubation with KP significantly increased the percentage of sperm motility (34.00±6.7, P=0.003) compared to the control (20.44±7.4) and GSH-treated (31.25±12.2) aliquots. The frequency of non-capacitated spermatozoa was significantly higher in the KP-treated group (98.73%) than in the control (96.46%) and GSH-treated (96.49%) aliquots (P<0.001). The percentage of acrosome-intact spermatozoa in the KP-treated group (77.44%) was significantly higher than the control (74.3%) and GSH-treated (74.54%) groups (P<0.001). The sperm frequency with normal histone in the KP-treated group (51.86%) and with normal protamine (65.39%) was significantly higher than the controls (P=0.001 and P=0.002, respectively). The percentage of TUNEL-positive sperm was significantly lower in the KP-treated group (9.09±2.71) than both GSH-treated (11.22±2.73) and control (11.31±2.2) groups (both P=0.002). Conclusion Pre-incubation with KP protects sperm motility and DNA integrity from the detrimental effect of the freeze-thaw cycle. KP is suitable as a pre-treatment to control sperm quality during freezing-thawing.
Collapse
Affiliation(s)
- Tayebeh Kermani
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Syedeh-Fatemeh Hosseini
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Aliabadi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Park JS, Cheon YP, Choi D, Lee SH. Expression of Kisspeptin in the Adult Hamster Testis. Dev Reprod 2022; 26:107-115. [PMID: 36285151 PMCID: PMC9578319 DOI: 10.12717/dr.2022.26.3.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
Kisspeptins, products of KISS1 gene, are ligands of the G-protein coupled receptor (GPR54), and the kisspeptin-GPR54 signaling has an important role as an upstream regulator of gonadotropin releasing hormone (GnRH) neurons. Interestingly, extrahypothalamic expressions of kisspeptin/GPR-54 in gonads have been found in primates and experimental rodents such as rats and mice. Hamsters, another potent experimental rodent, also have a kisspeptin-GPR54 system in their ovaries. The presence of testicular kisspeptin-GPR54 system, however, remains to be solved. The present study was undertaken to determine whether the kisspeptin is expressed in hamster testis. To do this, reverse transcription-polymerase chain reactions (RT-PCRs) and immunohistochemistry (IHC) were employed. After the nest PCR, two cDNA products (320 and 280 bp, respectively) were detected by 3% agarose gel electrophoresis, and sequencing analysis revealed that the 320 bp product was correctly amplified from hamster kisspeptin cDNA. Modest immunoreactive (IR) kisspeptins were detected in Leydig-interstitial cells, and the weak signals were detected in germ cells, mostly in round spermatids and residual bodies of elongated spermatids. In the present study, we found the kisspeptin expression in the testis of Syrian hamster. Further studies on the local role(s) of testicular kisspeptin are expected for a better understanding the physiology of hamster testis, including photoperiodic gonadal regression specifically occurred in hamster gonads.
Collapse
Affiliation(s)
- Jin-Soo Park
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea
| | - Yong-Pil Cheon
- Division of Developmental Biology and
Physiology, School of Biological Sciences and Chemistry, Sungshin
University, Seoul 02844, Korea
| | - Donchan Choi
- Department of Life Science, College of
Environmental Sciences, Yong-In University, Yongin
17092, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung
University, Seoul 03016, Korea,Corresponding author Sung-Ho
Lee, Department of Biotechnology, Sangmyung, University, Seoul 03016, Korea,
Tel: +82-2-2287-5139, Fax:
+82-2-2287-0070, E-mail:
| |
Collapse
|
7
|
Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne) 2022; 13:917464. [PMID: 36072937 PMCID: PMC9441556 DOI: 10.3389/fendo.2022.917464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int J Mol Sci 2022; 23:ijms23158206. [PMID: 35897782 PMCID: PMC9332211 DOI: 10.3390/ijms23158206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Carbamates are widely used and known around the world as pesticides in spite of also having medical applications. This class of chemicals is classified as acetylcholinesterase inhibitors, blocking acetylcholine hydrolyzation in a reversible manner. Their lack of species selectivity and their reported high toxicity can induce, upon exposure, adverse outcomes in male fertility that may lead to infertility. In addition, they are also considered endocrine-disrupting chemicals and can interfere with the hypothalamic–pituitary–testicular axis, essential for the normal function of the male reproductive system, thus being able to provoke male reproductive dysfunctions. Although the molecular mechanisms are not fully understood, various signaling pathways, such as those mediated by acetylcholine or kisspeptin, are affected by exposure to carbamates, thus compromising steroidogenesis and spermatogenesis. Over the last decades, several studies, both in vitro and in vivo, have reported a myriad of negative effects of carbamates on the male reproductive system. In this review, an up-to-date overview of the impact of carbamates on the male reproductive system is discussed, with an emphasis on the role of these compounds on acetylcholine regulation and the male endocrine system.
Collapse
|
9
|
Lavalle SN, Chou T, Hernandez J, Naing NCP, He MY, Tonsfeldt KJ, Mellon PL. Deletion of the homeodomain gene Six3 from kisspeptin neurons causes subfertility in female mice. Mol Cell Endocrinol 2022; 546:111577. [PMID: 35121076 PMCID: PMC8934285 DOI: 10.1016/j.mce.2022.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 01/27/2023]
Abstract
The homeodomain transcription factor SIX3 is a known regulator of eye, nose, and forebrain development, and has recently been implicated in female reproduction. Germline heterozygosity of SIX3 is sufficient to cause subfertility, but the cell populations that mediate this role are unknown. The neuropeptide kisspeptin is a critical component of the reproductive axis and plays roles in sexual maturation, ovulation, and the maintenance of gonadotropin secretion. We used Cre-Lox technology to remove Six3 specifically from kisspeptin neurons in mice to test the hypothesis that SIX3 in kisspeptin neurons is required for reproduction. We found that loss of Six3 in kisspeptin neurons causes subfertility and estrous cycle irregularities in females, but no effect in males. Overall, we find that SIX3 expression in kisspeptin neurons is an important contributor to female fertility.
Collapse
Affiliation(s)
- Shanna N Lavalle
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Teresa Chou
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jacqueline Hernandez
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Nay Chi P Naing
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Michelle Y He
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, And Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Abstract
The kisspeptin system includes the cleavage products Kiss1 precursor and kisspeptin receptor (Kiss1R). It was originally discovered and studied in cancer metastasis, but the identification of KISS1/KISS1R gene mutations causing hypogonadotropic hypogonadism (HH) revealed unexpected effects in reproduction. Nowadays, the kisspeptin system is the main central gatekeeper of the reproductive axis at puberty and adulthood, but it also has a widespread functional role in the control of endocrine functions. At the periphery, Kiss1 and Kiss1R are expressed in the testes, but the need for kisspeptin signaling for spermatogenesis and sperm quality is still unclear and debated. This brief manuscript summarizes the main findings on kisspeptin and male reproduction; upcoming data on sperm maturation are also discussed.
Collapse
|
11
|
Lee EB, Dilower I, Marsh CA, Wolfe MW, Masumi S, Upadhyaya S, Rumi MAK. Sexual Dimorphism in Kisspeptin Signaling. Cells 2022; 11:1146. [PMID: 35406710 PMCID: PMC8997554 DOI: 10.3390/cells11071146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin (KP) and kisspeptin receptor (KPR) are essential for the onset of puberty, development of gonads, and maintenance of gonadal function in both males and females. Hypothalamic KPs and KPR display a high degree of sexual dimorphism in expression and function. KPs act on KPR in gonadotropin releasing hormone (GnRH) neurons and induce distinct patterns of GnRH secretion in males and females. GnRH acts on the anterior pituitary to secrete gonadotropins, which are required for steroidogenesis and gametogenesis in testes and ovaries. Gonadal steroid hormones in turn regulate the KP neurons. Gonadal hormones inhibit the KP neurons within the arcuate nucleus and generate pulsatile GnRH mediated gonadotropin (GPN) secretion in both sexes. However, the numbers of KP neurons in the anteroventral periventricular nucleus and preoptic area are greater in females, which release a large amount of KPs in response to a high estrogen level and induce the preovulatory GPN surge. In addition to the hypothalamus, KPs and KPR are also expressed in various extrahypothalamic tissues including the liver, pancreas, fat, and gonads. There is a remarkable difference in circulating KP levels between males and females. An increased level of KPs in females can be linked to increased numbers of KP neurons in female hypothalamus and more KP production in the ovaries and adipose tissues. Although the sexually dimorphic features are well characterized for hypothalamic KPs, very little is known about the extrahypothalamic KPs. This review article summarizes current knowledge regarding the sexual dimorphism in hypothalamic as well as extrahypothalamic KP and KPR system in primates and rodents.
Collapse
Affiliation(s)
- Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Courtney A. Marsh
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.A.M.); (M.W.W.)
| | - Saeed Masumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Sameer Upadhyaya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (I.D.); (S.M.); (S.U.)
| |
Collapse
|
12
|
Mele E, D’Auria R, Scafuro M, Marino M, Fasano S, Viggiano A, Pierantoni R, Santoro A, Meccariello R. Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa Transit in the Epididymis. Genes (Basel) 2022; 13:genes13020295. [PMID: 35205340 PMCID: PMC8871750 DOI: 10.3390/genes13020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
The hypothalamus–pituitary–testis axis controls the production of spermatozoa, and the kisspeptin system, comprising Kiss1 and Kiss1 receptor (Kiss1R), is the main central gatekeeper. The activity of the kisspeptin system also occurs in testis and spermatozoa, but currently the need of peripheral kisspeptin to produce gametes is not fully understood. Hence, we characterized kisspeptin system in rat spermatozoa and epididymis caput and cauda and analyzed the possible presence of Kiss1 in the epididymal fluid. The presence of Kiss1 and Kiss1R in spermatozoa collected from epididymis caput and cauda was evaluated by Western blot; significant high Kiss1 levels in the caput (p < 0.001 vs. cauda) and constant levels of Kiss1R proteins were observed. Immunofluorescence analysis revealed that the localization of Kiss1R in sperm head shifts from the posterior region in the epididymis caput to perforatorium in the epididymis cauda. In spermatozoa-free epididymis, Western blot revealed higher expression of Kiss1 and Kiss1R in caput (p < 0.05 vs. cauda). Moreover, immunohistochemistry revealed that Kiss1 and Kiss1R proteins were mainly localized in the secretory epithelial cell types and in contractile myoid cells, respectively. Finally, both dot blot and Elisa revealed the presence of Kiss1 in the epididymal fluid collected from epididymis cauda and caput, indicating that rat epididymis and spermatozoa possess a complete kisspeptin system. In conclusion, we reported for the first time in rodents Kiss1R trafficking in spermatozoa during the epididymis transit and Kiss1 measure in the epididymal fluid, thus suggesting a possible role for the system in spermatozoa maturation and storage within the epididymis.
Collapse
Affiliation(s)
- Elena Mele
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy;
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy;
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinpoli 16, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinpoli 16, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
- Correspondence: (A.S.); (R.M.)
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy;
- Correspondence: (A.S.); (R.M.)
| |
Collapse
|
13
|
Xie Q, Kang Y, Zhang C, Xie Y, Wang C, Liu J, Yu C, Zhao H, Huang D. The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction. Front Endocrinol (Lausanne) 2022; 13:925206. [PMID: 35837314 PMCID: PMC9273750 DOI: 10.3389/fendo.2022.925206] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The discovery of kisspeptin as a critical central regulatory factor of GnRH release has given people a novel understanding of the neuroendocrine regulation in human reproduction. Kisspeptin activates the signaling pathway by binding to its receptor kisspeptin receptor (KISS1R) to promote GnRH secretion, thereby regulating the hypothalamic-pituitary-gonadal axis (HPG) axis. Recent studies have shown that kisspeptin neurons located in arcuate nucleus (ARC) co-express neurokinin B (NKB) and dynorphin (Dyn). Such neurons are called KNDy neurons. KNDy neurons participate in the positive and negative feedback of estrogen to GnRH secretion. In addition, kisspeptin is a key factor in the initiation of puberty, and also regulates the processes of female follicle development, oocyte maturation, and ovulation through the HPG axis. In male reproduction, kisspeptin also plays an important role, getting involved in the regulation of Leydig cells, spermatogenesis, sperm functions and reproductive behaviors. Mutations in the KISS1 gene or disorders of the kisspeptin/KISS1R system may lead to clinical symptoms such as idiopathic hypogonadotropic hypogonadism (iHH), central precocious puberty (CPP) and female infertility. Understanding the influence of kisspeptin on the reproductive axis and related mechanisms will help the future application of kisspeptin in disease diagnosis and treatment. In this review, we critically appraise the role of kisspeptin in the HPG axis, including its signaling pathways, negative and positive feedback mechanisms, and its control on female and male reproduction.
Collapse
Affiliation(s)
- Qinying Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Xie
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuxiong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Dana P, Hayati Roodbari N, Yaghmaei P, Hajebrahimi Z. Effects of empagliflozin on the expression of kisspeptin gene and reproductive system function in streptozotocin-induced diabetic male rats. Front Endocrinol (Lausanne) 2022; 13:1059942. [PMID: 36479221 PMCID: PMC9719967 DOI: 10.3389/fendo.2022.1059942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
One of the main health concerns of diabetes is testicular dysfunction and impairment of reproductive function and sperm quality which can cause male infertility. kisspeptin is a hypothalamic neuropeptide hormone that is involved in the regulation of energy metabolism, gonadotrophin-releasing hormone (GnRH), and reproductive function. In the present study, the therapeutic effects of empagliflozin (sodium-glucose co-transporter 2 inhibitors) on kisspeptin expression along with reproductive function were investigated in diabetic male Wistar rats. Diabetes was induced by a single dose injection of 60 mg/kg streptozotocin. Empagliflozin in doses of 10 and 25 mg/kg body weight was used for 8 weeks. Serum samples, testis, epididymis, and pancreas tissues were collected at the end of the experiments. Lipid profiles, oxidative stress markers, blood hormones, expression of kisspeptin along with pathological alterations of the testis were assayed using real-time PCR, biochemical, and histological technics. Data have shown that empagliflozin improved hyperglycemia, reproductive impairment, oxidative stress condition, and histopathological alterations of pancreatic and testis tissues in diabetic animals. It improved the serum levels of sex hormones, insulin, leptin, and the expression of kisspeptin in the testes tissues. Spermatogenesis is also improved in treated animals. Data indicated that the administration of empagliflozin can ameliorate symptoms of diabetes. It probably has promising antidiabetic potential and may improve the male infertility of diabetic subjects. To our knowledge, this is the first experimental evidence for the potential impact of empagliflozin on kisspeptin expression in diabetic male rats.
Collapse
Affiliation(s)
- Parisa Dana
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- *Correspondence: Nasim Hayati Roodbari,
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Hajebrahimi
- A&S Research Institute, Ministry of Science Research and Technology, Tehran, Iran
| |
Collapse
|
15
|
Santos LC, Dos Anjos Cordeiro JM, Santana LDS, Barbosa EM, Santos BR, da Silva TQM, de Souza SS, Corrêa JMX, Lavor MSL, da Silva EB, Silva JF. Expression profile of the Kisspeptin/Kiss1r system and angiogenic and immunological mediators in the ovary of cyclic and pregnant cats. Domest Anim Endocrinol 2022; 78:106650. [PMID: 34399365 DOI: 10.1016/j.domaniend.2021.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/03/2022]
Abstract
The Kisspeptin/Kiss1r system has been studied in mammalian ovaries. However, there are still no studies on the modulation of this system and its relationship with angiogenic and immunological mediators in the ovary of domestic cats, especially during pregnancy. We evaluated the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators during folliculogenesis, luteogenesis and luteal regression of cyclic and pregnant cats. The ovary exhibited moderate to intense expression for Kiss1, VEGF, Flk-1, INFγ and MIF in oocytes and the follicular wall, while Kiss1r expression was low in granulosa cells. In these cells, there was also a greater expression of Kiss1, INFγ and MIF, mainly in secondary follicles, while tertiary and preovulatory follicles exhibited greater expression of VEGF and Flk-1 in this layer. In luteogenesis, Kiss1 immunostaining was higher in mature corpora lutea (MCL) of pregnant cats compared to vacuolated CL (VCL) and corpus albicans (CA). Pregnancy also increased the luteal gene expression of Kiss1 as well as Kiss1, Kiss1r, Flk-1, and MIF immunostaining in MCL, while reduced the area of VEGF expression in VCL and luteal mRNA expression of Mif when compared to non-pregnant animals. In addition, positive gene correlation between Kiss1r and Mif was observed in the CL. Kiss1, Kiss1r, Vegf and Mif expression were lower in the CA of cats in anestrus. These findings reveal that the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators, in the ovary of domestic cats, depend on the follicular and luteal stage, and the luteal expression of these mediators is influenced by pregnancy.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | | | - Larissa da Silva Santana
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Thayná Queiroz Menezes da Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Mário Sergio Lima Lavor
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Elisângela Barboza da Silva
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil.
| |
Collapse
|
16
|
Fatima I, Qureshi IZ. Intraperitoneal kisspeptin-10 administration ameliorates sodium arsenite-induced reproductive toxicity in adult male mice. Andrologia 2021; 54:e14347. [PMID: 34897760 DOI: 10.1111/and.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022] Open
Abstract
The current study investigated the protective ameliorative effect of intraperitoneally administered kisspeptin-10 (50 nmol/day) against reproductive toxicity in adult male mice challenged with 35 days of exposure to sodium arsenite in drinking water. Mice were divided into tap water control, sodium arsenite-alone (4 ppm and 10 ppm), kisspeptin-alone (intermittent and continuous) and combined (sodium arsenite +kisspeptin-10 intermittent and continuous) treatment groups. Results revealed protective effect of both intermittent and continuous kisspeptin doses on reproductive organs against sodium arsenite-induced toxicity. This was indicated by an increase (p < 0.001) in the activity of antioxidant enzymes and a decrease (p < 0.001) in the levels of oxidative stress biomarkers. Concomitant significant increase was noticeable in the relative organ weight (p < 0.01), and serum testosterone and seminal fructose (p < 0.001), and a significant improvement in sperm parameters was also observed. A significant downregulation of lactate dehydrogenase concentration demonstrated further the protective effect of kisspeptin against tissue damage. Histologically, both treatment regimens of kisspeptin combined with sodium arsenite exposure prevented massive germ cell loss and tissue damage, a condition prominent in sodium arsenite-alone-treated mice. The study demonstrates for the first time kisspeptin's potential to mitigate the biochemical and histotoxic effects of arsenic on male reproductive system.
Collapse
Affiliation(s)
- Iffat Fatima
- Department of Zoology (Animal Sciences), Quaid-i-Azam University, Islamabad, Pakistan
| | - Irfan Zia Qureshi
- Department of Zoology (Animal Sciences), Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
17
|
Kisspeptin as autocrine/paracrine regulator of human ovarian cell functions: Possible interrelationships with FSH and its receptor. Reprod Biol 2021; 22:100580. [PMID: 34844165 DOI: 10.1016/j.repbio.2021.100580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 11/23/2022]
Abstract
The present study aims to examine the role of kisspeptin (KP), FSH, and its receptor (FSHR), and their interrelationships in the control of basic human ovarian granulosa cells functions. We investigated: (1) the ability of granulosa cells to produce KP and FSHR, (2) the role of KP in the control of ovarian functions, and (3) the ability of KP to affect FSHR and to modify the FSH action on ovarian functions. The effects of KP alone (0, 10 and 100 ng/mL); or of KP (10 and 100 ng/mL) in combination with FSH (10 ng/mL) on cultured human granulosa cells were assessed. Viability, markers of proliferation (PCNA and cyclin B1) and apoptosis (bax and caspase 3), as well as accumulation of KP, FSHR, and steroid hormones, IGF-I, oxytocin (OT), and prostaglandin E2 (PGE2) release were analyzed by the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. KP given at a low dose (10 ng/mL) stimulated viability, proliferation, inhibited apoptosis, promoted the release of progesterone (P4), estradiol (E2), IGF-I, OT, and PGE2, the accumulation of FSHR, but not testosterone (T) release. KP given at a high dose (100 ng/mL) had the opposite, inhibitory effect. FSH stimulated cell viability, proliferation and inhibited apoptosis, promoted P4, T, E2, IGF-I, and OT, but not PGE2 release. Furthermore, KP at a low dose promoted the stimulatory effect of FSH on viability, proliferation, P4, E2, and OT release, promoted its inhibitory action on apoptosis, but did not modify its action on T, IGF-I, and PGE2 output. KP at a high dose prevented and inverted FSH action. These results suggest an intra-ovarian production and a functional interrelationship between KP and FSH/FSHR in direct regulation of basic ovarian cell functions (viability, proliferation, apoptosis, and hormones release). The capability of KP to stimulate FSHR, the ability of FSH to promote ovarian functions, as well as the similarity of KP (10 ng/mL) and FSH action on granulosa cells' viability, proliferation, apoptosis, steroid hormones, IGF-I, OT, and PGE2 release, suggest that FSH influence these cells could be mediated by KP. Moreover, the capability of KP (100 ng/mL) to decrease FSHR accumulation, basal and FSH-induced ovarian parameters, suggest that KP can suppress some ovarian granulosa cell functions via down-regulation of FSHR. These observations propose the existence of the FSH-KP axis up-regulating human ovarian cell functions.
Collapse
|
18
|
Gloria A, Contri A, Mele E, Fasano S, Pierantoni R, Meccariello R. Kisspeptin Receptor on the Sperm Surface Reflects Epididymal Maturation in the Dog. Int J Mol Sci 2021; 22:ijms221810120. [PMID: 34576283 PMCID: PMC8466692 DOI: 10.3390/ijms221810120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Alongside the well-known central modulatory role, the Kisspeptin system, comprising Kiss1, its cleavage products (Kisspeptins), and Kisspeptin receptor (Kiss1R), was found to regulate gonadal functions in vertebrates; however, its functional role in the male gamete and its localization during maturation have been poorly understood. The present study analyzed Kisspeptin system in dog testis and spermatozoa recovered from different segments of the epididymis, with focus on Kiss1R on sperm surface alongside the maturation during epididymal transit, demonstrated by modification in sperm kinetic, morphology, and protamination. The proteins Kiss1 and Kiss1R were detected in dog testis. The receptor Kiss1R only was detected in total protein extracts from epididymis spermatozoa, whereas dot blot revealed Kiss1 immunoreactivity in the epidydimal fluid. An increase of the Kiss1R protein on sperm surface along the length of the epididymis, with spermatozoa in the tail showing plasma membrane integrity and Kiss1R protein (p < 0.05 vs. epididymis head and body) was observed by flow cytometry and further confirmed by epifluorescence microscopy and Western blot carried on sperm membrane preparations. In parallel, during the transit in the epididymis spermatozoa significantly modified their ability to move and the pattern of motility; a progressive increase in protaminization also occurred. In conclusion, Kisspeptin system was detected in dog testis and spermatozoa. Kiss1R trafficking toward plasma membrane along the length of the epididymis and Kiss1 in epididymal fluid suggested a new functional role of the Kisspeptin system in sperm maturation and storage.
Collapse
Affiliation(s)
- Alessia Gloria
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy;
| | - Alberto Contri
- Faculty of Biosciences and Technologies for Agriculture Food and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
- Correspondence: (A.C.); (R.M.)
| | - Elena Mele
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, 80133 Naples, Italy;
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, 80133 Naples, Italy;
- Correspondence: (A.C.); (R.M.)
| |
Collapse
|
19
|
Seasonal expression and distribution of kisspeptin1 (kiss1) in the ovary and testis of freshwater catfish, Clarias batrachus: A putative role in steroidogenesis. Acta Histochem 2021; 123:151766. [PMID: 34384940 DOI: 10.1016/j.acthis.2021.151766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
The central role of kisspeptin (kiss) in mammalian reproduction is well established; however, its intra-gonadal role is poorly addressed. Moreover, studies investigating intra-gonadal role of kiss in fish reproduction are scanty, contradictory and inconclusive. The expression of kiss1 mRNA has been detected in the fish brain, and functionally attributed to the regulation of reproduction, feeding and behavior. The kiss1 mRNA has also been demonstrated in tissues other than the brain in some studies, but its cellular distribution and role at the tissue level have not been adequately addressed in fish. Therefore, an attempt was made in the present study to localize kiss1 in gonadal cells of the freshwater catfish, Clarias batrachus. This study reports the presence of kiss1 in the theca cells and granulosa cells of the ovarian oocytes and interstitial cells in the testis of the catfish. The role of kiss1 in the ovary and testis of the catfish was also investigated using kiss1 receptor (kiss1r) antagonist (p234). The p234 treatment decreased the production of 17β-estradiol in ovary and testosterone in the testis by lowering the activities of 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase under both, in vivo as well as in vitro conditions. The p234 treatment also arrested the progression of oogenesis, as evident from the low number of advancing/advanced oocytes in the treated ovary in comparison to the control ovary. It also reduced the area and perimeter of the seminiferous tubules in the treated catfish testis. Thus, our findings suggest that kiss is involved in the regulation of gonadal steroidogenesis, independent of known endocrine/ autocrine/ paracine regulators, and thereby it accelerates gametogenic processes in the freshwater catfish.
Collapse
|
20
|
Lavalle SN, Chou T, Hernandez J, Naing NCP, Tonsfeldt KJ, Hoffmann HM, Mellon PL. Kiss1 is differentially regulated in male and female mice by the homeodomain transcription factor VAX1. Mol Cell Endocrinol 2021; 534:111358. [PMID: 34098016 PMCID: PMC8319105 DOI: 10.1016/j.mce.2021.111358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Regulation of Kiss1 transcription is crucial to the development and function of the reproductive axis. The homeodomain transcription factor, ventral anterior homeobox 1 (VAX1), has been implicated as a potential regulator of Kiss1 transcription. However, it is unknown whether VAX1 directly mediates transcription within kisspeptin neurons or works indirectly by acting upstream of kisspeptin neuron populations. This study tested the hypothesis that VAX1 within kisspeptin neurons regulates Kiss1 gene expression. We found that VAX1 acts as a repressor of Kiss1 in vitro and within the male arcuate nucleus in vivo. In female mice, we found that the loss of VAX1 caused a reduction in Kiss1 expression and Kiss1-containing neurons in the anteroventral periventricular nucleus at the time of the preovulatory luteinizing hormone surge, but was compensated by an increase in Kiss1-cFos colocalization. Despite changes in Kiss1 transcription, gonadotropin levels were unaffected and there were no impairments to fertility.
Collapse
Affiliation(s)
- Shanna N Lavalle
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Teresa Chou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jacqueline Hernandez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nay Chi P Naing
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Chiang CM, Chiu HY, Jong DS, Wu LS, Lee YJ, Chiu CH. Role of the kisspeptin/KISS1 receptor system in the testicular development of mice. J Chin Med Assoc 2021; 84:203-211. [PMID: 33543882 DOI: 10.1097/jcma.0000000000000443f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Kisspeptin and its receptor KISS1R have been found to be essential regulators of reproductive function. Previous data have revealed the presence of Kiss1 and Kiss1r mRNAs in the hypothalamus and the testis of humans and rodents. However, the precise location and possible physiological role of the kisspeptin/KISS1R system in the testis remain ambiguous. METHODS We first produced an anti-KISS1R immunoglobulin Y antibody for KISS1R identification. To detect the exact sites of KISS1R and kisspeptin expression in the testis, we conducted immunohistochemistry assays on sections of testes. We used real-time polymerase chain reactions to identify Kiss1r in mice and to determine the expression levels of testicular genes. Finally, to verify the upstream regulation on the Kisspeptin/KISS1 receptor system, we treated primary mouse Leydig cells and MA-10 cells with luteinizing hormone (LH) and Br-cAMP, respectively, and examined Kiss1 and Kiss1r mRNA expression. RESULTS Immunohistochemistry assays revealed that kisspeptin was expressed in Leydig cells and KISS1R was localized in the seminiferous tubules. With real-time polymerase chain reactions, we found Kiss1r mRNA was constitutively expressed in the mouse testis from birth until the postnatal fourth week. Furthermore, mRNA expression of Kiss1 was synchronized with that of Insl3 and Cyp19a. However, the expression of the LH receptor-encoding gene increased 1 week earlier than did Kiss1 expression. This indicated that the kisspeptin/KISS1R system in the testis may be controlled by LH and cAMP signaling pathways. Finally, we confirmed that Kiss1 mRNA expression was increased in both LH-treated primary Leydig cells and Br-cAMP-treated MA-10 cells (p < 0.05). On the other hand, cotreatment of both cell lines with Br-cAMP and a protein kinase A inhibitor RP-cAMP significantly suppressed 50% of Br-cAMP-induced Kiss1 expression (p < 0.05). CONCLUSION We discovered that Kiss1 expression in mouse Leydig cells was induced by LH through the cAMP/PKA pathway. Based on the presence of kisspeptin receptors on spermatids, we inferred that kisspeptin- and development-related factors have synergistic effects on spermatogenesis. Nevertheless, more studies are required to elaborate the role of the kisspeptin/KISS1R system in testicular development.
Collapse
Affiliation(s)
- Chi-Ming Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Orthopedics Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
- Professional Master Program for Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsin-Yi Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Medical Education, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Education and Humanities in Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Leang-Shin Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Yue-Jia Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
22
|
Meccariello R, Fasano S, Pierantoni R. Kisspeptins, new local modulators of male reproduction: A comparative overview. Gen Comp Endocrinol 2020; 299:113618. [PMID: 32950583 DOI: 10.1016/j.ygcen.2020.113618] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022]
Abstract
Spermatogenesis is a complex process that leads to the production of male gametes within the testis through the coordination of mitotic, meiotic and differentiation events, under a deep control of endocrine, paracrine and autocrine modulators along the Hypothalamus-pituitary-gonad (HPG) axis. The kisspeptin system plays a fundamental role along the HPG axis as it is the main positive modulator upstream of the hypothalamic neurons that secrete the Gonadotropin Releasing Hormone (GnRH), the decapeptide that supports pituitary gonadotropins and the production of gonadal sex steroid. Currently, kisspeptins and their receptor, KISS1R, have a recognized activity in the central control of puberty onset, sex maturation, reproduction and sex-steroid feedback mechanisms in both animal models and human. However, kisspeptin signaling has been widely reported in peripheral tissues, particularly in the testis of mammalian and non-mammalian vertebrates, with functions related to Leydig cells physiology and steroid biosynthesis, spermatogenesis progression and spermatozoa functions, but its mandatory role within the testis is still a matter of discussion. This review provides a summary of the main intratesticular effects of kisspeptin in vertebrates, via a comparative approach. Particular emphasis was devoted to data from the anuran amphibian Pelophylax esculentus, the first animal model in which the direct intratesticular activity of kisspeptin was reported.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, Napoli, Italy.
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania "L. Vanvitelli", Napoli, Italy
| |
Collapse
|
23
|
D’Occhio MJ, Campanile G, Baruselli PS. Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: a review. Biol Reprod 2020; 103:1157-1170. [PMID: 32776148 PMCID: PMC7711897 DOI: 10.1093/biolre/ioaa135] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
24
|
Goto T, Hirabayashi M, Watanabe Y, Sanbo M, Tomita K, Inoue N, Tsukamura H, Uenoyama Y. Testosterone Supplementation Rescues Spermatogenesis and In Vitro Fertilizing Ability of Sperm in Kiss1 Knockout Mice. Endocrinology 2020; 161:5854806. [PMID: 32514526 DOI: 10.1210/endocr/bqaa092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/04/2020] [Indexed: 01/26/2023]
Abstract
Restoration of spermatogenesis and fertility is a major issue to be solved in male mammals with hypogonadotropic hypogonadism. Kiss1 knockout (KO) male mice are postulated to be a suitable animal model to investigate if hormonal replacement rescues spermatogenesis in mammals with this severe reproductive hormone deficiency, because KO mice replicate the hypothalamic disorder causing hypogonadism. The present study investigated whether testosterone supplementation was able to restore spermatogenesis and in vitro fertilization ability in Kiss1 KO mice. To this end, spermatogenesis, in vitro fertilization ability of Kiss1 KO sperm, and preimplantation development of wild-type embryos inseminated with Kiss1 KO sperm, were examined. The newly generated Kiss1 KO male mice showed infertility with cryptorchidism. Subcutaneous testosterone supplementation for 6 weeks restored plasma and intratesticular testosterone levels, elicited testicular descent, and induced complete spermatogenesis from spermatocytes to elongated spermatids in the testis, resulting in an increase in epididymal sperm number in testosterone-supplemented Kiss1 KO male mice. Epididymal sperm derived from the testosterone-supplemented Kiss1 KO mice showed normal in vitro fertilization ability, and the fertilized eggs showed normal preimplantation development, while the males failed to impregnate females. These results suggest that the failure of spermatogenesis in Kiss1 KO mice is mainly due to a lack of testosterone production, and that Kiss1 KO sperm are capable of fertilizing eggs if the animals receive the appropriate testosterone supplementation without local kisspeptin signaling in the testis and epididymis. Thus, testosterone supplementation would restore spermatogenesis of male mammals showing hypogonadotropic hypogonadism with genetic inactivation of the KISS1/Kiss1 gene.
Collapse
Affiliation(s)
- Teppei Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Koichi Tomita
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
25
|
Han Y, Peng X, Si W, Liu G, Han Y, Jiang X, Na R, Yang L, Wu J, E G, Zeng Y, Zhao Y, Huang Y. Local expressions and function of Kiss1/GPR54 in goats' testes. Gene 2020; 738:144488. [DOI: 10.1016/j.gene.2020.144488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
|
26
|
Han Y, Zhao Y, Si W, Jiang X, Wu J, Na R, Han Y, Li K, Yang L, E G, Zeng Y, Zhao Y, Huang Y. Temporal expression of the KISS1/GPR54 system in goats' testes and epididymides and its spatial expression in pubertal goats. Theriogenology 2020; 152:114-121. [PMID: 32388039 DOI: 10.1016/j.theriogenology.2020.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Kisspeptin, encoded by the KISS1 gene, and its receptor GPR54 are essential in puberty onset and male fertility due to their central regulatory roles. However, the roles of KISS1/GPR54 in peripheral tissues remain unclear. This study aimed to investigate the temporal expression patterns of KISS1/GPR54 in goat testes and epididymides and its spatial expression patterns in pubertal goats. Immunohistochemical analysis revealed that kisspeptin/GPR54 were localized in Leydig, Sertoli, and germ cells of pubertal goats' testis, as well as in principal and basal cells of the epididymis. RT-PCR revealed a marked variation in the KISS1/GPR54 expressions in the testes and epididymides from the age of first week to adulthood. KISS1 and GPR54 mRNA levels in testes decreased from the age of first week to two months and then increased from two months to puberty and adulthood. The KISS1 and GPR54 mRNA levels in Leydig cells decreased from the age of one week to two months and increased from two months to puberty, and then decreased from puberty to adulthood. Only GPR54 mRNA levels in the epididymides increased from the age of one week to two months and puberty, and then decreased from puberty to adulthood. RT-PCR analysis showed the different spatial expression patterns of KISS1/GPR54 in pubertal goat tissues. The KISS1 mRNA level was high in the hypothalamus, moderate in pancreas, liver, epididymis and testis; and low in the other tissues. The GPR54 expression was high in the pancreas and testis; moderate in pituitary, hypothalamus and mesenteric lymph node; and low in the other tissues. In conclusion, the KISS1/GPR54 system possessed distinct temporal expression profiles in goats' testes and epididymides, as well as different spatial expression patterns in pubertal goat tissues, which implied the possible local role of this system in goats' testes, epididymides, and other peripheral tissues.
Collapse
Affiliation(s)
- Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yuhetian Zhao
- Institute of Animal Science of Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Weijiang Si
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Xunping Jiang
- College of Animal Science and Technology, Huazhong Agricultural University, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Jiayuan Wu
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Risu Na
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yuqing Han
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Kai Li
- Institute of Animal Science of Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Chongqing, 400715, China.
| |
Collapse
|
27
|
Sharma A, Thaventhiran T, Minhas S, Dhillo WS, Jayasena CN. Kisspeptin and Testicular Function-Is it Necessary? Int J Mol Sci 2020; 21:ijms21082958. [PMID: 32331420 PMCID: PMC7216047 DOI: 10.3390/ijms21082958] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023] Open
Abstract
The role of kisspeptin in stimulating hypothalamic GnRH is undisputed. However, the role of kisspeptin signaling in testicular function is less clear. The testes are essential for male reproduction through their functions of spermatogenesis and steroidogenesis. Our review focused on the current literature investigating the distribution, regulation and effects of kisspeptin and its receptor (KISS1/KISS1R) within the testes of species studied to date. There is substantial evidence of localised KISS1/KISS1R expression and peptide distribution in the testes. However, variability is observed in the testicular cell types expressing KISS1/KISS1R. Evidence is presented for modulation of steroidogenesis and sperm function by kisspeptin signaling. However, the physiological importance of such effects, and whether these are paracrine or endocrine manifestations, remain unclear.
Collapse
Affiliation(s)
- Aditi Sharma
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
| | - Thilipan Thaventhiran
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
| | - Suks Minhas
- Department of Urology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, Hammersmith, London W6 8RF, UK;
| | - Waljit S. Dhillo
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
| | - Channa N. Jayasena
- Section of Investigative Medicine, Imperial College, 6th Floor, Commonwealth Building, Hammersmith Hospital, 150 Du Cane Road, London W12 0NN, UK; (A.S.); (T.T.); (W.S.D.)
- Correspondence:
| |
Collapse
|
28
|
Huang C, Wang HY, Wang ME, Hsu MC, Wu YHS, Jiang YF, Wu LS, Jong DS, Chiu CH. Kisspeptin-Activated Autophagy Independently Suppresses Non-Glucose-Stimulated Insulin Secretion from Pancreatic β-Cells. Sci Rep 2019; 9:17451. [PMID: 31767891 PMCID: PMC6877614 DOI: 10.1038/s41598-019-53826-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023] Open
Abstract
Previous studies have demonstrated the important role of kisspeptin in impaired glucose-stimulated insulin secretion (GSIS). In addition, it was reported that the activation of autophagy in pancreatic β-cells decreases insulin secretion by selectively degrading insulin granules. However, it is currently unknown whether kisspeptin suppresses GSIS in β-cells by activating autophagy. To investigate the involvement of autophagy in kisspeptin-regulated insulin secretion, we overexpressed Kiss1 in NIT-1 cells to mimic the long-term exposure of pancreatic β-cells to kisspeptin during type 2 diabetes (T2D). Interestingly, our data showed that although kisspeptin potently decreases the intracellular proinsulin and insulin ((pro)insulin) content and insulin secretion of NIT-1 cells, autophagy inhibition using bafilomycin A1 and Atg5 siRNAs only rescues basal insulin secretion, not kisspeptin-impaired GSIS. We also generated a novel in vivo model to investigate the long-term exposure of kisspeptin by osmotic pump. The in vivo data demonstrated that kisspeptin lowers GSIS and (pro)insulin levels and also activated pancreatic autophagy in mice. Collectively, our data demonstrated that kisspeptin suppresses both GSIS and non-glucose-stimulated insulin secretion of pancreatic β-cells, but only non-glucose-stimulated insulin secretion depends on activated autophagic degradation of (pro)insulin. Our study provides novel insights for the development of impaired insulin secretion during T2D progression.
Collapse
Affiliation(s)
- Chien Huang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao-Yi Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Mu-En Wang
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Pathology, Duke University School of Medicine, Duke Cancer Institute, Duke University, Durham, NC, 27514, USA
| | - Meng-Chieh Hsu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hsieng Samuel Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Leang-Shin Wu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - De-Shien Jong
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsien Chiu
- Laboratory of Animal Physiology, Department of Animal Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
29
|
Abou Khalil NS, Mahmoud GB. Reproductive, antioxidant and metabolic responses of Ossimi rams to kisspeptin. Theriogenology 2019; 142:414-420. [PMID: 31711707 DOI: 10.1016/j.theriogenology.2019.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the potential reproductive, antioxidant and metabolic effects of kisspeptin-10 (KP-10) on Ossimi rams. Twelve Ossimi rams (1.5-2 years old) were divided randomly into two groups (six per group). The first one served as a control group, while the second one served as a treated group. Rams of the treated group were injected once weekly with KP-10 (5 μg/kg body weight) for one month. There were no significant differences in all measured parameters between rams of control group at pre-treatment period and those at post-treatment period. However, most examined parameters in the same rams in the treated group were affected by injection of KP-10 when comparing pre-treatment values in treated group with its post-treatment values. At the pre-treatment period, there were no significant differences between the treated and control groups regarding semen pH, mass motility, sperm concentration/mL, live and dead spermatozoa, total sperm abnormality, testosterone and oxidative stress and metabolic parameters. However, all semen characteristics were significantly improved in the treated group compared with the control group at the post-treatment period and in the treated group at the post-treatment period compared with that at the pre-treatment period. In addition, scrotal circumference, ejaculate volume and total sperm concentration/ejaculate showed higher significant improvements when comparing the treated group with the control one at the post-treatment period than when comparing the two groups at the pre-treatment period and also when comparing the treated group at the post-treatment period with that at the pre-treatment period. Serum testosterone, total antioxidant capacity, lipid peroxides, nitric oxide, total protein, albumin, glucose and high density lipoprotein-cholesterol levels significantly increased when comparing the treated group with the control one at the post-treatment period and also when comparing the treated group at the post-treatment period with that at the pre-treatment period. In conclusion, KP-10 led to potential improvement in the reproductive efficacy and metabolic capacity of Ossimi ram.
Collapse
Affiliation(s)
- Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Gamal B Mahmoud
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
30
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
31
|
Feng T, Bai JH, Xu XL, Liu Y. Kisspeptin and its Effect on Mammalian Spermatogensis. Curr Drug Metab 2019; 20:9-14. [PMID: 29380696 DOI: 10.2174/1389200219666180129112406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Kisspeptin and its receptor, GPR54, are regarded as key regulators of and catalysts for male puberty onset, and also fundamental gatekeepers of spermatogenesis in mammals. Consequently, the loss function of kisspeptin or GPR54 leads to a symptom of Hypogonadotropic Hypogonadism (HH) in human and HH accompanied by lower gonadotrophic hormone levels, smaller testes, impaired spermatogenesis and abnormal sexual maturation in mice. Besides its well-recognized functions in hypothalamus before and during puberty, accumulating data strongly support kisspeptin production in testis, and participation in somatic and germ cell development and sperm functions as well. This review aims to summarize recent findings regarding kisspeptin activity in the testes and sperm function. METHODS We undertook a keyword search of peer-reviewed research literature including data from in vivo and in vitro studies in humans and genetically modified animal models to identify the roles of kisspeptins in male reproduction. RESULTS A plethora of studies detail the role of kisspeptins and GPR54 in mammalian spermatogenesis in vivo and in vitro. This review identified recent findings regarding the kisspeptin system in male gonads, and regulation of kisspeptin in testicular physiology and male reproductive defects and disorders. CONCLUSION The findings of this review confirm the importance role of kisspeptins in male fertility. Understanding their biphasic roles in testis may help to consider kisspeptins as potential pharmacological targets for treating human infertility.
Collapse
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jia H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiao L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
32
|
Kisspeptin Protein in Seminal Plasma Is Positively Associated with Semen Quality: Results from the MARHCS Study in Chongqing, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5129263. [PMID: 30729125 PMCID: PMC6343164 DOI: 10.1155/2019/5129263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
Objectives To study the associations between kisspeptin levels in seminal plasma and blood plasma and semen quality. Materials and Methods We conducted a male reproductive health survey in June 2014. A total of 666 volunteers were recruited from colleges in Chongqing, China. All volunteers completed a questionnaire including information on domestic characteristics and some potential confounders. We tested the kisspeptin levels in both blood and seminal plasma. Total seminal kisspeptin was calculated as the concentration of kisspeptin in seminal plasma multiplied by semen volume. Semen samples were tested according to the 2010 World Health Organization's (WHO) guidelines. Spearman correlation and multivariate linear regression were used to explore the association between kisspeptin concentrations in seminal plasma and blood plasma and semen quality. Potential confounders that were adjusted for included age, abstinence time, body mass index (BMI), grade, and smoking. Results The median of kisspeptin levels in seminal plasma was 60,000 times higher than kisspeptin in blood plasma (28.0 × 106 pg/ml versus 448.9 pg/ml). Each interquartile range (IQR) of kisspeptin in seminal plasma was associated with a 4.6% (95% confidence interval [CI]: 1.6%–7.6%) increase in sperm concentration. Each IQR of total kisspeptin was associated with a 7.7% (95% CI: 4.4%–11.0%) increase in total sperm number and a 7.8% (95% CI: 4.0%–11.7%) increase in total motile sperm count. Kisspeptin levels were further classified into quartiles and Q1 was set as the reference level. Subjects in the high total kisspeptin group had 57.5% (95% CI: 33.2%–86.2%) higher total sperm number than the reference group. Conclusion The positive association between kisspeptin levels in seminal plasma and semen quality supported an important role for the KISS1/GPR54 system in male reproductive health. Kisspeptin may be a potential marker of male reproductive health and an alternative strategy for treating infertility.
Collapse
|
33
|
Effect of kisspeptin antagonist on goat in vitro Leydig cell steroidogenesis. Theriogenology 2018; 121:134-140. [DOI: 10.1016/j.theriogenology.2018.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023]
|
34
|
Potent effect of KISS1-54 DNA vaccine compared with KISS1-10 DNA vaccine in inhibiting the fertility of female rats. Vaccine 2018; 36:6631-6639. [DOI: 10.1016/j.vaccine.2018.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/09/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
|
35
|
Toolee H, Rastegar T, Solhjoo S, Mortezaee K, Mohammadipour M, Kashani IR, Akbari M. Roles for Kisspeptin in proliferation and differentiation of spermatogonial cells isolated from mice offspring when the cells are cocultured with somatic cells. J Cell Biochem 2018; 120:5042-5054. [PMID: 30269376 DOI: 10.1002/jcb.27780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022]
Abstract
Kisspeptin (Kp) expression in testis has caused most of the recent research surveying its functional role in this organ. This peptide influences spermatogenesis and sperm capacitation, so it is considered as a regulator of reproduction. Kp roles exert through hypothalamic/pituitary/gonadal axis. We aimed to evaluate direct roles for Kp on proliferation and differentiation of spermatogonial cells (SCs) when the cells are cocultured with somatic cells. Somatic cells and SCs were isolated from adult azoospermic and newborn mice and then enriched using a differential attachment technique. After the evaluation of identity and colonization for SCs, the cells were cocultured with somatic cells, and three doses of Kp (10-8 -10-6 M) was assessed on proliferation (through evaluation of MVH and ID4 markers) and differentiation (via evaluation of c-Kit and SCP3 , TP1, TP2 , and, Prm1 markers) of the coculture system. Investigations were continued for four succeeding weeks. At the end of each level of testosterone in the culture media was also evaluated. We found positive influence from Kp on proliferative and differentiative markers in SCs cocultured with somatic cells. These effects were dose-dependent. There was no effect for Kp on testosterone level. From our findings, we simply conclude that Kp as a neuropeptide for influencing central part of reproductive axis could also positively affect peripheral processes related to spermatogenesis without having an effect on steroidogenesis.
Collapse
Affiliation(s)
- Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mahshid Mohammadipour
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Iraj Regerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction 2018; 154:403-414. [PMID: 28878091 DOI: 10.1530/rep-17-0030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022]
Abstract
Kisspeptin (Kp) system has a recognized role in the control of gonadotropic axis, at multiple levels. Recently, a major focus of research has been to assess any direct activity of this system on testis physiology. Using the amphibian anuran, Pelophylax esculentus, as animal model, we demonstrate - for the first time in non-mammalian vertebrate - that testis expresses both Kiss-1 and Gpr54 proteins during the annual sexual cycle and that ex vivo 17B-estradiol (E2, 10-6 M) increases both proteins over control group. Since the interstitium is the main site of localization of both ligand and receptor, its possible involvement in the regulation of steroidogenesis has been evaluated by ex vivo treatment of testis pieces with increasing doses of Kp-10 (10-9-10-6 M). Treatments have been carried out in February - when a new wave of spermatogenesis occurs - and affect the expression of key enzymes of steroidogenesis inducing opposite effects on testosterone and estradiol intratesticular levels. Morphological analysis of Kp-treated testes reveals higher number of tubules with spermatozoa detached from Sertoli cells than control group and the expression of connexin 43, the main junctional protein in testis, is deeply affected by the treatment. In spite of the effects on spermatozoa observed ex vivo, in vivo administration of Kp-10 has been unable to induce sperm release in cloacal fluid. In conclusion, we demonstrate Kp-10 effects on steroidogenesis with possible involvement in the balance between testosterone and estradiol levels, and report new Kp-10 activities on spermatozoa-Sertoli cell interaction.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez 'F. Bottazzi'Università degli Studi della Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Vincenza Ciaramella
- Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale 'F. Magrassi-L. Lanzara'Università degli Studi della Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale sez 'F. Bottazzi'Università degli Studi della Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale sez 'F. Bottazzi'Università degli Studi della Campania 'Luigi Vanvitelli', Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del BenessereUniversità di Napoli Parthenope, Napoli, Italy
| |
Collapse
|
37
|
Effect of Kisspeptin on the Developmental Competence and Early Transcript Expression in Porcine Oocytes Parthenogenetically Activated with Different Methods. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3693602. [PMID: 29682539 PMCID: PMC5841116 DOI: 10.1155/2018/3693602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/02/2022]
Abstract
Recent studies showed the modulatory effect of kisspeptin (KP) on calcium waves through the cell membrane and inside the cell. Spermatozoon can induce similar ooplasmic calcium oscillations at fertilization to trigger meiosis II. Here, we evaluated the effect of KP supplementation with 6-dimethylaminopurine (6-DMAP) for 4 h on embryonic development after oocyte activation with single electric pulse, 5 µM ionomycin, or 8% ethanol. Compared to control nonsupplemented groups, KP significantly improved embryo developmental competence electric- and ethanol-activated oocytes in terms of cleavage (75.3% and 58.6% versus 64% and 48%, respectively, p < 0.05) and blastocyst development (31.3% and 10% versus 19.3% and 4%, respectively, p < 0.05). MOS expression was increased in electrically activated oocytes in presence of KP while it significantly reduced CCNB1 expression. In ionomycin treated group, both MOS and CCNB1 showed significant increase with no difference between KP and control groups. In ethanol-treated group, KP significantly reduced CCNB1 but no effect was observed on MOS expression. The early alterations in MOS and CCNB1 mRNA transcripts caused by KP may explain the significant differences in the developmental competence between the experimental groups. Kisspeptin supplementation may be adopted in protocols for porcine oocyte activation through electric current and ethanol to improve embryonic developmental competence.
Collapse
|
38
|
Bailey AM, Legan SJ, Demas GE. Exogenous kisspeptin enhances seasonal reproductive function in male Siberian hamsters. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sandra J. Legan
- Department of Physiology University of Kentucky Lexington KY USA
| | | |
Collapse
|
39
|
Hu KL, Zhao H, Chang HM, Yu Y, Qiao J. Kisspeptin/Kisspeptin Receptor System in the Ovary. Front Endocrinol (Lausanne) 2017; 8:365. [PMID: 29354093 PMCID: PMC5758547 DOI: 10.3389/fendo.2017.00365] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022] Open
Abstract
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females via the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals via its binding to KISS1R. Experimental data gathered recently suggest a putative role of kisspeptin signaling in the direct control of ovarian function, including follicular development, oocyte maturation, steroidogenesis, and ovulation. Dysregulation or naturally occurring mutations of the kisspeptin/KISS1R system may negatively affect the ovarian function, leading to reproductive pathology or female infertility. A comprehensive understanding of the expression, actions, and underlying molecular mechanisms of this system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in reproductive diseases and infertility.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hongcui Zhao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Hsun-Ming Chang
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Hongcui Zhao, ; Yang Yu,
| | - Jie Qiao
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
40
|
Dudek M, Kołodziejski PA, Pruszyńska-Oszmałek E, Sassek M, Ziarniak K, Nowak KW, Sliwowska JH. Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic-pituitary-gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats. Neuropeptides 2016; 56:41-9. [PMID: 26853724 DOI: 10.1016/j.npep.2016.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/12/2015] [Accepted: 01/20/2016] [Indexed: 01/09/2023]
Abstract
Recent data indicates that kisspeptin, encoded by the KISS1 gene, could play a role in transducing metabolic information into the hypothalamic-pituitary-gonadal (HPG) axis, the mechanism that controls reproductive functions. Numerous studies have shown that in a state of negative energy balance, the hypothalamic kisspeptin system is impaired. However, data concerning positive energy balance (e.g. diabetes and obesity) and the role of kisspeptin in the peripheral tissues is scant. We hypothesized that: 1) in diet-induced obese (DIO) male rats and/or rats with diabetes type 1 (DM1) and type 2 (DM2), altered reproductive functions are related to an imbalance in Kiss1 and GPR54 mRNA in the HPG axis; and 2) in DIO and/or DM1 and/or DM2 rats, Kiss1 and GPR 54 expression are altered in the peripheral tissues involved in metabolic functions (fat, pancreas and liver). Animals were fed a high-fat or control diets and STZ (streptozotocin - toxin, which destroys the pancreas) was injected in high or low doses to induce diabetes type 1 (DM1) or diabetes type 2 (DM2), respectively. RT-PCR and Western blot techniques were used to assess the expression of Kiss1 and GRP54 in tissues. At the level of mRNA, we found that diabetic but not obese rats have alterations in Kiss1 and/or GPR54 mRNA levels in the HPG axis as well as in peripheral tissues involved in metabolic functions (fat, pancreas and liver). The most severe changes were seen in DM1 rats. However, in the case of protein levels in the peripheral tissues (fat, pancreas and liver), changes in Kiss1/GPR54 expression were noticed in DIO, DM1 and DM2 animals and were tissue-specific. Our data support the hypothesis that alterations in Kiss1/GPR54 balance may account for both reproductive and metabolic abnormalities reported in obese and diabetic rats.
Collapse
Affiliation(s)
- M Dudek
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland.
| | - P A Kołodziejski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625 Poznan, Poland.
| | - E Pruszyńska-Oszmałek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625 Poznan, Poland.
| | - M Sassek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625 Poznan, Poland.
| | - K Ziarniak
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland.
| | - K W Nowak
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625 Poznan, Poland.
| | - J H Sliwowska
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznan, Poland.
| |
Collapse
|
41
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
42
|
Ovarian kisspeptin expression is related to age and to monocyte chemoattractant protein-1. J Assist Reprod Genet 2016; 33:535-43. [PMID: 26879207 DOI: 10.1007/s10815-016-0672-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The objective of this study was to test the hypothesis that ovarian kisspeptin (kiss1) and its receptor (kiss1r) expression are affected by age, obesity, and the age- and obesity-related chemokine monocyte chemoattractant protein-1 (MCP-1). METHODS Ovaries from reproductive-aged and older C57BL/6J mice fed normal chow (NC) or high-fat (HF) diet, ovaries from age-matched young MCP-1 knockout and young control mice on NC, and finally, cumulus and mural granulosa cells (GCs) from women who underwent in vitro fertilization (IVF) were collected. Kiss1, kiss1r, anti-Mullerian hormone (AMH), and AMH receptor (AMHR-II) messenger RNA (mRNA) expression levels were quantified using real-time polymerase chain reaction (RT-PCR). RESULTS In mouse ovaries, kiss1 and kiss1r mRNA levels were significantly higher in old compared to reproductive-aged mice, and diet-induced obesity did not alter kiss1 or kiss1r mRNA levels. Compared to young control mice, young MCP-1 knockout mice had significantly lower ovarian kiss1 mRNA but significantly higher AMH and AMHR-II mRNA levels. In human cumulus GCs, kiss1r mRNA levels were positively correlated with age but not with BMI. There was no expression of kiss1 mRNA in either cumulus or mural GCs. CONCLUSION These data suggest a possible age-related physiologic role for the kisspeptinergic system in ovarian physiology. Additionally, the inflammatory MCP-1 may be associated with kiss1 and AMH genes, which are important in ovulation and folliculogenesis, respectively.
Collapse
|
43
|
Ciaramella V, Meccariello R, Chioccarelli T, Sirleto M, Fasano S, Pierantoni R, Chianese R. Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus. Mol Cell Endocrinol 2016; 420:75-84. [PMID: 26586207 DOI: 10.1016/j.mce.2015.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/09/2015] [Indexed: 11/26/2022]
Abstract
In the frog Pelophylax esculentus, the endocannabinoid anandamide (AEA) modulates Gonadotropin Releasing Hormone (GnRH) system in vitro and down-regulates steroidogenic enzymes in vivo. Thus, male frogs were injected with AEA ± SR141716A, a cannabinoid receptor 1 (CB1) antagonist, to evaluate possible effects on GnRH and Kiss1/Gpr54 systems, gonadotropin receptors and steroid levels. In frog diencephalons, AEA negatively affected both GnRH and Kiss1/Gpr54 systems. In testis, AEA induced the expression of gonadotropin receptors, cb1, gnrh2 and gnrhr3 meanwhile reducing gnrhr2 mRNA and Kiss1/Gpr54 proteins. Furthermore, aromatase (Cyp19) expression increased in parallel to testosterone decrease and estradiol increase. In vitro treatment of testis with AEA revealed direct effects on Cyp19 and induced the expression of the AEA-degrading enzyme Faah. Lastly, AEA effects on Faah were counteracted by the antiestrogen ICI182780, indicating estradiol mediated effect. In conclusion, for the first time we show in a vertebrate that AEA regulates testicular activity through kisspeptin system.
Collapse
Affiliation(s)
- Vincenza Ciaramella
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy.
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Monica Sirleto
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy.
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| |
Collapse
|
44
|
Wahab F, Atika B, Shahab M, Behr R. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat Rev Urol 2015; 13:21-32. [DOI: 10.1038/nrurol.2015.277] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Hussain MA, Song WJ, Wolfe A. There is Kisspeptin - And Then There is Kisspeptin. Trends Endocrinol Metab 2015; 26:564-572. [PMID: 26412157 PMCID: PMC4587393 DOI: 10.1016/j.tem.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
While kisspeptin was initially found to function as a metastasis suppressor, after identification of its receptor KISS1R and their expression profiles in tissues such as the hypothalamus and adrenals, kisspeptin and KISS1R were predominantly assigned endocrine functions, including regulating puberty and fertility through their actions on hypothalamic gonadotropin releasing hormone production. More recently, an alter ego for kisspeptin has emerged, with a significant role in regulating glucose homeostasis, insulin secretion, as well as food intake and body composition, and deficient kisspeptin signaling results in reduced locomotor activity and increased adiposity. This review highlights these recent observations on the role of kisspeptin in metabolism as well as several key questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Mehboob A Hussain
- Divisions of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University, Baltimore, MD, USA.
| | - Woo-Jin Song
- Divisions of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Wolfe
- Divisions of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Clarke H, Dhillo WS, Jayasena CN. Comprehensive Review on Kisspeptin and Its Role in Reproductive Disorders. Endocrinol Metab (Seoul) 2015; 30:124-41. [PMID: 26194072 PMCID: PMC4508256 DOI: 10.3803/enm.2015.30.2.124] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 02/05/2023] Open
Abstract
Kisspeptin has recently emerged as a key regulator of the mammalian reproductive axis. It is known that kisspeptin, acting centrally via the kisspeptin receptor, stimulates secretion of gonadotrophin releasing hormone (GnRH). Loss of kisspeptin signaling causes hypogonadotrophic hypogonadism in humans and other mammals. Kisspeptin interacts with other neuropeptides such as neurokinin B and dynorphin, to regulate GnRH pulse generation. In addition, a growing body of evidence suggests that kisspeptin signaling be regulated by nutritional status and stress. Kisspeptin may also represent a novel potential therapeutic target in the treatment of fertility disorders. Early human studies suggest that peripheral exogenous kisspeptin administration stimulates gonadotrophin release in healthy adults and in patients with certain forms of infertility. This review aims to concisely summarize what is known about kisspeptin as a regulator of reproductive function, and provide an update on recent advances within this field.
Collapse
Affiliation(s)
- Holly Clarke
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
47
|
Correia J, Michelangeli F, Publicover S. Regulation and roles of Ca2+ stores in human sperm. Reproduction 2015; 150:R65-76. [PMID: 25964382 PMCID: PMC4497595 DOI: 10.1530/rep-15-0102] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
Abstract
[Ca(2)(+)]i signalling is a key regulatory mechanism in sperm function. In mammalian sperm the Ca(2)(+)-permeable plasma membrane ion channel CatSper is central to [Ca(2)(+)]i signalling, but there is good evidence that Ca(2)(+) stored in intracellular organelles is also functionally important. Here we briefly review the current understanding of the diversity of Ca(2)(+) stores and the mechanisms for the regulation of their activity. We then consider the evidence for the involvement of these stores in [Ca(2)(+)]i signalling in mammalian (primarily human) sperm, the agonists that may activate these stores and their role in control of sperm function. Finally we consider the evidence that membrane Ca(2)(+) channels and stored Ca(2)(+) may play discrete roles in the regulation of sperm activities and propose a mechanism by which these different components of the sperm Ca(2)(+)-signalling apparatus may interact to generate complex and spatially diverse [Ca(2)(+)]i signals.
Collapse
Affiliation(s)
- Joao Correia
- School of BiosciencesUniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Stephen Publicover
- School of BiosciencesUniversity of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
48
|
Uenoyama Y, Nakamura S, Hayakawa Y, Ikegami K, Watanabe Y, Deura C, Minabe S, Tomikawa J, Goto T, Ieda N, Inoue N, Sanbo M, Tamura C, Hirabayashi M, Maeda KI, Tsukamura H. Lack of pulse and surge modes and glutamatergic stimulation of luteinising hormone release in Kiss1 knockout rats. J Neuroendocrinol 2015; 27:187-97. [PMID: 25582792 DOI: 10.1111/jne.12257] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
Kisspeptin, encoded by the Kiss1 gene, has attracted attention as a key candidate neuropeptide in controlling puberty and reproduction via regulation of gonadotrophin-releasing hormone (GnRH) secretion in mammals. Pioneer studies with Kiss1 or its cognate receptor Gpr54 knockout (KO) mice showed the indispensable role of kisspeptin-GPR54 signalling in the control of animal reproduction, although detailed analyses of gonadotrophin secretion, especially pulsatile and surge-mode of luteinising hormone (LH) secretion, were limited. Thus, in the present study, we have generated Kiss1 KO rats aiming to evaluate a key role of kisspeptin in governing reproduction via pulse and surge modes of GnRH/LH secretion. Kiss1 KO male and female rats showed a complete suppression of pulsatile LH secretion, which is responsible for folliculogenesis and spermatogenesis, and an absence of puberty and atrophic gonads. Kiss1 KO female rats showed no spontaneous LH/follicle-stimulating hormone surge and an oestrogen-induced LH surge, suggesting that the GnRH surge generation system, which is responsible for ovulation, does not function without kisspeptin. Furthermore, challenge of major stimulatory neurotransmitters, such as monosodium glutamate, NMDA and norepinephrine, failed to stimulate LH secretion in Kiss1 KO rats, albeit they stimulated LH release in wild-type controls. Taken together, the results of the present study confirm that kisspeptin plays an indispensable role in generating two modes (pulse and surge) of GnRH/gonadotrophin secretion to regulate puberty onset and normal reproductive performance. In addition, the present study suggests that kisspeptin neurones play a critical role as a hub integrating major stimulatory neural inputs to GnRH neurones, using newly established Kiss1 KO rats, which serve as a useful model for detailed analysis of hormonal profiles.
Collapse
Affiliation(s)
- Y Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chianese R, Ciaramella V, Fasano S, Pierantoni R, Meccariello R. Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: a study carried out in ex vivo testes. Gen Comp Endocrinol 2015; 211:81-91. [PMID: 25452028 DOI: 10.1016/j.ygcen.2014.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Kisspeptin, via Gpr54 receptor, regulates puberty onset in most vertebrates. Thus, the direct involvement of kisspeptin activity in testis physiology was investigated in the anuran amphibian, Pelophylax esculentus. In this vertebrate gpr54 mRNA has been localized in both interstitial compartment and spermatogonia (SPG), whereas SPG proliferation requires the cooperation between estradiol and testicular Gonadotropin releasing hormone (Gnrh). In the pre-reproductive period, dose response curve to assess the effects of Kisspeptin-10 (Kp-10) was carried out in vitro (dose range: 10(-9)-10(-6)M; incubation times: 1 and 4h); proliferative activity and germ cell progression were evaluated by expression analysis of proliferating cell nuclear antigen (pcna), estrogen receptor beta (erβ), Gnrh system (gnrh1, gnrh2, gnrhr1, r2, r3) and by the count of empty, mitotic and meiotic tubules. All selected markers were up regulated at 4h Kp-10 incubation. Histological analysis also proved the increase of mitotic activity and the progression of spermatogenesis. Besides Kp-10 modulation of testicular Gnrh system, in vitro treatment with 17β-estradiol (10(-6)M) ± the antagonist ICI182-780 (10(-5)M) revealed gnrh2 and gnrhr3 estrogen dependent expression. In the reproductive period, testes were incubated for 1 and 4h with Kp-10 (10(-7)M) or Kp-10 (10(-7)M)+kisspeptin antagonist [Kp-234 (10(-6)M)]. Results obtained in the pre-reproductive period were confirmed and Kp-234 completely counteracted Kp-10 effects. In conclusion, Kp-10 modulated the expression of pcna, erβ, gnrhs and gnrhrs, inducing the progression of the spermatogenesis.
Collapse
Affiliation(s)
- Rosanna Chianese
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Vincenza Ciaramella
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale Sezione "F. Bottazzi", Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy.
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Via Medina 40, 80133 Napoli, Italy.
| |
Collapse
|
50
|
Beymer M, Negrón AL, Yu G, Wu S, Mayer C, Lin RZ, Boehm U, Acosta-Martínez M. Kisspeptin cell-specific PI3K signaling regulates hypothalamic kisspeptin expression and participates in the regulation of female fertility. Am J Physiol Endocrinol Metab 2014; 307:E969-82. [PMID: 25269483 PMCID: PMC4254985 DOI: 10.1152/ajpendo.00385.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release. We investigated whether PI3K signaling regulates hypothalamic kisspeptin expression, pubertal development, and adult fertility in mice. We generated mice with a kisspeptin cell-specific deletion of the PI3K catalytic subunits p110α and p110β (kiss-p110α/β-KO). Using in situ hybridization, we examined Kiss1 mRNA expression in gonad-intact, gonadectomized (Gdx), and Gdx + steroid-replaced mice. Kiss1 cell number in the anteroventral periventricular hypothalamus (AVPV) was significantly reduced in intact females but not in males. In contrast, compared with WT and regardless of steroid hormone status, Kiss1 cell number was lower in the arcuate (ARC) of kiss-p110α/β-KO males, but it was unaffected in females. Both intact Kiss-p110α/β-KO males and females had reduced ARC kisspeptin-immunoreactive (IR) fibers compared with WT animals. Adult kiss-p110α/β-KO males had significantly lower circulating luteinizing hormone (LH) levels, whereas pubertal development and fertility were unaffected in males. Kiss-p110α/β-KO females exhibited a reduction in fertility despite normal pubertal development, LH levels, and estrous cyclicity. Our data show that PI3K signaling is important for the regulation of hypothalamic kisspeptin expression and contributes to normal fertility in females.
Collapse
Affiliation(s)
- Matthew Beymer
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Graduate Program in Genetics, Stony Brook University, Stony Brook, New York
| | - Ariel L Negrón
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York
| | - Guiqin Yu
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York
| | - Samuel Wu
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York
| | - Christian Mayer
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York; Institute of Molecular Cardiology, Stony Brook, New York; and Veterans Affairs Medical Center, Northport, New York
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany
| | - Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Stony Brook University Medical Center, Stony Brook, New York;
| |
Collapse
|