1
|
de los Angeles Becerra Rodriguez M, Gonzalez Muñoz E, Moore T. Oligodendrocyte-specific expression of PSG8- AS1 suggests a role in myelination with prognostic value in oligodendroglioma. Noncoding RNA Res 2024; 9:1061-1068. [PMID: 39022681 PMCID: PMC11254506 DOI: 10.1016/j.ncrna.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The segmentally duplicated Pregnancy-specific glycoprotein (PSG) locus on chromosome 19q13 may be one of the most rapidly evolving in the human genome. It comprises ten coding genes (PSG1-9, 11) and one predominantly non-coding gene (PSG10) that are expressed in the placenta and gut, in addition to several poorly characterized long non-coding RNAs. We report that long non-coding RNA PSG8-AS1 has an oligodendrocyte-specific expression pattern and is co-expressed with genes encoding key myelin constituents. PSG8-AS1 exhibits two peaks of expression during human brain development coinciding with the most active periods of oligodendrogenesis and myelination. PSG8-AS1 orthologs were found in the genomes of several primates but significant expression was found only in the human, suggesting a recent evolutionary origin of its proposed role in myelination. Additionally, because co-deletion of chromosomes 1p/19q is a genomic marker of oligodendroglioma, expression of PSG8-AS1 was examined in these tumors. PSG8-AS1 may be a promising diagnostic biomarker for glioma, with prognostic value in oligodendroglioma.
Collapse
Affiliation(s)
- Maria de los Angeles Becerra Rodriguez
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Elena Gonzalez Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590, Málaga, Spain
- Universidad de Malaga, Dpto. Biología Celular, Genética y Fisiología, 29071, Málaga, Spain
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Adjeroh DA, Zhou X, Paschoal AR, Dimitrova N, Derevyanchuk EG, Shkurat TP, Loeb JA, Martinez I, Lipovich L. Challenges in LncRNA Biology: Views and Opinions. Noncoding RNA 2024; 10:43. [PMID: 39195572 DOI: 10.3390/ncrna10040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
This is a mini-review capturing the views and opinions of selected participants at the 2021 IEEE BIBM 3rd Annual LncRNA Workshop, held in Dubai, UAE. The views and opinions are expressed on five broad themes related to problems in lncRNA, namely, challenges in the computational analysis of lncRNAs, lncRNAs and cancer, lncRNAs in sports, lncRNAs and COVID-19, and lncRNAs in human brain activity.
Collapse
Affiliation(s)
- Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University (WVU), Morgantown, WV 26506, USA
| | - Xiaobo Zhou
- Department of Bioinformatics and Systems Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group, Federal University of Technology-Paraná-UTFPR, Curitiba 86300-000, Brazil
- Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | - Tatiana P Shkurat
- Department of Genetics, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, The Center for Clinical and Translational Science, The University of Illinois NeuroRepository, University of Illinois, Chicago, IL 60607, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology, WVU Cancer Institute, West Virginia University (WVU) School of Medicine, Morgantown, WV 26505, USA
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co., Ltd., Shenzhen 518000, China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| |
Collapse
|
4
|
Badae NM, Abdelmonsif DA, Aly RG, Omar AM, Shoela MS, Omar EM. Effect of spermidine on long non-coding RNAs MALAT1 in a rotenone induced-rat model of Parkinson's disease. Fundam Clin Pharmacol 2024; 38:718-729. [PMID: 38279557 DOI: 10.1111/fcp.12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Spermidine is a natural biologically active substance that has widespread influences on the body. OBJECTIVE This study aims to enhance our understanding of the potential effect of spermidine on long non-coding RNA MALAT1 and explore the underlying mechanism in the rotenone-induced rat model of Parkinson's disease. METHODS Rats were sacrificed after locomotor behavioral testing. Striatal tissues were used to assess the expression of MALAT1, oxidative stress markers, and autophagy markers. RESULTS Our study found that treatment with spermidine for 2 weeks during the induction of the model significantly improved behavioral assessment, dopamine levels, and attenuated the histopathological changes that occurred in PD in comparison to the non-treated group. CONCLUSION Our preliminary study supports the protective effect of spermidine on the activation of autophagy and its antioxidant properties. Part of the antioxidant activity is due to the inhibition of MALAT1. However, MALAT1 does not correlate with the spermidine-induced autophagy pathway.
Collapse
Affiliation(s)
- Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rania Gaber Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira M Omar
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai S Shoela
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Khoshnam SE, Moalemnia A, Anbiyaee O, Farzaneh M, Ghaderi S. LncRNA MALAT1 and Ischemic Stroke: Pathogenesis and Opportunities. Mol Neurobiol 2024; 61:4369-4380. [PMID: 38087169 DOI: 10.1007/s12035-023-03853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2023] [Indexed: 07/11/2024]
Abstract
Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Omid Anbiyaee
- School of Medicine, Cardiovascular Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Chen B, Xu Y, Tian F, Liu Y, Yi J, Ouyang Y, Zeng F, Peng Y, Liu B. Buyang Huanwu decoction promotes angiogenesis after cerebral ischemia through modulating caveolin-1-mediated exosome MALAT1/YAP1/HIF-1α axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155609. [PMID: 38677273 DOI: 10.1016/j.phymed.2024.155609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Angiogenesis is an effective method for promoting neurological function recovery after cerebral ischemia (CI). Buyang Huanwu decoction (BHD) is a traditional Chinese medicinal recipe that is frequently employed for CI treatment. Previous investigations have validated that it promotes angiogenesis following CI. Nevertheless, the precise mechanism by which it does this has yet to be completely understood. OBJECTIVE This study aims to examine the underlying mechanism through which BHD facilitates angiogenesis following CI by regulating the exosomal MALAT1/YAP1/HIF-1α signaling axis, specifically via the involvement of caveolin-1 (Cav1), an endocytosis-associated protein. METHODS A CI model was created using middle cerebral artery occlusion (MCAO). Following the administration of multiple doses of BHD, various parameters, including the neurobehavioral score, pathological damage, and angiogenesis, were assessed in each group of mice to identify the optimal dosage of BHD for treating CI. The molecular processes underlying the angiogenic implications of BHD following CI were investigated exhaustively by employing single-cell sequencing. Finally, the involvement of Cav1 was confirmed in Cav1 knockout mice and Cav1-silenced stably transfected strains to validate the mechanism by which BHD increases angiogenesis following CI. RESULTS BHD could promote angiogenesis after CI. Single-cell sequencing results suggested that its potential mechanism of action might be connected with Cav1 and the exosomal MALAT1/YAP1/HIF-1α signaling axis. BHD could promote angiogenesis after CI by regulating the exosomal MALAT1/YAP1/HIF-1α axis through Cav1, as validated in vivo and in vitro experiments. Accordingly, Cav1 may be a key target of BHD in promoting angiogenesis after CI. CONCLUSION This investigation represents the initial attempt to comprehensively ascertain the underlying mechanism of action of BHD in treating CI using single-cell sequencing, gene-knockout mice, and stable transfected cell lines, potentially associated with the modulation of the exosomal MALAT1/YAP1/HIF-1α axis by Cav1. Our findings offer novel empirical evidence for unraveling the regulatory pathways through which Cav1 participates in angiogenesis following CI and shed light on the potential mechanisms of BHD.
Collapse
Affiliation(s)
- Bowei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yaqian Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Fengming Tian
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yingfei Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Jian Yi
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Hunan Academy of Chinese Medicine, Changsha 410006, China
| | - Yin Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Fanzuo Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yanmei Peng
- Hunan Academy of Chinese Medicine, Changsha 410006, China
| | - Baiyan Liu
- Hunan Academy of Chinese Medicine, Changsha 410006, China.
| |
Collapse
|
7
|
Valizadeh M, Derafsh E, Abdi Abyaneh F, Parsamatin SK, Noshabad FZR, Alinaghipour A, Yaghoobi Z, Taheri AT, Dadgostar E, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-Coding RNAs and Neurodegenerative Diseases: Information of their Roles in Apoptosis. Mol Neurobiol 2024; 61:4508-4537. [PMID: 38102518 DOI: 10.1007/s12035-023-03849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Apoptosis can be known as a key factor in the pathogenesis of neurodegenerative disorders. In disease conditions, the rate of apoptosis expands and tissue damage may become apparent. Recently, the scientific studies of the non-coding RNAs (ncRNAs) has provided new information of the molecular mechanisms that contribute to neurodegenerative disorders. Numerous reports have documented that ncRNAs have important contributions to several biological processes associated with the increase of neurodegenerative disorders. In addition, microRNAs (miRNAs), circular RNAs (circRNAs), as well as, long ncRNAs (lncRNAs) represent ncRNAs subtypes with the usual dysregulation in neurodegenerative disorders. Dysregulating ncRNAs has been associated with inhibiting or stimulating apoptosis in neurodegenerative disorders. Therefore, this review highlighted several ncRNAs linked to apoptosis in neurodegenerative disorders. CircRNAs, lncRNAs, and miRNAs were also illustrated completely regarding the respective signaling pathways of apoptosis.
Collapse
Affiliation(s)
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Canada
| | | | - Sayedeh Kiana Parsamatin
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Azam Alinaghipour
- School of Medical Sciences, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, IR, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, IR, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR, Iran
| |
Collapse
|
8
|
Yazarlou F, Lipovich L, Loeb JA. Emerging roles of long non-coding RNAs in human epilepsy. Epilepsia 2024; 65:1491-1511. [PMID: 38687769 PMCID: PMC11166529 DOI: 10.1111/epi.17937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/02/2024]
Abstract
Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, U.S.A
| | - Leonard Lipovich
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People’s Republic of China
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai District, 325060, Wenzhou, Zhejiang, People’s Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, Michigan 48201, U.S.A
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
- University of Illinois NeuroRepository, University of Illinois at Chicago, Chicago, Illinois 60612, U.S.A
| |
Collapse
|
9
|
Alammari F, Al-Hujaily EM, Alshareeda A, Albarakati N, Al-Sowayan BS. Hidden regulators: the emerging roles of lncRNAs in brain development and disease. Front Neurosci 2024; 18:1392688. [PMID: 38841098 PMCID: PMC11150811 DOI: 10.3389/fnins.2024.1392688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical players in brain development and disease. These non-coding transcripts, which once considered as "transcriptional junk," are now known for their regulatory roles in gene expression. In brain development, lncRNAs participate in many processes, including neurogenesis, neuronal differentiation, and synaptogenesis. They employ their effect through a wide variety of transcriptional and post-transcriptional regulatory mechanisms through interactions with chromatin modifiers, transcription factors, and other regulatory molecules. Dysregulation of lncRNAs has been associated with certain brain diseases, including Alzheimer's disease, Parkinson's disease, cancer, and neurodevelopmental disorders. Altered expression and function of specific lncRNAs have been implicated with disrupted neuronal connectivity, impaired synaptic plasticity, and aberrant gene expression pattern, highlighting the functional importance of this subclass of brain-enriched RNAs. Moreover, lncRNAs have been identified as potential biomarkers and therapeutic targets for neurological diseases. Here, we give a comprehensive review of the existing knowledge of lncRNAs. Our aim is to provide a better understanding of the diversity of lncRNA structure and functions in brain development and disease. This holds promise for unravelling the complexity of neurodevelopmental and neurodegenerative disorders, paving the way for the development of novel biomarkers and therapeutic targets for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Farah Alammari
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ensaf M. Al-Hujaily
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Alshareeda
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Saudi Biobank Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nada Albarakati
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Jeddah, Saudi Arabia
| | - Batla S. Al-Sowayan
- Department of Blood and Cancer Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Yazarlou F, Alizadeh F, Lipovich L, Giordo R, Ghafouri-Fard S. Tracing vitamins on the long non-coding lane of the transcriptome: vitamin regulation of LncRNAs. GENES & NUTRITION 2024; 19:5. [PMID: 38475720 PMCID: PMC10935982 DOI: 10.1186/s12263-024-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonard Lipovich
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Shenzhen Huayuan Biological Science Research Institute, Shenzhen Huayuan Biotechnology Co. Ltd., 601 Building C1, Guangming Science Park, Fenghuang Street, 518000, Shenzhen, Guangdong, People's Republic of China
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 3222 Scott Hall, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Box 505055, Dubai, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, 07100, Italy.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Amini A, Esmaeili F, Golpich M. Possible role of lncRNAs in amelioration of Parkinson's disease symptoms by transplantation of dopaminergic cells. NPJ Parkinsons Dis 2024; 10:56. [PMID: 38472261 PMCID: PMC10933336 DOI: 10.1038/s41531-024-00661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are biomarkers for diagnosis and treatment of Parkinson's disease (PD). Since dopaminergic cell transplantation is a clinical method to treat PD, this study investigated the effects of dopaminergic cell therapy on the expression of some lncRNAs and genes related to PD. In this study, Twenty-eight rats were randomly assigned to four experimental groups. The control group (Sal group) received saline injections. The Par group was a PD rat model with 6-hydroxydopamine (6-OHDA) injection in right striatum (ST). PD animals were transplanted by undifferentiated P19 stem cells (Par-E group), and P19-derived dopaminergic cells (Par-N group). Cell transplant effects were evaluated using behavioral tests (cylinder, open field, and rotarod tests), and histological methods (H&E and Nissl staining, and immunohistochemistry). Moreover, the expression of lncRNAs MALAT1, MEG3, and SNHG1, alongside specific neuronal (synaptophysin) and dopaminergic (tyrosine hydroxylase) markers was evaluated by qRT-PCR. Behavioral and histopathological examinations revealed that cell transplantation partially compensated dopaminergic cell degeneration in ST and substantia nigra (SN) of PD rats. The expression of MALAT1, SNHG1, and MEG3 was decreased in the ST of the Par group, while MEG3 and SNHG1 gene expression was increased in PBMC relative to the Sal group. In PBMC of the Par-N group, all three lncRNAs showed a reduction in their expression. Conversely, MALAT1 and SNHG1 expression was increased in ST tissue, while MEG3 gene expression was decreased compared to the Sal group. In conclusion, dopaminergic cell transplantation could change the lncRNAs expression. Furthermore, it partially improves symptoms in PD rats.
Collapse
Affiliation(s)
- A Amini
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - F Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - M Golpich
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
12
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
13
|
Keifer J. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model. Mol Neurobiol 2023; 60:7088-7103. [PMID: 37531025 DOI: 10.1007/s12035-023-03528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
An in vitro model of delay eyeblink classical conditioning was developed to investigate synaptic plasticity mechanisms underlying acquisition of associative learning. This was achieved by replacing real stimuli, such as an airpuff and tone, with patterned stimulation of the cranial nerves using an isolated brainstem preparation from turtle. Here, our primary findings regarding cellular and molecular mechanisms for learning acquisition using this unique approach are reviewed. The neural correlate of the in vitro eyeblink response is a replica of the actual behavior, and features of conditioned responses (CRs) resemble those observed in behavioral studies. Importantly, it was shown that acquisition of CRs did not require the intact cerebellum, but the appropriate timing did. Studies of synaptic mechanisms indicate that conditioning involves two stages of AMPA receptor (AMPAR) trafficking. Initially, GluA1-containing AMPARs are targeted to synapses followed later by replacement by GluA4 subunits that support CR expression. This two-stage process is regulated by specific signal transduction cascades involving PKA and PKC and is guided by distinct protein chaperones. The expression of the brain-derived neurotrophic factor (BDNF) protein is central to AMPAR trafficking and conditioning. BDNF gene expression is regulated by coordinated epigenetic mechanisms involving DNA methylation/demethylation and chromatin modifications that control access of promoters to transcription factors. Finally, a hypothesis is proposed that learning genes like BDNF are poised by dual chromatin features that allow rapid activation or repression in response to environmental stimuli. These in vitro studies have advanced our understanding of the cellular and molecular mechanisms that underlie associative learning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
14
|
Taheri M, Pourtavakoli A, Eslami S, Ghafouri-Fard S, Sayad A. Assessment of expression of calcium signaling related lncRNAs in epilepsy. Sci Rep 2023; 13:17993. [PMID: 37865723 PMCID: PMC10590428 DOI: 10.1038/s41598-023-45341-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Calcium signaling is a metabolic pathway that is essential in neurons development and can be involved in the pathobiology of epilepsy. We assessed expression of three mRNA coding gene (SLC1A1, SLC25A12, and ATP2B2) and three related long non-coding RNAs (LINC01231:1, lnc-SLC25A12-8:1 and lnc-MTR-1:1) from this pathway in 39 patients with refractory epilepsy and 71 healthy controls. Expression of all genes except for lnc-SLC25A12 was higher in total epileptic cases compared with controls (P values = 0.0002, < 0.0001, < 0.0001, 0.049 and 0.0005 for SLC1A1, SLC25A12, LINC01231, ATP2B2 and lnc-MTR-1, respectively. When we separately compared expression of genes among males and females, SLC1A1, SLC25A12, LINC01231 and lnc-MTR-1 showed up-regulation in male cases compared with male controls. Moreover, expressions of SLC1A1 and SLC25A12 were higher in female cases compared with female controls. Remarkably, SLC25A12 was found to have the highest sensitivity value (= 1) for differentiation of epileptic cases from controls. Moreover, lnc-MTR-1 and lnc-SLC25A12 were sensitive markers for such purpose (sensitivity values = 0.89 and 0.87, respectively). The highest value belonged to LINC01231 with the value of 0.76. Taken together, this study demonstrates dysregulation of calcium-signaling related genes in epileptic patients and suggests these genes as potential biomarkers for epilepsy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Pourtavakoli
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Maharathi B, Mir F, Hosur K, Loeb JA. INTUITION: a data platform to integrate human epilepsy clinical care and support for discovery. Front Digit Health 2023; 5:1091508. [PMID: 37363274 PMCID: PMC10285513 DOI: 10.3389/fdgth.2023.1091508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
To make appropriate clinical decisions, clinicians consider many types of data from multiple sources to arrive at a diagnosis and plan. However, the current health systems have siloed data, making it challenging to develop information platforms that integrate this process into a single place for comprehensive clinical evaluation and research. INTUITION is a human brain integrative data system that facilitates multimodal data integration, unified storage, cohort selection, and analysis of multidisciplinary datasets. In this article, we describe the use of INTUITION to include electronic health records together with co-registered neuroimaging and EEG from patients who undergo invasive brain surgery for epilepsy. In addition to providing clinically useful visualizations and analytics to help guide surgical planning, INTUITION also links a bank of human brain epileptic tissues from specific brain locations to quantitative EEG, imaging, histology, and omics studies in a unique, completely integrated informatics platform. Having a clinically useful platform for integrating multimodal datasets can not only aid in clinical management decisions but also in creating a unique resource for research and discovery when linked to spatially mapped tissue samples.
Collapse
Affiliation(s)
- Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
- Center for Clinical and Translational Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Fozia Mir
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
| | - Karthik Hosur
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
| | - Jeffrey A. Loeb
- Department of Neurology and Rehabilitation, University of Illinois, Chicago, IL, United States
- Center for Clinical and Translational Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Kumar K, Dubey V, Zaidi SS, Tripathi M, Siraj F, Sharma MC, Chandra PS, Doddamani R, Dixit AB, Banerjee J. RNA Sequencing of Intraoperative Peritumoral Tissues Reveals Potential Pathways Involved in Glioma-Related Seizures. J Mol Neurosci 2023; 73:437-447. [PMID: 37268865 DOI: 10.1007/s12031-023-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Tumor-induced changes in the peritumoral neocortex play a crucial role in generation of seizures. This study aimed to investigate the molecular mechanisms potentially involved in peritumoral epilepsy in low-grade gliomas (LGGs). Intraoperative peritumoral brain tissues resected from LGG patients with seizures (pGRS) or without seizures (pGNS) were used for RNA sequencing (RNA-seq). Comparative transcriptomics was performed to identify differentially expressed genes (DEGs) in pGRS compared to pGNS using deseq2 and edgeR packages (R). Gene set enrichment analysis (GSEA) using Gene Ontology terms and Kyoto Encyclopedia of Genes & Genomes (KEGG) pathways was performed using the clusterProfiler package (R). The expression of key genes was validated at the transcript and protein levels in the peritumoral region using real-time PCR and immunohistochemistry, respectively. A total of 1073 DEGs were identified in pGRS compared to pGNS, of which 559 genes were upregulated and 514 genes were downregulated (log2 fold-change ≥ 2, padj < 0.001). The DEGs in pGRS were highly enriched in the "Glutamatergic Synapse" and "Spliceosome" pathways, with increased expression of GRIN2A (NR2A), GRIN2B (NR2B), GRIA1 (GLUR1), GRIA3 (GLUR3), GRM5, CACNA1C, CACNA1A, and ITPR2. Moreover, increased immunoreactivity was observed for NR2A, NR2B, and GLUR1 proteins in the peritumoral tissues of GRS. These findings suggest that altered glutamatergic signaling and perturbed Ca2+ homeostasis may be potential causes of peritumoral epilepsy in gliomas. This explorative study identifies important genes/pathways that merit further characterization for their potential involvement in glioma-related seizures.
Collapse
Affiliation(s)
| | - Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Syeda S Zaidi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Fouzia Siraj
- ICMR-National Institute of Pathology, New Delhi, India
| | | | | | | | - Aparna Banerjee Dixit
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
18
|
Mosca N, Russo A, Potenza N. Making Sense of Antisense lncRNAs in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:8886. [PMID: 37240232 PMCID: PMC10219390 DOI: 10.3390/ijms24108886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Transcriptome complexity is emerging as an unprecedented and fascinating domain, especially by high-throughput sequencing technologies that have unveiled a plethora of new non-coding RNA biotypes. This review covers antisense long non-coding RNAs, i.e., lncRNAs transcribed from the opposite strand of other known genes, and their role in hepatocellular carcinoma (HCC). Several sense-antisense transcript pairs have been recently annotated, especially from mammalian genomes, and an understanding of their evolutionary sense and functional role for human health and diseases is only beginning. Antisense lncRNAs dysregulation is significantly involved in hepatocarcinogenesis, where they can act as oncogenes or oncosuppressors, thus playing a key role in tumor onset, progression, and chemoradiotherapy response, as deduced from many studies discussed here. Mechanistically, antisense lncRNAs regulate gene expression by exploiting various molecular mechanisms shared with other ncRNA molecules, and exploit special mechanisms on their corresponding sense gene due to sequence complementarity, thus exerting epigenetic, transcriptional, post-transcriptional, and translational controls. The next challenges will be piecing together the complex RNA regulatory networks driven by antisense lncRNAs and, ultimately, assigning them a function in physiological and pathological contexts, in addition to defining prospective novel therapeutic targets and innovative diagnostic tools.
Collapse
Affiliation(s)
| | | | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (N.M.); (A.R.)
| |
Collapse
|
19
|
Geng X, Zou Y, Li S, Qi R, Yu H, Li J. MALAT1 Mediates α-Synuclein Expression through miR-23b-3p to Induce Autophagic Impairment and the Inflammatory Response in Microglia to Promote Apoptosis in Dopaminergic Neuronal Cells. Mediators Inflamm 2023; 2023:4477492. [PMID: 37064502 PMCID: PMC10101752 DOI: 10.1155/2023/4477492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 04/09/2023] Open
Abstract
Background. Parkinson’s disease (PD) is a very common neurodegenerative disease that adversely affects the physical and mental health of many patients, but there is currently no effective treatment. Objective. To this end, this study focused on investigating the potential mechanisms leading to dopaminergic neuronal apoptosis in PD. Methods. Rotenone induces damage in dopaminergic neuronal MN9D cells. Apoptosis was detected by flow cytometry, and the expression of apoptosis-related proteins was detected by western blot. RT-qPCR was used to detect the expression of MALAT1 and miR-23b-3p. The expression of α-synuclein was detected by ELISA. A dual luciferase gene reporter assay was used to determine the targeted regulatory relationship between MALAT1 and miR-23b-3p and miR-23b-3p and α-synuclein. MN9D supernatant was cocultured with BV-2 cells, or BV-2 cells were treated with exogenous α-synuclein and then treated with an autophagy inhibitor (3-MA) and autophagy activator (RAPA). The expression of α-synuclein in BV-2 cells was detected by immunofluorescence. The expression of MIP-1α, a marker of microglial activation, was detected by ELISA. The nuclear translocation of NF-κB p65 was detected by immunofluorescence. The expression of proinflammatory cytokines was detected by ELISA. Western blotting was used to detect the expression of autophagy-related proteins. Apoptosis of MN9D cells was detected after coculture of BV-2 supernatant with MN9D. Results. The expression of MALAT1 and α-synuclein was upregulated, while the expression of miR-23b-3p was downregulated in damaged MN9D cells, resulting in cell apoptosis. MALAT1 can negatively regulate the expression of miR-23b-3p, while miR-23b-3p negatively regulates the expression of α-synuclein. α-synuclein can enter BV-2 cells through cell phagocytosis. Coculture of BV-2 cells with α-synuclein or with MN9D supernatant overexpressing MALAT1 resulted in a decrease in the autophagy level of BV-2 cells and an inflammatory reaction. However, miR-23b-3p mimics and knockdown of α-synuclein reversed the effect of MALAT1 on autophagy and the inflammatory response of BV-2 cells. In addition, after coculture of BV-2 cells with α-synuclein, the level of autophagy further decreased when 3-MA was added, while the opposite result occurred when RAPA was added. After coculture of α-synuclein-treated BV-2 cell supernatant with MN9D cells, autophagy-impaired BV-2 promoted the apoptosis of MN9D cells, and 3-MA aggravated the autophagy disorder of BV-2 and further promoted the apoptosis of MN9D cells, while RAPA reversed the autophagy disorder of BV-2 and alleviated the apoptosis of MN9D cells. Conclusion. MALAT1 can promote α-synuclein expression by regulating miR-23b-3p, thereby inducing microglial autophagy disorder and an inflammatory response leading to apoptosis of dopaminergic neurons. This newly discovered molecular mechanism may provide a potential target for the treatment of PD.
Collapse
Affiliation(s)
- Xin Geng
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Yanghong Zou
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Shipeng Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Renli Qi
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Hualin Yu
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| | - Jinghui Li
- The Second Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 Yunnan, China
| |
Collapse
|
20
|
Zayed AA, Seleem MM, Darwish HA, Shaheen AA. Role of long noncoding RNAs; BDNF-AS and 17A and their relation to GABAergic dysfunction in Egyptian epileptic patients. Metab Brain Dis 2023; 38:1193-1204. [PMID: 36807083 PMCID: PMC10110666 DOI: 10.1007/s11011-023-01182-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Lately, long noncoding RNAs (lncRNAs) have been increasingly appreciated as regulators of epilepsy-related processes, however, their functional role in its pathogenesis is still to be explored. This study investigated the expression levels of lncRNAs; BDNF-AS and 17A in the sera of Egyptian patients with idiopathic generalized and symptomatic focal epilepsy and correlated their levels with brain-derived neurotrophic factor (BDNF), phosphorylated cAMP reaction element -binding protein (p-CREB), gamma- aminobutyric acid (GABA) and glutamate, to underline their related molecular mechanism. A total of 70 epileptic patients were divided into two clinical types, besides 30 healthy controls of matched age and sex. The expression levels of both lncRNAs were markedly upregulated in epileptic groups versus the healthy control group with predominance in the symptomatic focal one. Epileptic patients showed significantly lower levels of BDNF, p-CREB, GABA along with significant increase of glutamate levels and glutamate/ GABA ratio, especially in symptomatic focal versus idiopathic generalized epileptic ones. The obtained data raised the possibility that these lncRNAs might be involved in the pathogenesis of epilepsy via inhibition of GABA/p-CREB/BDNF pathway. The study shed light on the putative role of these lncRNAs in better diagnosis of epilepsy, particularly symptomatic focal epilepsy.
Collapse
Affiliation(s)
- Aya A Zayed
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mae M Seleem
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Hebatallah A Darwish
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Amira A Shaheen
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Kisaretova P, Tsybko A, Bondar N, Reshetnikov V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023; 11:289. [PMID: 36830826 PMCID: PMC9953015 DOI: 10.3390/biomedicines11020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Animal models of psychopathologies are of exceptional interest for neurobiologists because these models allow us to clarify molecular mechanisms underlying the pathologies. One such model is the inbred BTBR strain of mice, which is characterized by behavioral, neuroanatomical, and physiological hallmarks of schizophrenia (SCZ) and autism spectrum disorders (ASDs). Despite the active use of BTBR mice as a model object, the understanding of the molecular features of this strain that cause the observed behavioral phenotype remains insufficient. Here, we analyzed recently published data from independent transcriptomic and proteomic studies on hippocampal and corticostriatal samples from BTBR mice to search for the most consistent aberrations in gene or protein expression. Next, we compared reproducible molecular signatures of BTBR mice with data on postmortem samples from ASD and SCZ patients. Taken together, these data helped us to elucidate brain-region-specific molecular abnormalities in BTBR mice as well as their relevance to the anomalies seen in ASDs or SCZ in humans.
Collapse
Affiliation(s)
- Polina Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| |
Collapse
|
22
|
Activity-Dependent Non-Coding RNA MAPK Interactome of the Human Epileptic Brain. Noncoding RNA 2023; 9:ncrna9010003. [PMID: 36649033 PMCID: PMC9844323 DOI: 10.3390/ncrna9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
The human brain has evolved to have extraordinary capabilities, enabling complex behaviors. The uniqueness of the human brain is increasingly posited to be due in part to the functions of primate-specific, including human-specific, long non-coding RNA (lncRNA) genes, systemically less conserved than protein-coding genes in evolution. Patients who have surgery for drug-resistant epilepsy are subjected to extensive electrical recordings of the brain tissue that is subsequently removed in order to treat their epilepsy. Precise localization of brain tissues with distinct electrical properties offers a rare opportunity to explore the effects of brain activity on gene expression. Here, we identified 231 co-regulated, activity-dependent lncRNAs within the human MAPK signaling cascade. Six lncRNAs, four of which were antisense to known protein-coding genes, were further examined because of their high expression and potential impact on the disease phenotype. Using a model of repeated depolarizations in human neuronal-like cells (Sh-SY5Y), we show that five out of six lncRNAs were electrical activity-dependent, with three of four antisense lncRNAs having reciprocal expression patterns relative to their protein-coding gene partners. Some were directly regulated by MAPK signaling, while others effectively downregulated the expression of the protein-coding genes encoded on the opposite strands of their genomic loci. These lncRNAs, therefore, likely contribute to highly evolved and primate-specific human brain regulatory functions that could be therapeutically modulated to treat epilepsy.
Collapse
|
23
|
Was N, Sauer M, Fischer U, Becker M. lncRNA Malat1 and miR-26 cooperate in the regulation of neuronal progenitor cell proliferation and differentiation. RNA (NEW YORK, N.Y.) 2022; 29:rna.079436.122. [PMID: 36302652 PMCID: PMC9808573 DOI: 10.1261/rna.079436.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is a finely tuned process, which depends on the balanced execution of expression programs that regulate cellular differentiation and proliferation. Different molecular players ranging from transcription factors to chromatin modulators control these programs. Adding to the complexity, also non-coding (nc)RNAs take part in this process. Here we analyzed the function of the long non-coding (lnc)RNA Malat1 during neural embryonic stem cell (ESC) differentiation. We find that deletion of Malat1 leads to inhibition of proliferation of neural progenitor cells (NPCs). Interestingly, this co-insides with an increase in the expression of miR-26 family members miR-26a and miR-26b in differentiating ESCs. Inactivation of miR-26a/b rescues the proliferative phenotype of Malat1 knockout (KO) cells and leads to accelerated neuronal differentiation of compound Malat1KO/mir-26KO ESCs. Together our work identifies a so far unknown interaction between Malat1 and miR-26 in the regulation of NPC proliferation and neuronal differentiation.
Collapse
|
24
|
Abrishamdar M, Jalali MS, Rashno M. MALAT1 lncRNA and Parkinson's Disease: The role in the Pathophysiology and Significance for Diagnostic and Therapeutic Approaches. Mol Neurobiol 2022; 59:5253-5262. [PMID: 35665903 DOI: 10.1007/s12035-022-02899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. PD is characterized by progressive loss of dopamine-producing neurons in the substantia nigra (SN) region of brain tissue followed by the α-synuclein-based Lewy bodies' formation. These conditions are manifested by various motor and non-motor symptoms such as resting tremor, limb rigidity, bradykinesia and posture instability, cognitive impairment, sleep disorders, and emotional and memory dysfunctions. Long non-coding RNAs (lncRNAs) are closely related to protein-coding genes and are involved in various biological processes. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA is involved in different pathways, including alternative splicing, transcriptional regulation, and post-transcriptional regulation, and also interacts with RNAs as a miRNA sponge. MALAT1 is highly expressed in brain tissues and several lines of evidence suggested it is probably involved in synapse generation and other neurophysiological pathways. This narrative review discussed all aspects of MALAT1-associated mechanisms involved in the PD pathogenesis, i.e., perturbed α-synuclein homeostasis, apoptosis and autophagy, and neuro-inflammation. Lastly, the possible applications of MALAT1 as a diagnostic biomarker and its importance to developing therapeutic strategies were highlighted. The literature search was conducted using neurodegeneration, neurodegenerative disorders, Parkinson's disease, lncRNA, and MALAT1 as search items in Google Scholar, Web of Knowledge, PubMed, and Scopus up to December 2021.
Collapse
Affiliation(s)
- M Abrishamdar
- Persian Gulf Physiology Research Center, Department of Physiology, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - M S Jalali
- Persian Gulf Physiology Research Center, Department of Physiology, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - M Rashno
- Department of Immunulogy, Cellular and Molecular Research Center, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Keady J, Fisher M, Anderson E, LeMalenfant R, Turner J. Age-specific impacts of nicotine and withdrawal on hippocampal neuregulin signalling. Eur J Neurosci 2022; 56:4705-4719. [PMID: 35899607 PMCID: PMC9710301 DOI: 10.1111/ejn.15780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Smoking remains the leading cause of preventable death in the United States, with 87% of smokers starting before the age of 18. Age of initiation is a major predictive factor for smoking frequency and successful smoking cessation. People who initiate smoking during adolescences are 2.33 times more likely to become heavy smokers and half as likely to quit compared with smokers who started during adulthood. Additionally, schizophrenia, a disease state linked to altered neurodevelopment during adolescence, is a major predictive factor for smoking status. Smoking rates among people suffering from schizophrenia are between 60% and 90%. Interestingly, the Neuregulin Signalling Pathway (NSP), which plays an important role in neurodevelopment, is implicated in both schizophrenia and nicotine use disorder. Specifically, SNPS in neuregulin 3 (Nrg3) and Erb-B2 Receptor Tyrosine Kinase 4 (ErbB4) have been associated with smoking cessation outcomes and schizophrenia. Here, we examine the effects of chronic nicotine (18 mg/kg/day) and 24-h withdrawal on NSP gene expression in the hippocampus of adult (20-week-old) and adolescent (4-week-old) mice. We show that withdrawal from chronic nicotine decreased the expression of Erbb4 mRNA in the hippocampus of the adult mice but increased the expression of cytosolic Erbb4 protein in adolescent mice. Nrg3 mRNA and protein expression was not altered by chronic nicotine or withdrawal in the adult or adolescent cohorts, but Nrg3 mRNA and synaptosomal protein expression was lower in the adult withdrawal group when compared with their adolescent counterparts. These results highlight the age-specific effects of nicotine withdrawal on the NSP and may contribute to the lower quit rate and higher cigarette consumption of smokers who initiation during adolescences.
Collapse
Affiliation(s)
- Jack Keady
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Miranda Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| | - Erin Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Rachel LeMalenfant
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Jill Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536–0596, USA
| |
Collapse
|
26
|
Chanda K, Jana NR, Mukhopadhyay D. Long non-coding RNA MALAT1 protects against Aβ 1-42 induced toxicity by regulating the expression of receptor tyrosine kinase EPHA2 via quenching miR-200a/26a/26b in Alzheimer's disease. Life Sci 2022; 302:120652. [PMID: 35598655 DOI: 10.1016/j.lfs.2022.120652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Altered expressions of Receptor Tyrosine Kinases (RTK) and non-coding (nc) RNAs are known to regulate the pathophysiology of Alzheimer's disease (AD). However, specific understanding of the roles played, especially the mechanistic and functional roles, by long ncRNAs in AD is still elusive. Using mouse tissue qPCR assays we observe changes in the expression levels of 41 lncRNAs in AD mice of which only 7 genes happen to have both human orthologs and AD associations. Post validation of these 7 human lncRNA genes, MEG3 and MALAT1 shows consistent and significant decrease in AD cell, animal models and human AD brain tissues, but MALAT1 showed a more pronounced decrease. Using bioinformatics, qRT-PCR, RNA FISH and RIP techniques, we could establish MALAT1 as an interactor and regulator of miRs-200a, -26a and -26b, all of which are naturally elevated in AD. We could further show that these miRNAs target the RTK EPHA2 and several of its downstream effectors. Expectedly EPHA2 over expression protects against Aβ1-42 induced cytotoxicity. Transiently knocking down MALAT1 validates these unique regulatory facets of AD at the miRNA and protein levels. Although the idea of sponging of miRNAs by lncRNAs in other pathologies is gradually gaining credibility, this novel MALAT1- miR-200a/26a/26b - EPHA2 regulation mechanism in the context of AD pathophysiology promises to become a significant strategy in controlling the disease.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India; Department of Neuroscience, UF Scripps Biomedical Research, 120 Scripps Way, Jupiter, FL 33458, United States of America
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, HBNI, Kolkata 700 064, India.
| |
Collapse
|
27
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
28
|
Lucaci AG, Notaras MJ, Kosakovsky Pond SL, Colak D. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease? Transl Psychiatry 2022; 12:258. [PMID: 35732627 PMCID: PMC9217794 DOI: 10.1038/s41398-022-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is an essential mediator of brain assembly, development, and maturation. BDNF has been implicated in a variety of brain disorders such as neurodevelopmental disorders (e.g., autism spectrum disorder), neuropsychiatric disorders (e.g., anxiety, depression, PTSD, and schizophrenia), and various neurodegenerative disorders (e.g., Parkinson's, Alzheimer's, etc.). To better understand the role of BDNF in disease, we sought to define the evolution of BDNF within Mammalia. We conducted sequence alignment and phylogenetic reconstruction of BDNF across a diverse selection of >160 mammalian species spanning ~177 million years of evolution. The selective evolutionary change was examined via several independent computational models of codon evolution including FEL (pervasive diversifying selection), MEME (episodic selection), and BGM (structural coevolution of sites within a single molecule). We report strict purifying selection in the main functional domain of BDNF (NGF domain, essentially comprising the mature BDNF protein). Additionally, we discover six sites in our homologous alignment which are under episodic selection in early regulatory regions (i.e. the prodomain) and 23 pairs of coevolving sites that are distributed across the entirety of BDNF. Coevolving BDNF sites exhibited complex spatial relationships and geometric features including triangular relations, acyclic graph networks, double-linked sites, and triple-linked sites, although the most notable pattern to emerge was that changes in the mature region of BDNF tended to coevolve along with sites in the prodomain. Thus, we propose that the discovery of both local and distal sites of coevolution likely reflects 'evolutionary fine-tuning' of BDNF's underlying regulation and function in mammals. This tracks with the observation that BDNF's mature domain (which encodes mature BDNF protein) is largely conserved, while the prodomain (which is linked to regulation and its own unique functionality) exhibits more pervasive and diversifying evolutionary selection. That said, the fact that negative purifying selection also occurs in BDNF's prodomain also highlights that this region also contains critical sites of sensitivity which also partially explains its disease relevance (via Val66Met and other prodomain variants). Taken together, these computational evolutionary analyses provide important context as to the origins and sensitivity of genetic changes within BDNF that may help to deconvolute the role of BDNF polymorphisms in human brain disorders.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Michael J. Notaras
- grid.5386.8000000041936877XCenter for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA
| | - Sergei L. Kosakovsky Pond
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Dilek Colak
- Center for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
29
|
Hao WZ, Chen Q, Wang L, Tao G, Gan H, Deng LJ, Huang JQ, Chen JX. Emerging roles of long non-coding RNA in depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110515. [PMID: 35077841 DOI: 10.1016/j.pnpbp.2022.110515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, United States
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
30
|
Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, Gambardella A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:ijms23063063. [PMID: 35328484 PMCID: PMC8954985 DOI: 10.3390/ijms23063063] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy; it is considered a network disorder associated with structural changes. Incomplete knowledge of the pathological changes in TLE complicates a therapeutic approach; indeed, 30 to 50% of patients with TLE are refractory to drug treatment. Non-coding RNAs (ncRNAs), acting as epigenetic factors, participate in the regulation of the pathophysiological processes of epilepsy and are dysregulated during epileptogenesis. Abnormal expression of ncRNA is observed in patients with epilepsy and in animal models of epilepsy. Furthermore, ncRNAs could also be used as biomarkers for the diagnosis and prognosis of treatment response in epilepsy. In summary, ncRNAs can represent important mechanisms and targets for the modulation of brain excitability and can provide information on pathomechanisms, biomarkers and novel therapies for epilepsy. In this review, we summarize the latest research advances concerning mainly molecular mechanisms, regulated by ncRNA, such as synaptic plasticity, inflammation and apoptosis, already associated with the pathogenesis of TLE. Moreover, we discuss the role of ncRNAs, such as microRNAs, long non-coding RNAs and circular RNAs, in the pathophysiology of epilepsy, highlighting their use as potential biomarkers for future therapeutic approaches.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Correspondence: (I.M.); (A.G.)
| | - Francesco Fortunato
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20090 Milan, Italy;
| | - Angelo Labate
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
| | - Antonio Gambardella
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia”, Germaneto, 88100 Catanzaro, Italy; (F.F.); (S.D.B.); (I.S.); (A.L.)
- Correspondence: (I.M.); (A.G.)
| |
Collapse
|
31
|
Fonseca-Barriendos D, Pérez-Pérez D, Fuentes-Mejía M, Orozco-Suárez S, Alonso-Vanegas M, Martínez-Juárez IE, Guevara-Guzmán R, Castañeda-Cabral JL, Rocha L. Protein expression of P-glycoprotein in neocortex from patients with frontal lobe epilepsy. Epilepsy Res 2022; 181:106892. [DOI: 10.1016/j.eplepsyres.2022.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
|
32
|
Identification and characterization of long non-coding RNA Carip in modulating spatial learning and memory. Cell Rep 2022; 38:110398. [PMID: 35196493 DOI: 10.1016/j.celrep.2022.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
CaMKII has long been known to be a key effector for synaptic plasticity. Recent studies have shown that a variety of modulators interact with the subunits of CaMKII to regulate the long-term potentiation (LTP) of hippocampal neurons. However, whether long non-coding RNAs modulate the activity of CaMKII and affect synaptic plasticity is still elusive. Here, we identify a previously uncharacterized long non-coding RNA Carip that functions as a scaffold, specifically interacts with CaMKIIβ, and regulates the phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor subunits in the hippocampus. The absence of Carip causes dysfunction of synaptic transmission and attenuates LTP in hippocampal CA3-CA1 synapses, which further leads to impairment of spatial learning and memory. In summary, our findings demonstrate that Carip modulates long-term synaptic plasticity by changing AMPA receptor and NMDA receptor activities, thereby affecting spatial learning and memory in mice.
Collapse
|
33
|
Wang L, Li S, Stone SS, Liu N, Gong K, Ren C, Sun K, Zhang C, Shao G. The Role of the lncRNA MALAT1 in Neuroprotection against Hypoxic/Ischemic Injury. Biomolecules 2022; 12:biom12010146. [PMID: 35053294 PMCID: PMC8773505 DOI: 10.3390/biom12010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Hypoxic and ischemic brain injury can cause neurological disability and mortality, and has become a serious public health problem worldwide. Long-chain non-coding RNAs are involved in the regulation of many diseases. Metastasis-related lung adenocarcinoma transcript 1 (MALAT1) is a type of long non-coding RNA (lncRNA), known as long intergenic non-coding RNA (lincRNA), and is highly abundant in the nervous system. The enrichment of MALAT1 in the brain indicates that it may be associated with important functions in pathophysiological processes. Accordingly, the role of MALAT1 in neuronal cell hypoxic/ischemic injury has been gradually discovered over recent years. In this article, we summarize recent research regarding the neuroprotective molecular mechanism of MALAT1 and its regulation of pathophysiological processes of brain hypoxic/ischemic injury. MALAT1 may function as a regulator through interaction with proteins or RNAs to perform its role, and may therefore serve as a therapeutic target in cerebral hypoxia/ischemia.
Collapse
Affiliation(s)
- Liping Wang
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
| | - Sijie Li
- Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Sara Saymuah Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48021, USA;
| | - Na Liu
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
| | - Kai Sun
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Correspondence: (K.S.); (C.Z.); (G.S.)
| | - Chunyang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
- Correspondence: (K.S.); (C.Z.); (G.S.)
| | - Guo Shao
- Center for Translational Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China; (L.W.); (N.L.)
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Institute for Neuroscience, Baotou Medical College, Baotou 014060, China
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China;
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou 014010, China
- Correspondence: (K.S.); (C.Z.); (G.S.)
| |
Collapse
|
34
|
Liu Y, Chen X, Che Y, Li H, Zhang Z, Peng W, Yang J. LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer’s Disease. Aging Dis 2022; 13:837-851. [PMID: 35656102 PMCID: PMC9116922 DOI: 10.14336/ad.2021.1119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a serious threat to the health and safety of the elderly population. It has become an emerging public health problem and a major economic and social burden. However, there is currently no effective treatment for AD. Although the mechanism of AD pathogenesis has been investigated substantially, the full range of molecular factors that contribute to its development remain largely unclear. In recent years, accumulating evidence has revealed that long non-coding RNAs (lncRNAs), a type of non-coding RNA longer than 200 nucleotides, play important roles in multiple biological processes involved in AD pathogenesis. With the further exploration of genomics, the role of lncRNA in the pathogenesis of AD has been phenotypically or mechanistically studied. Herein, we systematically review the current knowledge about lncRNAs implicated in AD and elaborate on their main regulatory pathways, which may contribute to the discovery of novel therapeutic targets and drugs for AD.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Xin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yutong Che
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Inter-disciplinary Research Center of Language Intelligence and Cultural Heritages, Hunan University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Yang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Nursing School, Central South University, Changsha, China.
- Correspondence should be addressed to: Dr. Weijun Peng (E-mail: ) and Ms. Jingjing Yang (), Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
35
|
Kuruş M, Akbari S, Eskier D, Bursalı A, Ergin K, Erdal E, Karakülah G. Transcriptome Dynamics of Human Neuronal Differentiation From iPSC. Front Cell Dev Biol 2022; 9:727747. [PMID: 34970540 PMCID: PMC8712770 DOI: 10.3389/fcell.2021.727747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The generation and use of induced pluripotent stem cells (iPSCs) in order to obtain all differentiated adult cell morphologies without requiring embryonic stem cells is one of the most important discoveries in molecular biology. Among the uses of iPSCs is the generation of neuron cells and organoids to study the biological cues underlying neuronal and brain development, in addition to neurological diseases. These iPSC-derived neuronal differentiation models allow us to examine the gene regulatory factors involved in such processes. Among these regulatory factors are long non-coding RNAs (lncRNAs), genes that are transcribed from the genome and have key biological functions in establishing phenotypes, but are frequently not included in studies focusing on protein coding genes. Here, we provide a comprehensive analysis and overview of the coding and non-coding transcriptome during multiple stages of the iPSC-derived neuronal differentiation process using RNA-seq. We identify previously unannotated lncRNAs via genome-guided de novo transcriptome assembly, and the distinct characteristics of the transcriptome during each stage, including differentially expressed and stage specific genes. We further identify key genes of the human neuronal differentiation network, representing novel candidates likely to have critical roles in neurogenesis using coexpression network analysis. Our findings provide a valuable resource for future studies on neuronal differentiation.
Collapse
Affiliation(s)
- Meltem Kuruş
- Department of Histology and Embryology, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | | | - Doğa Eskier
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | | | - Kemal Ergin
- Department of Histology and Embryology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Esra Erdal
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
36
|
Rocks D, Jaric I, Tesfa L, Greally JM, Suzuki M, Kundakovic M. Cell type-specific chromatin accessibility analysis in the mouse and human brain. Epigenetics 2022; 17:202-219. [PMID: 33775205 PMCID: PMC8865312 DOI: 10.1080/15592294.2021.1896983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 01/30/2021] [Indexed: 11/07/2022] Open
Abstract
The Assay for Transposase Accessible Chromatin by sequencing (ATAC-seq) is becoming popular in the neuroscience field where chromatin regulation is thought to be involved in neurodevelopment, activity-dependent gene regulation, hormonal and environmental responses, and pathophysiology of neuropsychiatric disorders. The advantages of using ATAC-seq include a small amount of material needed, fast protocol, and the ability to capture a range of gene regulatory elements with a single assay. With increasing interest in chromatin research, it is an imperative to have feasible, reliable assays that are compatible with a range of neuroscience study designs. Here we tested three protocols for neuronal chromatin accessibility analysis, including a varying brain tissue freezing method followed by fluorescence-activated nuclei sorting (FANS) and ATAC-seq. Our study shows that the cryopreservation method impacts the number of open chromatin regions identified from frozen brain tissue using ATAC-seq. However, we show that all protocols generate consistent and robust data and enable the identification of functional regulatory elements in neuronal cells. Our study implies that the broad biological interpretation of chromatin accessibility data is not significantly affected by the freezing condition. We also reveal additional challenges of doing chromatin analysis on post-mortem human brain tissue. Overall, ATAC-seq coupled with FANS is a powerful method to capture cell-type-specific chromatin accessibility information in mouse and human brain. Our study provides alternative brain preservation methods that generate high-quality ATAC-seq data while fitting in different study designs, and further encourages the use of this method to uncover the role of epigenetic (dys)regulation in the brain.
Collapse
Affiliation(s)
- Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Lydia Tesfa
- Flow Cytometry Core Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M. Greally
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masako Suzuki
- Center for Epigenomics, Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| |
Collapse
|
37
|
Malakoti F, Targhazeh N, Karimzadeh H, Mohammadi E, Asadi M, Asemi Z, Alemi F. The Multiple Function of lncRNA MALAT1 in Cancer Occurrence and Progression. Chem Biol Drug Des 2021; 101:1113-1137. [PMID: 34918470 DOI: 10.1111/cbdd.14006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have received particular attention in the last decade due to its engaging in carcinogenesis and tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA that plays physiological and pathological roles in many aspects of genome function as well as biological processes involved in cell development, differentiation, proliferation, invasion, and migration. In this article, we will review the effects of lncRNA MALAT1 on the progression of six prevalent human cancers by focusing on MALAT1 ability to regulate post-transcriptional modification and signaling pathways.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniye Karimzadeh
- Department of Clinical Biochemistry, School of Pharmacy & Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Mohammadi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Ma W, Li CY, Zhang SJ, Zang CH, Yang JW, Wu Z, Wang GD, Liu J, Liu W, Liu KP, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Neuroprotective effects of long noncoding RNAs involved in ischemic postconditioning after ischemic stroke. Neural Regen Res 2021; 17:1299-1309. [PMID: 34782575 PMCID: PMC8643058 DOI: 10.4103/1673-5374.327346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During acute reperfusion, the expression profiles of long noncoding RNAs in adult rats with focal cerebral ischemia undergo broad changes. However, whether long noncoding RNAs are involved in neuroprotective effects following focal ischemic stroke in rats remains unclear. In this study, RNA isolation and library preparation was performed for long noncoding RNA sequencing, followed by determining the coding potential of identified long noncoding RNAs and target gene prediction. Differential expression analysis, long noncoding RNA functional enrichment analysis, and co-expression network analysis were performed comparing ischemic rats with and without ischemic postconditioning rats. Rats were subjected to ischemic postconditioning via the brief and repeated occlusion of the middle cerebral artery or femoral artery. Quantitative real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of differentially expressed long noncoding RNAs after ischemic postconditioning in a rat model of ischemic stroke. The results showed that ischemic postconditioning greatly affected the expression profile of long noncoding RNAs and mRNAs in the brains of rats that underwent ischemic stroke. The predicted target genes of some of the identified long noncoding RNAs (cis targets) were related to the cellular response to ischemia and stress, cytokine signal transduction, inflammation, and apoptosis signal transduction pathways. In addition, 15 significantly differentially expressed long noncoding RNAs were identified in the brains of rats subjected to ischemic postconditioning. Nine candidate long noncoding RNAs that may be related to ischemic postconditioning were identified by a long noncoding RNA expression profile and long noncoding RNA-mRNA co-expression network analysis. Expression levels were verified by quantitative real-time reverse transcription-polymerase chain reaction. These results suggested that the identified long noncoding RNAs may be involved in the neuroprotective effects associated with ischemic postconditioning following ischemic stroke. The experimental animal procedures were approved by the Animal Experiment Ethics Committee of Kunming Medical University (approval No. KMMU2018018) in January 2018.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
39
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
40
|
Penning DH, Cazacu S, Brodie A, Jevtovic-Todorovic V, Kalkanis SN, Lewis M, Brodie C. Neuron-Glia Crosstalk Plays a Major Role in the Neurotoxic Effects of Ketamine via Extracellular Vesicles. Front Cell Dev Biol 2021; 9:691648. [PMID: 34604212 PMCID: PMC8481868 DOI: 10.3389/fcell.2021.691648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
Background: There is a compelling evidence from animal models that early exposure to clinically relevant general anesthetics (GAs) interferes with brain development, resulting in long-lasting cognitive impairments. Human studies have been inconclusive and are challenging due to numerous confounding factors. Here, we employed primary human neural cells to analyze ketamine neurotoxic effects focusing on the role of glial cells and their activation state. We also explored the roles of astrocyte-derived extracellular vesicles (EVs) and different components of the brain-derived neurotrophic factor (BDNF) pathway. Methods: Ketamine effects on cell death were analyzed using live/dead assay, caspase 3 activity and PARP-1 cleavage. Astrocytic and microglial cell differentiation was determined using RT-PCR, ELISA and phagocytosis assay. The impact of the neuron-glial cell interactions in the neurotoxic effects of ketamine was analyzed using transwell cultures. In addition, the role of isolated and secreted EVs in this cross-talk were studied. The expression and function of different components of the BDNF pathway were analyzed using ELISA, RT-PCR and gene silencing. Results: Ketamine induced neuronal and oligodendrocytic cell apoptosis and promoted pro-inflammatory astrocyte (A1) and microglia (M1) phenotypes. Astrocytes and microglia enhanced the neurotoxic effects of ketamine on neuronal cells, whereas neurons increased oligodendrocyte cell death. Ketamine modulated different components in the BDNF pathway: decreasing BDNF secretion in neurons and astrocytes while increasing the expression of p75 in neurons and that of BDNF-AS and pro-BDNF secretion in both neurons and astrocytes. We demonstrated an important role of EVs secreted by ketamine-treated astrocytes in neuronal cell death and a role for EV-associated BDNF-AS in this effect. Conclusions: Ketamine exerted a neurotoxic effect on neural cells by impacting both neuronal and non-neuronal cells. The BDNF pathway and astrocyte-derived EVs represent important mediators of ketamine effects. These results contribute to a better understanding of ketamine neurotoxic effects in humans and to the development of potential approaches to decrease its neurodevelopmental impact.
Collapse
Affiliation(s)
- Donald H Penning
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Simona Cazacu
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | | | - Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Steve N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Michael Lewis
- Department of Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Chaya Brodie
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
41
|
Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 185:107522. [PMID: 34547434 DOI: 10.1016/j.nlm.2021.107522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
A striking proportion of long non-coding RNAs are expressed specifically in the mammalian brain. Advances in genome-wide sequencing detected widespread diversity in neuronal lncRNAs based on their expression pattern, localization and function. A growing body of literature proposes that localization of lncRNAs is a critical determinant of their function. A rising number of recent findings documented distinct cytoplasmic functions of lncRNAs that are linked to activity-induced control of synaptic plasticity. However, the comprehensive role of cytoplasmic lncRNAs in neuronal functions is less understood. This review surveys our current understanding of lncRNAs that regulate the cytoplasmic life of mRNAs. We discuss the necessity of subcellular localization of lncRNAs in neuronal dendrites and the impact of their compartmentalized positioning on localized translation at the synapse. We have highlighted how lncRNAs modify a functional compartment to meet the demand for input-specific control of synaptic plasticity and memory.
Collapse
|
42
|
Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto Escuela DO, Rocha L. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors. Epilepsia Open 2021; 7 Suppl 1:S23-S33. [PMID: 34542940 PMCID: PMC9340308 DOI: 10.1002/epi4.12539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that affects more than 50 million people worldwide. Despite a recent introduction of antiseizure drugs for the treatment of epileptic seizures, one-third of these patients suffer from drug-resistant epilepsy (DRE). The therapeutic target hypothesis is a cited theory to explain DRE. According to the target hypothesis, the failure to achieve seizure freedom leads to alteration of the structure and/or function of the antiseizure medication (ASM) target. However, this hypothesis fails to explain why patients with DRE do not respond to antiseizure medications of different targets. This review presents different conditions, such as epigenetic mechanisms and protein-protein interactions that may result in alterations of diverse drug targets using different mechanisms. These novel conditions represent new targets to control DRE.
Collapse
Affiliation(s)
| | | | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, México City, Mexico
| | - Rosenda Gómez-López
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, México
| | | | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, México City, México
| |
Collapse
|
43
|
Bhattacharyya N, Pandey V, Bhattacharyya M, Dey A. Regulatory role of long non coding RNAs (lncRNAs) in neurological disorders: From novel biomarkers to promising therapeutic strategies. Asian J Pharm Sci 2021; 16:533-550. [PMID: 34849161 PMCID: PMC8609388 DOI: 10.1016/j.ajps.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/12/2023] Open
Abstract
Long non coding RNAs (lncRNAs) are non-protein or low-protein coding transcripts that contain more than 200 nucleotides. They representing a large share of the cell's transcriptional output, demonstrate functional attributes viz. tissue-specific expression, determination of cell fate, controlled expression, RNA processing and editing, dosage compensation, genomic imprinting, conserved evolutionary traits etc. These long non coding variants are well associated with pathogenicity of various diseases including the neurological disorders like Alzheimer's disease, schizophrenia, Huntington's disease, Parkinson's disease etc. Neurological disorders are widespread and there knowing the underlying mechanisms become crucial. The lncRNAs take part in the pathogenesis by a plethora of mechanisms like decoy, scaffold, mi-RNA sequestrator, histone modifiers and in transcriptional interference. Detailed knowledge of the role of lncRNAs can help to use them further as novel biomarkers for therapeutic aspects. Here, in this review we discuss regulation and functional roles of lncRNAs in eight neurological diseases and psychiatric disorders, and the mechanisms by which they act. With these, we try to establish their roles as potential markers and viable diagnostic tools in these disorders.
Collapse
Affiliation(s)
| | - Vedansh Pandey
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
44
|
Keihani S, Kluever V, Fornasiero EF. Brain Long Noncoding RNAs: Multitask Regulators of Neuronal Differentiation and Function. Molecules 2021; 26:molecules26133951. [PMID: 34203457 PMCID: PMC8272081 DOI: 10.3390/molecules26133951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a 'coding molecule' has been largely surpassed, together with the conception that lncRNAs only represent 'waste material' produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.
Collapse
|
45
|
Long Noncoding RNA LINC01347 Modulated Lidocaine-Induced Cytotoxicity in SH-SY5Y Cells by Interacting with hsa-miR-145-5p. Neurotox Res 2021; 39:1440-1448. [PMID: 34115321 DOI: 10.1007/s12640-021-00363-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Local anesthetics, including lidocaine (Lid), are widely used in clinical settings but new evidence suggested that they may induce strong neurological side-effects in human brains. In this work, we used an in vitro model to examine the functional modulations of a long non-coding RNA (lncRNA), LINC01347 on Lid-induced cytotoxicity in SH-SY5Y cells. SH-SY5Y cells were maintained in vitro and treated with Lid to induce cytotoxicity. Dynamic expression of LINC01347, in response to Lid treatment or lentivirus-mediated overexpression, was examined by quantitative real-time PCR. The effects of LINC01347 overexpression on Lid-induced cell death, LDH, caspase, and autophagy activities were evaluated. A potential downstream target of LINC01347, human microRNA-145-5p (hsa-miR-145-5p), was evaluated in SH-SY5Y cells. Hsa-miR-145-5p was subsequently upregulated to explore its functional correlation with LINC01347 in modulating Lid-induced SH-SY5Y cytotoxicity. Lid caused cell death and downregulated LINC01347 expression in SH-SY5Y cells in vitro. LINC01347 overexpression reduced Lid-induced cell death, LDH and caspase augmentation, and LC3B accumulation. Hsa-miR-145-5p was discovered to be closely affiliated with LINC01347. Its upregulation partially restored Lid-induced cytotoxic effects in LINC01347-overexpressed SH-SY5Y cells. Our study presented strong evidence showing lncRNA LINC01347 modulated lidocaine-induced cytotoxicity in SH-SY5Y cells by interacting with hsa-miR-145-5p.
Collapse
|
46
|
Tan X, Liu Y, Liu Y, Zhang T, Cong S. Dysregulation of long non-coding RNAs and their mechanisms in Huntington's disease. J Neurosci Res 2021; 99:2074-2090. [PMID: 34031910 DOI: 10.1002/jnr.24825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Extensive alterations in gene regulatory networks are a typical characteristic of Huntington's disease (HD); these include alterations in protein-coding genes and poorly understood non-coding RNAs (ncRNAs), which are associated with pathology caused by mutant huntingtin. Long non-coding RNAs (lncRNAs) are an important class of ncRNAs involved in a variety of biological functions, including transcriptional regulation and post-transcriptional modification of many targets, and likely contributed to the pathogenesis of HD. While a number of changes in lncRNAs expression have been observed in HD, little is currently known about their functions. Here, we discuss their possible mechanisms and molecular functions, with a particular focus on their roles in transcriptional regulation. These findings give us a better insight into HD pathogenesis and may provide new targets for the treatment of this neurodegenerative disease.
Collapse
Affiliation(s)
- Xiaoping Tan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yang Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yan Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Taiming Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
47
|
Grinman E, Nakahata Y, Avchalumov Y, Espadas I, Swarnkar S, Yasuda R, Puthanveettil SV. Activity-regulated synaptic targeting of lncRNA ADEPTR mediates structural plasticity by localizing Sptn1 and AnkB in dendrites. SCIENCE ADVANCES 2021; 7:7/16/eabf0605. [PMID: 33863727 PMCID: PMC8051873 DOI: 10.1126/sciadv.abf0605] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/26/2021] [Indexed: 05/26/2023]
Abstract
Activity-dependent structural plasticity at the synapse requires specific changes in the neuronal transcriptome. While much is known about the role of coding elements in this process, the role of the long noncoding transcriptome remains elusive. Here, we report the discovery of an intronic long noncoding RNA (lncRNA)-termed ADEPTR-that is up-regulated and synaptically transported in a cAMP/PKA-dependent manner in hippocampal neurons, independently of its protein-coding host gene. Loss of ADEPTR function suppresses activity-dependent changes in synaptic transmission and structural plasticity of dendritic spines. Mechanistically, dendritic localization of ADEPTR is mediated by molecular motor protein Kif2A. ADEPTR physically binds to actin-scaffolding regulators ankyrin (AnkB) and spectrin (Sptn1) via a conserved sequence and is required for their dendritic localization. Together, this study demonstrates how activity-dependent synaptic targeting of an lncRNA mediates structural plasticity at the synapse.
Collapse
Affiliation(s)
- Eddie Grinman
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | - Yosef Avchalumov
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, Scripps Research, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | | |
Collapse
|
48
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
49
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
50
|
Dachet F, Brown JB, Valyi-Nagy T, Narayan KD, Serafini A, Boley N, Gingeras TR, Celniker SE, Mohapatra G, Loeb JA. Selective time-dependent changes in activity and cell-specific gene expression in human postmortem brain. Sci Rep 2021; 11:6078. [PMID: 33758256 PMCID: PMC7988150 DOI: 10.1038/s41598-021-85801-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
As a means to understand human neuropsychiatric disorders from human brain samples, we compared the transcription patterns and histological features of postmortem brain to fresh human neocortex isolated immediately following surgical removal. Compared to a number of neuropsychiatric disease-associated postmortem transcriptomes, the fresh human brain transcriptome had an entirely unique transcriptional pattern. To understand this difference, we measured genome-wide transcription as a function of time after fresh tissue removal to mimic the postmortem interval. Within a few hours, a selective reduction in the number of neuronal activity-dependent transcripts occurred with relative preservation of housekeeping genes commonly used as a reference for RNA normalization. Gene clustering indicated a rapid reduction in neuronal gene expression with a reciprocal time-dependent increase in astroglial and microglial gene expression that continued to increase for at least 24 h after tissue resection. Predicted transcriptional changes were confirmed histologically on the same tissue demonstrating that while neurons were degenerating, glial cells underwent an outgrowth of their processes. The rapid loss of neuronal genes and reciprocal expression of glial genes highlights highly dynamic transcriptional and cellular changes that occur during the postmortem interval. Understanding these time-dependent changes in gene expression in post mortem brain samples is critical for the interpretation of research studies on human brain disorders.
Collapse
Affiliation(s)
- Fabien Dachet
- University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - James B Brown
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | - Anna Serafini
- University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nathan Boley
- University of California, Berkeley, CA, 94720, USA
| | | | | | | | - Jeffrey A Loeb
- University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|