1
|
Buckleton JS, Hall TO, Bright JA, Yung MC, Goudet J, Kruijver M, Weir BS. Estimation of population-specific values of theta for PowerPlex Y23 profiles. Forensic Sci Int Genet 2025; 75:103175. [PMID: 39579651 DOI: 10.1016/j.fsigen.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
We examine 31,011 PPY23 profiles at the population, metapopulation and world levels. Most haplotypes appear only once but a few have higher counts, including a set of 23 matching profiles in Delhi, India and a set of 16 matching profiles in Burkina Faso with one additional matching American African profile. We estimate FSTvalues to be used as "theta" (θ) in match probability calculations, following the method we used in our earlier survey of autosomal STR data. Match probability estimates using FˆST or the κ method of Brenner for a previously unseen profile are similar but differ for any profile previously seen.
Collapse
Affiliation(s)
- John S Buckleton
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand
| | - Taryn O Hall
- UnitedHealth Group, Optum Genomics, Minnetonka, MN 55343, USA
| | - Jo-Anne Bright
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand.
| | - Michael C Yung
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Maarten Kruijver
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA
| |
Collapse
|
2
|
Topaloudis A, Cumer T, Lavanchy E, Ducrest AL, Simon C, Machado AP, Paposhvili N, Roulin A, Goudet J. The recombination landscape of the barn owl, from families to populations. Genetics 2025; 229:1-50. [PMID: 39545468 PMCID: PMC11708917 DOI: 10.1093/genetics/iyae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Homologous recombination is a meiotic process that generates diversity along the genome and interacts with all evolutionary forces. Despite its importance, studies of recombination landscapes are lacking due to methodological limitations and limited data. Frequently used approaches include linkage mapping based on familial data that provides sex-specific broad-scale estimates of realized recombination and inferences based on population linkage disequilibrium that reveal a more fine-scale resolution of the recombination landscape, albeit dependent on the effective population size and the selective forces acting on the population. In this study, we use a combination of these 2 methods to elucidate the recombination landscape for the Afro-European barn owl (Tyto alba). We find subtle differences in crossover placement between sexes that lead to differential effective shuffling of alleles. Linkage disequilibrium-based estimates of recombination are concordant with family-based estimates and identify large variation in recombination rates within and among linkage groups. Larger chromosomes show variation in recombination rates, while smaller chromosomes have a universally high rate that shapes the diversity landscape. We find that recombination rates are correlated with gene content, genetic diversity, and GC content. We find no conclusive differences in the recombination landscapes between populations. Overall, this comprehensive analysis enhances our understanding of recombination dynamics, genomic architecture, and sex-specific variation in the barn owl, contributing valuable insights to the broader field of avian genomics.
Collapse
Affiliation(s)
- Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Celine Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Nika Paposhvili
- Institute of Ecology, Ilia State University, Tbilisi 0162, Georgia
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Aqbouch L, Abou-Saaid O, Sarah G, Zunino L, Segura V, Mournet P, Bonal F, Zaher H, El Bakkali A, Cubry P, Costes E, Khadari B. Genome-wide association analysis of flowering date in a collection of cultivated olive tree. HORTICULTURE RESEARCH 2025; 12:uhae265. [PMID: 39802732 PMCID: PMC11718396 DOI: 10.1093/hr/uhae265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 01/16/2025]
Abstract
Flowering date in perennial fruit trees is an important trait for fruit production. Depending on the winter and spring temperatures, flowering of olive may be advanced, delayed, or even suppressed. Deciphering the genetic control of flowering date is thus key to help selecting cultivars better adapted to the current climate context. Here, we investigated the genetic determinism of full flowering date stage in cultivated olive based on capture sequencing data of 318 genotypes from the worldwide olive germplasm bank of Marrakech, Morocco. The genetic structure of this collection was organized in three clusters that were broadly attributed to eastern, central, and western Mediterranean regions, based on the presumed origin of genotypes. Flowering dates, collected over 7 years, were used to estimate the genotypic best linear unbiased predictors, which were then analyzed in a genome-wide association study. Loci with small effects were significantly associated with the studied trait, by either a single- or a multi-locus approach. The three most robust loci were located on chromosomes 01 and 04, and on a scaffold, and explained 7.1%, 6.2%, and 6.5% of the trait variance, respectively. A significantly higher accuracy in the best linear unbiased predictors of flowering date prediction was reported with Ridge- compared to LASSO-based genomic prediction model. Along with genomic association results, this suggests a complex polygenic determinism of flowering date, as seen in many other fruit perennials. These results and the screening of associated regions for candidate genes open perspectives for further studies and breeding programs targeting flowering date.
Collapse
Affiliation(s)
- Laila Aqbouch
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Omar Abou-Saaid
- Université Cadi Ayyad, Laboratoire Biotechnologie et Bio-ingénierie Moléculaire, FST Guéliz, Marrakech, Morocco
- INRA, UR Amélioration des Plantes, Marrakech, Morocco
| | - Gautier Sarah
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Lison Zunino
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre Mournet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| | - Florelle Bonal
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| | - Hayat Zaher
- INRA, UR Amélioration des Plantes, Marrakech, Morocco
| | - Ahmed El Bakkali
- INRA, UR Amélioration des Plantes et Conservation des Ressources Phytogénétiques, Meknès, Morocco
| | - Philippe Cubry
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, France
| | - Evelyne Costes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bouchaib Khadari
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CBNMed, AGAP Institut, Montpellier, France
| |
Collapse
|
4
|
Graffelman J, Weir BS, Goudet J. Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Heredity (Edinb) 2025; 134:10-20. [PMID: 39511434 PMCID: PMC11724073 DOI: 10.1038/s41437-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
The Jacquard genetic identity coefficients are of fundamental importance in relatedness research. We address the estimation of these coefficients as well as other relationship parameters that derive from them such as kinship and inbreeding coefficients using a concise matrix framework. Estimation of the Jacquard coefficients via likelihood methods and the expectation-maximization algorithm is computationally very demanding for large numbers of polymorphisms. We propose a constrained least squares approach to estimate the Jacquard coefficients. A simulation study shows constrained least squares achieves root-mean-squared errors that are comparable with those of the maximum likelihood approach, in particular when founder allele frequencies are unknown, while obtaining enormous computational savings.
Collapse
Affiliation(s)
- Jan Graffelman
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Spain.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Bruce S Weir
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Lavanchy E, Cumer T, Topaloudis A, Ducrest AL, Simon C, Roulin A, Goudet J. Too big to purge: persistence of deleterious Mutations in Island populations of the European Barn Owl (Tyto alba). Heredity (Edinb) 2024; 133:437-449. [PMID: 39397112 PMCID: PMC11589586 DOI: 10.1038/s41437-024-00728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
A key aspect of assessing the risk of extinction/extirpation for a particular wild species or population is the status of inbreeding, but the origin of inbreeding and the current mutational load are also two crucial factors to consider when determining survival probability of a population. In this study, we used samples from 502 barn owls from continental and island populations across Europe, with the aim of quantifying and comparing the level of inbreeding between populations with differing demographic histories. In addition to comparing inbreeding status, we determined whether inbreeding is due to non-random mating or high co-ancestry within the population. We show that islands have higher levels of inbreeding than continental populations, and that this is mainly due to small effective population sizes rather than recent consanguineous mating. We assess the probability that a region is autozygous along the genome and show that this probability decreased as the number of genes present in that region increased. Finally, we looked for evidence of reduced selection efficiency and purging in island populations. Among island populations, we found an increase in numbers of both neutral and deleterious minor alleles, possibly as a result of drift and decreased selection efficiency but we found no evidence of purging.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Gamba D, Vahsen ML, Maxwell TM, Pirtel N, Romero S, Ee JJV, Penn A, Das A, Ben-Zeev R, Baughman O, Blaney CS, Bodkins R, Budha-Magar S, Copeland SM, Davis-Foust SL, Diamond A, Donnelly RC, Dunwiddie PW, Ensing DJ, Everest TA, Hoitink H, Holdrege MC, Hufbauer RA, Juzėnas S, Kalwij JM, Kashirina E, Kim S, Klisz M, Klyueva A, Langeveld M, Lutfy S, Martin D, Merkord CL, Morgan JW, Nagy DU, Ott JP, Puchalka R, Pyle LA, Rasran L, Rector BG, Rosche C, Sadykova M, Shriver RK, Stanislavschi A, Starzomski BM, Stone RL, Turner KG, Urza AK, VanWallendael A, Wegenschimmel CA, Zweck J, Brown CS, Leger EA, Blumenthal DM, Germino MJ, Porensky LM, Hooten MB, Adler PB, Lasky JR. Local adaptation to climate facilitates a global invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612725. [PMID: 39345363 PMCID: PMC11429938 DOI: 10.1101/2024.09.12.612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass (Bromus tectorum), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages invaded North America, where long-distance gene flow is common. Ancestry and phenotypic clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes colonized different regions. Common gardens showed directional selection on flowering time that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, genomic predictions of strong local adaptation identified sites where cheatgrass is most dominant. Preventing new introductions that may fuel adaptation is critical for managing ongoing invasions.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Megan L. Vahsen
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Toby M. Maxwell
- Department of Biological Sciences, Boise State University; Boise, ID, USA
| | - Nikki Pirtel
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Seth Romero
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Justin J. Van Ee
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Amanda Penn
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Aayudh Das
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Rotem Ben-Zeev
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | | | - C. Sean Blaney
- Atlantic Canada Conservation Data Centre; Sackville, NB, Canada
| | | | | | - Stella M. Copeland
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center; Burns, OR, USA
| | | | - Alvin Diamond
- Department of Biological and Environmental Sciences, Troy University; Troy, Alabama, USA
| | - Ryan C. Donnelly
- Division of Biology, Kansas State University; Manhattan, KS, USA
| | | | - David J. Ensing
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada; Summerland, BC, Canada
| | | | | | - Martin C. Holdrege
- Northern Arizona University, Center for Adaptable Western Landscapes; Flagstaff, AZ, USA
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Sigitas Juzėnas
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University; Vilnius, Lithuania
| | - Jesse M. Kalwij
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology; Karlsruhe, Germany
| | | | - Sangtae Kim
- Department of Biology, Sungshin Women’s University; Seoul, Republic of Korea
| | - Marcin Klisz
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute; Raszyn, Poland
| | - Alina Klyueva
- Bryansk State University named after Academician I. G. Petrovsky; Bryansk, Russia
| | | | - Samuel Lutfy
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville; Kingsville, TX, USA
| | | | | | - John W. Morgan
- Department of Environment and Genetics, La Trobe University; Bundoora, Victoria, Australia
| | - Dávid U. Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | - Jacqueline P. Ott
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD, USA
| | - Radoslaw Puchalka
- Department of Ecology and Biogeography, Nicolaus Copernicus University; Torun, Poland
| | | | - Leonid Rasran
- University of Natural Resources and Life Sciences, Vienna; Vienna, Austria
| | - Brian G. Rector
- US Department of Agriculture, Agricultural Research Service, Invasive Species and Pollinator Health Research Unit; Albany, CA, USA
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | | | - Robert K. Shriver
- Department of Natural Resources and Environmental Science, University of Nevada; Reno, NV, USA
| | - Alexandr Stanislavschi
- Department of Organic, Biochemical, and Food Engineering, Gheorghe Asachi Technical University of Iasi; Iasi, Romania
| | - Brian M. Starzomski
- School of Environmental Studies, University of Victoria; Victoria, BC, Canada
| | - Rachel L. Stone
- Department of Biology, Case Western Reserve University; Cleveland, OH, USA
| | - Kathryn G. Turner
- Department of Biological Sciences, Idaho State University; Pocatello, ID, USA
| | | | - Acer VanWallendael
- Department of Horticultural Science, North Carolina State University; Raleigh, NC, USA
| | | | - Justin Zweck
- Department of Ecosystem Science and Management, Pennsylvania State University; University Park, PA, USA
| | - Cynthia S. Brown
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | | | - Dana M. Blumenthal
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Matthew J. Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center; Boise, Idaho, USA
| | - Lauren M. Porensky
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Mevin B. Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin; Austin, TX, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| |
Collapse
|
7
|
Radu A, Dudgeon C, Clegg SM, Foster Y, Levengood AL, Sendell-Price AT, Townsend KA, Potvin DA. Genetic patterns reveal geographic drivers of divergence in silvereyes (Zosterops lateralis). Sci Rep 2024; 14:20426. [PMID: 39227633 PMCID: PMC11372117 DOI: 10.1038/s41598-024-71364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Identifying mechanisms that drive population divergence under varying geographic and ecological scenarios can inform our understanding of evolution and speciation. In particular, analysis of genetic data from island populations with known colonisation timelines allows us to identify potential source populations of diverging island subspecies and current relationships among populations. Silvereyes (Zosterops lateralis) are a small passerine that have served as a valuable study system to investigate evolutionary patterns on both large and small geographic scales. We examined genetic relatedness and diversity of two silvereye subspecies, the mainland Z. l. cornwalli and island Z. l. chlorocephalus, and used 18 077 single nucleotide polymorphisms (SNPs), to compare locations across southeast Queensland, Australia. Although silvereyes are prolific island colonisers our findings revealed population divergence over relatively small spatial scales was strongly influenced by geographic isolation mediated by water barriers. Strong genetic connectivity was displayed between mainland sites, but minimal inter-island connectivity was shown despite comparable sampling distances. Genetic diversity analysis showed little difference in heterozygosity between island and mainland populations, but lower inbreeding scores among the island populations. Our study confirmed the range of the Z. l. chlorocephalus subspecies throughout the southern Great Barrier Reef. Our results show that water barriers and not geographic distance per se are important in driving incipient divergence in island populations. This helps to explain the relatively high number of phenotypically differentiated, but often geographically proximate, island silvereye subspecies compared to a lower number of phenotypically less well-defined Australian continental subspecies.
Collapse
Affiliation(s)
- Annika Radu
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia.
| | - Christine Dudgeon
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Sonya M Clegg
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
- Centre for Planetary Health and Food Security, Griffith University, Brisbane, Australia
| | - Yasmin Foster
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alexis L Levengood
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Ashley T Sendell-Price
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Dominique A Potvin
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
- Centre for Biolnnovation, University of the Sunshine Coast, Petrie, QLD, Australia
| |
Collapse
|
8
|
Day CC, Alò D, Simmons RK, Cotey SR, Zarn KE, Gazeley IF, Small M, Fortin MJ, Bearlin AR, Smith SR, Landguth EL. Disentangling effects of dispersal, environment and anthropogenic barriers on functional connectivity in aquatic systems. Mol Ecol 2024; 33:e17500. [PMID: 39188095 DOI: 10.1111/mec.17500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Disentangling the roles of structural landscape factors and animal movement behaviour can present challenges for practitioners managing landscapes to maintain functional connectivity and achieve conservation goals. We used a landscape genetics approach to combine robust demographic, behavioural and genetic datasets with spatially explicit simulations to evaluate the effects of anthropogenic barriers (dams, culverts) and natural landscape resistance (gradient, elevation) affecting dispersal behaviour, genetic connectivity and genetic structure in a resident population of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi). Analyses based on 10 years of sampling effort revealed a pattern of restricted dispersal, and population genetics identified discrete population clusters between distal tributaries and the mainstem stream and no structure within the mainstem stream. Demogenetic simulations demonstrated that, for this population, the effects of existing anthropogenic barriers on population structure are redundant with effects of restricted dispersal associated with the underlying environmental resistance. Our approach provides an example of how extensive field sampling combined with landscape genetics can be incorporated into spatially explicit simulation modelling to explore how, together, movement ecology and landscape resistance can be used to inform decisions around restoration and connectivity.
Collapse
Affiliation(s)
- Casey C Day
- Computational Ecology Lab, University of Montana, Missoula, Montana, USA
| | - Dominique Alò
- Departamento de Sistemas Acuáticos. Facultad de Ciencias Ambientales y Centro de Ciencias Ambientales EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Ryan K Simmons
- Environment, Land, and Licensing, Seattle City Light, Seattle, Washington, USA
| | - Stacy R Cotey
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Katherine E Zarn
- National Technology and Development Program, USDA Forest Service, Flagstaff, Arizona, USA
| | - Ian F Gazeley
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Maureen Small
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - Marie-Josee Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew R Bearlin
- Environment, Land, and Licensing, Seattle City Light, Seattle, Washington, USA
| | - Seth R Smith
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - Erin L Landguth
- Computational Ecology Lab, University of Montana, Missoula, Montana, USA
| |
Collapse
|
9
|
Mbanjo EGN, Ogungbesan A, Agbona A, Akpotuzor P, Toyinbo S, Iluebbey P, Rabbi IY, Peteti P, Wages SA, Norton J, Zhang X, Bohórquez-Chaux A, Mushoriwa H, Egesi C, Kulakow P, Parkes E. Validation of SNP Markers for Diversity Analysis, Quality Control, and Trait Selection in a Biofortified Cassava Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:2328. [PMID: 39204764 PMCID: PMC11359368 DOI: 10.3390/plants13162328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
A validated marker system is crucial to running an effective genomics-assisted breeding program. We used 36 Kompetitive Allele-Specific PCR (KASP) markers to genotype 376 clones from the biofortified cassava pipeline, and fingerprinted 93 of these clones with DArTseq markers to characterize breeding materials and evaluate their relationships. The discriminating ability of the 36-quality control (QC) KASP and 6602 DArTseq markers was assessed using 92 clones genotyped in both assays. In addition, trait-specific markers were used to determine the presence or absence of target genomic regions. Hierarchical clustering identified two major groups, and the clusters were consistent with the breeding program origins. There was moderate genetic differentiation and a low degree of variation between the identified groups. The general structure of the population was similar using both assays. Nevertheless, KASP markers had poor resolution when it came to differentiating the genotypes by seed sources and overestimated the prevalence of duplicates. The trait-linked markers did not achieve optimal performance as all markers displayed variable levels of false positive and/or false negative. These findings represent the initial step in the application of genomics-assisted breeding for the biofortified cassava pipeline, and will guide the use of genomic selection in the future.
Collapse
Affiliation(s)
| | - Adebukola Ogungbesan
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Afolabi Agbona
- Texas A&M Agrilife Research & Extension Center, Weslaco, TX 78596, USA
| | - Patrick Akpotuzor
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Seyi Toyinbo
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Peter Iluebbey
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Ismail Yusuf Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Prasad Peteti
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Sharon A. Wages
- College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Joanna Norton
- College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii at Manoa, Hilo, HI 96720, USA
| | - Xiaofei Zhang
- Cassava Program, International Center for Tropical Agriculture (CIAT), CGIAR, Cali 763537, Colombia
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Adriana Bohórquez-Chaux
- Cassava Program, International Center for Tropical Agriculture (CIAT), CGIAR, Cali 763537, Colombia
| | - Hapson Mushoriwa
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
- National Root Crops Research Institute (NRCRI), Umudike, Umuahia 440001, Nigeria
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria (P.K.)
| | - Elizabeth Parkes
- IITA—Zambia, Southern Africa Research and Administration Hub (SARAH), Plot 1458B, Ngwerere Road (off Great North Road), Chongwe 10100, Lusaka, Zambia
| |
Collapse
|
10
|
Lamka GF, Willoughby JR. Habitat remediation followed by managed connectivity reduces unwanted changes in evolutionary trajectory of high extirpation risk populations. PLoS One 2024; 19:e0304276. [PMID: 38814889 PMCID: PMC11139274 DOI: 10.1371/journal.pone.0304276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
As we continue to convert green spaces into roadways and buildings, connectivity between populations and biodiversity will continue to decline. In threatened and endangered species, this trend is particularly concerning because the cessation of immigration can cause increased inbreeding and loss of genetic diversity, leading to lower adaptability and higher extirpation probabilities in these populations. Unfortunately, monitoring changes in genetic diversity from management actions such as assisted migration and predicting the extent of introduced genetic variation that is needed to prevent extirpation is difficult and costly in situ. Therefore, we designed an agent-based model to link population-wide genetic variability and the influx of unique alleles via immigration to population stability and extirpation outcomes. These models showed that management of connectivity can be critical in restoring at-risk populations and reducing the effects of inbreeding depression. However, the rescued populations were more similar to the migrant source population (average FST range 0.05-0.10) compared to the historical recipient population (average FST range 0.23-0.37). This means that these management actions not only recovered the populations from the effects of inbreeding depression, but they did so in a way that changed the evolutionary trajectory that was predicted and expected for these populations prior to the population crash. This change was most extreme in populations with the smallest population sizes, which are representative of critically endangered species that could reasonably be considered candidates for restored connectivity or translocation strategies. Understanding how these at-risk populations change in response to varying management interventions has broad implications for the long-term adaptability of these populations and can improve future efforts for protecting locally adapted allele complexes when connectivity is restored.
Collapse
Affiliation(s)
- Gina F. Lamka
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
11
|
Lavanchy E, Weir BS, Goudet J. Detecting inbreeding depression in structured populations. Proc Natl Acad Sci U S A 2024; 121:e2315780121. [PMID: 38687793 PMCID: PMC11087799 DOI: 10.1073/pnas.2315780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne1015, Switzerland
- Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, SeattleWA98195
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne1015, Switzerland
- Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
12
|
Uyenoyama MK. Wright's Hierarchical F-Statistics. Mol Biol Evol 2024; 41:msae083. [PMID: 38696269 PMCID: PMC11118444 DOI: 10.1093/molbev/msae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024] Open
Abstract
This perspective article offers a meditation on FST and other quantities developed by Sewall Wright to describe the population structure, defined as any departure from reproduction through random union of gametes. Concepts related to the F-statistics draw from studies of the partitioning of variation, identity coefficients, and diversity measures. Relationships between the first two approaches have recently been clarified and unified. This essay addresses the third pillar of the discussion: Nei's GST and related measures. A hierarchy of probabilities of identity-by-state provides a description of the relationships among levels of a structured population with respect to genetic diversity. Explicit expressions for the identity-by-state probabilities are determined for models of structured populations undergoing regular inbreeding and recurrent mutation. Levels of genetic diversity within and between subpopulations reflect mutation as well as migration. Accordingly, indices of the population structure are inherently locus-specific, contrary to the intentions of Wright. Some implications of this locus-specificity are explored.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Duke University, Box 90338, Durham, NC 27708-0338, USA
| |
Collapse
|
13
|
Linan AG, Gereau RE, Sucher R, Mashimba FH, Bassuner B, Wyatt A, Edwards CE. Capturing and managing genetic diversity in ex situ collections of threatened tropical trees: A case study in Karomia gigas. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11589. [PMID: 38912126 PMCID: PMC11192163 DOI: 10.1002/aps3.11589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/12/2024] [Accepted: 02/23/2024] [Indexed: 06/25/2024]
Abstract
Premise Although ex situ collections of threatened plants are most useful when they contain maximal genetic variation, the conservation and maintenance of genetic diversity in collections are often poorly known. We present a case study using population genomic analyses of an ex situ collection of Karomia gigas, a critically endangered tropical tree from Tanzania. Only ~43 individuals are known in two wild populations, and ex situ collections containing 34 individuals were established in two sites from wild-collected seed. The study aimed to understand how much diversity is represented in the collection, analyze the parentage of ex situ individuals, and identify efficient strategies to capture and maintain genetic diversity. Methods We genotyped all known individuals using a 2b-RADseq approach, compared genetic diversity in wild populations and ex situ collections, and conducted parentage analysis of the collections. Results Wild populations were found to have greater levels of genetic diversity than ex situ populations as measured by number of private alleles, number of polymorphic sites, observed and expected heterozygosity, nucleotide diversity, and allelic richness. In addition, only 32.6% of wild individuals are represented ex situ and many individuals were found to be the product of selfing by a single wild individual. Discussion Population genomic analyses provided important insights into the conservation of genetic diversity in K. gigas, identifying gaps and inefficiencies, but also highlighting strategies to conserve genetic diversity ex situ. Genomic analyses provide essential information to ensure that collections effectively conserve genetic diversity in threatened tropical trees.
Collapse
Affiliation(s)
| | - Roy E. Gereau
- Missouri Botanical Garden4344 Shaw Blvd.St. Louis63110MissouriUSA
| | - Rebecca Sucher
- Missouri Botanical Garden4344 Shaw Blvd.St. Louis63110MissouriUSA
| | - Fandey H. Mashimba
- Tanzania Forest Service Agency, Directorate of Tree Seed ProductionBox 40832, Nyerere Road, Mpingo HouseDar es SalaamTanzania
| | - Burgund Bassuner
- Missouri Botanical Garden4344 Shaw Blvd.St. Louis63110MissouriUSA
| | - Andrew Wyatt
- Missouri Botanical Garden4344 Shaw Blvd.St. Louis63110MissouriUSA
| | | |
Collapse
|
14
|
Ritland K. Relatedness coefficients and their applications for triplets and quartets of genetic markers. G3 (BETHESDA, MD.) 2024; 14:jkad236. [PMID: 38411620 PMCID: PMC10989858 DOI: 10.1093/g3journal/jkad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 02/28/2024]
Abstract
Relatedness coefficients which seek the identity-by-descent of genetic markers are described. The markers are in groups of two, three or four, and if four, can consist of two pairs. It is essential to use cumulants (not moments) for four-marker-gene probabilities, as the covariance of homozygosity, used in four-marker applications, can only be described with cumulants. A covariance of homozygosity between pairs of markers arises when populations follow a mixture distribution. Also, the probability of four markers all identical-by-descent equals the normalized fourth cumulant. In this article, a "genetic marker" generally represents either a gene locus or an allele at a locus. Applications of three marker coefficients mainly involve conditional regression, and applications of four marker coefficients can involve identity disequilibrium. Estimation of relatedness using genetic marker data is discussed. However, three- and four-marker estimators suffer from statistical and numerical problems, including higher statistical variance, complexity of estimation formula, and singularity at some intermediate allele frequencies.
Collapse
Affiliation(s)
- Kermit Ritland
- Biodiversity Research Center, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
15
|
Maxwell LM, Clark JD, Walsh J, Conway M, Olsen BJ, Kovach AI. Ecological characteristics explain neutral genetic variation of three coastal sparrow species. Mol Ecol 2024; 33:e17316. [PMID: 38481075 DOI: 10.1111/mec.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Eco-phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species-specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co-distributed saltmarsh sparrow species differing along a specialization gradient-Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco-phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity and Ne rather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long-term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist-generalist status and support the role of an eco-phylogeographic approach in population and conservation genetics.
Collapse
Affiliation(s)
- Logan M Maxwell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jonathan D Clark
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jennifer Walsh
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
- Fuller Evolutionary Biology Program, Cornell Laboratory of Ornithology, Ithaca, New York, USA
| | - Meaghan Conway
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Brian J Olsen
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
16
|
Guardado M, Perez C, Jackson S, Magaña J, Campana S, Samperio E, Rojas BC, Hernandez S, Syas K, Hernandez R, Zavala EI, Rohlfs R. py_ped_sim - A flexible forward genetic simulator for complex family pedigree analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586501. [PMID: 38585824 PMCID: PMC10996500 DOI: 10.1101/2024.03.25.586501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. Results We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships. We validated the accuracy of our software by simulating genomes onto diverse family pedigree structures, showing that the estimated kinship coefficients closely approximated expected values. Conclusions py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.
Collapse
Affiliation(s)
- Miguel Guardado
- San Francisco State University, Department of Mathematics, San Francisco CA, 94132, USA
- University of California San Francisco, Biological and Medical Informatics Graduate Program. San Francisco CA, 94158
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA; San Francisco, 94134, CA, USA
- University of Oregon; Department of Data Science; Eugene, OR, 97403, USA
| | - Cynthia Perez
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Shalom Jackson
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Joaquín Magaña
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Sthen Campana
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Emily Samperio
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | | | - Selena Hernandez
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Kaela Syas
- San Francisco State University, Department of Mathematics, San Francisco CA, 94132, USA
| | - Ryan Hernandez
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA; San Francisco, 94134, CA, USA
| | - Elena I. Zavala
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
- University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA
| | - Rori Rohlfs
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
- University of Oregon; Department of Data Science; Eugene, OR, 97403, USA
| |
Collapse
|
17
|
Moracho E, Klein EK, Oddou-Muratorio S, Hampe A, Jordano P. Highly clustered mating networks in naturally fragmented riparian tree populations. Mol Ecol 2024; 33:e17285. [PMID: 38288563 DOI: 10.1111/mec.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024]
Abstract
Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.
Collapse
Affiliation(s)
- Eva Moracho
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Etienne K Klein
- Ecologie des Forêts Méditerranéennes, UR 629, INRA, Avignon, France
- Biostatistique et Processus Spatiaux, UR 546, INRA, Avignon, France
| | | | - Arndt Hampe
- INRA, UMR1202 BIOGECO, Cestas, France
- Univ. Bordeaux, UMR1202 BIOGECO, Talence, France
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Dept. Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
18
|
Fraimout A, Guillaume F, Li Z, Sillanpää MJ, Rastas P, Merilä J. Dissecting the genetic architecture of quantitative traits using genome-wide identity-by-descent sharing. Mol Ecol 2024; 33:e17299. [PMID: 38380534 DOI: 10.1111/mec.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.
Collapse
Affiliation(s)
- Antoine Fraimout
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Frédéric Guillaume
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Zitong Li
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, FI-90014 University of Oulu, Oulu, Finland
| | - Pasi Rastas
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Guan Y, Levy D. Estimation of inbreeding and kinship coefficients via latent identity-by-descent states. Bioinformatics 2024; 40:btae082. [PMID: 38364309 PMCID: PMC10902678 DOI: 10.1093/bioinformatics/btae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
MOTIVATION Estimating the individual inbreeding coefficient and pairwise kinship is an important problem in human genetics (e.g. in disease mapping) and in animal and plant genetics (e.g. inbreeding design). Existing methods, such as sample correlation-based genetic relationship matrix, KING, and UKin, are either biased, or not able to estimate inbreeding coefficients, or produce a large proportion of negative estimates that are difficult to interpret. This limitation of existing methods is partly due to failure to explicitly model inbreeding. Since all humans are inbred to various degrees by virtue of shared ancestries, it is prudent to account for inbreeding when inferring kinship between individuals. RESULTS We present "Kindred," an approach that estimates inbreeding and kinship by modeling latent identity-by-descent states that accounts for all possible allele sharing-including inbreeding-between two individuals. Kindred used non-negative least squares method to fit the model, which not only increases computation efficiency compared to the maximum likelihood method, but also guarantees non-negativity of the kinship estimates. Through simulation, we demonstrate the high accuracy and non-negativity of kinship estimates by Kindred. By selecting a subset of SNPs that are similar in allele frequencies across different continental populations, Kindred can accurately estimate kinship between admixed samples. In addition, we demonstrate that the realized kinship matrix estimated by Kindred is effective in reducing genomic control values via linear mixed model in genome-wide association studies. Finally, we demonstrate that Kindred produces sensible heritability estimates on an Australian height dataset. AVAILABILITY AND IMPLEMENTATION Kindred is implemented in C with multi-threading. It takes vcf file or stream as input and works seamlessly with bcftools. Kindred is freely available at https://github.com/haplotype/kindred.
Collapse
Affiliation(s)
- Yongtao Guan
- Framingham Heart Study, Framingham, MA 01702, United States
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, DC 20892, United States
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, United States
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, DC 20892, United States
| |
Collapse
|
20
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
21
|
Cheek RG, McLaughlin JF, Gamboa MP, Marshall CA, Johnson BM, Silver DB, Mauro AA, Ghalambor CK. A lack of genetic diversity and minimal adaptive evolutionary divergence in introduced Mysis shrimp after 50 years. Evol Appl 2024; 17:e13637. [PMID: 38283609 PMCID: PMC10818135 DOI: 10.1111/eva.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
The successes of introduced populations in novel habitats often provide powerful examples of evolution and adaptation. In the 1950s, opossum shrimp (Mysis diluviana) individuals from Clearwater Lake in Minnesota, USA were transported and introduced to Twin Lakes in Colorado, USA by fisheries managers to supplement food sources for trout. Mysis were subsequently introduced from Twin Lakes into numerous lakes throughout Colorado. Because managers kept detailed records of the timing of the introductions, we had the opportunity to test for evolutionary divergence within a known time interval. Here, we used reduced representation genomic data to investigate patterns of genetic diversity, test for genetic divergence between populations, and for evidence of adaptive evolution within the introduced populations in Colorado. We found very low levels of genetic diversity across all populations, with evidence for some genetic divergence between the Minnesota source population and the introduced populations in Colorado. There was little differentiation among the Colorado populations, consistent with the known provenance of a single founding population, with the exception of the population from Gross Reservoir, Colorado. Demographic modeling suggests that at least one undocumented introduction from an unknown source population hybridized with the population in Gross Reservoir. Despite the overall low genetic diversity we observed, F ST outlier and environmental association analyses identified multiple loci exhibiting signatures of selection and adaptive variation related to elevation and lake depth. The success of introduced species is thought to be limited by genetic variation, but our results imply that populations with limited genetic variation can become established in a wide range of novel environments. From an applied perspective, the observed patterns of divergence between populations suggest that genetic analysis can be a useful forensic tool to determine likely sources of invasive species.
Collapse
Affiliation(s)
- Rebecca G. Cheek
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jessica F. McLaughlin
- Department of Environmental Science, Policy, and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Maybellene P. Gamboa
- Department of Organismal Biology and EcologyColorado CollegeColorado SpringsColoradoUSA
| | - Craig A. Marshall
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Council on Science and TechnologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Douglas B. Silver
- Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Alexander A. Mauro
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Cameron K. Ghalambor
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| |
Collapse
|
22
|
Liu YY, Bright JA, Taylor D, Kruijver M, Buckleton J. Estimation of population specific values of theta for sequence-based STR profiles. Forensic Sci Int Genet 2024; 68:102973. [PMID: 37913640 DOI: 10.1016/j.fsigen.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
We describe the estimation of θ (theta) values from autosomal STR sequencing data for five metapopulations. The data were compiled from 20 publications and included 39 datasets comprising a total of 7005 samples. The estimates are suitable for use within the calculation of match probabilities in forensic casework. We also have constructed a phylogenetic tree using this data that aligns with our understanding of human evolution.
Collapse
Affiliation(s)
- Yao-Yuan Liu
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand.
| | - Jo-Anne Bright
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand
| | - Duncan Taylor
- Forensic Science SA, PO Box 2790, Adelaide, SA 5000, Australia; School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Maarten Kruijver
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand
| | - John Buckleton
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand; Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
23
|
Lemieux W, Richard L, Nunes JM, Sanchez-Mazas A, Renaud C, Sapir-Pichhadze R, Lewin A. A registry-based population study of the HLA in Québec, Canada. HLA 2023; 102:671-689. [PMID: 37439270 DOI: 10.1111/tan.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
As part of the worldwide effort to better characterize HLA diversity in populations, we have studied the population of Québec in Canada. This province has been defined by a complex history with multiple founder effects and migration patterns. We analyzed the typing data of 3806 individuals registered in Héma-Québec's Registry, which covered most administrative regions in Québec. Typing information was resolved at the second field level of resolution by next-generation sequencing (NGS) or by Sanger sequencing. We used the HLA-net.eu GENE[RATE] tools to estimate allele and two-locus haplotype frequencies for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, as well as Hardy-Weinberg equilibrium (HWE), selective neutrality, and linkage disequilibrium. The chord genetic distance was also calculated between administrative regions and was visualized using non-metric multidimensional scaling (NMDS) analysis. While most individual regions were in HWE, HWE was rejected for the province considered as a whole. Some regions exhibited signatures of selection, mostly toward an excess of heterozygotes. Allele and haplotype frequencies revealed outlier regions that strongly differed from the other regions. NMDS plots also showed differences between regions. The administrative regions of the province of Québec displayed heterogeneity in their HLA profiles. This heterogeneity was attributable to differing allele and haplotype specificities by region. In particular, regions 02-Saguenay-Lac-Saint-Jean and 01-Bas-St-Laurent diverged from the rest of the regions. The urban regions 06-Montréal and 13-Laval were very diversified in their HLA profiles. Together, these results will help optimize donor recruitment strategies in Québec.
Collapse
Affiliation(s)
- William Lemieux
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
| | - Lucie Richard
- Transfusion Medicine/Reference Laboratory, Héma-Québec, Montréal, Quebec, Canada
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling history, Department of Genetics and Evolution, University of Geneva and Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Christian Renaud
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
| | - Ruth Sapir-Pichhadze
- Centre for Outcomes Research and Evaluation (CORE), Research Institute of McGill University Health Centre, Montréal, Quebec, Canada
- Division of Nephrology and the Multi-Organ Transplant Program, Royal Victoria Hospital, McGill University Health Centre, Montréal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, Canada
| | - Antoine Lewin
- Medical Affairs & Innovation, Héma-Québec, Montréal, Quebec, Canada
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
24
|
Nimbs MJ, Champion C, Lobos SE, Malcolm HA, Miller AD, Seinor K, Smith SD, Knott N, Wheeler D, Coleman MA. Genomic analyses indicate resilience of a commercially and culturally important marine gastropod snail to climate change. PeerJ 2023; 11:e16498. [PMID: 38025735 PMCID: PMC10676721 DOI: 10.7717/peerj.16498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Genomic vulnerability analyses are being increasingly used to assess the adaptability of species to climate change and provide an opportunity for proactive management of harvested marine species in changing oceans. Southeastern Australia is a climate change hotspot where many marine species are shifting poleward. The turban snail, Turbo militaris is a commercially and culturally harvested marine gastropod snail from eastern Australia. The species has exhibited a climate-driven poleward range shift over the last two decades presenting an ongoing challenge for sustainable fisheries management. We investigate the impact of future climate change on T. militaris using genotype-by-sequencing to project patterns of gene flow and local adaptation across its range under climate change scenarios. A single admixed, and potentially panmictic, demographic unit was revealed with no evidence of genetic subdivision across the species range. Significant genotype associations with heterogeneous habitat features were observed, including associations with sea surface temperature, ocean currents, and nutrients, indicating possible adaptive genetic differentiation. These findings suggest that standing genetic variation may be available for selection to counter future environmental change, assisted by widespread gene flow, high fecundity and short generation time in this species. We discuss the findings of this study in the content of future fisheries management and conservation.
Collapse
Affiliation(s)
- Matt J. Nimbs
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| | - Simon E. Lobos
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Hamish A. Malcolm
- NSW Department of Primary Industries, Fisheries Research, Coffs Harbour, NSW, Australia
| | - Adam D. Miller
- Deakin Genomics Centre, Deakin University, Geelong, Vic, Australia
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Vic, Australia
| | - Kate Seinor
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Stephen D.A. Smith
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Aquamarine Australia, Mullaway, NSW, Australia
| | - Nathan Knott
- NSW Department of Primary Industries, Fisheries Research, Huskisson, NSW, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange, NSW, Australia
| | - Melinda A. Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, Fisheries, National Marine Science Centre, Coffs Harbour, Australia
| |
Collapse
|
25
|
Goudet J, Weir BS. An allele-sharing, moment-based estimator of global, population-specific and population-pair FST under a general model of population structure. PLoS Genet 2023; 19:e1010871. [PMID: 38011288 PMCID: PMC10703327 DOI: 10.1371/journal.pgen.1010871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Being able to properly quantify genetic differentiation is key to understanding the evolutionary potential of a species. One central parameter in this context is FST, the mean coancestry within populations relative to the mean coancestry between populations. Researchers have been estimating FST globally or between pairs of populations for a long time. More recently, it has been proposed to estimate population-specific FST values, and population-pair mean relative coancestry. Here, we review the several definitions and estimation methods of FST, and stress that they provide values relative to a reference population. We show the good statistical properties of an allele-sharing, method of moments based estimator of FST (global, population-specific and population-pair) under a very general model of population structure. We point to the limitation of existing likelihood and Bayesian estimators when the populations are not independent. Last, we show that recent attempts to estimate absolute, rather than relative, mean coancestry fail to do so.
Collapse
Affiliation(s)
- Jerome Goudet
- Dept Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of BioInformatics, University of Lausanne, Lausanne, Switzerland
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Maduna SN, Jónsdóttir ÓDB, Imsland AKD, Gíslason D, Reynolds P, Kapari L, Hangstad TA, Meier K, Hagen SB. Genomic Signatures of Local Adaptation under High Gene Flow in Lumpfish-Implications for Broodstock Provenance Sourcing and Larval Production. Genes (Basel) 2023; 14:1870. [PMID: 37895225 PMCID: PMC10606024 DOI: 10.3390/genes14101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for "cleaner fish" to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype-environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our 'global' sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.
Collapse
Affiliation(s)
- Simo Njabulo Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| | | | - Albert Kjartan Dagbjartarson Imsland
- Akvaplan-Niva Iceland Office, Akralind 6, 201 Kópavogur, Iceland; (Ó.D.B.J.); (A.K.D.I.)
- Department of Biological Sciences, High Technology Centre, University of Bergen, 5020 Bergen, Norway
| | | | | | - Lauri Kapari
- Akvaplan-Niva, Framsenteret, 9296 Tromsø, Norway;
| | | | | | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, 9925 Svanvik, Norway;
| |
Collapse
|
27
|
Rougemont Q, Leroy T, Rondeau EB, Koop B, Bernatchez L. Allele surfing causes maladaptation in a Pacific salmon of conservation concern. PLoS Genet 2023; 19:e1010918. [PMID: 37683018 PMCID: PMC10545117 DOI: 10.1371/journal.pgen.1010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 10/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
How various factors, including demography, recombination or genome duplication, may impact the efficacy of natural selection and the burden of deleterious mutations, is a central question in evolutionary biology and genetics. In this study, we show that key evolutionary processes, including variations in i) effective population size (Ne) ii) recombination rates and iii) chromosome inheritance, have influenced the genetic load and efficacy of selection in Coho salmon (Oncorhynchus kisutch), a widely distributed salmonid species on the west coast of North America. Using whole genome resequencing data from 14 populations at different migratory distances from their southern glacial refugium, we found evidence supporting gene surfing, wherein reduced Ne at the postglacial recolonization front, leads to a decrease in the efficacy of selection and a surf of deleterious alleles in the northernmost populations. Furthermore, our results indicate that recombination rates play a prime role in shaping the load along the genome. Additionally, we identified variation in polyploidy as a contributing factor to within-genome variation of the load. Overall, our results align remarkably well with expectations under the nearly neutral theory of molecular evolution. We discuss the fundamental and applied implications of these findings for evolutionary and conservation genomics.
Collapse
Affiliation(s)
- Quentin Rougemont
- Centre d’Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thibault Leroy
- GenPhySE, INRAE, INP, ENVT, Université de Toulouse, Auzeville- Tolosane, France
| | - Eric B. Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, Canada
| | - Ben Koop
- Department of Biology, University of Victoria, Victoria, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
28
|
Matheson P, Parvizi E, Fabrick JA, Siddiqui HA, Tabashnik BE, Walsh T, McGaughran A. Genome-wide analysis reveals distinct global populations of pink bollworm (Pectinophora gossypiella). Sci Rep 2023; 13:11762. [PMID: 37474628 PMCID: PMC10359307 DOI: 10.1038/s41598-023-38504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
The pink bollworm (Pectinophora gossypiella) is one of the world's most destructive pests of cotton. This invasive lepidopteran occurs in nearly all cotton-growing countries. Its presence in the Ord Valley of North West Australia poses a potential threat to the expanding cotton industry there. To assess this threat and better understand population structure of pink bollworm, we analysed genomic data from individuals collected in the field from North West Australia, India, and Pakistan, as well as from four laboratory colonies that originated in the United States. We identified single nucleotide polymorphisms (SNPs) using a reduced-representation, genotyping-by-sequencing technique (DArTseq). The final filtered dataset included 6355 SNPs and 88 individual genomes that clustered into five groups: Australia, India-Pakistan, and three groups from the United States. We also analysed sequences from Genbank for mitochondrial DNA (mtDNA) locus cytochrome c oxidase I (COI) for pink bollworm from six countries. We found low genetic diversity within populations and high differentiation between populations from different continents. The high genetic differentiation between Australia and the other populations and colonies sampled in this study reduces concerns about gene flow to North West Australia, particularly from populations in India and Pakistan that have evolved resistance to transgenic insecticidal cotton. We attribute the observed population structure to pink bollworm's narrow host plant range and limited dispersal between continents.
Collapse
Affiliation(s)
- Paige Matheson
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand.
| | - Elahe Parvizi
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| | - Jeffrey A Fabrick
- United States Department of Agriculture Agricultural Research Service, United States Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | | | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tom Walsh
- Commonwealth Scientific Industrial Research Organisation Environment, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
29
|
Hou Z, Ochoa A. Genetic association models are robust to common population kinship estimation biases. Genetics 2023; 224:iyad030. [PMID: 36843304 PMCID: PMC10474929 DOI: 10.1093/genetics/iyad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/08/2022] [Accepted: 02/17/2023] [Indexed: 02/28/2023] Open
Abstract
Common genetic association models for structured populations, including principal component analysis (PCA) and linear mixed-effects models (LMMs), model the correlation structure between individuals using population kinship matrices, also known as genetic relatedness matrices. However, the most common kinship estimators can have severe biases that were only recently determined. Here we characterize the effect of these kinship biases on genetic association. We employ a large simulated admixed family and genotypes from the 1000 Genomes Project, both with simulated traits, to evaluate key kinship estimators. Remarkably, we find practically invariant association statistics for kinship matrices of different bias types (matching all other features). We then prove using statistical theory and linear algebra that LMM association tests are invariant to these kinship biases, and PCA approximately so. Our proof shows that the intercept and relatedness effect coefficients compensate for the kinship bias, an argument that extends to generalized linear models. As a corollary, association testing is also invariant to changing the reference ancestral population of the kinship matrix. Lastly, we observed that all kinship estimators, except for popkin ratio-of-means, can give improper non-positive semidefinite matrices, which can be problematic although some LMMs handle them surprisingly well, and condition numbers can be used to choose kinship estimators. Overall, we find that existing association studies are robust to kinship estimation bias, and our calculations may help improve association methods by taking advantage of this unexpected robustness, as well as help determine the effects of kinship bias in related problems.
Collapse
Affiliation(s)
- Zhuoran Hou
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27705, USA
| | - Alejandro Ochoa
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27705, USA
- Duke Center for Statistical Genetics and Genomics, Duke University, Durham, NC 27705, USA
| |
Collapse
|
30
|
von Takach B, Sargent H, Penton CE, Rick K, Murphy BP, Neave G, Davies HF, Hill BM, Banks SC. Population genomics and conservation management of the threatened black-footed tree-rat (Mesembriomys gouldii) in northern Australia. Heredity (Edinb) 2023; 130:278-288. [PMID: 36899176 PMCID: PMC10162988 DOI: 10.1038/s41437-023-00601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2023] Open
Abstract
Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.
Collapse
Affiliation(s)
- Brenton von Takach
- School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Holly Sargent
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Cara E Penton
- Warddeken Land Management Ltd, Darwin, NT, Australia
| | - Kate Rick
- School of Biological Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Brett P Murphy
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Georgina Neave
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Hugh F Davies
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Brydie M Hill
- Flora and Fauna Division, Department of Environment, Parks and Water Security, Northern Territory Government, Berrimah, NT, 0831, Australia
| | - Sam C Banks
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia.
| |
Collapse
|
31
|
Horne JB, Frey A, Gaos AR, Martin S, Dutton PH. Non-random mating within an Island rookery of Hawaiian hawksbill turtles: demographic discontinuity at a small coastline scale. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221547. [PMID: 37206959 PMCID: PMC10189603 DOI: 10.1098/rsos.221547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Hawksbill sea turtles (Eretmochelys imbricata) from the Hawaiian archipelago form a small and genetically isolated population, consisting of only a few tens of individuals breeding annually. Most females nest on the island of Hawai'i, but little is known about the demographics of this rookery. This study used genetic relatedness, inferred from 135 microhaplotype markers, to determine breeding sex-ratios, estimate female nesting frequency and assess relationships between individuals nesting on different beaches. Samples were collected during the 2017 nesting season and final data included 13 nesting females and 1002 unhatched embryos, salvaged from 41 nests, of which 13 had no observed mother. Results show that most females used a single nesting beach laying 1-5 nests each. From female and offspring alleles, the paternal genotypes of 12 breeding males were reconstructed and many showed high relatedness to their mates. Pairwise relatedness of offspring revealed one instance of polygyny but otherwise suggested a 1 : 1 breeding-sex ratio. Relatedness analysis and spatial-autocorrelation of genotypes indicate that turtles from different nesting areas do not regularly interbreed, suggesting that strong natal homing tendencies in both sexes result in non-random mating across the study area. Complexes of nearby nesting beaches also showed unique patterns of inbreeding across loci, further indicating that Hawaiian hawksbill turtles have demographically discontinuous nesting populations separated by only tens of km.
Collapse
Affiliation(s)
- John B. Horne
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Amy Frey
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| | - Alexander R. Gaos
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Summer Martin
- Pacific Islands Fisheries Science Center, NOAA-Fisheries, Honolulu, HI, USA
| | - Peter H. Dutton
- Southwest Fisheries Science Center, NOAA-Fisheries, La Jolla, CA, USA
| |
Collapse
|
32
|
Fu YB. Assessing Genetic Distinctness and Redundancy of Plant Germplasm Conserved Ex Situ Based on Published Genomic SNP Data. PLANTS (BASEL, SWITZERLAND) 2023; 12:1476. [PMID: 37050102 PMCID: PMC10096604 DOI: 10.3390/plants12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Assessing genetic distinctness and redundancy is an important part of plant germplasm characterization. Over the last decade, such assessment has become more feasible and informative, thanks to the advances in genomic analysis. An attempt was made here to search for genebank germplasm with published genomic data and to assess their genetic distinctness and redundancy based on average pairwise dissimilarity (APD). The effort acquired 12 published genomic data sets from CIMMYT, IPK, USDA-ARS, IRRI, and ICRISAT genebanks. The characterized collections consisted of 661 to 55,879 accessions with up to 2.4 million genome-wide SNPs. The assessment generated an APD estimate for each sample. As a higher or lower APD is indicative of more genetic distinctness or redundance for an accession, respectively, these APD estimates helped to identify the most genetically distinct and redundant groups of 100 accessions each and a genetic outlier group with APD estimates larger than five standard deviations in each data set. An APD-based grouping of the conserved germplasm in each data set revealed among-group variances ranging from 1.5 to 53.4% across all data sets. Additional analyses showed that these APD estimations were more sensitive to SNP number, minor allele frequency, and missing data. Generally, 5000 to 10,000 genome-wide SNPs were required for an effective APD analysis. These findings together are encouraging and useful for germplasm management, utilization, and conservation, particularly in the genetic categorization of conserved germplasm.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
33
|
Dai X, Zhu Q, Wang C, Rukeye A, Cao Z, Shan T, Wang Y, Zhang J. F ST estimates of 94 populations in China based on STR markers. Forensic Sci Int Genet 2023; 64:102854. [PMID: 36893618 DOI: 10.1016/j.fsigen.2023.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The proper assessment of DNA evidence in cases of personal identification is a recurring theme in forensics. It is common practice to evaluate the strength of DNA evidence using the likelihood ratio (LR). The accurate use of population allele frequencies is a crucial problem in LR calculation. Allele frequency differences among different populations could be estimated by the FST values. Thus, FST would also affect LR values by correcting the allele frequencies. In this study, Chinese population allele frequency data were selected from population reports published in Chinese and English journals. The population-specific FST values of each population, the overall FST values of each province, each region, and the whole country, and the locus-specific FST values of different loci were calculated. The LRs using different allele frequencies and different FST values were compared based on the combination of simulated genotypes. As a result, the FST values of 94 populations, 19 provinces, 7 regions, and the whole country were obtained. The LR was overestimated using allele frequencies of the combined population containing multiple populations rather than using allele frequencies of a population, and the LRs after FST correction were lower than those without correction. Conclusively, the correction in conjunction with corresponding FST values can make the LRs more accurate and reasonable.
Collapse
Affiliation(s)
- Xuan Dai
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiang Zhu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Aosiman Rukeye
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ze Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tiantian Shan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yufang Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ji Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
34
|
Butterworth NJ, Wallman JF, Johnston NP, Dawson BM, Sharp-Heward J, McGaughran A. The blowfly Chrysomya latifrons inhabits fragmented rainforests, but shows no population structure. Oecologia 2023; 201:703-719. [PMID: 36773072 PMCID: PMC10038970 DOI: 10.1007/s00442-023-05333-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Climate change and deforestation are causing rainforests to become increasingly fragmented, placing them at heightened risk of biodiversity loss. Invertebrates constitute the greatest proportion of this biodiversity, yet we lack basic knowledge of their population structure and ecology. There is a compelling need to develop our understanding of the population dynamics of a wide range of rainforest invertebrates so that we can begin to understand how rainforest fragments are connected, and how they will cope with future habitat fragmentation and climate change. Blowflies are an ideal candidate for such research because they are widespread, abundant, and can be easily collected within rainforests. We genotyped 188 blowflies (Chrysomya latifrons) from 15 isolated rainforests and found high levels of gene flow, a lack of genetic structure between rainforests, and low genetic diversity - suggesting the presence of a single large genetically depauperate population. This highlights that: (1) the blowfly Ch. latifrons inhabits a ~ 1000 km stretch of Australian rainforests, where it plays an important role as a nutrient recycler; (2) strongly dispersing flies can migrate between and connect isolated rainforests, likely carrying pollen, parasites, phoronts, and pathogens along with them; and (3) widely dispersing and abundant insects can nevertheless be genetically depauperate. There is an urgent need to better understand the relationships between habitat fragmentation, genetic diversity, and adaptive potential-especially for poorly dispersing rainforest-restricted insects, as many of these may be particularly fragmented and at highest risk of local extinction.
Collapse
Affiliation(s)
- Nathan J Butterworth
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - James F Wallman
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Nikolas P Johnston
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100, Toruń, Poland
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Blake M Dawson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joshua Sharp-Heward
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| |
Collapse
|
35
|
Beye A, Billot C, Ronfort J, McNally KL, Diouf D, Glaszmann JC. Traces of Introgression from cAus into Tropical Japonica Observed in African Upland Rice Varieties. RICE (NEW YORK, N.Y.) 2023; 16:12. [PMID: 36853402 PMCID: PMC9975138 DOI: 10.1186/s12284-023-00625-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Asian rice Oryza sativa, first domesticated in East Asia, has considerable success in African fields. When and where this introduction occurred is unclear. Rice varieties of Asian origin may have evolved locally during and after migration to Africa, resulting in unique adaptations, particularly in relation to upland cultivation as frequently practiced in Africa. METHODS We investigated the genetic differentiation between Asian and African varieties using the 3000 Rice Genomes SNP dataset. African upland cultivars were first characterized using principal component analysis among 292 tropical Japonica accessions from Africa and Asia. The particularities of African accessions were then explored using two inference techniques, PCA-KDE for supervised classification and chromosome painting, and ELAI for individual allelic dosage monitoring. KEY RESULTS Ambiguities of local differentiation between Japonica and other groups pointed at genomic segments that potentially resulted from genetic exchange. Those specific to West African upland accessions were concentrated on chromosome 6 and featured several cAus introgression signals, including a large one between 17.9 and 21.7 Mb. We found iHS statistics in support of positive selection in this region and we provide a list of candidate genes enriched in GO terms that have regulatory functions involved in stress responses that could have facilitated adaptation to harsh upland growing conditions.
Collapse
Affiliation(s)
- Abdoulaye Beye
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop, 10700, Dakar-Fann, Dakar, Senegal
| | - Claire Billot
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
| | - Joëlle Ronfort
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France
| | - Kenneth L McNally
- International Rice Research Institute, DAPO Box 7777, Metro Manila, 1301, The Philippines
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop, 10700, Dakar-Fann, Dakar, Senegal
| | - Jean Christophe Glaszmann
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France.
- UMR AGAP Institut, CIRAD, INRAE, Institut Agro, Université de Montpellier, 34398, Montpellier, France.
| |
Collapse
|
36
|
Piertney SB, Wenzel M, Jamieson AJ. Large effective population size masks population genetic structure in Hirondellea amphipods within the deepest marine ecosystem, the Mariana Trench. Mol Ecol 2023; 32:2206-2218. [PMID: 36808786 DOI: 10.1111/mec.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
The examination of genetic structure in the deep-ocean hadal zone has focused on divergence between tectonic trenches to understand how environment and geography may drive species divergence and promote endemism. There has been little attempt to examine localized genetic structure within trenches, partly because of logistical challenges associated with sampling at an appropriate scale, and the large effective population sizes of species that can be sampled adequately may mask underlying genetic structure. Here we examine genetic structure in the superabundant amphipod Hirondellea gigas in the Mariana Trench at depths of 8126-10,545 m. RAD sequencing was used to identify 3182 loci containing 43,408 single nucleotide polymorphisms (SNPs) across individuals after stringent pruning of loci to prevent paralogous multicopy genomic regions being erroneously merged. Principal components analysis of SNP genotypes resolved no genetic structure between sampling locations, consistent with a signature of panmixia. However, discriminant analysis of principal components identified divergence between all sites driven by 301 outlier SNPs in 169 loci and significantly associated with latitude and depth. Functional annotation of loci identified differences between singleton loci used in analysis and paralogous loci pruned from the data set and also between outlier and nonoutlier loci, all consistent with hypotheses explaining the role of transposable elements driving genome dynamics. This study challenges the traditional perspective that highly abundant amphipods within a trench form a single panmictic population. We discuss the findings in relation to eco-evolutionary and ontogenetic processes operating in the deep sea, and highlight key challenges associated with population genetic analysis in nonmodel systems with inherent large effective population sizes and genomes.
Collapse
Affiliation(s)
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Alan J Jamieson
- Minderoo-UWA Deep-Sea Research Centre, School of Biological Sciences and Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
37
|
Rougemont Q, Xuereb A, Dallaire X, Moore JS, Normandeau E, Perreault-Payette A, Bougas B, Rondeau EB, Withler RE, Van Doornik DM, Crane PA, Naish KA, Garza JC, Beacham TD, Koop BF, Bernatchez L. Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Mol Ecol 2023; 32:542-559. [PMID: 35000273 DOI: 10.1111/mec.16339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier, Montpellier, France
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Xavier Dallaire
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Moore
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Alysse Perreault-Payette
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Bérénice Bougas
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric B Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Ruth E Withler
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Donald M Van Doornik
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Manchester Research Station, Port Orchard, Washington, USA
| | - Penelope A Crane
- Conservation Genetics Laboratory, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - John Carlos Garza
- Department of Ocean Sciences and Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Terry D Beacham
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
38
|
Dufresnes C, Dutoit L, Brelsford A, Goldstein-Witsenburg F, Clément L, López-Baucells A, Palmeirim J, Pavlinić I, Scaravelli D, Ševčík M, Christe P, Goudet J. Inferring genetic structure when there is little: population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe. Sci Rep 2023; 13:1523. [PMID: 36707640 PMCID: PMC9883447 DOI: 10.1038/s41598-023-27988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Despite their paramount importance in molecular ecology and conservation, genetic diversity and structure remain challenging to quantify with traditional genotyping methods. Next-generation sequencing holds great promises, but this has not been properly tested in highly mobile species. In this article, we compared microsatellite and RAD-sequencing (RAD-seq) analyses to investigate population structure in the declining bent-winged bat (Miniopterus schreibersii) across Europe. Both markers retrieved general patterns of weak range-wide differentiation, little sex-biased dispersal, and strong isolation by distance that associated with significant genetic structure between the three Mediterranean Peninsulas, which could have acted as glacial refugia. Microsatellites proved uninformative in individual-based analyses, but the resolution offered by genomic SNPs illuminated on regional substructures within several countries, with colonies sharing migrators of distinct ancestry without admixture. This finding is consistent with a marked philopatry and spatial partitioning between mating and rearing grounds in the species, which was suspected from marked-recaptured data. Our study advocates that genomic data are necessary to properly unveil the genetic footprints left by biogeographic processes and social organization in long-distant flyers, which are otherwise rapidly blurred by their high levels of gene flow.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematic and Evolutionary Research, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Ludovic Dutoit
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Laura Clément
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Adria López-Baucells
- Bat Research Area, Granollers Museum of Natural Sciences, Carrer Palaudaries 102, 08402, Granollers, Spain
| | - Jorge Palmeirim
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Change - cE3c, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Igor Pavlinić
- Department of Zoology, Croatian Natural History Museum, Demetrova 1, 10000, Zagreb, Croatia
| | - Dino Scaravelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Martin Ševčík
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
39
|
Mary-Huard T, Balding D. Fast and accurate joint inference of coancestry parameters for populations and/or individuals. PLoS Genet 2023; 19:e1010054. [PMID: 36656906 PMCID: PMC9888729 DOI: 10.1371/journal.pgen.1010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/31/2023] [Accepted: 12/01/2022] [Indexed: 01/20/2023] Open
Abstract
We introduce a fast, new algorithm for inferring from allele count data the FST parameters describing genetic distances among a set of populations and/or unrelated diploid individuals, and a tree with branch lengths corresponding to FST values. The tree can reflect historical processes of splitting and divergence, but seeks to represent the actual genetic variance as accurately as possible with a tree structure. We generalise two major approaches to defining FST, via correlations and mismatch probabilities of sampled allele pairs, which measure shared and non-shared components of genetic variance. A diploid individual can be treated as a population of two gametes, which allows inference of coancestry coefficients for individuals as well as for populations, or a combination of the two. A simulation study illustrates that our fast method-of-moments estimation of FST values, simultaneously for multiple populations/individuals, gains statistical efficiency over pairwise approaches when the population structure is close to tree-like. We apply our approach to genome-wide genotypes from the 26 worldwide human populations of the 1000 Genomes Project. We first analyse at the population level, then a subset of individuals and in a final analysis we pool individuals from the more homogeneous populations. This flexible analysis approach gives advantages over traditional approaches to population structure/coancestry, including visual and quantitative assessments of long-standing questions about the relative magnitudes of within- and between-population genetic differences.
Collapse
Affiliation(s)
- Tristan Mary-Huard
- MIA-Paris, INRAE, AgroParisTech, Université Paris-Saclay, Palaiseau, France
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution—Le Moulon, Gif-sur-Yvette, France
- * E-mail:
| | - David Balding
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics & Statistics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Lavanchy E, Goudet J. Effect of reduced genomic representation on using runs of homozygosity for inbreeding characterization. Mol Ecol Resour 2023; 23:787-802. [PMID: 36626297 DOI: 10.1111/1755-0998.13755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are increasingly used to measure inbreeding and mostly estimated on SNP arrays and whole-genome sequencing (WGS) data. However, some softwares recurrently used for their estimation assume that genomic positions which have not been genotyped are nonvariant. This might be true for WGS data, but not for reduced genomic representations and can lead to spurious IBD segments estimation. In this project, we simulated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for three populations with different sizes and histories. We compare the results of IBD segments estimation with two softwares: runs of homozygosity (ROHs) estimated with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH requires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coefficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/Mb for RZooRoH. We also show that in populations with simple demographic histories, distribution of ROHs and HBD segments are correctly estimated with both SNP arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD segments with SNPs densities above 11 SNPs/Mb. However, in a population with a more complex demographic history, RZooRoH resulted in better distribution of IBD segments estimation compared to PLINK even with WGS data. Consequently, we advise researchers to use either methods relying on excess homozygosity averaged across SNPs or model-based HBD segments calling methods for inbreeding estimations.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Lemieux W, Perreault J, Leiva-Torres GA, Baillargeon N, Yanez JC, Chevrier MC, Richard L, Lewin A, Trépanier P. HLA and red blood cell antigen genotyping in SARS-CoV-2 convalescent plasma donors. Future Virol 2023; 18:10.2217/fvl-2022-0058. [PMID: 36844192 PMCID: PMC9941981 DOI: 10.2217/fvl-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
Aim: More data is required regarding the association between HLA allele and red blood cell (RBC) antigen expression in regard to SARS-CoV-2 infection and COVID-19 susceptibility. Methods: ABO, RhD, 37 other RBC antigens and HLA-A, B, C, DRB1, DQB1 and DPB1 were determined using high throughput platforms in 90 Caucasian convalescent plasma donors. Results: The AB group was significantly increased (1.5×, p = 0.018) and some HLA alleles were found to be significantly overrepresented (HLA-B*44:02, C*05:01, DPB1*04:01, DRB1*04:01 and DRB1*07:01) or underrepresented (A*01:01, B51:01 and DPB1*04:02) in convalescent individuals compared with the local bone marrow registry population. Conclusion: Our study of infection-susceptible but non-hospitalized Caucasian COVID-19 patients contributes to the global understanding of host genetic factors associated with SARS-CoV-2 infection and severity.
Collapse
Affiliation(s)
- William Lemieux
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | - Josée Perreault
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | | | - Nadia Baillargeon
- Héma-Québec, Transfusion Medicine, Québec City & Montréal, Québec, H4R 2W7, Canada
| | | | | | - Lucie Richard
- Héma-Québec, Transfusion Medicine, Québec City & Montréal, Québec, H4R 2W7, Canada
| | - Antoine Lewin
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| | - Patrick Trépanier
- Héma-Québec, Medical Affairs & Innovation, Québec City & Montréal, Québec, G1V 5G3, Canada
| |
Collapse
|
42
|
Fujimoto S, Yaguchi H, Myosho T, Aoyama H, Sato Y, Kimura R. Population admixtures in medaka inferred by multiple arbitrary amplicon sequencing. Sci Rep 2022; 12:19989. [PMID: 36411327 PMCID: PMC9678866 DOI: 10.1038/s41598-022-24498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Cost-effective genotyping can be achieved by sequencing PCR amplicons. Short 3-10 base primers can arbitrarily amplify thousands of loci using only a few primers. To improve the sequencing efficiency of the multiple arbitrary amplicon sequencing (MAAS) approach, we designed new primers and examined their efficiency in sequencing and genotyping. To demonstrate the effectiveness of our method, we applied it to examining the population structure of the small freshwater fish, medaka (Oryzias latipes). We obtained 2987 informative SNVs with no missing genotype calls for 67 individuals from 15 wild populations and three artificial strains. The estimated phylogenic and population genetic structures of the wild populations were consistent with previous studies, corroborating the accuracy of our genotyping method. We also attempted to reconstruct the genetic backgrounds of a commercial orange mutant strain, Himedaka, which has caused a genetic disturbance in wild populations. Our admixture analysis focusing on Himedaka showed that at least two wild populations had genetically been contributed to the nuclear genome of this mutant strain. Our genotyping methods and results will be useful in quantitative assessments of genetic disturbance by this commercially available strain.
Collapse
Affiliation(s)
- Shingo Fujimoto
- grid.267625.20000 0001 0685 5104Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0125 Japan ,grid.267625.20000 0001 0685 5104Present Address: Research Laboratory Center, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan ,grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Hajime Yaguchi
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan ,grid.258777.80000 0001 2295 9421Present Address: Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Nishihara, Hyogo 669-1330 Japan
| | - Taijun Myosho
- grid.469280.10000 0000 9209 9298Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Nishihara, 422-8526 Japan
| | - Hiroaki Aoyama
- grid.267625.20000 0001 0685 5104Center for Strategic and Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan ,grid.267625.20000 0001 0685 5104Research Planning Office, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Yukuto Sato
- grid.267625.20000 0001 0685 5104Present Address: Research Laboratory Center, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan ,grid.267625.20000 0001 0685 5104Center for Strategic and Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Ryosuke Kimura
- grid.267625.20000 0001 0685 5104Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0125 Japan
| |
Collapse
|
43
|
Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol 2022; 20:e3001890. [PMID: 36395320 PMCID: PMC9714929 DOI: 10.1371/journal.pbio.3001890] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/01/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence-absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A. fumigatus, with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence-absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.
Collapse
Affiliation(s)
- Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brandon S. Ross
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
44
|
von Takach B, Ranjard L, Burridge CP, Cameron SF, Cremona T, Eldridge MDB, Fisher DO, Frankenberg S, Hill BM, Hohnen R, Jolly CJ, Kelly E, MacDonald AJ, Moussalli A, Ottewell K, Phillips BL, Radford IJ, Spencer PBS, Trewella GJ, Umbrello LS, Banks SC. Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads. Mol Ecol 2022; 31:5468-5486. [PMID: 36056907 PMCID: PMC9826391 DOI: 10.1111/mec.16680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.
Collapse
Affiliation(s)
- Brenton von Takach
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia,School of Molecular and Life SciencesCurtin UniversityPerthWestern AustraliaAustralia
| | - Louis Ranjard
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,PlantTech Research InstituteTaurangaNew Zealand
| | | | - Skye F. Cameron
- Australian Wildlife ConservancyKimberleyWestern AustraliaAustralia,School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Teigan Cremona
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Diana O. Fisher
- School of Biological SciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | - Brydie M. Hill
- Flora and Fauna Division, Department of Environment, Parks and Water SecurityNorthern Territory GovernmentNorthern TerritoryAustralia
| | - Rosemary Hohnen
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Chris J. Jolly
- Institute of Land, Water and Society, School of Environmental ScienceCharles Sturt UniversityAlburyNew South WalesAustralia,School of Natural SciencesMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Ella Kelly
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Anna J. MacDonald
- The Research School of Biology, Faculty of ScienceThe Australian National UniversityActonAustralian Capital TerritoryAustralia,Australian Antarctic Division, Department of AgricultureWater and the EnvironmentKingstonTasmaniaAustralia
| | - Adnan Moussalli
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia,Department of ScienceMuseums VictoriaMelbourneVictoriaAustralia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Ben L. Phillips
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ian J. Radford
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia
| | - Peter B. S. Spencer
- Environmental and Conservation Sciences, Murdoch UniversityPerthWestern AustraliaAustralia
| | - Gavin J. Trewella
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Linette S. Umbrello
- Department of Biodiversity, Conservation and AttractionsPerthWestern AustraliaAustralia,Collections and Research CentreWestern Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Sam C. Banks
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| |
Collapse
|
45
|
Abstract
In the United States, systemic racism has had lasting effects on the structure of cities, specifically due to government-mandated redlining policies that produced racially segregated neighborhoods that persist today. However, it is not known whether varying habitat structures and natural resource availability associated with racial segregation affect the demographics and evolution of urban wildlife populations. To address this question, we repurposed and reanalyzed publicly archived nuclear genetic data from 7,698 individuals spanning 39 terrestrial vertebrate species sampled in 268 urban locations throughout the United States. We found generally consistent patterns of reduced genetic diversity and decreased connectivity in neighborhoods with fewer White residents, likely because of environmental differences across these neighborhoods. The strength of relationships between the racial composition of neighborhoods, genetic diversity, and differentiation tended to be weak relative to other factors affecting genetic diversity, possibly in part due to the recency of environmental pressures on urban wildlife populations. However, the consistency of the direction of effects across disparate taxa suggest that systemic racism alters the demography of urban wildlife populations in ways that generally limit population sizes and negatively affect their chances of persistence. Our results thus support the idea that limited capacity to support large, well-connected wildlife populations reduces access to nature and builds on existing environmental inequities shouldered by predominantly non-White neighborhoods.
Collapse
|
46
|
Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands. Heredity (Edinb) 2022; 129:281-294. [PMID: 36175501 PMCID: PMC9613907 DOI: 10.1038/s41437-022-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/14/2022] Open
Abstract
Islands, and the particular organisms that populate them, have long fascinated biologists. Due to their isolation, islands offer unique opportunities to study the effect of neutral and adaptive mechanisms in determining genomic and phenotypical divergence. In the Canary Islands, an archipelago rich in endemics, the barn owl (Tyto alba), present in all the islands, is thought to have diverged into a subspecies (T. a. gracilirostris) on the eastern ones, Fuerteventura and Lanzarote. Taking advantage of 40 whole-genomes and modern population genomics tools, we provide the first look at the origin and genetic makeup of barn owls of this archipelago. We show that the Canaries hold diverse, long-standing and monophyletic populations with a neat distinction of gene pools from the different islands. Using a new method, less sensitive to structure than classical FST, to detect regions involved in local adaptation to insular environments, we identified a haplotype-like region likely under selection in all Canaries individuals and genes in this region suggest morphological adaptations to insularity. In the eastern islands, where the subspecies is present, genomic traces of selection pinpoint signs of adapted body proportions and blood pressure, consistent with the smaller size of this population living in a hot arid climate. In turn, genomic regions under selection in the western barn owls from Tenerife showed an enrichment in genes linked to hypoxia, a potential response to inhabiting a small island with a marked altitudinal gradient. Our results illustrate the interplay of neutral and adaptive forces in shaping divergence and early onset speciation.
Collapse
|
47
|
Wang J. A joint likelihood estimator of relatedness and allele frequencies from a small sample of individuals. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jinliang Wang
- Institute of Zoology Zoological Society of London London UK
| |
Collapse
|
48
|
Fan X, Wang C, Bunker DE. Population Structure of German Cockroaches (Blattodea: Ectobiidae) in an Urban Environment Based on Single Nucleotide Polymorphisms. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1319-1327. [PMID: 35462399 DOI: 10.1093/jme/tjac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 06/14/2023]
Abstract
German cockroaches (Blattella germanica L.) harbor and disperse medically important pathogens and are a source of allergens that impact human health and wellbeing. Management of this pest requires an understanding of their distribution and dispersal. In this study, we collected German cockroaches from three apartment buildings in New Jersey, USA. We identified single-nucleotide polymorphisms (SNPs) from DNA extractions using next generation sequencing. We analyzed the SNPs and characterized cockroach population genetic structure using Fst, principal component, phylogenetic, and STRUCTURE analyses. We found significant differences in German cockroach population structure among the buildings. Within buildings, we found variable population structure that may be evidence for multiple colonization events. This study shows that SNPs derived from next generation sequencing provide a powerful tool for analyzing the genetic population structure of these medically important pests.
Collapse
Affiliation(s)
- X Fan
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - C Wang
- Department of Entomology, Rutgers, The State University of New Jersey, 96 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - D E Bunker
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
49
|
Schmidt C, Muñoz G, Lancaster LT, Lessard JP, Marske KA, Marshall KE, Garroway CJ. Population demography maintains biogeographic boundaries. Ecol Lett 2022; 25:1905-1913. [PMID: 35753949 DOI: 10.1111/ele.14058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
Global biodiversity is organised into biogeographic regions that comprise distinct biotas. The contemporary factors maintaining differences in species composition between regions are poorly understood. Given evidence that populations with sufficient genetic variation can adapt to fill new habitats, it is surprising that more homogenisation of species assemblages across regions has not occurred. Theory suggests that expansion across biogeographic regions could be limited by reduced adaptive capacity due to demographic variation along environmental gradients, but this possibility has not been empirically explored. Using three independently curated data sets describing continental patterns of mammalian demography and population genetics, we show that populations near biogeographic boundaries have lower effective population sizes and genetic diversity, and are more genetically differentiated. These patterns are consistent with reduced adaptive capacity in areas where one biogeographic region transitions into the next. That these patterns are replicated across mammals suggests they are stable and generalisable in their contribution to long-term limits on biodiversity homogenisation. Understanding the contemporary processes that maintain compositional differences among regional biotas is crucial for our understanding of the current and future organisation of global biodiversity.
Collapse
Affiliation(s)
- Chloé Schmidt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Gabriel Muñoz
- Faculty of Arts and Sciences, Department of Biology, Concordia University, Montréal, Canada
| | | | - Jean-Philippe Lessard
- Faculty of Arts and Sciences, Department of Biology, Concordia University, Montréal, Canada
| | | | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
50
|
Shall the Wild Boar Pass? A Genetically Assessed Ecological Corridor in the Geneva Region. SUSTAINABILITY 2022. [DOI: 10.3390/su14127463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Landscape fragmentation caused by road infrastructures represents a major threat to the genetic diversity of a region. The resulting genetic isolation between subpopulations may lead to consanguinity, and consequently to population collapse and extinction. However, the construction of wildlife crossings can help maintain connectivity. In the present paper, we evaluated the genetic spatial structuring of populations of wild boars (Sus scrofa) in three areas of the Geneva region connected by an ecological corridor. Those areas are cut off either by a highway that is crossed by a wildlife overpass or by an anthropized sector. Genetic profiling with 9 nuclear microsatellite markers yielded 61 single profiles, which allowed for clustering, parentage, and linkage disequilibrium analyses, uncovering the populations’ genetic structure. We also evaluated whether the genetic structure was affected by the sex of individuals. In our analyses, all individuals clustered into a single genetic group, suggesting that no structure limited significantly the gene flow in the region. However, a recent admixture indicated a potential increase in the gene flow between two of the subpopulations due to the wildlife overpass, while the other part of the ecological corridor was not or was only partially functional. Genetic distances between males were significantly higher than between females, although the role of sex remains unclear as to its influence on population genetics. Finally, in order to avoid a subregion becoming fully isolated, urbanization planning should consider this genetic evaluation and proceed with further monitoring, especially by focusing on species more sensitive to landscape fragmentation.
Collapse
|