1
|
Prochotta D, Winter S, Fennessy J, Janke A. Population genomics of the southern giraffe. Mol Phylogenet Evol 2024; 201:108198. [PMID: 39276822 DOI: 10.1016/j.ympev.2024.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Studying wildlife taxonomic diversity and identifying distinct populations has traditionally been largely based on morphology and geographic origin. More recently, this method has been supplemented by genetic data from the mitochondrial genome. However, this is limited as only maternally inherited and may not reflect the true nature of a population's genetics. Within the giraffe (Giraffa spp.), subspecies and unique populations were successfully characterized using both mitochondrial and genomic DNA studies, which led to new insights and, in some cases, unexpected results that required further verification. Here, we sequenced the genomes of 85 southern giraffe (G. giraffa) individuals from ten populations across southern Africa for a detailed investigation into the genetic diversity and history of its two subspecies, the Angolan (G. g. angolensis) and the South African (G. g. giraffa) giraffe. While the overall genotypes show low levels of runs of homozygosity compared to other mammals, the degree of heterozygosity is limited despite the large population size of South African giraffe. The nuclear genotype is largely congruent with the mitochondrial genotype. However, we have identified that the distribution of the Angolan giraffe is not as far east as indicated in an earlier mitochondrial DNA study. Botswana's Central Kalahari Game Reserve giraffe are unique, with a clear admixture of Angolan and South African giraffe populations. However, the enigmatic desert-dwelling giraffe of northwest Namibia is locally distinct from other Angolan giraffe yet exhibits intra-subspecies signs of admixture resulting from a recent introduction of individuals from Namibia's Etosha National Park. Whole genome sequencing is an invaluable and nearly indispensable tool for wildlife management to uncover genetic diversity that is undetectable through mitogenomic, geographical, and morphological means.
Collapse
Affiliation(s)
- David Prochotta
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany; Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.
| | - Julian Fennessy
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia; School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Axel Janke
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| |
Collapse
|
2
|
Garcia-Erill G, Wang X, Rasmussen MS, Quinn L, Khan A, Bertola LD, Santander CG, Balboa RF, Ogutu JO, Pečnerová P, Hanghøj K, Kuja J, Nursyifa C, Masembe C, Muwanika V, Bibi F, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Extensive Population Structure Highlights an Apparent Paradox of Stasis in the Impala (Aepyceros melampus). Mol Ecol 2024; 33:e17539. [PMID: 39373069 DOI: 10.1111/mec.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Impalas are unusual among bovids because they have remained morphologically similar over millions of years-a phenomenon referred to as evolutionary stasis. Here, we sequenced 119 whole genomes from the two extant subspecies of impala, the common (Aepyceros melampus melampus) and black-faced (A. m. petersi) impala. We investigated the evolutionary forces working within the species to explore how they might be associated with its evolutionary stasis as a taxon. Despite being one of the most abundant bovid species, we found low genetic diversity overall, and a phylogeographic signal of spatial expansion from southern to eastern Africa. Contrary to expectations under a scenario of evolutionary stasis, we found pronounced genetic structure between and within the two subspecies with indications of ancient, but not recent, gene flow. Black-faced impala and eastern African common impala populations had more runs of homozygosity than common impala in southern Africa, and, using a proxy for genetic load, we found that natural selection is working less efficiently in these populations compared to the southern African populations. Together with the fossil record, our results are consistent with a fixed-optimum model of evolutionary stasis, in which impalas in the southern African core of the range are able to stay near their evolutionary fitness optimum as a generalist ecotone species, whereas eastern African impalas may struggle to do so due to the effects of genetic drift and reduced adaptation to the local habitat, leading to recurrent local extinction in eastern Africa and re-colonisation from the South.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology and Genetics, Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anubhab Khan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Longo GC, Minich JJ, Allsing N, James K, Adams-Herrmann ES, Larson W, Hartwick N, Duong T, Muhling B, Michael TP, Craig MT. Crossing the Pacific: Genomics Reveals the Presence of Japanese Sardine (Sardinops melanosticta) in the California Current Large Marine Ecosystem. Mol Ecol 2024; 33:e17561. [PMID: 39440436 DOI: 10.1111/mec.17561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Recent increases in frequency and intensity of warm water anomalies and marine heatwaves have led to shifts in species ranges and assemblages. Genomic tools can be instrumental in detecting such shifts. In the early stages of a project assessing population genetic structure in Pacific Sardine (Sardinops sagax), we detected the presence of Japanese Sardine (Sardinops melanosticta) along the west coast of North America for the first time. We assembled a high quality, chromosome-scale reference genome of the Pacific Sardine and generated low coverage, whole genome sequence (lcWGS) data for 345 sardine collected in the California Current Large Marine Ecosystem (CCLME) in 2021 and 2022. Fifty individuals sampled in 2022 were identified as Japanese Sardine based on strong differentiation observed in lcWGS SNP and full mitogenome data. Although we detected a single case of mitochondrial introgression, we did not observe evidence for recent hybridization events. These findings change our understanding of Sardinops spp. distribution and dispersal in the Pacific and highlight the importance of long-term monitoring programs.
Collapse
Affiliation(s)
- Gary C Longo
- National Marine Fisheries Service, Southwest Fisheries Science Center, Ocean Associates, Inc., Under Contract to the National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - Jeremiah J Minich
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Nicholas Allsing
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kelsey James
- National Marine Fisheries Service, Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, California, USA
| | - Ella S Adams-Herrmann
- National Marine Fisheries Service, Southwest Fisheries Science Center, Ocean Associates, Inc., Under Contract to the National Oceanic and Atmospheric Administration, La Jolla, California, USA
- University of San Diego, San Diego, California, USA
- University of Central Florida, Department of Biology, Orlando, FL, USA
| | - Wes Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, Juneau, Alaska, USA
| | - Nolan Hartwick
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tiffany Duong
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Barbara Muhling
- National Marine Fisheries Service, Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, California, USA
- Institute of Marine Sciences Fisheries Collaborative Program, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Matthew T Craig
- National Marine Fisheries Service, Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
4
|
Caccavo JA, Arantes LS, Celemín E, Mbedi S, Sparmann S, Mazzoni CJ. Whole-genome resequencing improves the utility of otoliths as a critical source of DNA for fish stock research and monitoring. Mol Ecol Resour 2024; 24:e14013. [PMID: 39233613 DOI: 10.1111/1755-0998.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Fish ear bones, known as otoliths, are often collected in fisheries to assist in management, and are a common sample type in museum and national archives. Beyond their utility for ageing, morphological and trace element analysis, otoliths are a repository of valuable genomic information. Previous work has shown that DNA can be extracted from the trace quantities of tissue remaining on the surface of otoliths, despite the fact that they are often stored dry at room temperature. However, much of this work has used reduced representation sequencing methods in clean lab conditions, to achieve adequate yields of DNA, libraries and ultimately single-nucleotide polymorphisms (SNPs). Here, we pioneer the use of small-scale (spike-in) sequencing to screen contemporary otolith samples prepared in regular molecular biology (in contrast to clean) laboratories for contamination and quality levels, submitting for whole-genome resequencing only samples above a defined endogenous DNA threshold. Despite the typically low quality and quantity of DNA extracted from otoliths, we are able to produce whole-genome libraries and ultimately sets of filtered, unlinked and even putatively adaptive SNPs of ample numbers for downstream uses in population, climate and conservation genomics. By comparing with a set of tissue samples from the same species, we are able to highlight the quality and efficacy of otolith samples from DNA extraction and library preparation, to bioinformatic preprocessing and SNP calling. We provide detailed schematics, protocols and scripts of our approach, such that it can be adopted widely by the community, improving the use of otoliths as a source of valuable genomic data.
Collapse
Affiliation(s)
- Jilda Alicia Caccavo
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Department of Evolutionary Genetics, Leibniz-Institut für Zoo- und Wildtierforschung, IZW, Berlin, Germany
| | - Larissa S Arantes
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Department of Evolutionary Genetics, Leibniz-Institut für Zoo- und Wildtierforschung, IZW, Berlin, Germany
| | - Enrique Celemín
- Institute of Biochemistry and Biology, Evolutionary Biology & Systematic Zoology, University of Potsdam, Potsdam, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Museum für Naturkunde, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Department of Evolutionary Genetics, Leibniz-Institut für Zoo- und Wildtierforschung, IZW, Berlin, Germany
| |
Collapse
|
5
|
Rossi C, Sinding MHS, Mullin VE, Scheu A, Erven JAM, Verdugo MP, Daly KG, Ciucani MM, Mattiangeli V, Teasdale MD, Diquelou D, Manin A, Bangsgaard P, Collins M, Lord TC, Zeibert V, Zorzin R, Vinter M, Timmons Z, Kitchener AC, Street M, Haruda AF, Tabbada K, Larson G, Frantz LAF, Gehlen B, Alhaique F, Tagliacozzo A, Fornasiero M, Pandolfi L, Karastoyanova N, Sørensen L, Kiryushin K, Ekström J, Mostadius M, Grandal-d'Anglade A, Vidal-Gorosquieta A, Benecke N, Kropp C, Grushin SP, Gilbert MTP, Merts I, Merts V, Outram AK, Rosengren E, Kosintsev P, Sablin M, Tishkin AA, Makarewicz CA, Burger J, Bradley DG. The genomic natural history of the aurochs. Nature 2024; 635:136-141. [PMID: 39478219 DOI: 10.1038/s41586-024-08112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/25/2024] [Indexed: 11/04/2024]
Abstract
Now extinct, the aurochs (Bos primigenius) was a keystone species in prehistoric Eurasian and North African ecosystems, and the progenitor of cattle (Bos taurus), domesticates that have provided people with food and labour for millennia1. Here we analysed 38 ancient genomes and found 4 distinct population ancestries in the aurochs-European, Southwest Asian, North Asian and South Asian-each of which has dynamic trajectories that have responded to changes in climate and human influence. Similarly to Homo heidelbergensis, aurochsen first entered Europe around 650 thousand years ago2, but early populations left only trace ancestry, with both North Asian and European B. primigenius genomes coalescing during the most recent glaciation. North Asian and European populations then appear separated until mixing after the climate amelioration of the early Holocene. European aurochsen endured the more severe bottleneck during the Last Glacial Maximum, retreating to southern refugia before recolonizing from Iberia. Domestication involved the capture of a small number of individuals from the Southwest Asian aurochs population, followed by early and pervasive male-mediated admixture involving each ancestral strain of aurochs after domestic stocks dispersed beyond their cradle of origin.
Collapse
Affiliation(s)
- Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Amelie Scheu
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jolijn A M Erven
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Groningen Institute of Archaeology, University of Groningen, Groningen, The Netherlands
| | | | - Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Marta Maria Ciucani
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deborah Diquelou
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Aurélie Manin
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Pernille Bangsgaard
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Collins
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | | | - Viktor Zeibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Roberto Zorzin
- Sezione di Geologia e Paleontologia, Museo Civico di Storia Naturale di Verona, Verona, Italy
| | | | - Zena Timmons
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Martin Street
- LEIZA, Archaeological Research Centre and Museum for Human Behavioural Evolution, Schloss Monrepos, Neuwied, Germany
| | - Ashleigh F Haruda
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabbada
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Laurent A F Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Birgit Gehlen
- Institute for Prehistory and Protohistory, University of Cologne, Cologne, Germany
| | - Francesca Alhaique
- Bioarchaeology Service, Museo delle Civiltà, Piazza Guglielmo Marconi, Rome, Italy
| | - Antonio Tagliacozzo
- Bioarchaeology Service, Museo delle Civiltà, Piazza Guglielmo Marconi, Rome, Italy
| | | | - Luca Pandolfi
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Nadezhda Karastoyanova
- Department of Paleontology and Mineralogy, National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Kirill Kiryushin
- Department of Recreational Geography, Service, Tourism and Hospitality, Institute of Geography, Altai State University, Barnaul, Russian Federation
| | - Jonas Ekström
- The Biological Museum, Lund University, Arkivcentrum Syd, Lund, Sweden
| | - Maria Mostadius
- The Biological Museum, Lund University, Arkivcentrum Syd, Lund, Sweden
| | | | | | - Norbert Benecke
- German Archaeological Institute, Central Department, Berlin, Germany
| | - Claus Kropp
- Lauresham Laboratory for Experimental Archaeology, UNESCO-Welterbestätte Kloster Lorsch, Lorsch, Germany
| | - Sergei P Grushin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russian Federation
| | - M Thomas P Gilbert
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ilja Merts
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Viktor Merts
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Alan K Outram
- Department of Archaeology and History, University of Exeter, Exeter, UK
| | - Erika Rosengren
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Lund University Historical Museum, Lund, Sweden
| | - Pavel Kosintsev
- Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
- Department of History, Institute of Humanities, Ural Federal University, Ekaterinburg, Russian Federation
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Alexey A Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russian Federation
| | - Cheryl A Makarewicz
- Archaeology Stable Isotope Laboratory, Institute of Pre- and Protohistoric Archaeology, University of Kiel, Kiel, Germany
- University of Haifa, Haifa, Israel
| | - Joachim Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Yi H, Wang J, Dong S, Kang M. Genomic signatures of inbreeding and mutation load in tree ferns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39387366 DOI: 10.1111/tpj.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Ferns (Pteridophyta), as the second largest group of vascular plants, play important roles in ecosystem functioning. Homosporous ferns exhibit a remarkable range of mating systems, from extreme inbreeding to obligate outcrossing, which may have significant evolutionary and ecological implications. Despite their significance, the impact of genome-wide inbreeding on genetic diversity and mutation load within the fern lineage remain largely unexplored. In this study, we utilized whole-genome sequencing to investigate the genomic signatures of inbreeding and genetic load in three Alsophila tree fern species. Our analysis revealed extremely high inbreeding in A. spinulosa, in contrast to the predominantly outcrossing observed in A. costularis and A. latebrosa. This difference likely reflects divergent mating systems and demographic histories. Consistent with its extreme inbreeding propensity, A. spinulosa exhibits reduced genetic diversity and a pronounced decline in effective population size. Comparison of genetic load revealed an overall reduction in deleterious mutations in the highly inbred A. spinulosa, highlighting that long-term inbreeding may have contributed to the purging of strongly deleterious mutations, thereby prolonging the survival of A. spinulosa. Despite this, however, A. spinulosa carries a substantive realized genetic load that may potentially instigate future fitness decline. Our findings illuminate the complex evolutionary interplay between inbreeding and mutation load in homosporous ferns, yielding insights with important implications for the conservation and management of these species.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shiyong Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
7
|
de-Dios T, Fontsere C, Renom P, Stiller J, Llovera L, Uliano-Silva M, Sánchez-Gracia A, Wright C, Lizano E, Caballero B, Navarro A, Civit S, Robbins RK, Blaxter M, Marquès T, Vila R, Lalueza-Fox C. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 2024; 12:RP87928. [PMID: 39365295 PMCID: PMC11466284 DOI: 10.7554/elife.87928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. We sequenced the genomes of four 80- to 100-year-old Xerces Blue, and seven historical and one modern specimens of its closest relative, the Silvery Blue (Glaucopsyche lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (Glaucopsyche alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, both species experienced population growth during the Eemian interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity and deleterious load in the former were significantly greater than in the later, suggesting a higher incidence of inbreeding. These signals of population decline observed in Xerces Blue could be used to identify and monitor other insects threatened by human activities, whose extinction patterns are still not well known.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary BiologyBarcelonaSpain
- Institute of Genomics, University of TartuTartuEstonia
| | - Claudia Fontsere
- Institute of Evolutionary BiologyBarcelonaSpain
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Pere Renom
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of CopenhagenCopenhagenDenmark
| | | | | | - Alejandro Sánchez-Gracia
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | | | - Esther Lizano
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Arcadi Navarro
- Institute of Evolutionary BiologyBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Civit
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | - Robert K Robbins
- Department of Entomology, National Museum of Natural History, Smithsonian InstitutionWashingtonUnited States
| | - Mark Blaxter
- Wellcome Sanger InstituteSaffron WaldenUnited Kingdom
| | - Tomàs Marquès
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Roger Vila
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Carles Lalueza-Fox
- Institute of Evolutionary BiologyBarcelonaSpain
- Museu de Ciències Naturals de BarcelonaBarcelonaSpain
| |
Collapse
|
8
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
9
|
Quiroga-Carmona M, Liphardt S, Bautista NM, Jayat P, Teta P, Malaney JL, McFarland T, Cook JA, Blumer LM, Herrera ND, Cheviron ZA, Good JM, D’Elía G, Storz JF. Species limits and hybridization in Andean leaf-eared mice ( Phyllotis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610610. [PMID: 39282442 PMCID: PMC11398333 DOI: 10.1101/2024.08.31.610610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Leaf-eared mice (genus Phyllotis) are among the most widespread and abundant small mammals in the Andean Altiplano, but species boundaries and distributional limits are often poorly delineated due to sparse survey data from remote mountains and high-elevation deserts. Here we report a combined analysis of mitochondrial DNA variation and whole-genome sequence (WGS) variation in Phyllotis mice to delimit species boundaries, to assess the timescale of diversification of the group, and to examine evidence for interspecific hybridization. Estimates of divergence dates suggest that most diversification of Phyllotis occurred during the past 3 million years. Consistent with the Pleistocene Aridification hypothesis, our results suggest that diversification of Phyllotis largely coincided with climatically induced environmental changes in the mid- to late Pleistocene. Contrary to the Montane Uplift hypothesis, most diversification in the group occurred well after the major phase of uplift of the Central Andean Plateau. Species delimitation analyses revealed surprising patterns of cryptic diversity within several nominal forms, suggesting the presence of much undescribed alpha diversity in the genus. Results of genomic analyses revealed evidence of ongoing hybridization between the sister species Phyllotis limatus and P. vaccarum and suggest that the contemporary zone of range overlap between the two species represents an active hybrid zone.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Schuyler Liphardt
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Pablo Jayat
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
- Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito (UNdeC), Argentina
| | - Pablo Teta
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jason L. Malaney
- New Mexico Museum of Natural History and Science, Albuquerque, NM, United States
| | - Tabitha McFarland
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Joseph A. Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - L. Moritz Blumer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nathanael D. Herrera
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
10
|
Gamba D, Vahsen ML, Maxwell TM, Pirtel N, Romero S, Ee JJV, Penn A, Das A, Ben-Zeev R, Baughman O, Blaney CS, Bodkins R, Budha-Magar S, Copeland SM, Davis-Foust SL, Diamond A, Donnelly RC, Dunwiddie PW, Ensing DJ, Everest TA, Hoitink H, Holdrege MC, Hufbauer RA, Juzėnas S, Kalwij JM, Kashirina E, Kim S, Klisz M, Klyueva A, Langeveld M, Lutfy S, Martin D, Merkord CL, Morgan JW, Nagy DU, Ott JP, Puchalka R, Pyle LA, Rasran L, Rector BG, Rosche C, Sadykova M, Shriver RK, Stanislavschi A, Starzomski BM, Stone RL, Turner KG, Urza AK, VanWallendael A, Wegenschimmel CA, Zweck J, Brown CS, Leger EA, Blumenthal DM, Germino MJ, Porensky LM, Hooten MB, Adler PB, Lasky JR. Local adaptation to climate facilitates a global invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612725. [PMID: 39345363 PMCID: PMC11429938 DOI: 10.1101/2024.09.12.612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass (Bromus tectorum), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages invaded North America, where long-distance gene flow is common. Ancestry and phenotypic clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes colonized different regions. Common gardens showed directional selection on flowering time that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, genomic predictions of strong local adaptation identified sites where cheatgrass is most dominant. Preventing new introductions that may fuel adaptation is critical for managing ongoing invasions.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Megan L. Vahsen
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Toby M. Maxwell
- Department of Biological Sciences, Boise State University; Boise, ID, USA
| | - Nikki Pirtel
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Seth Romero
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Justin J. Van Ee
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Amanda Penn
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Aayudh Das
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Rotem Ben-Zeev
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | | | - C. Sean Blaney
- Atlantic Canada Conservation Data Centre; Sackville, NB, Canada
| | | | | | - Stella M. Copeland
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center; Burns, OR, USA
| | | | - Alvin Diamond
- Department of Biological and Environmental Sciences, Troy University; Troy, Alabama, USA
| | - Ryan C. Donnelly
- Division of Biology, Kansas State University; Manhattan, KS, USA
| | | | - David J. Ensing
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada; Summerland, BC, Canada
| | | | | | - Martin C. Holdrege
- Northern Arizona University, Center for Adaptable Western Landscapes; Flagstaff, AZ, USA
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Sigitas Juzėnas
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University; Vilnius, Lithuania
| | - Jesse M. Kalwij
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology; Karlsruhe, Germany
| | | | - Sangtae Kim
- Department of Biology, Sungshin Women’s University; Seoul, Republic of Korea
| | - Marcin Klisz
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute; Raszyn, Poland
| | - Alina Klyueva
- Bryansk State University named after Academician I. G. Petrovsky; Bryansk, Russia
| | | | - Samuel Lutfy
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville; Kingsville, TX, USA
| | | | | | - John W. Morgan
- Department of Environment and Genetics, La Trobe University; Bundoora, Victoria, Australia
| | - Dávid U. Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | - Jacqueline P. Ott
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD, USA
| | - Radoslaw Puchalka
- Department of Ecology and Biogeography, Nicolaus Copernicus University; Torun, Poland
| | | | - Leonid Rasran
- University of Natural Resources and Life Sciences, Vienna; Vienna, Austria
| | - Brian G. Rector
- US Department of Agriculture, Agricultural Research Service, Invasive Species and Pollinator Health Research Unit; Albany, CA, USA
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | | | - Robert K. Shriver
- Department of Natural Resources and Environmental Science, University of Nevada; Reno, NV, USA
| | - Alexandr Stanislavschi
- Department of Organic, Biochemical, and Food Engineering, Gheorghe Asachi Technical University of Iasi; Iasi, Romania
| | - Brian M. Starzomski
- School of Environmental Studies, University of Victoria; Victoria, BC, Canada
| | - Rachel L. Stone
- Department of Biology, Case Western Reserve University; Cleveland, OH, USA
| | - Kathryn G. Turner
- Department of Biological Sciences, Idaho State University; Pocatello, ID, USA
| | | | - Acer VanWallendael
- Department of Horticultural Science, North Carolina State University; Raleigh, NC, USA
| | | | - Justin Zweck
- Department of Ecosystem Science and Management, Pennsylvania State University; University Park, PA, USA
| | - Cynthia S. Brown
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | | | - Dana M. Blumenthal
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Matthew J. Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center; Boise, Idaho, USA
| | - Lauren M. Porensky
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Mevin B. Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin; Austin, TX, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| |
Collapse
|
11
|
Sun Y, Lorenzen ED, Westbury MV. Late Pleistocene polar bear genomes reveal the timing of allele fixation in key genes associated with Arctic adaptation. BMC Genomics 2024; 25:826. [PMID: 39278943 PMCID: PMC11403954 DOI: 10.1186/s12864-024-10617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/12/2024] [Indexed: 09/18/2024] Open
Abstract
The polar bear (Ursus maritimus) occupies a relatively narrow ecological niche, with many traits adapted for cold temperatures, movement across snow, ice and open water, and for consuming highly lipid-dense prey species. The divergence of polar bears from brown bears (Ursus arctos) and their adaptation to their Arctic lifestyle is a well-known example of rapid evolution. Previous research investigating whole genomes uncovered twelve key genes that are highly differentiated between polar and brown bears, show signatures of selection in the polar bear lineage, and are associated with polar bear adaptation to the Arctic environment. Further research suggested fixed derived alleles in these genes arose from selection on both standing variation and de novo mutations in the evolution of polar bears. Here, we reevaluate these findings based on a larger and geographically more representative dataset of 119 polar bears and 135 brown bears, and assess the timing of derived allele fixation in polar bears by incorporating the genomes of two Late Pleistocene individuals (aged 130-100,000 years old and 100-70,000 years old). In contrast with previous results, we found no evidence of derived alleles fixed in present-day polar bears within the key genes arising from de novo mutation. Most derived alleles fixed in present-day polar bears were also fixed in the Late Pleistocene polar bears, suggesting selection occurred prior to 70,000 years ago. However, some derived alleles fixed in present-day polar bears were not fixed in the two Late Pleistocene polar bears, including at sites within APOB, LYST, and TTN. These three genes are associated with cardiovascular function, metabolism, and pigmentation, suggesting selection may have acted on different loci at different times.
Collapse
Affiliation(s)
- Yulin Sun
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- School of The Environment, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
12
|
Cauz-Santos LA, Samuel R, Metschina D, Christenhusz MJM, Dodsworth S, Dixon KW, Conran JG, Paun O, Chase MW. Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts. Mol Ecol 2024; 33:e17498. [PMID: 39152668 DOI: 10.1111/mec.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.
Collapse
Affiliation(s)
- Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Dominik Metschina
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Maarten J M Christenhusz
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Kingsley W Dixon
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - John G Conran
- Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Mark W Chase
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Fernandes AM, Cohn-Haft M, Fábio Silveira L, Aleixo A, Nascimento N, Olsson U. Speciation in savanna birds in South America: The case of the Least Nighthawk Chordeiles pusillus (Aves: Caprimulgidae) in and out of the Amazon. Mol Phylogenet Evol 2024; 198:108117. [PMID: 38852908 DOI: 10.1016/j.ympev.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The Least Nighthawk Chordeiles pusillus is widespread wherever there are savannas in the South American tropics, often in isolated patches, such as white-sands savannas in the Amazon rainforest realm. Here, we investigate genetic relationships between populations of the Least Nighthawk to understand historical processes leading to its diversification and to determine dispersal routes between northern and southern savannas by way of three hypothesized dispersal corridors by comparing samples from white-sand savannas to samples from other savannas outside of the Amazon rainforest region. We use 32 mtDNA samples from the range of C. pusillus to infer a dated phylogeny. In a subset of 17 samples, we use shotgun sequences to infer a distance-based phylogeny and to estimate individual admixture proportions. We calculate gene flow and shared alleles between white-sand and non-Amazonian populations using the ABBA-BABA test (D statistics), and Principal Component Analysis (PCA) to examine genetic structure within and between lineages. Finally, we use species distribution modelling (SDM) of conditions during the Last Glacial Maximum (LGM), currently, and in the future (2050-2080) to predict potential species occurrence under a climate change scenario. Two main clades (estimated to have diverged around 1.07 million years ago) were recovered with mtDNA sequences and Single Nucleotide Polymorphism (SNPs) and were supported by NGSadmix and PCA: one in the Amazon basin white-sand savannas, the other in the non-Amazonian savannas. Possible allele sharing between these clades was indicated by the D-statistics between northern non-Amazonian populations and the white-sand savanna population, but this was not corroborated by the admixture analyses. Dispersal among northern non-Amazonian populations may have occurred in a dry corridor between the Guianan and the Brazilian Shield, which has since moved eastward. Our data suggest that the lineages separated well before the Last Glacial Maximum, consequently dispersal could have happened at any earlier time during similar climatic conditions. Subsequently, non-Amazonian lineages became more divergent among themselves, possibly connecting and dispersing across the mouth of the Amazon River across Marajó island during favourable climatic conditions in the Pleistocene.
Collapse
Affiliation(s)
| | | | | | - Alexandre Aleixo
- Museu Paraense Emílio Goeldi, Belém, Brazil; Instituto Tecnológico Vale, Brazil
| | | | - Urban Olsson
- Department of Biology and Environmental Science, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
14
|
Thörn F, Soares AER, Müller IA, Päckert M, Frahnert S, van Grouw H, Kamminga P, Peona V, Suh A, Blom MPK, Irestedt M. Contemporary intergeneric hybridization and backcrossing among birds-of-paradise. Evol Lett 2024; 8:680-694. [PMID: 39328285 PMCID: PMC11424083 DOI: 10.1093/evlett/qrae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 09/28/2024] Open
Abstract
Despite large differences in morphology, behavior and lek-mating strategies the birds-of-paradise are known to hybridize occasionally, even across different genera. Many of these bird-of-paradise hybrids were originally described as distinct species based on large morphological differences when compared to recognized species. Nowadays, these specimens are generally recognized as hybrids based on morphological assessments. Having fascinated naturalists for centuries, hybrid specimens of birds-of-paradise have been collected and the specimens kept in Natural History Collections. In the present study, we utilize this remarkable resource in a museomics framework and evaluate the genomic composition of most described intergeneric hybrids and some intrageneric hybrids. We show that the majority of investigated specimens are first-generation hybrids and that the parental species, in most cases, are in line with prior morphological assessments. We also identify two specimens that are the result of introgressive hybridization between different genera. Additionally, two specimens exhibit hybrid morphologies but have no identifiable signals of hybridization, which may indicate that minor levels of introgression can have large morphological effects. Our findings provide direct evidence of contemporary introgressive hybridization taking place between genera of birds-of-paradise in nature, despite markedly different morphologies and lek-mating behaviors.
Collapse
Affiliation(s)
- Filip Thörn
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - André E R Soares
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingo A Müller
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Päckert
- Section Ornithology, Senckenberg Natural History Collections, Museum für Tierkunde, Dresden, Germany
| | - Sylke Frahnert
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Hein van Grouw
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, Herts, United Kingdom
| | | | - Valentina Peona
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Swiss Ornithological Institute—Vogelwarte, Sempach, Switzerland
| | - Alexander Suh
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mozes P K Blom
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
15
|
Eckert RJ, Sturm AB, Carreiro AM, Klein AM, Voss JD. Cryptic diversity of shallow and mesophotic Stephanocoenia intersepta corals across Florida Keys National Marine Sanctuary. Heredity (Edinb) 2024; 133:137-148. [PMID: 38937604 PMCID: PMC11350147 DOI: 10.1038/s41437-024-00698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
Population genetic analyses can provide useful data on species' regional connectivity and diversity which can inform conservation and restoration efforts. In this study, we quantified the genetic connectivity and diversity of Stephanocoenia intersepta corals from shallow (<30 m) to mesophotic (30-45 m) depths across Florida Keys National Marine Sanctuary. We generated single nucleotide polymorphism (SNP) markers to identify genetic structuring of shallow and mesophotic S. intersepta corals. We uncovered four distinct, cryptic genetic lineages with varying levels of depth-specificity. Shallow-specific lineages exhibited lower heterozygosity and higher inbreeding relative to depth-generalist lineages found across both shallow and mesophotic reefs. Estimation of recent genetic migration rates demonstrated that mesophotic sites are more prolific sources than shallow sites, particularly in the Lower Keys and Upper Keys. Additionally, we compared endosymbiotic Symbiodiniaceae among sampled S. intersepta using the ITS2 region and SYMPORTAL analysis framework, identifying symbionts from the genera Symbiodinium, Breviolum, and Cladocopium. Symbiodiniaceae varied significantly across depth and location and exhibited significant, but weak correlation with host lineage and genotype. Together, these data demonstrate that despite population genetic structuring across depth, some mesophotic populations may provide refuge for shallow populations moving forward and remain important contributors to the overall genetic diversity of this species throughout the region. This study highlights the importance of including mesophotic as well as shallow corals in population genetic assessments and informs future science-based management, conservation, and restoration efforts within Florida Keys National Marine Sanctuary.
Collapse
Affiliation(s)
- Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA.
| | - Alexis B Sturm
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Ashley M Carreiro
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Allison M Klein
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
16
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
17
|
Capblancq T, Sękiewicz K, Dering M. Forest genomics in the Caucasus through the lens of its dominant tree species - Fagus orientalis. Mol Ecol 2024; 33:e17475. [PMID: 39021282 DOI: 10.1111/mec.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
The last glacial period is known to have greatly influenced the demographic history of temperate forest trees, with important range contractions and post-glacial expansions that led to the formation of multiple genetic lineages and secondary contact zones in the Northern Hemisphere. These dynamics have been extensively studied for European and North American species but are still poorly understood in other temperate regions of rich biodiversity such as the Caucasus. Our study helps filling that gap by deciphering the genomic landscapes of F. orientalis across the South Caucasus. The use of genome-wide data confirmed a past demographic history strongly influenced by the Last Glacial Maximum, revealing two disjunct glacial refugia in the Colchis and Hyrcanian regions. The resulting patterns of genetic diversity, load and differentiation are not always concordant across the region, with genetic load pinpointing the location of the glacial refugia more efficiently than genetic diversity alone. The Hyrcanian forests show depleted genetic diversity and substantial isolation, even if long-distance gene flow is still present with the main centre of diversity in the Greater Caucasus. Finally, we characterize a strong heterogeneity of genetic diversity and differentiation along the species chromosomes, with noticeably a first chromosome showing low diversity and weak differentiation.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Écologie Alpine, Grenoble, France
| | | | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Silviculture, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
18
|
Black AN, Mularo AJ, Jeon JY, Haukos D, Bondo KJ, Fricke KA, Gregory A, Grisham B, Lowe ZE, DeWoody JA. Discordance between taxonomy and population genomic data: An avian example relevant to the United States Endangered Species Act. PNAS NEXUS 2024; 3:pgae298. [PMID: 39131912 PMCID: PMC11313583 DOI: 10.1093/pnasnexus/pgae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Population genomics can reveal cryptic biological diversity that may impact fitness while simultaneously serving to delineate relevant conservation units. Here, we leverage the power of whole-genome resequencing for conservation by studying 433 individual lesser prairie-chicken (Tympanuchus pallidicinctus; LEPC, a federally endangered species of conservation concern in the United States) and greater prairie-chicken (Tympanuchus cupido; GRPC, a legally huntable species throughout much of its range). The genomic diversity of two formally recognized distinct population segments (DPSs) of LEPCs is similar, but they are genetically distinct. Neither DPS is depleted of its genomic diversity, neither is especially inbred, and temporal diversity is relatively stable in both conservation units. Interspecific differentiation between the two species was only slightly higher than that observed between LEPC DPSs, due largely to bidirectional introgression. The high resolution provided by our dataset identified a genomic continuum between the two species such that individuals sampled from the hybrid zone were imperfectly assigned to their presumptive species when considering only their physical characteristics. The admixture between the two species is reflected in the spectrum of individual ancestry coefficients, which has legal implications for the "take" of individuals under the Endangered Species Act. Overall, our data highlight the recurring dissonance between static policies and dynamic species boundaries that are increasingly obvious in the population genomic era.
Collapse
Affiliation(s)
- Andrew N Black
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
- Western Association of Fish and Wildlife Agencies, Boise, ID 83719, USA
| | - Andrew J Mularo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 66506, USA
| | - Jong Yoon Jeon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - David Haukos
- U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin J Bondo
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79410, USA
| | - Kent A Fricke
- Kansas Department of Wildlife and Parks, Emporia, KS 66801, USA
| | - Andy Gregory
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Blake Grisham
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79410, USA
| | - Zachary E Lowe
- Western Association of Fish and Wildlife Agencies, Boise, ID 83719, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 66506, USA
| |
Collapse
|
19
|
Berman LM, Wu MY, Baveja P, Cros E, Sin YCK, Prawiradilaga DM, Rheindt FE. Population structure in Mixornis tit-babblers across Sunda Shelf matches interfluvia of paleo-rivers. Mol Phylogenet Evol 2024; 197:108105. [PMID: 38754709 DOI: 10.1016/j.ympev.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/04/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Rivers constitute an important biogeographic divide in vast areas of tropical rainforest, such as the Amazon and Congo Basins. Southeast Asia's rainforests are currently fragmented across islands divided by sea, which has long obscured their extensive history of terrestrial connectivity as part of a vast (but now submerged) subcontinent - Sundaland - during most of the Quaternary. The role of paleo-rivers in determining population structure in Sundaic rainforests at a time when these forests were connected remains little understood. We examined the coloration of museum skins and used the genomic DNA of museum samples and freshly-collected blood tissue of a pair of Sundaic songbird species, the pin-striped and bold-striped tit-babblers (Mixornis gularis and M. bornensis, respectively), to assess the genetic affinity of populations on small Sundaic islands that have largely been ignored by modern research. Our genomic and morphological results place the populations from the Anambas and Natuna Islands firmly within M. gularis from the Malay Peninsula in western Sundaland, even though some of these islands are geographically much closer to Borneo, where M. bornensis resides. Our results reveal genetic structure consistent with the course of Sundaic paleo-rivers and the location of the interfluvia they formed, and add to a small but growing body of evidence that rivers would have been of equal biogeographic importance in Sundaland's former connected forest landscape as they are in Amazonia and the Congo Basin today.
Collapse
Affiliation(s)
- Laura Marie Berman
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore.
| | - Meng Yue Wu
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore
| | - Pratibha Baveja
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore
| | - Emilie Cros
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore
| | - Yong Chee Keita Sin
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore.
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jalan Raya, Jakarta Bogor KM 46, Cibinong 16911, Indonesia.
| | - Frank E Rheindt
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
20
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Trinh MDL, Visintainer D, Günther J, Østerberg JT, da Fonseca RR, Fondevilla S, Moog MW, Luo G, Nørrevang AF, Crocoll C, Nielsen PV, Jacobsen S, Wendt T, Bak S, López‐Marqués RL, Palmgren M. Site-directed genotype screening for elimination of antinutritional saponins in quinoa seeds identifies TSARL1 as a master controller of saponin biosynthesis selectively in seeds. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2216-2234. [PMID: 38572508 PMCID: PMC11258981 DOI: 10.1111/pbi.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait. We mapped genes controlling seed saponin content to a genomic region that includes TSARL1. We isolated desired genetic variation in this gene by producing a large mutant library of a commercial quinoa cultivar and screening the library for specific nucleotide substitutions using droplet digital PCR. We were able to rapidly isolate two independent tsarl1 mutants, which retained saponins in the leaves and roots for defence, but saponins were undetectable in the seed coat. We further could show that TSARL1 specifically controls seed saponin biosynthesis in the committed step after 2,3-oxidosqualene. Our work provides new important knowledge on the function of TSARL1 and represents a breakthrough for quinoa breeding.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Davide Visintainer
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jan Günther
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Rute R. da Fonseca
- Section for BiodiversityGlobe Institute, University of CopenhagenKøbenhavn ØDenmark
| | | | - Max William Moog
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Guangbin Luo
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Anton F. Nørrevang
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Christoph Crocoll
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Philip V. Nielsen
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | | | - Søren Bak
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
22
|
Andrade P, Alves JM, Pereira P, Rubin CJ, Silva E, Sprehn CG, Enbody E, Afonso S, Faria R, Zhang Y, Bonino N, Duckworth JA, Garreau H, Letnic M, Strive T, Thulin CG, Queney G, Villafuerte R, Jiggins FM, Ferrand N, Andersson L, Carneiro M. Selection against domestication alleles in introduced rabbit populations. Nat Ecol Evol 2024; 8:1543-1555. [PMID: 38907020 DOI: 10.1038/s41559-024-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild-domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| | - Joel M Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Institute of Marine Research, Bergen, Norway
| | - Eugénio Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Yexin Zhang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Never Bonino
- Estación Experimental Bariloche, Instituto Nacional de Tecnología Agropecuaria, Casilla de Correo Bariloche, Argentina
| | - Janine A Duckworth
- Wildlife Ecology and Management Group, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Hervé Garreau
- GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Mike Letnic
- Centre for Ecosystem Science, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australian Capital Territory, Australia
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Carl-Gustaf Thulin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guillaume Queney
- ANTAGENE, Wildlife Genetics Laboratory, La Tour de Salvagny, France
| | | | | | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| |
Collapse
|
23
|
Fonseca EM, Tran LN, Mendoza H, Gutenkunst RN. Modeling biases from low-pass genome sequencing to enable accurate population genetic inferences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604366. [PMID: 39091836 PMCID: PMC11291017 DOI: 10.1101/2024.07.19.604366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Low-pass genome sequencing is cost-effective and enables analysis of large cohorts. However, it introduces biases by reducing heterozygous genotypes and low-frequency alleles, impacting subsequent analyses such as demographic history inference. We developed a probabilistic model of low-pass biases from the Genome Analysis Toolkit (GATK) multi-sample calling pipeline, and we implemented it in the population genomic inference software dadi. We evaluated the model using simulated low-pass datasets and found that it alleviated low-pass biases in inferred demographic parameters. We further validated the model by downsampling 1000 Genomes Project data, demonstrating its effectiveness on real data. Our model is widely applicable and substantially improves model-based inferences from low-pass population genomic data.
Collapse
Affiliation(s)
- Emanuel M. Fonseca
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linh N. Tran
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hannah Mendoza
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Blom MP, Peona V, Prost S, Christidis L, Benz BW, Jønsson KA, Suh A, Irestedt M. Hybridization in birds-of-paradise: Widespread ancestral gene flow despite strong sexual selection in a lek-mating system. iScience 2024; 27:110300. [PMID: 39055907 PMCID: PMC11269930 DOI: 10.1016/j.isci.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Sexual selection can directly contribute to reproductive isolation and is an important mechanism that can lead to speciation. Lek-mating is one of the most extreme forms of sexual selection, but surprisingly does not seem to preclude occasional hybridization in nature. However, hybridization among lekking species may still be trivial if selection against offspring with intermediate phenotypes prohibits introgression. Here we investigate this further by sequencing the genomes of nearly all bird-of-paradise (Paradisaeidae) species and 10 museum specimens of putative hybrid origin. We find that intergeneric hybridization indeed still takes place despite extreme differentiation in form, plumage, and behavior. In parallel, the genomes of contemporary species contain widespread signatures of past introgression, demonstrating that hybridization has repeatedly resulted in shared genetic variation despite strong sexual isolation. Our study raises important questions about extrinsic factors that modulate hybridization probability and the evolutionary consequences of introgressive hybridization between lekking species.
Collapse
Affiliation(s)
- Mozes P.K. Blom
- Department for Evolutionary Diversity Dynamics, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Research, 10115 Berlin, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Valentina Peona
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Les Christidis
- Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Brett W. Benz
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| |
Collapse
|
25
|
Zhou ZT, Owens GL, Larson WA, Lou RN, Sudmant PH. loco-pipe: an automated pipeline for population genomics with low-coverage whole-genome sequencing. BIOINFORMATICS ADVANCES 2024; 4:vbae098. [PMID: 39006965 PMCID: PMC11246161 DOI: 10.1093/bioadv/vbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Summary We developed loco-pipe, a Snakemake pipeline that seamlessly streamlines a set of essential population genomic analyses for low-coverage whole genome sequencing (lcWGS) data. loco-pipe is highly automated, easily customizable, massively parallelized, and thus is a valuable tool for both new and experienced users of lcWGS. Availability and implementation loco-pipe is published under the GPLv3. It is freely available on GitHub (github.com/sudmantlab/loco-pipe) and archived on Zenodo (doi.org/10.5281/zenodo.10425920).
Collapse
Affiliation(s)
- Zehua T Zhou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Wesley A Larson
- National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanographic and Atmospheric Administration, Auke Bay Laboratories, Juneau, AK 99801, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Hennelly LM, Sarwar G, Fatima H, Werhahn G, Abbas FI, Khan AM, Mahmood T, Kachel S, Kubanychbekov Z, Waseem MT, Zahra Naqvi R, Hamid A, Abbas Y, Aisha H, Waseem M, Farooq M, Sacks BN. Genomic analysis of wolves from Pakistan clarifies boundaries among three divergent wolf lineages. J Hered 2024; 115:339-348. [PMID: 37897187 DOI: 10.1093/jhered/esad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
Among the three main divergent lineages of gray wolf (Canis lupus), the Holarctic lineage is the most widespread and best studied, particularly in North America and Europe. Less is known about Tibetan (also called Himalayan) and Indian wolf lineages in southern Asia, especially in areas surrounding Pakistan where all three lineages are thought to meet. Given the endangered status of the Indian wolf in neighboring India and unclear southwestern boundary of the Tibetan wolf range, we conducted mitochondrial and genome-wide sequencing of wolves from Pakistan and Kyrgyzstan. Sequences of the mitochondrial D-loop region of 81 wolves from Pakistan indicated contact zones between Holarctic and Indian lineages across the northern and western mountains of Pakistan. Reduced-representation genome sequencing of eight wolves indicated an east-to-west cline of Indian to Holarctic ancestry, consistent with a contact zone between these two lineages in Pakistan. The western boundary of the Tibetan lineage corresponded to the Ladakh region of India's Himalayas with a narrow zone of admixture spanning this boundary from the Karakoram Mountains of northern Pakistan into Ladakh, India. Our results highlight the conservation significance of Pakistan's wolf populations, especially the remaining populations in Sindh and Southern Punjab that represent the highly endangered Indian lineage.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - Ghulam Sarwar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hira Fatima
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Geraldine Werhahn
- IUCN SCC Canid Specialist Group, Oxford, United Kingdom
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Tubney, United Kingdom
| | | | - Abdul M Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tariq Mahmood
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | - Muhammad T Waseem
- Zoological Science Division, Pakistan Museum of Natural History, Islamabad, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul Hamid
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Yasir Abbas
- Central Karakoram National Park, Skardu, Pakistan
| | - Hamera Aisha
- World Wildlife Fund, Pakistan, Islamabad, Pakistan
| | | | - Muhammad Farooq
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
27
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
28
|
Przelomska NAS, Diaz RA, Ávila FA, Ballen GA, Cortés-B R, Kistler L, Chitwood DH, Charitonidou M, Renner SS, Pérez-Escobar OA, Antonelli A. Morphometrics and Phylogenomics of Coca (Erythroxylum spp.) Illuminate Its Reticulate Evolution, With Implications for Taxonomy. Mol Biol Evol 2024; 41:msae114. [PMID: 38982580 PMCID: PMC11233275 DOI: 10.1093/molbev/msae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024] Open
Abstract
South American coca (Erythroxylum coca and E. novogranatense) has been a keystone crop for many Andean and Amazonian communities for at least 8,000 years. However, over the last half-century, global demand for its alkaloid cocaine has driven intensive agriculture of this plant and placed it in the center of armed conflict and deforestation. To monitor the changing landscape of coca plantations, the United Nations Office on Drugs and Crime collects annual data on their areas of cultivation. However, attempts to delineate areas in which different varieties are grown have failed due to limitations around identification. In the absence of flowers, identification relies on leaf morphology, yet the extent to which this is reflected in taxonomy is uncertain. Here, we analyze the consistency of the current naming system of coca and its four closest wild relatives (the "coca clade"), using morphometrics, phylogenomics, molecular clocks, and population genomics. We include name-bearing type specimens of coca's closest wild relatives E. gracilipes and E. cataractarum. Morphometrics of 342 digitized herbarium specimens show that leaf shape and size fail to reliably discriminate between species and varieties. However, the statistical analyses illuminate that rounder and more obovate leaves of certain varieties could be associated with the subtle domestication syndrome of coca. Our phylogenomic data indicate extensive gene flow involving E. gracilipes which, combined with morphometrics, supports E. gracilipes being retained as a single species. Establishing a robust evolutionary-taxonomic framework for the coca clade will facilitate the development of cost-effective genotyping methods to support reliable identification.
Collapse
Affiliation(s)
- Natalia A S Przelomska
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Rudy A Diaz
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | | | - Gustavo A Ballen
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Rocío Cortés-B
- Herbario Forestal Universidad Distrital, Campus El Vivero, CR 5E 15-82 Bogotá, Colombia
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Martha Charitonidou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, SE 41319 Göteborg, Sweden
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
29
|
Ciezarek AG, Mehta TK, Man A, Ford AGP, Kavembe GD, Kasozi N, Ngatunga BP, Shechonge AH, Tamatamah R, Nyingi DW, Cnaani A, Ndiwa TC, Di Palma F, Turner GF, Genner MJ, Haerty W. Ancient and Recent Hybridization in the Oreochromis Cichlid Fishes. Mol Biol Evol 2024; 41:msae116. [PMID: 38865496 PMCID: PMC11221657 DOI: 10.1093/molbev/msae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Cichlid fishes of the genus Oreochromis (tilapia) are among the most important fish for inland capture fisheries and global aquaculture. Deliberate introductions of non-native species for fisheries improvement and accidental escapees from farms have resulted in admixture with indigenous species. Such hybridization may be detrimental to native biodiversity, potentially leading to genomic homogenization of populations and the loss of important genetic material associated with local adaptation. By contrast, introgression may fuel diversification when combined with ecological opportunity, by supplying novel genetic combinations. To date, the role of introgression in the evolutionary history of tilapia has not been explored. Here we studied both ancient and recent hybridization in tilapia, using whole genome resequencing of 575 individuals from 23 species. We focused on Tanzania, a natural hotspot of tilapia diversity, and a country where hybridization between exotic and native species in the natural environment has been previously reported. We reconstruct the first genome-scale phylogeny of the genus and reveal prevalent ancient gene flow across the Oreochromis phylogeny. This has likely resulted in the hybrid speciation of one species, O. chungruruensis. We identify multiple cases of recent hybridization between native and introduced species in the wild, linked to the use of non-native species in both capture fisheries improvement and aquaculture. This has potential implications for both conservation of wild populations and the development of the global tilapia aquaculture industry.
Collapse
Affiliation(s)
- Adam G Ciezarek
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- Centre of Environment, Fisheries and Aquaculture Science (Cefas), Scientific Advice for Fisheries Management Team (SAFM), Lowestoft NR33 0H5, UK
| | - Tarang K Mehta
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Angela Man
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Antonia G P Ford
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4NA, UK
| | | | - Nasser Kasozi
- National Agricultural Research Organisation, Buginyanya Zonal Agricultural Research and Development Institute, Mbale, Uganda
| | | | | | | | | | - Avner Cnaani
- Institute of Animal Science, Agricultural Research Organization, Rishon LeZion 7528809, Israel
| | - Titus C Ndiwa
- Department of Clinical Studies, University of Nairobi, Nairobi, Kenya
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - George F Turner
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| |
Collapse
|
30
|
Schmid S, Bachmann Salvy M, Garcia Jimenez A, Bertrand JAM, Cortesi F, Heim S, Huyghe F, Litsios G, Marcionetti A, O'Donnell JL, Riginos C, Tettamanti V, Salamin N. Gene flow throughout the evolutionary history of a colour polymorphic and generalist clownfish. Mol Ecol 2024; 33:e17436. [PMID: 38872589 DOI: 10.1111/mec.17436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Even seemingly homogeneous on the surface, the oceans display high environmental heterogeneity across space and time. Indeed, different soft barriers structure the marine environment, which offers an appealing opportunity to study various evolutionary processes such as population differentiation and speciation. Here, we focus on Amphiprion clarkii (Actinopterygii; Perciformes), the most widespread of clownfishes that exhibits the highest colour polymorphism. Clownfishes can only disperse during a short pelagic larval phase before their sedentary adult lifestyle, which might limit connectivity among populations, thus facilitating speciation events. Consequently, the taxonomic status of A. clarkii has been under debate. We used whole-genome resequencing data of 67 A. clarkii specimens spread across the Indian and Pacific Oceans to characterize the species' population structure, demographic history and colour polymorphism. We found that A. clarkii spread from the Indo-Pacific Ocean to the Pacific and Indian Oceans following a stepping-stone dispersal and that gene flow was pervasive throughout its demographic history. Interestingly, colour patterns differed noticeably among the Indonesian populations and the two populations at the extreme of the sampling distribution (i.e. Maldives and New Caledonia), which exhibited more comparable colour patterns despite their geographic and genetic distances. Our study emphasizes how whole-genome studies can uncover the intricate evolutionary past of wide-ranging species with diverse phenotypes, shedding light on the complex nature of the species concept paradigm.
Collapse
Affiliation(s)
- Sarah Schmid
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Joris A M Bertrand
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Fabio Cortesi
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Sara Heim
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Filip Huyghe
- Marine Biology Laboratory, Department of Ecology and Biodiversity, Vrije Universiteit Brussel, Brussel, Belgium
| | - Glenn Litsios
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Anna Marcionetti
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - James L O'Donnell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Valerio Tettamanti
- Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Cavill EL, Morales HE, Sun X, Westbury MV, van Oosterhout C, Accouche W, Zora A, Schulze MJ, Shah N, Adam P, Brooke MDL, Sweet P, Gopalakrishnan S, Gilbert MTP. When birds of a feather flock together: Severe genomic erosion and the implications for genetic rescue in an endangered island passerine. Evol Appl 2024; 17:e13739. [PMID: 38948538 PMCID: PMC11212007 DOI: 10.1111/eva.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.
Collapse
Affiliation(s)
- Emily L. Cavill
- The Globe Institute, University of CopenhagenCopenhagenDenmark
| | | | - Xin Sun
- The Globe Institute, University of CopenhagenCopenhagenDenmark
| | | | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | | | - Anna Zora
- Fregate Island Sanctuary LtdVictoriaSeychelles
| | | | | | | | | | - Paul Sweet
- American Museum of Natural HistoryNew YorkUSA
| | | | - M. Thomas P. Gilbert
- The Globe Institute, University of CopenhagenCopenhagenDenmark
- University Museum, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
32
|
Josić D, Çoraman E, Waurick I, Franzenburg S, Ancillotto L, Bajić B, Budinski I, Dietz C, Görföl T, Hayden Bofill SI, Presetnik P, Russo D, Spada M, Zrnčić V, Blom MPK, Mayer F. Cryptic hybridization between the ancient lineages of Natterer's bat (Myotis nattereri). Mol Ecol 2024; 33:e17411. [PMID: 38785347 DOI: 10.1111/mec.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/16/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Studying hybrid zones that form between morphologically cryptic taxa offers valuable insights into the mechanisms of cryptic speciation and the evolution of reproductive barriers. Although hybrid zones have long been the focus of evolutionary studies, the awareness of cryptic hybrid zones increased recently due to rapidly growing evidence of biological diversity lacking obvious phenotypic differentiation. The characterization of cryptic hybrid zones with genome-wide analysis is in its early stages and offers new perspectives for studying population admixture and thus the impact of gene flow. In this study, we investigate the population genomics of the Myotis nattereri complex in one of its secondary contact zones, where a putative hybrid zone is formed between two of its cryptic lineages. By utilizing a whole-genome shotgun sequencing approach, we aim to characterize this cryptic hybrid zone in detail. Demographic analysis suggests that the cryptic lineages diverged during the Pliocene, c. 3.6 million years ago. Despite this ancient separation, the populations in the contact zone exhibit mitochondrial introgression and a considerable amount of mixing in nuclear genomes. The genomic structure of the populations corresponds to geographic locations and the genomic admixture changes along a geographic gradient. These findings suggest that there is no effective hybridization barrier between both lineages, nevertheless, their population structure is shaped by dispersal barriers. Our findings highlight how such deeply diverged cryptic lineages can still readily hybridize in secondary contact.
Collapse
Affiliation(s)
- Darija Josić
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Emrah Çoraman
- Department of Ecology and Evolution, Eurasia Institute of Earth Sciences, Istanbul Technical University, İstanbul, Türkiye
| | - Isabelle Waurick
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sören Franzenburg
- IKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Leonardo Ancillotto
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Universita degli Studi di Napoli Federico II, Portici, Italy
| | - Branka Bajić
- Department of Genetic Research, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Budinski
- Department of Genetic Research, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
- National Laboratory of Virology, University of Pécs, Pécs, Hungary
| | - Sofia I Hayden Bofill
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Primož Presetnik
- Centre for Cartography of Fauna and Flora, Miklavž na Dravskem Polju, Slovenia
| | - Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di Agraria, Universita degli Studi di Napoli Federico II, Portici, Italy
| | - Martina Spada
- Dipartimento Ambiente-Salute-Sicurezza, Universita degli Studi dell'Insubria, Varese, Italy
| | - Vida Zrnčić
- Croatian Biospeleogical Society Zagreb, Zagreb, Croatia
| | - Mozes P K Blom
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
33
|
Wimalarathna NA, Wickramasuriya AM, Metschina D, Cauz-Santos LA, Bandupriya D, Ariyawansa KGSU, Gopallawa B, Chase MW, Samuel R, Silva TD. Genetic diversity and population structure of Piper nigrum (black pepper) accessions based on next-generation SNP markers. PLoS One 2024; 19:e0305990. [PMID: 38924027 PMCID: PMC11207170 DOI: 10.1371/journal.pone.0305990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the economic importance of Piper nigrum (black pepper), a highly valued crop worldwide, development and utilization of genomic resources have remained limited, with diversity assessments often relying on only a few samples or DNA markers. Here we employed restriction-site associated DNA sequencing to analyze 175 P. nigrum accessions from eight main black pepper growing regions in Sri Lanka. The sequencing effort resulted in 1,976 million raw reads, averaging 11.3 million reads per accession, revealing 150,356 high-quality single nucleotide polymorphisms (SNPs) distributed across 26 chromosomes. Population structure analysis revealed two subpopulations (K = 2): a dominant group consisting of 152 accessions sourced from both home gardens and large-scale cultivations, and a smaller group comprising 23 accessions exclusively from native collections in home gardens. This clustering was further supported by principal component analysis, with the first two principal components explaining 35.2 and 12.1% of the total variation. Genetic diversity analysis indicated substantial gene flow (Nm = 342.21) and a low fixation index (FST = 0.00073) between the two subpopulations, with no clear genetic differentiation among accessions from different agro-climatic regions. These findings demonstrate that most current black pepper genotypes grown in Sri Lanka share a common genetic background, emphasizing the necessity to broaden the genetic base to enhance resilience to biotic and abiotic stresses. This study represents the first attempt at analyzing black pepper genetic diversity using high-resolution SNP markers, laying the foundation for future genome-wide association studies for SNP-based gene discovery and breeding.
Collapse
Affiliation(s)
- Nilni A. Wimalarathna
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Dominik Metschina
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Luiz A. Cauz-Santos
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Dharshani Bandupriya
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Bhathiya Gopallawa
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mark W. Chase
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
- Royal Botanic Gardens, Kew, United Kingdom
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Rosabelle Samuel
- Department of Botany and Biodiversity of Research, University of Vienna, Vienna, Austria
| | - Tara D. Silva
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
34
|
Yuan J, Hu J, Liu W, Chen S, Zhang F, Wang S, Zhang Z, Wang L, Xiao B, Li F, Hofreiter M, Lai X, Westbury MV, Sheng G. Camelus knoblochi genome reveals the complex evolutionary history of Old World camels. Curr Biol 2024; 34:2502-2508.e5. [PMID: 38754423 DOI: 10.1016/j.cub.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Extant Old World camels (genus Camelus) contributed to the economic and cultural exchanges between the East and West for thousands of years.1,2 Although many remains have been unearthed,3,4,5 we know neither whether the prevalent hybridization observed between extant Camelus species2,6,7 also occurred between extinct lineages and the ancestors of extant Camelus species nor why some populations became extinct while others survived. To investigate these questions, we generated paleogenomic and stable isotope data from an extinct two-humped camel species, Camelus knoblochi. We find that in the mitochondrial phylogeny, all C. knoblochi form a paraphyletic group that nests within the diversity of modern, wild two-humped camels (Camelus ferus). In contrast, they are clearly distinguished from both wild and domesticated (Camelus bactrianus) two-humped camels on the nuclear level. Moreover, the divergence pattern of the three camel species approximates a trifurcation, because the most common topology is only slightly more frequent than the two other possible topologies. This mito-nuclear phylogenetic discordance likely arose due to interspecific gene flow between all three species, suggesting that interspecific hybridization is not exclusive to modern camels but a recurrent phenomenon throughout the evolutionary history of the genus Camelus. These results suggest that the genomic complexity of Old World camels' evolutionary history is underestimated when considering data from only modern species. Finally, we find that C. knoblochi populations began declining prior to the last glacial maximum and, by integrating palaeoecological evidence and stable isotope data, suggest that this was likely due to failure to adapt to a changing environment.
Collapse
Affiliation(s)
- Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; Faculty of Materials Science and Chemistry, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China.
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Wenhui Liu
- Institute of Environmental Archaeology, National Museum of China, East Chang'an Street 16, Beijing 100006, People's Republic of China
| | - Shungang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China
| | - Fengli Zhang
- Daqing Museum, Wenyuan Street 2, Daqing, Heilongjiang 163711, People's Republic of China
| | - Siren Wang
- Daqing Museum, Wenyuan Street 2, Daqing, Heilongjiang 163711, People's Republic of China
| | - Zhen Zhang
- Zhaoyuan Museum, Zhongyang Street 192, Daqing, Heilongjiang 166599, People's Republic of China
| | - Linying Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China
| | - Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Fuqiang Li
- Yifu Museum, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Earth Sciences, China University of Geosciences, Lumo Road 388, Wuhan 430074, People's Republic of China
| | - Michael V Westbury
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1353 Copenhagen, Denmark.
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China; School of Environmental Studies, China University of Geosciences, Jincheng Road 68, Wuhan 430078, People's Republic of China.
| |
Collapse
|
35
|
Weatherup EF, Carnegie R, Strand AE, Sotka EE. Co-phylogeographic structure in a disease-causing parasite and its oyster host. Parasitology 2024; 151:671-678. [PMID: 38769826 PMCID: PMC11474014 DOI: 10.1017/s0031182024000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
With the increasing affordability of next-generation sequencing technologies, genotype-by-sequencing has become a cost-effective tool for ecologists and conservation biologists to describe a species' evolutionary history. For host–parasite interactions, genotype-by-sequencing can allow the simultaneous examination of host and parasite genomes and can yield insight into co-evolutionary processes. The eastern oyster, Crassostrea virginica, is among the most important aquacultured species in the United States. Natural and farmed oyster populations can be heavily impacted by ‘dermo’ disease caused by an alveolate protist, Perkinsus marinus. Here, we used restricted site-associated DNA sequencing (RADseq) to simultaneously examine spatial population genetic structure of host and parasite. We analysed 393 single-nucleotide polymorphisms (SNPs) for P. marinus and 52,100 SNPs for C. virginica from 36 individual oysters from the Gulf of Mexico (GOM) and mid-Atlantic coastline. All analyses revealed statistically significant genetic differentiation between the GOM and mid-Atlantic coast populations for both C. virginica and P. marinus, and genetic divergence between Chesapeake Bay and the outer coast of Virginia for C. virginica, but not for P. marinus. A co-phylogenetic analysis confirmed significant coupled evolutionary change between host and parasite across large spatial scales. The strong genetic divergence between marine basins raises the possibility that oysters from either basin would not be well adapted to parasite genotypes and phenotypes from the other, which would argue for caution with regard to both oyster and parasite transfers between the Atlantic and GOM regions. More broadly, our results demonstrate the potential of RADseq to describe spatial patterns of genetic divergence consistent with coupled evolution.
Collapse
Affiliation(s)
- Elizabeth Faye Weatherup
- Virgina Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Ryan Carnegie
- Virgina Institute of Marine Science, William & Mary, Gloucester Point, VA, USA
| | - Allan E. Strand
- College of Charleston Marine Laboratory and Department of Biology, College of Charleston, Charleston, SC, USA
| | - Erik E. Sotka
- College of Charleston Marine Laboratory and Department of Biology, College of Charleston, Charleston, SC, USA
| |
Collapse
|
36
|
Knief U, Müller IA, Stryjewski KF, Metzler D, Sorenson MD, Wolf JBW. Evolution of Chromosomal Inversions across an Avian Radiation. Mol Biol Evol 2024; 41:msae092. [PMID: 38743589 PMCID: PMC11152452 DOI: 10.1093/molbev/msae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo A Müller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
- Division of Systematics and Evolution, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden
| | | | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
37
|
Storz JF, Quiroga-Carmona M, Liphardt S, Herrera ND, Bautista NM, Opazo JC, Rico-Cernohorska A, Salazar-Bravo J, Good JM, D'Elía G. Extreme High-Elevation Mammal Surveys Reveal Unexpectedly High Upper Range Limits of Andean Mice. Am Nat 2024; 203:726-735. [PMID: 38781524 DOI: 10.1086/729513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractIn the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We livetrapped small mammals from ecologically diverse sites spanning >6,700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.
Collapse
|
38
|
Marcionetti A, Bertrand JAM, Cortesi F, Donati GFA, Heim S, Huyghe F, Kochzius M, Pellissier L, Salamin N. Recurrent gene flow events occurred during the diversification of clownfishes of the skunk complex. Mol Ecol 2024; 33:e17347. [PMID: 38624248 DOI: 10.1111/mec.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Joris A M Bertrand
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Laboratoire Génome et Développement Des Plantes (UMR 5096 UPVD/CNRS), University of Perpignan via Domitia, Perpignan, France
| | - Fabio Cortesi
- School of the Environment and Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giulia F A Donati
- EAWAG Swiss Federal Institute of Aquatic Science & Technology, Dübendorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Sara Heim
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Filip Huyghe
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Marc Kochzius
- Marine Biology - Ecology, Evolution and Genetics, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, Belgium
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Ecosystems and Landscape Evolution, Department of Environmental System Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zurich, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Black AN, Heenkenda EJ, Mathur S, Willoughby JR, Pierce BL, Turner SJ, Rizzuto D, DeWoody JA. Rapid vertebrate speciation via isolation, bottlenecks, and drift. Proc Natl Acad Sci U S A 2024; 121:e2320040121. [PMID: 38771882 PMCID: PMC11145251 DOI: 10.1073/pnas.2320040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Speciation is often driven by selective processes like those associated with viability, mate choice, or local adaptation, and "speciation genes" have been identified in many eukaryotic lineages. In contrast, neutral processes are rarely considered as the primary drivers of speciation, especially over short evolutionary timeframes. Here, we describe a rapid vertebrate speciation event driven primarily by genetic drift. The White Sands pupfish (Cyprinodon tularosa) is endemic to New Mexico's Tularosa Basin where the species is currently managed as two Evolutionarily significant units (ESUs) and is of international conservation concern (Endangered). Whole-genome resequencing data from each ESU showed remarkably high and uniform levels of differentiation across the entire genome (global FST ≈ 0.40). Despite inhabiting ecologically dissimilar springs and streams, our whole-genome analysis revealed no discrete islands of divergence indicative of strong selection, even when we focused on an array of candidate genes. Demographic modeling of the joint allele frequency spectrum indicates the two ESUs split only ~4 to 5 kya and that both ESUs have undergone major bottlenecks within the last 2.5 millennia. Our results indicate the genome-wide disparities between the two ESUs are not driven by divergent selection but by neutral drift due to small population sizes, geographic isolation, and repeated bottlenecks. While rapid speciation is often driven by natural or sexual selection, here we show that isolation and drift have led to speciation within a few thousand generations. We discuss these evolutionary insights in light of the conservation management challenges they pose.
Collapse
Affiliation(s)
- Andrew N. Black
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907
- Western Association of Fish and Wildlife Agencies, Boise, ID83719
| | - Erangi J. Heenkenda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907
| | - Samarth Mathur
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH43210
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, AL36849
| | - Brian L. Pierce
- Natural Resources Institute, Texas A&M University, College Station, TX77840
| | - Sarah J. Turner
- Natural Resources Institute, Texas A&M University, College Station, TX77840
| | - David Rizzuto
- Natural Resources Institute, Texas A&M University, College Station, TX77840
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN47907
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| |
Collapse
|
40
|
Müller IA, Thörn F, Rajan S, Ericson PGP, Dumbacher JP, Maiah G, Blom MPK, Jønsson KA, Irestedt M. Species-specific dynamics may cause deviations from general biogeographical predictions - evidence from a population genomics study of a New Guinean endemic passerine bird family (Melampittidae). PLoS One 2024; 19:e0293715. [PMID: 38781204 PMCID: PMC11115331 DOI: 10.1371/journal.pone.0293715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
The family Melampittidae is endemic to New Guinea and consists of two monotypic genera: Melampitta lugubris (Lesser Melampitta) and Megalampitta gigantea (Greater Melampitta). Both Melampitta species have scattered and disconnected distributions across New Guinea in the central mountain range and in some of the outlying ranges. While M. lugubris is common and found in most montane regions of the island, M. gigantaea is elusive and known from only six localities in isolated pockets on New Guinea with very specific habitats of limestone and sinkholes. In this project, we apply museomics to determine the population structure and demographic history of these two species. We re-sequenced the genomes of all seven known M. gigantaea samples housed in museum collections as well as 24 M. lugubris samples from across its distribution. By comparing population structure between the two species, we investigate to what extent habitat dependence, such as in M. gigantaea, may affect population connectivity. Phylogenetic and population genomic analyses, as well as acoustic variation revealed that M. gigantaea consists of a single population in contrast to M. lugubris that shows much stronger population structure across the island. We suggest a recent collapse of M. gigantaea into its fragmented habitats as an explanation to its unexpected low diversity and lack of population structure. The deep genetic divergences between the M. lugubris populations on the Vogelkop region, in the western central range and the eastern central range, respectively, suggests that these three populations should be elevated to full species level. This work sheds new light on the mechanisms that have shaped the intriguing distribution of the two species within this family and is a prime example of the importance of museum collections for genomic studies of poorly known and rare species.
Collapse
Affiliation(s)
- Ingo A. Müller
- Department of Zoology, Division of Systematics and Evolution, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Leibniz Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | - Filip Thörn
- Department of Zoology, Division of Systematics and Evolution, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Leibniz Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | - Samyuktha Rajan
- Department of Zoology, Division of Ethology, Stockholm University, Stockholm, Sweden
| | - Per G. P. Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - John P. Dumbacher
- Department of Ornithology and Mammalogy, California Academy of Sciences, San Francisco, CA, United States of America
| | - Gibson Maiah
- New Guinea Binatang Research Center, Madang, Papua New Guinea
| | - Mozes P. K. Blom
- Leibniz Institut für Evolutions- und Biodiversitätsforschung, Museum für Naturkunde, Berlin, Germany
| | - Knud A. Jønsson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
41
|
Vandewege MW, Gutierrez J, Davis DR, Forstner MRJ, Mali I. Patterns of genetic divergence in the Rio Grande cooter (Pseudemys gorzugi), a riverine turtle inhabiting an arid and anthropogenically modified system. J Hered 2024; 115:253-261. [PMID: 38373252 PMCID: PMC11081133 DOI: 10.1093/jhered/esae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024] Open
Abstract
The lower Rio Grande and Pecos River of the southwest United States have been heavily modified by human activities, profoundly impacting the integrity of their aquatic wildlife. In this context, we focused our study on the population genomics of the Rio Grande Cooter (Pseudemys gorzugi), a freshwater turtle of increasing conservation concern, residing in these two rivers and their tributaries. The genetic data revealed two distinct populations: one in the Pecos and Black Rivers of New Mexico and another in the Rio Grande and Devils River of Texas, with admixed individuals identified at the confluence of the Rio Grande and Pecos River. In addition to having a smaller geographic range, we found lower observed heterozygosity, reduced nucleotide diversity, and a smaller effective population size (Ne) in New Mexico population. Our results depict a significant isolation-by-distance pattern across their distribution, with migration being notably infrequent at river confluences. These findings are pivotal for future conservation and restoration strategies, emphasizing the need to recognize the unique needs of each population.
Collapse
Affiliation(s)
- Michael W Vandewege
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Javier Gutierrez
- Biomedical Forensic Sciences, Anatomy and Neurobiology Department, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Drew R Davis
- Department of Biology, Eastern New Mexico University, Portales, NM, USA
- Biodiversity Collections, Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | | | - Ivana Mali
- Fisheries, Wildlife, and Conservation Biology Program, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
42
|
Gustafsson M, Strand Å, Laugen AT, Albretsen J, André C, Broström G, Jorde PE, Knutsen H, Ortega‐Martinez O, Sodeland M, Waern M, Wrange A, De Wit P. Unlocking the secret life of blue mussels: Exploring connectivity in the Skagerrak through biophysical modeling and population genomics. Evol Appl 2024; 17:e13704. [PMID: 38770102 PMCID: PMC11104481 DOI: 10.1111/eva.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.
Collapse
Affiliation(s)
- Malin Gustafsson
- Environmental IntelligenceIVL Swedish Environmental Research InstituteGothenburgSweden
| | - Åsa Strand
- Environmental IntelligenceIVL Swedish Environmental Research InstituteFiskebäckskilSweden
| | - Ane T. Laugen
- Department of EcologySwedish University of Agricultural Sciences‐SLUUppsalaSweden
- Centre for Coastal Research‐CCR, Department of Natural SciencesUniversity of AgderKristiansandNorway
| | | | - Carl André
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
| | - Göran Broström
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | | | - Halvor Knutsen
- Centre for Coastal Research‐CCR, Department of Natural SciencesUniversity of AgderKristiansandNorway
- Institute of Marine Research, FlødevigenHisNorway
| | - Olga Ortega‐Martinez
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
| | - Marte Sodeland
- Centre for Coastal Research‐CCR, Department of Natural SciencesUniversity of AgderKristiansandNorway
| | - Malin Waern
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
- Leibniz‐Institute for Baltic Sea Research WarnemündeRostockGermany
| | - Anna‐Lisa Wrange
- Environmental IntelligenceIVL Swedish Environmental Research InstituteFiskebäckskilSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Pierre De Wit
- Department of Marine SciencesUniversity of Gothenburg. Tjärnö Marine LaboratoryStrömstadSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| |
Collapse
|
43
|
Merondun J, Marques CI, Andrade P, Meshcheryagina S, Galván I, Afonso S, Alves JM, Araújo PM, Bachurin G, Balacco J, Bán M, Fedrigo O, Formenti G, Fossøy F, Fülöp A, Golovatin M, Granja S, Hewson C, Honza M, Howe K, Larson G, Marton A, Moskát C, Mountcastle J, Procházka P, Red’kin Y, Sims Y, Šulc M, Tracey A, Wood JMD, Jarvis ED, Hauber ME, Carneiro M, Wolf JBW. Evolution and genetic architecture of sex-limited polymorphism in cuckoos. SCIENCE ADVANCES 2024; 10:eadl5255. [PMID: 38657058 PMCID: PMC11042743 DOI: 10.1126/sciadv.adl5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Sex-limited polymorphism has evolved in many species including our own. Yet, we lack a detailed understanding of the underlying genetic variation and evolutionary processes at work. The brood parasitic common cuckoo (Cuculus canorus) is a prime example of female-limited color polymorphism, where adult males are monochromatic gray and females exhibit either gray or rufous plumage. This polymorphism has been hypothesized to be governed by negative frequency-dependent selection whereby the rarer female morph is protected against harassment by males or from mobbing by parasitized host species. Here, we show that female plumage dichromatism maps to the female-restricted genome. We further demonstrate that, consistent with balancing selection, ancestry of the rufous phenotype is shared with the likewise female dichromatic sister species, the oriental cuckoo (Cuculus optatus). This study shows that sex-specific polymorphism in trait variation can be resolved by genetic variation residing on a sex-limited chromosome and be maintained across species boundaries.
Collapse
Affiliation(s)
- Justin Merondun
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Swetlana Meshcheryagina
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Ismael Galván
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Joel M. Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Life Sciences, MARE–Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
| | | | - Jennifer Balacco
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Miklós Bán
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Olivier Fedrigo
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Giulio Formenti
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Frode Fossøy
- Centre for Biodiversity Genetics, Norwegian Institute for Nature Research, Trondheim, Norway
| | - Attila Fülöp
- HUN-REN-UD Behavioral Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
- STAR-UBB Institute of Advanced Studies in Science and Technology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mikhail Golovatin
- Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sofia Granja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | | | - Marcel Honza
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3QY, UK
| | - Attila Marton
- Evolutionary Ecology Group, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Csaba Moskát
- Hungarian Natural History Museum, Budapest, Hungary
| | | | - Petr Procházka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | | | - Ying Sims
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Michal Šulc
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Erich D. Jarvis
- The Vertebrate Genome Lab, Rockefeller University, New York, NY 10065, USA
| | - Mark E. Hauber
- Advanced Science Research Center and Program in Psychology, Graduate Center of the City University of New York, New York, NY 10031, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Dennis TPW, Essandoh J, Mable BK, Viana MS, Yawson AE, Weetman D. Signatures of adaptation at key insecticide resistance loci in Anopheles gambiae in Southern Ghana revealed by reduced-coverage WGS. Sci Rep 2024; 14:8650. [PMID: 38622230 PMCID: PMC11018624 DOI: 10.1038/s41598-024-58906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.
Collapse
Affiliation(s)
- Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Conservation Biology and Entomology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Barbara K Mable
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Mafalda S Viana
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Alexander E Yawson
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
45
|
Liu X, Lin L, Sinding MHS, Bertola LD, Hanghøj K, Quinn L, Garcia-Erill G, Rasmussen MS, Schubert M, Pečnerová P, Balboa RF, Li Z, Heaton MP, Smith TPL, Pinto RR, Wang X, Kuja J, Brüniche-Olsen A, Meisner J, Santander CG, Ogutu JO, Masembe C, da Fonseca RR, Muwanika V, Siegismund HR, Albrechtsen A, Moltke I, Heller R. Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations. Nat Commun 2024; 15:2921. [PMID: 38609362 PMCID: PMC11014984 DOI: 10.1038/s41467-024-47015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
The blue wildebeest (Connochaetes taurinus) is a keystone species in savanna ecosystems from southern to eastern Africa, and is well known for its spectacular migrations and locally extreme abundance. In contrast, the black wildebeest (C. gnou) is endemic to southern Africa, barely escaped extinction in the 1900s and is feared to be in danger of genetic swamping from the blue wildebeest. Despite the ecological importance of the wildebeest, there is a lack of understanding of how its unique migratory ecology has affected its gene flow, genetic structure and phylogeography. Here, we analyze whole genomes from 121 blue and 22 black wildebeest across the genus' range. We find discrete genetic structure consistent with the morphologically defined subspecies. Unexpectedly, our analyses reveal no signs of recent interspecific admixture, but rather a late Pleistocene introgression of black wildebeest into the southern blue wildebeest populations. Finally, we find that migratory blue wildebeest populations exhibit a combination of long-range panmixia, higher genetic diversity and lower inbreeding levels compared to neighboring populations whose migration has recently been disrupted. These findings provide crucial insights into the evolutionary history of the wildebeest, and tangible genetic evidence for the negative effects of anthropogenic activities on highly migratory ungulates.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael P Heaton
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA
| | - Rui Resende Pinto
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jonas Meisner
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Charles Masembe
- Department of Zoology, Entomology and Fisheries Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Rute R da Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research-University of Porto, Porto, Portugal
- Section for Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Coll-Costa C, Dahms C, Kemppainen P, Alexandre CM, Ribeiro F, Zanella D, Zanella L, Merilä J, Momigliano P. Parallel evolution despite low genetic diversity in three-spined sticklebacks. Proc Biol Sci 2024; 291:20232617. [PMID: 38593844 PMCID: PMC11003780 DOI: 10.1098/rspb.2023.2617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
When populations repeatedly adapt to similar environments they can evolve similar phenotypes based on shared genetic mechanisms (parallel evolution). The likelihood of parallel evolution is affected by demographic history, as it depends on the standing genetic variation of the source population. The three-spined stickleback (Gasterosteus aculeatus) repeatedly colonized and adapted to brackish and freshwater. Most parallel evolution studies in G. aculeatus were conducted at high latitudes, where freshwater populations maintain connectivity to the source marine populations. Here, we analysed southern and northern European marine and freshwater populations to test two hypotheses. First, that southern European freshwater populations (which currently lack connection to marine populations) lost genetic diversity due to bottlenecks and inbreeding compared to their northern counterparts. Second, that the degree of genetic parallelism is higher among northern than southern European freshwater populations, as the latter have been subjected to strong drift due to isolation. The results show that southern populations exhibit lower genetic diversity but a higher degree of genetic parallelism than northern populations. Hence, they confirm the hypothesis that southern populations have lost genetic diversity, but this loss probably happened after they had already adapted to freshwater conditions, explaining the high degree of genetic parallelism in the south.
Collapse
Affiliation(s)
- Carla Coll-Costa
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FI-00014, Finland
| | - Carolin Dahms
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Petri Kemppainen
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Carlos M. Alexandre
- MARE—Marine and Environmental Sciences Centre, Universidade de Évora, Évora, 7004-516, Portugal
| | - Filipe Ribeiro
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Davor Zanella
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, 10000, Croatia
| | - Linda Zanella
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, 10000, Croatia
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FI-00014, Finland
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Paolo Momigliano
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Swire Institute of Marine Science, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
47
|
Bertola LD, Quinn L, Hanghøj K, Garcia-Erill G, Rasmussen MS, Balboa RF, Meisner J, Bøggild T, Wang X, Lin L, Nursyifa C, Liu X, Li Z, Chege M, Moodley Y, Brüniche-Olsen A, Kuja J, Schubert M, Agaba M, Santander CG, Sinding MHS, Muwanika V, Masembe C, Siegismund HR, Moltke I, Albrechtsen A, Heller R. Giraffe lineages are shaped by major ancient admixture events. Curr Biol 2024; 34:1576-1586.e5. [PMID: 38479386 DOI: 10.1016/j.cub.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Strong genetic structure has prompted discussion regarding giraffe taxonomy,1,2,3 including a suggestion to split the giraffe into four species: Northern (Giraffa c. camelopardalis), Reticulated (G. c. reticulata), Masai (G. c. tippelskirchi), and Southern giraffes (G. c. giraffa).4,5,6 However, their evolutionary history is not yet fully resolved, as previous studies used a simple bifurcating model and did not explore the presence or extent of gene flow between lineages. We therefore inferred a model that incorporates various evolutionary processes to assess the drivers of contemporary giraffe diversity. We analyzed whole-genome sequencing data from 90 wild giraffes from 29 localities across their current distribution. The most basal divergence was dated to 280 kya. Genetic differentiation, FST, among major lineages ranged between 0.28 and 0.62, and we found significant levels of ancient gene flow between them. In particular, several analyses suggested that the Reticulated lineage evolved through admixture, with almost equal contribution from the Northern lineage and an ancestral lineage related to Masai and Southern giraffes. These new results highlight a scenario of strong differentiation despite gene flow, providing further context for the interpretation of giraffe diversity and the process of speciation in general. They also illustrate that conservation measures need to target various lineages and sublineages and that separate management strategies are needed to conserve giraffe diversity effectively. Given local extinctions and recent dramatic declines in many giraffe populations, this improved understanding of giraffe evolutionary history is relevant for conservation interventions, including reintroductions and reinforcements of existing populations.
Collapse
Affiliation(s)
- Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bøggild
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mumbi Chege
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands; Wildlife Research and Training Institute, Naivasha, Kenya
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Republic of South Africa
| | | | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Morris Agaba
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Nelson Mandela Road, Arusha, Tanzania
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Charles Masembe
- College of Natural Sciences, Makerere University, P O. Box 7062, Kampala, Uganda
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Thomas L, Şahin D, Adam AS, Grimaldi CM, Ryan NM, Duffy SL, Underwood JN, Kennington WJ, Gilmour JP. Resilience to periodic disturbances and the long-term genetic stability in Acropora coral. Commun Biol 2024; 7:410. [PMID: 38575730 PMCID: PMC10995172 DOI: 10.1038/s42003-024-06100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Climate change is restructuring natural ecosystems. The direct impacts of these events on biodiversity and community structure are widely documented, but the impacts on the genetic variation of populations remains largely unknown. We monitored populations of Acropora coral on a remote coral reef system in northwest Australia for two decades and through multiple cycles of impact and recovery. We combined these demographic data with a temporal genetic dataset of a common broadcast spawning corymbose Acropora to explore the spatial and temporal patterns of connectivity underlying recovery. Our data show that broad-scale dispersal and post-recruitment survival drive recovery from recurrent disturbances, including mass bleaching and mortality. Consequently, genetic diversity and associated patterns of connectivity are maintained through time in the broader metapopulation. The results highlight an inherent resilience in these globally threatened species of coral and showcase their ability to cope with multiple disturbances, given enough time to recover is permitted.
Collapse
Affiliation(s)
- L Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia.
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia.
| | - D Şahin
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - A S Adam
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - C M Grimaldi
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - N M Ryan
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - S L Duffy
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - J N Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - W J Kennington
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Perth, Australia
| | - J P Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
49
|
David G, Bertolotti A, Layer R, Scofield D, Hayward A, Baril T, Burnett HA, Gudmunds E, Jensen H, Husby A. Calling Structural Variants with Confidence from Short-Read Data in Wild Bird Populations. Genome Biol Evol 2024; 16:evae049. [PMID: 38489588 PMCID: PMC11018544 DOI: 10.1093/gbe/evae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Comprehensive characterization of structural variation in natural populations has only become feasible in the last decade. To investigate the population genomic nature of structural variation, reproducible and high-confidence structural variation callsets are first required. We created a population-scale reference of the genome-wide landscape of structural variation across 33 Nordic house sparrows (Passer domesticus). To produce a consensus callset across all samples using short-read data, we compare heuristic-based quality filtering and visual curation (Samplot/PlotCritic and Samplot-ML) approaches. We demonstrate that curation of structural variants is important for reducing putative false positives and that the time invested in this step outweighs the potential costs of analyzing short-read-discovered structural variation data sets that include many potential false positives. We find that even a lenient manual curation strategy (e.g. applied by a single curator) can reduce the proportion of putative false positives by up to 80%, thus enriching the proportion of high-confidence variants. Crucially, in applying a lenient manual curation strategy with a single curator, nearly all (>99%) variants rejected as putative false positives were also classified as such by a more stringent curation strategy using three additional curators. Furthermore, variants rejected by manual curation failed to reflect the expected population structure from SNPs, whereas variants passing curation did. Combining heuristic-based quality filtering with rapid manual curation of structural variants in short-read data can therefore become a time- and cost-effective first step for functional and population genomic studies requiring high-confidence structural variation callsets.
Collapse
Affiliation(s)
- Gabriel David
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Ryan Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Douglas Scofield
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
| | - Hamish A Burnett
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erik Gudmunds
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arild Husby
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
50
|
Kess T, Lehnert SJ, Bentzen P, Duffy S, Messmer A, Dempson JB, Newport J, Whidden C, Robertson MJ, Chaput G, Breau C, April J, Gillis C, Kent M, Nugent CM, Bradbury IR. Variable parallelism in the genomic basis of age at maturity across spatial scales in Atlantic Salmon. Ecol Evol 2024; 14:e11068. [PMID: 38584771 PMCID: PMC10995719 DOI: 10.1002/ece3.11068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 04/09/2024] Open
Abstract
Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (Salmo salar), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci. However, the genetic basis of sea age within North American Atlantic Salmon populations remains unclear, as does the potential for a parallel trans-Atlantic genomic basis to sea age. Here, we used a large single-nucleotide polymorphism (SNP) array and low-coverage whole-genome resequencing to explore the genomic basis of sea age variation in North American Atlantic Salmon. We found significant associations at the gene and SNP level with a large-effect locus (vgll3) previously identified in European populations, indicating genetic parallelism, but found that this pattern varied based on both sex and geographic region. We also identified nonrepeated sets of highly predictive loci associated with sea age among populations and sexes within North America, indicating polygenicity and low rates of genomic parallelism. Despite low genome-wide parallelism, we uncovered a set of conserved molecular pathways associated with sea age that were consistently enriched among comparisons, including calcium signaling, MapK signaling, focal adhesion, and phosphatidylinositol signaling. Together, our results indicate parallelism of the molecular basis of sea age in North American Atlantic Salmon across large-effect genes and molecular pathways despite population-specific patterns of polygenicity. These findings reveal roles for both contingency and repeated adaptation at the molecular level in the evolution of life history variation.
Collapse
Affiliation(s)
- Tony Kess
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Sarah J. Lehnert
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Steven Duffy
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Amber Messmer
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - J. Brian Dempson
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Jason Newport
- Marine Environmental Research Infrastructure for Data Integration and Application NetworkHalifaxNova ScotiaCanada
| | | | - Martha J. Robertson
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Gerald Chaput
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Cindy Breau
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Julien April
- Ministère des Forêts de la Faune et des ParcsQuebecQuebecCanada
| | - Carole‐Anne Gillis
- Gespe'gewa'gi, Mi'gma'qi, ListugujGespe'gewa'gi Institute of Natural UnderstandingQuebecQuebecCanada
| | - Matthew Kent
- Centre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - Cameron M. Nugent
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Ian R. Bradbury
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|