1
|
Beemelmanns A, Bouchard R, Michaelides S, Normandeau E, Jeon HB, Chamlian B, Babin C, Hénault P, Perrot O, Harris LN, Zhu X, Fraser D, Bernatchez L, Moore JS. Development of SNP Panels from Low-Coverage Whole Genome Sequencing (lcWGS) to Support Indigenous Fisheries for Three Salmonid Species in Northern Canada. Mol Ecol Resour 2025; 25:e14040. [PMID: 39552382 DOI: 10.1111/1755-0998.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Single nucleotide polymorphism (SNP) panels are powerful tools for assessing the genetic population structure and dispersal of fishes and can enhance management practices for commercial, recreational and subsistence mixed-stock fisheries. Arctic Char (Salvelinus alpinus), Brook Trout (Salvelinus fontinalis) and Lake Whitefish (Coregonus clupeaformis) are among the most harvested and consumed fish species in Northern Indigenous communities in Canada, contributing significantly to food security, culture, tradition and economy. However, genetic resources supporting Indigenous fisheries have not been widely accessible to northern communities (e.g. Inuit, Cree, Dene). Here, we developed Genotyping-in-Thousands by sequencing (GT-seq) panels for population assignment and mixed-stock analyses of three salmonids, to support fisheries stewardship or co-management in Northern Canada. Using low-coverage Whole Genome Sequencing data from 418 individuals across source populations in Cambridge Bay (Nunavut), Great Slave Lake (Northwest Territories), James Bay (Québec) and Mistassini Lake (Québec), we developed a bioinformatic SNP filtering workflow to select informative SNP markers from genotype likelihoods. These markers were then used to design GT-seq panels, thus enabling high-throughput genotyping for these species. The three GT-seq panels yielded an average of 413 autosomal loci and were validated using 525 individuals with an average assignment accuracy of 83%. Thus, these GT-seq panels are powerful tools for assessing population structure and quantifying the relative contributions of populations/stocks in mixed-stock fisheries across multiple regions. Interweaving genomic data derived from these tools with Traditional Ecological Knowledge will ensure the sustainable harvest of three culturally important salmonids in Indigenous communities, contributing to food security programmes and the economy in Northern Canada.
Collapse
Affiliation(s)
- Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Raphaël Bouchard
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Sozos Michaelides
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Plateforme de Bio-Informatique de l'IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, Quebec, Canada
| | - Hyung-Bae Jeon
- Department of Biology, Concordia University, Montreal, Québec, Canada
- National Institute of Biological Resources, Biodiversity Research and Cooperation Division, Incheon, Republic of Korea
| | - Badrouyk Chamlian
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Charles Babin
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Philippe Hénault
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Océane Perrot
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Les N Harris
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Xinhua Zhu
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Dylan Fraser
- Department of Biology, Concordia University, Montreal, Québec, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Département de Biologie, Université Laval, Québec, Québec, Canada
| |
Collapse
|
2
|
Van Deurs S, Reutimann O, Luqman H, Lifshitz D, Mayzlish-Gati E, Alexander J, Fior S. Genomic Signatures of Adaptation Across a Precipitation Gradient From Niche Centre to Niche Edge. Mol Ecol 2025; 34:e17696. [PMID: 39960029 DOI: 10.1111/mec.17696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Evaluating the potential for species to adapt to changing climates relies on understanding current patterns of adaptive variation and selection, which might vary in intensity across a species' niche, hence affecting our inference of where adaptation might be most important in the future. Here, we investigate the genetic basis of adaptation in Lactuca serriola along a steep precipitation gradient in Israel approaching the species' arid niche limit and use candidate loci to inform predictions of its past and future adaptive evolution. Environmental association analyses combined with generalised dissimilarity models revealed 108 candidate genes showing nonlinear shifts in allele frequencies across the gradient, with 66% of these genes under strong selection near the dry niche edge. We detected selection acting on genes with separate suites of biological functions, specifically related to phenology and responses to environmental stressors, including osmotic stress, at the dry niche edge, and related to biotic interactions and defence closer to the niche centre. The adaptive genetic composition of populations, as inferred through polygenic risk scores, point to intensified selection operating towards the dry niche edge. However, inference of past and future evolutionary change predicts larger adaptive shifts occurring in the mesic part of the range, which is most affected by climate change. Our study reveals that adaptive shifts in response to climate change can be heterogeneous across a species' range and not necessarily strongest near its niche edge.
Collapse
Affiliation(s)
| | - Oliver Reutimann
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Hirzi Luqman
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Dikla Lifshitz
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Einav Mayzlish-Gati
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Jake Alexander
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Simone Fior
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| |
Collapse
|
3
|
Emelianova K, Hawranek A, Eriksson MC, Wolfe TM, Paun O. Ecological divergence of sibling allopolyploid marsh orchids is associated with species specific plasticity and distinct fungal communities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70001. [PMID: 39968573 PMCID: PMC11836771 DOI: 10.1111/tpj.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Phenotypic plasticity, the dynamic adjustment of traits to environmental variations, is crucial for enabling species to exploit broader niches and withstand suboptimal conditions. This adaptability is particularly relevant for newly formed allopolyploids, which possess redundant gene copies and must become established in diverse environments distinct from their parents and other relatives. By evaluating gene expression and root mycobiome among two ecologically divergent sibling allopolyploid marsh orchids (Dactylorhiza majalis and D. traunsteineri) in reciprocal transplants at localities where both species are native, we aimed to understand the drivers of species persistence in the face of interspecific gene flow. Despite consistent abiotic differences characterising the alternative environments at each locality, the majority of gene expression differences between the allopolyploids appears to be plastic. Ecologically relevant processes, such as photosynthesis and transmembrane transport, include some genes that are differentially expressed between the two orchids regardless of the environment, while others change their activity plastically in one species or the other. This suggests that although plasticity helps define the specific ecological range of each sibling allopolyploid, it also mediates gene flow between them, thereby preventing differentiation. Extending our investigations to the root mycobiome, we uncover more diverse fungal communities for either species when grown in the environment with nutrient-poor soils, indicating that both abiotic and biotic factors drive the distribution of sibling marsh orchids. Altogether, our results indicate that plasticity can simultaneously promote diversification and homogenisation of lineages, influencing the establishment and persistence of recurrently formed allopolyploid species.
Collapse
Affiliation(s)
- Katie Emelianova
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Anna‐Sophie Hawranek
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Mimmi C. Eriksson
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Department of Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
- Vienna Graduate School of Population GeneticsViennaAustria
- Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), BOKUPeter‐Jordan‐Straße 82/IViennaA‐1190Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
4
|
McCarthy ML, Martínez AR, Ferguson SH, Rosing-Asvid A, Dietz R, De Cahsan B, Schreiber L, Lorenzen ED, Hansen RG, Stimmelmayr R, Bryan A, Quakenbush L, Lydersen C, Kovacs KM, Olsen MT. Circumpolar Population Structure, Diversity and Recent Evolutionary History of the Bearded Seal in Relation to Past and Present Icescapes. Mol Ecol 2025; 34:e17643. [PMID: 39835612 DOI: 10.1111/mec.17643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E. barbatus nauticus-Pacific and E. barbatus barbatus-Atlantic), is an ice-obligate Arctic species using sea ice for many aspects of its life history, rendering it particularly vulnerable to sea ice loss. It is one of the least studied and hence enigmatic of the Arctic marine mammals, with little knowledge regarding genetic structure, diversity, adaptations, and demographic history, consequently hampering management and conservation efforts. Here, we sequenced 70 whole nuclear genomes from across most of the species' circumpolar range, finding significant genetic structure between the Pacific and the Atlantic subspecies, which diverged during the Penultimate Glacial Period (~200 KYA). Remarkably, we found fine-scale genetic structure within both subspecies, with at least two distinct populations in the Pacific and three in the Atlantic. We hypothesise sea-ice dynamics and bathymetry had a prominent role in shaping bearded seal genetic structure and diversity. Our analyses of highly differentiated genomic regions can be used to complement the health, physiological, and behavioural research needed to conserve this species. In addition, we provide recommendations for management units that can be used to more specifically assess climatic and anthropogenic impacts on bearded seal populations.
Collapse
Affiliation(s)
| | | | - Steven H Ferguson
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Binia De Cahsan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Utqiaġvik, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Anna Bryan
- Alaska Department of Fish and Game, Arctic Marine Mammal Program, Fairbanks, Alaska, USA
| | - Lori Quakenbush
- Alaska Department of Fish and Game, Arctic Marine Mammal Program, Fairbanks, Alaska, USA
| | | | - Kit M Kovacs
- Norwegian Polar Institute, Framsenteret, Tromsø, Norway
| | - Morten Tange Olsen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
5
|
Baumgartner CD, Jourdain E, Bonhoeffer S, Borgå K, Heide-Jørgensen MP, Karoliussen R, Laine JT, Rosing-Asvid A, Ruus A, Tavares SB, Ugarte F, Samarra FIP, Foote AD. Kinship clustering within an ecologically diverse killer whale metapopulation. Heredity (Edinb) 2025; 134:109-119. [PMID: 39833275 PMCID: PMC11799346 DOI: 10.1038/s41437-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Metapopulation dynamics can be shaped by foraging ecology, and thus be sensitive to shifts in prey availability. Genotyping 204 North Atlantic killer whales at 1346 loci, we investigated whether spatio-temporal population structuring is linked to prey type and distribution. Using population-based methods (reflecting evolutionary means), we report a widespread metapopulation connected across ecological groups based upon nuclear genome SNPs, yet spatial structuring based upon mitogenome haplotypes. These contrasting patterns of markers with maternal and biparental inheritance are consistent with matrilineal site fidelity and philopatry, and male-mediated gene flow among demes. Connectivity between fish-eating and 'mixed-diet' (eating both fish and mammal prey) killer whales, marks a deviation within a species renowned for its marked structure associated with ecology. However, relatedness estimates suggest distinct spatial clusters, and heterogeneity in recent gene flow between them. The contrasting patterns between inference of structure and inference of relatedness suggest that gene flow has been partially restricted over the past two to three generations (50-70 years). This coincides with the collapse of North Atlantic herring stocks in the late 1960s and the subsequent cessation of their seasonal connectivity. Statistically significant association between diet types and assignment of Icelandic killer whales to relatedness-based clusters indicated limited gene flow was maintained through Icelandic 'mixed-diet' whales when herring-mediated connectivity was diminished. Thus, conservation of dietary variation within this metapopulation is critical to ensure genetic health. Our study highlights the role of resource dynamics and foraging ecology in shaping population structure and emphasises the need for transnational management of this widespread migratory species and its prey.
Collapse
Affiliation(s)
- Chérine D Baumgartner
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Orcestra, Zurich, Switzerland.
| | - Eve Jourdain
- Norwegian Orca Survey, Andenes, Norway
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Katrine Borgå
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jan T Laine
- Department of Natural History, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Anders Ruus
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Institute for Water Research, Oslo, Norway
| | - Sara B Tavares
- Cetacean Research Program, Fisheries and Oceans, Nanaimo, Canada
| | | | - Filipa I P Samarra
- Westman Islands Research Centre, University of Iceland, Vestmannaeyjar, Iceland
| | - Andrew D Foote
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Sharma A, Vijay N. Common Ancestry of the Id Locus: Chromosomal Rearrangement and Polygenic Possibilities. J Mol Evol 2025; 93:163-180. [PMID: 39821315 DOI: 10.1007/s00239-025-10233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The diversity in dermal pigmentation and plumage color among domestic chickens is striking, with Black Bone Chickens (BBC) particularly notable for their intense melanin hyperpigmentation. This unique trait is driven by a complex chromosomal rearrangement on chromosome 20 at the Fm locus, resulting in the overexpression of the EDN3 (a gene central to melanocyte regulation). In contrast, the inhibition of dermal pigmentation is regulated by the Id locus. Although prior studies using genetic crosses, GWAS, and gene expression analysis have investigated the genetic underpinnings of the Id locus, its precise location and functional details remain elusive. Our study aims to precisely locate the Id locus, identify associated chromosomal rearrangements and candidate genes influencing dermal pigmentation, and examine the ancestral status of the Id locus in BBC breeds. Using public genomic data from BBC and non-BBC breeds, we refined the Id locus to a ~1.6 Mb region that co-localizes with Z amplicon repeat units at the distal end of the q-arm of chromosome Z within a 10.36 Mb inversion in Silkie BBC. Phylogenetic and population structure analyses reveal that the Id locus shares a common ancestry across all BBC breeds, much like the Fm locus. Selection signatures and highly differentiated BBC-specific SNPs within the MTAP gene position it as the prime candidate for the Id locus with CCDC112 and additional genes, suggesting a possible polygenic nature. Our results suggest that the Id locus is shared among BBC breeds and may function as a supergene cluster in shank and dermal pigmentation variation.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
7
|
Daly KG, Mullin VE, Hare AJ, Halpin Á, Mattiangeli V, Teasdale MD, Rossi C, Geiger S, Krebs S, Medugorac I, Sandoval-Castellanos E, Özbaşaran M, Duru G, Gülcür S, Pöllath N, Collins M, Frantz L, Vila E, Zidarov P, Stoddart S, Boldgiv B, Orlando L, Pearson MP, Mullville J, Askeyev IV, Askeyev AO, Askeyev OV, Shaymuratova DN, Van den Hurk Y, Zeeb-Lanz A, Arbogast RM, Hemmer H, Davoudi H, Amiri S, Doost SB, Decruyenaere D, Fathi H, Khazaeli R, Hassanzadeh Y, Sardari A, Lhuillier J, Abdolahi M, Summers GD, Marro C, Bahshaliyev V, Berthon R, Çakirlar C, Benecke N, Scheu A, Burger J, Sauer E, Horwitz LK, Arbuckle B, Buitenhuis H, Gourichon L, Bulatović J, O'Connor T, Orton D, Jalabadze M, Rhodes S, Chazan M, Özkaya V, Zeder M, Atıcı L, Mashkour M, Peters J, Bradley DG. Ancient genomics and the origin, dispersal, and development of domestic sheep. Science 2025; 387:492-497. [PMID: 39883774 DOI: 10.1126/science.adn2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/10/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025]
Abstract
The origins and prehistory of domestic sheep (Ovis aries) are incompletely understood; to address this, we generated data from 118 ancient genomes spanning 12,000 years sampled from across Eurasia. Genomes from Central Türkiye ~8000 BCE are genetically proximal to the domestic origins of sheep but do not fully explain the ancestry of later populations, suggesting a mosaic of wild ancestries. Genomic signatures indicate selection by ancient herders for pigmentation patterns, hornedness, and growth rate. Although the first European sheep flocks derive from Türkiye, in a notable parallel with ancient human genome discoveries, we detected a major influx of Western steppe-related ancestry in the Bronze Age.
Collapse
Affiliation(s)
- Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- UCD School of Agricultural and Food Science, University College Dublin, Belfield, Ireland
| | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Andrew J Hare
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Áine Halpin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Matthew D Teasdale
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Sheila Geiger
- Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, Munich, Germany
| | - Ivica Medugorac
- ArchaeoBioCenter, LMU Munich, Munich, Germany
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Edson Sandoval-Castellanos
- Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Mihriban Özbaşaran
- Prehistory Department, Faculty of Letters, Istanbul University, Istanbul, Türkiye
| | - Güneş Duru
- Department of Archaeology, Mimar Sinan Fine Arts University, Şişli/İstanbul, Türkiye
| | - Sevil Gülcür
- Prehistory Department, Faculty of Letters, Istanbul University, Istanbul, Türkiye
| | - Nadja Pöllath
- ArchaeoBioCenter, LMU Munich, Munich, Germany
- Bavarian Natural History Collections, State Collection of Palaeoanatomy Munich, Munich, Germany
| | - Matthew Collins
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, West Tower, Downing Street, Cambridge, UK
| | - Laurent Frantz
- Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Emmanuelle Vila
- CNRS-UMR 5133, Maison de l'Orient et la Méditerranée, Université Lumière Lyon 2, Lyon, France
| | - Peter Zidarov
- Institute of Prehistory, Early History and Medieval Archaeology, Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Simon Stoddart
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Bazartseren Boldgiv
- Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CNRS UMR 5288), Université Paul Sabatier, Toulouse, France
| | | | - Jacqui Mullville
- School of History, Archaeology and Religion, Cardiff University, Cardiff, Wales, UK
| | - Igor V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Daurskaya Street, 28, Kazan, Russia
| | - Arthur O Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Daurskaya Street, 28, Kazan, Russia
| | - Oleg V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Daurskaya Street, 28, Kazan, Russia
| | - Dilyara N Shaymuratova
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Daurskaya Street, 28, Kazan, Russia
| | - Youri Van den Hurk
- Groningen Institute of Archaeology, University of Groningen, Groningen, Netherlands
| | - Andrea Zeeb-Lanz
- Generaldirektion Kulturelles Erbe Rheinland-Pfalz, Dir. Landesarchäologie, Speyer, Germany
| | | | | | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
| | - Sarieh Amiri
- Bioarchaeology Laboratory, Central Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
| | - Sanaz Beizaee Doost
- Bioarchaeology Laboratory, Central Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
| | - Delphine Decruyenaere
- Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements UMR 7209 du Centre national de la recherche scientifique (CNRS) et Muséum national d'Histoire naturelle (MNHN), Paris, France
- Department of History and Cultural Heritage, Silk Road University of Tourism and Cultural Heritage, 17 University Boulevard, Samarkand, Uzbekistan
| | - Homa Fathi
- Bioarchaeology Laboratory, Central Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
| | - Roya Khazaeli
- Bioarchaeology Laboratory, Central Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
| | | | - Alireza Sardari
- Iranian Center for Archaeological Research, Research Institute of Cultural Heritage and Tourism, Tehran, Iran
| | - Johanna Lhuillier
- Laboratoire Archéorient, UMR 5133 (CNRS), Maison de l'Orient et de la Méditerranée, Lyon, France
| | - Mostafa Abdolahi
- Department of Archaeology, Dezful Branch, Islamic Azad University, Khuzestan, Iran
| | - Geoffrey D Summers
- ENSA Nantes, Nantes, Mauritus
- Institute for the Study of Ancient Cultures, West Asia & North Africa (ISAC), Chicago University, Chicago, IL, USA
| | - Catherine Marro
- CNRS-UMR 5133, Maison de l'Orient et la Méditerranée, Université Lumière Lyon 2, Lyon, France
| | - Veli Bahshaliyev
- Nakhchivan Branch of the Azerbaijan National Academy of Sciences, Nakhchivan, Azerbaijan
| | - Rémi Berthon
- Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements UMR 7209 du Centre national de la recherche scientifique (CNRS) et Muséum national d'Histoire naturelle (MNHN), Paris, France
| | - Canan Çakirlar
- Groningen Institute of Archaeology, University of Groningen, Groningen, Netherlands
| | - Norbert Benecke
- German Archaeological Institute, Central Department, Im Dol 2-6, Berlin, Germany
| | - Amelie Scheu
- Palaeogenetics Group Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Joachim Burger
- Palaeogenetics Group Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eberhard Sauer
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | | | - Benjamin Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hijlke Buitenhuis
- Groningen Institute of Archaeology, University of Groningen, Groningen, Netherlands
- ArcheoSupport B.V., Postbus 41091, CB Groningen, Netherlands
| | | | - Jelena Bulatović
- Department of Historical Studies, University of Gothenburg, Box 200, Gothenburg, Sweden
| | - Terry O'Connor
- BioArCh, Department of Archaeology, Environment Building, University of York, Heslington, York, UK
| | - David Orton
- BioArCh, Department of Archaeology, Environment Building, University of York, Heslington, York, UK
| | - Mindia Jalabadze
- Georgian National Museum, 3 Shota Rustaveli Ave, Tbilisi, Georgia
| | - Stephen Rhodes
- Department of Anthropology, University of Toronto, 19 Ursula Franklin Street, Toronto, Ontario, Canada
| | - Michael Chazan
- Department of Anthropology, University of Toronto, 19 Ursula Franklin Street, Toronto, Ontario, Canada
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, South Africa
| | - Vecihi Özkaya
- Department of Archaeology, Dicle University, Diyarbakır, Türkiye
| | | | - Levent Atıcı
- Department of Sociology and Anthropology, NC State University, Raleigh, NC, USA
| | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, Archaeozoology section, University of Tehran, Tehran, Iran
- Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements UMR 7209 du Centre national de la recherche scientifique (CNRS) et Muséum national d'Histoire naturelle (MNHN), Paris, France
| | - Joris Peters
- Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany
- ArchaeoBioCenter, LMU Munich, Munich, Germany
- Bavarian Natural History Collections, State Collection of Palaeoanatomy Munich, Munich, Germany
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Doonan JM, Budde KB, Kosawang C, Lobo A, Verbylaite R, Brealey JC, Martin MD, Pliura A, Thomas K, Konrad H, Seegmüller S, Liziniewicz M, Cleary M, Nemesio-Gorriz M, Fussi B, Kirisits T, Gilbert MTP, Heuertz M, Kjær ED, Nielsen LR. Multiple, Single Trait GWAS and Supervised Machine Learning Reveal the Genetic Architecture of Fraxinus excelsior Tolerance to Ash Dieback in Europe. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39822124 DOI: 10.1111/pce.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F. excelsior requires further investigation. Here, we integrate quantitative genetics based on multiple replicates and genome-wide association analyses with machine learning to reveal the genetic architecture of ash dieback tolerance and of phenological traits in F. excelsior populations in six European countries (Austria, Denmark, Germany, Ireland, Lithuania, Sweden). Based on phenotypic data of 486 F. excelsior replicated genotypes we observed negative genotypic correlations between crown damage caused by ash dieback and intensity of autumn leaf yellowing within multiple sampling sites. Our results suggest that the examined traits are polygenic and using genomic prediction models, with ranked single nucleotide polymorphisms (SNPs) based on GWAS associations as input, a large proportion of the variation was predicted by unlinked SNPs. Based on 100 unlinked SNPs, we can predict 55% of the variation in disease tolerance among genotypes (as phenotyped in genetic trials), increasing to a maximum of 63% when predicted from 9155 SNPs. In autumn leaf yellowing, 52% of variation is predicted by 100 unlinked SNPs, reaching a peak of 72% using 3740 SNPs. Based on feature permutations within genomic prediction models, a total of eight nonsynonymous SNPs linked to ash dieback crown damage and autumn leaf yellowing (three and five SNPs, respectively) were identified, these were located within genes related to plant defence (pattern triggered immunity, pathogen detection) and phenology (regulation of flowering and seed maturation, auxin transport). We did not find an overlap between genes associated with crown damage level and autumn leaf yellowing. Hence, our results shed light on the difference in the genomic basis of ADB tolerance and autumn leaf yellowing despite these two traits being correlated in quantitative genetic analysis. Overall, our methods show the applicability of genomic prediction models when combined with GWAS to reveal the genomic architecture of polygenic disease tolerance enabling the identification of ash dieback tolerant trees for breeding or conservation purposes.
Collapse
Affiliation(s)
- James M Doonan
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | | | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Albin Lobo
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Rita Verbylaite
- Kaunas Forestry and Environmental Engineering University of Applied Sciences, Kaunas, Lithuania
| | - Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alfas Pliura
- Lithuanian Research Centre for Agriculture and Forestry, Kaunas, Lithuania
| | - Kristina Thomas
- Zentralstelle der Forstverwaltung, Forschungsanstalt für Waldökologie und Forstwirtschaft, Hauptstraße 16, Trippstadt, Germany
| | - Heino Konrad
- Institute for Forest Biodiversity and Nature Conservation, Federal Research and Training Center for Forests, Natural Hazards and Landscape, Vienna, Austria
| | - Stefan Seegmüller
- Zentralstelle der Forstverwaltung, Forschungsanstalt für Waldökologie und Forstwirtschaft, Hauptstraße 16, Trippstadt, Germany
| | | | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Barbara Fussi
- Bavarian Office for Forest Genetics (AWG), Teisendorf, Germany
| | - Thomas Kirisits
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Erik Dahl Kjær
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Rostgaard Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
9
|
Battlay P, Craig S, Putra AR, Monro K, De Silva NP, Wilson J, Bieker VC, Kabir S, Shamaya N, van Boheemen L, Rieseberg LH, Stinchcombe JR, Fournier-Level A, Martin MD, Hodgins KA. Rapid Parallel Adaptation in Distinct Invasions of Ambrosia Artemisiifolia Is Driven by Large-Effect Structural Variants. Mol Biol Evol 2025; 42:msae270. [PMID: 39812008 PMCID: PMC11733498 DOI: 10.1093/molbev/msae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent. Despite substantial differences in genetic source and effective population size changes during introduction, scans of both local climate adaptation and divergence from the native-range revealed genomic signatures of parallel adaptation between invasions. Disproportionately represented among these parallel signatures are 37 large haploblocks-indicators of structural variation-that cover almost 20% of the genome and exist as standing genetic variation in the native-range. Many of these haploblocks are associated with traits important for adaptation to local climate, like size and the timing of flowering, and have rapidly reformed native-range clines in invaded ranges. Others show extreme frequency divergence between ranges, consistent with a response to divergent selection on different continents. Our results demonstrate the key role of large-effect standing variants in rapid adaptation during range expansion, a pattern that is robust to diverse invasion histories.
Collapse
Affiliation(s)
- Paul Battlay
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Samuel Craig
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andhika R Putra
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Keyne Monro
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nissanka P De Silva
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jonathan Wilson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Saila Kabir
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nawar Shamaya
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Lotte van Boheemen
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| | | | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Fonseca EM, Tran LN, Mendoza H, Gutenkunst RN. Modeling Biases from Low-Pass Genome Sequencing to Enable Accurate Population Genetic Inferences. Mol Biol Evol 2025; 42:msaf002. [PMID: 39847470 PMCID: PMC11756381 DOI: 10.1093/molbev/msaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/25/2025] Open
Abstract
Low-pass genome sequencing is cost-effective and enables analysis of large cohorts. However, it introduces biases by reducing heterozygous genotypes and low-frequency alleles, impacting subsequent analyses such as model-based demographic history inference. Several approaches exist for inferring an unbiased allele frequency spectrum (AFS) from low-pass data, but they can introduce spurious noise into the AFS. Rather than correcting the AFS, here, we developed an approach that incorporates low-pass biases into the demographic modeling and directly analyzes the AFS from low-pass data. Our probabilistic model captures biases from the Genome Analysis Toolkit multisample calling pipeline, and we implemented it in the population genomic inference software dadi. We evaluated the model using simulated low-pass datasets and found that it alleviated low-pass biases in inferred demographic parameters. We further validated the model by downsampling 1000 Genomes Project data, demonstrating its effectiveness on real data. Our model is widely applicable and substantially improves model-based inferences from low-pass population genomic data.
Collapse
Affiliation(s)
- Emanuel M Fonseca
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linh N Tran
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hannah Mendoza
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
11
|
Marr MM, Humble E, Lurz PWW, Wilson LA, Milne E, Beckmann KM, Schoenebeck J, Fung U, Kitchener AC, Kortland K, Edwards C, Ogden R. Genomic Insights Into Red Squirrels in Scotland Reveal Loss of Heterozygosity Associated With Extreme Founder Effects. Evol Appl 2025; 18:e70072. [PMID: 39822659 PMCID: PMC11735740 DOI: 10.1111/eva.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025] Open
Abstract
Remnant populations of endangered species often have complex demographic histories associated with human impact. This can present challenges for conservation as populations modified by human activity may require bespoke management. The Eurasian red squirrel, Sciurus vulgaris (L., 1758), is endangered in the UK. Scotland represents a key stronghold, but Scottish populations have been subjected to intense anthropogenic influence, including widespread extirpations, reintroductions and competition from an invasive species. This study examined the genetic legacy of these events through low coverage whole-genome resequencing of 106 red squirrels. Previously undetected patterns of population structure and gene flow were uncovered. One offshore island, four mainland Scottish populations, and a key east-coast migration corridor were observed. An abrupt historical population bottleneck, related to extreme founder effects, has led to a severe and prolonged depression in genome-wide heterozygosity, which is amongst the lowest reported for any species. Current designated red squirrel conservation stronghold locations do not encompass all existing diversity. These findings highlight the genetic legacies of past anthropogenic influence on long-term diversity in endangered taxa. Continuing management interventions and regular genetic monitoring are recommended to safeguard and improve future diversity.
Collapse
Affiliation(s)
- Melissa M. Marr
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Emily Humble
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Peter W. W. Lurz
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Liam A. Wilson
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Elspeth Milne
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Katie M. Beckmann
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Jeffrey Schoenebeck
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Uva‐Yu‐Yan Fung
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
| | - Andrew C. Kitchener
- Department of Natural SciencesNational Museums ScotlandEdinburghUK
- School of GeosciencesUniversity of EdinburghEdinburghUK
| | | | | | - Rob Ogden
- Royal (Dick) School of Veterinary Studies (R(D)SVS) and the Roslin InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
12
|
Lefebvre MJM, Degrugillier F, Arnathau C, Fontecha GA, Noya O, Houzé S, Severini C, Pradines B, Berry A, Trape JF, Sáenz FE, Prugnolle F, Fontaine MC, Rougeron V. Genomic exploration of the journey of Plasmodium vivax in Latin America. PLoS Pathog 2025; 21:e1012811. [PMID: 39804931 PMCID: PMC11761655 DOI: 10.1371/journal.ppat.1012811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/24/2025] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P. vivax isolates, including 107 newly sequenced samples from West Africa, Middle East, and Latin America. This sampling represents nearly all potential source populations worldwide currently available. Analyses of the genetic structure, diversity, ancestry, coalescent-based inferences, including demographic scenario testing using Approximate Bayesian Computation, have revealed a more complex evolutionary history than previously envisioned. Indeed, our analyses suggest that the current American P. vivax populations predominantly stemmed from a now-extinct European lineage, with the potential contribution also from unsampled populations, most likely of West African origin. We also found evidence that P. vivax arrived in Latin America in multiple waves, initially during early European contact and later through post-colonial human migration waves in the late 19th-century. This study provides a fresh perspective on P. vivax's intricate evolutionary journey and brings insights into the possible contribution of West African P. vivax populations to the colonization history of Latin America.
Collapse
Affiliation(s)
| | | | | | - Gustavo A. Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Oscar Noya
- Infectious Diseases Section, "Dr. Felix Pifano" Tropical Medicine Institute, Central University of Venezuela, Caracas, Venezuela
- Centro Para Estudios Sobre Malaria, "Dr. Arnoldo Gabaldón" High Studies Institute, Caracas, Venezuela
| | - Sandrine Houzé
- Université de Paris, MERIT, IRD, Paris, France
- AP-HP, Centre National de Référence sur le paludisme, hôpital Bichat-Claude-Bernard, Paris, France
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bruno Pradines
- Unité parasitologie et entomologie, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France
- Aix Marseille Univ, SSA, AP-HM, RITMES, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- Centre national de référence du paludisme, Marseille, France
| | - Antoine Berry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, CNRS UMR5051, INSERM UMR 1291, UPS, Toulouse, France
- Département de Parasitologie et Mycologie, CHU Toulouse, Toulouse, France
| | | | - Fabian E. Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Franck Prugnolle
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
- Sustainability Research Unit, George Campus, Nelson Mandela University, George, South Africa
| | - Michael C. Fontaine
- MiVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Virginie Rougeron
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa
- Sustainability Research Unit, George Campus, Nelson Mandela University, George, South Africa
| |
Collapse
|
13
|
Hirase S, Nagano AJ, Nohara K, Kikuchi K, Kokita T. Phenotypic and Genomic Signatures of Latitudinal Local Adaptation Along With Prevailing Ocean Current in a Coastal Goby. Mol Ecol 2025; 34:e17599. [PMID: 39681339 DOI: 10.1111/mec.17599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
In the marine realm, unidirectional ocean currents often lead to high migration rates of marine organisms and, therefore, inhibit the formation of their latitudinal genetic structure. In contrast, cryptic latitudinal structures associated with local adaptation may frequently exist in widespread species generally exposed to a strong environmental heterogeneity. However, our understanding of the evolvability of locally adapted populations in open marine environments still needs to be completed. The coastal area along the Sea of Japan, where the Tsushima Warm Current flows from south to north in the Japanese Archipelago, provides a good model system for exploring this question. This study explored evidence for latitudinal local adaptation along with the prevailing ocean current in the ice goby Leucopsarion petersii at the phenotypic and genomic levels. Common garden experiments clearly showed genetically based clinal variation in growth rate, strongly suggesting local adaptation through conutergradient selection of this fitness-related trait. Analyses based on reduced-representation sequencing revealed a slight signal of genetic differentiation between the southern and northern populations, although continuous historical gene flow between them was supported by demographic modelling. Also, whole-genome resequencing showed their independent demographic history during the last glacial period. Thus, these results suggest that gene flow along with the prevailing ocean current is somewhat limited, and the populations are not completely panmictic. Furthermore, the selection scan based on low-coverage genome-wide sequencing detected putative genomic signatures of latitudinal adaptation of growth-related genes. Thus, our integrative study provided a novel example of marine local adaptation under a large ocean current.
Collapse
Affiliation(s)
- Shotaro Hirase
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kenji Nohara
- Department of Marine Biology, School of Marine Science and Technology, Tokai University, Shizuoka, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|
14
|
St. John CA, Timm LE, Gruenthal KM, Larson WA. Whole Genome Sequencing Reveals Substantial Genetic Structure and Evidence of Local Adaptation in Alaskan Red King Crab. Evol Appl 2025; 18:e70049. [PMID: 39742389 PMCID: PMC11686092 DOI: 10.1111/eva.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 01/03/2025] Open
Abstract
High-latitude ocean basins are the most productive on earth, supporting high diversity and biomass of economically and socially important species. A long tradition of responsible fisheries management has sustained these species for generations, but modern threats from climate change, habitat loss, and new fishing technologies threaten their ecosystems and the human communities that depend on them. Among these species, Alaska's most charismatic megafaunal invertebrate, the red king crab, faces all three of these threats and has declined substantially in many parts of its distribution. Managers have identified stock structure and local adaptation as crucial information to help understand biomass declines and how to potentially reverse them, with regulation and possible stock enhancement. We generated low-coverage whole genome sequencing (lcWGS) data on red king crabs from five regions: The Aleutian Islands, eastern Bering Sea, northern Bering Sea, Gulf of Alaska, and Southeast Alaska. We used data from millions of genetic markers generated from lcWGS to build on previous studies of population structure in Alaska that used < 100 markers and to investigate local adaptation. We found each of the regions formed their own distinct genetic clusters, some containing subpopulation structure. Most notably, we found that the Gulf of Alaska and eastern Bering Sea were significantly differentiated, something that had not been previously documented. Inbreeding in each region was low and not a concern for fisheries management. We found genetic patterns consistent with local adaptation on several chromosomes and one particularly strong signal on chromosome 100. At this locus, the Gulf of Alaska harbors distinct genetic variation that could facilitate local adaptation to their environment. Our findings support the current practice of managing red king crab at a regional scale, and they strongly favor sourcing broodstock from the target population if stock enhancement is considered to avoid genetic mismatch.
Collapse
Affiliation(s)
- Carl A. St. John
- Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| | - Laura E. Timm
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
- College of Fisheries and Ocean Sciences, University of Alaska FairbanksFairbanksAlaskaUSA
| | - Kristen M. Gruenthal
- Alaska Department of Fish and Game, Division of Commercial Fisheries, Gene Conservation LaboratoryJuneauAlaskaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
15
|
Bernos TA, Gibelli J, Michaelides S, Won H, Jeon HB, Marin K, Boguski DA, Janjua MY, Gallagher CP, Howland KL, Fraser DJ. Widespread admixture blurs population structure and confounds Lake Trout (Salvelinus namaycush) conservation even in the genomic era. Sci Rep 2024; 14:30838. [PMID: 39730611 DOI: 10.1038/s41598-024-81531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
Intraspecific variation is important for species' long-term persistence in changing environments. Conservation strategies targeting intraspecific variation often rely on the identification of management or policy units below the species level based on biological differences among populations. To identify management units, this paper examines intraspecific divergence of Lake Trout (Salvelinus namaycush) in Great Slave Lake (GSL), Canada, using low-coverage whole-genome sequencing data. Specifically, we evaluate genetic differentiation and assess the relationship with morphological, mitochondrial, and putatively adaptive divergence. We show that at least three and up to five genetically distinct Lake Trout populations co-occur in GSL and exhibit differences in spatial distribution and body size, with signatures of selection. However, admixture was widespread (60% of the fish) and population structure was shallow (average FST = 0.022). These findings highlight that, even in the era of whole genome sequencing, identifying discrete management units to implement conservation efforts and policy can remain challenging in systems where gene flow among genetically and ecologically distinct populations is ubiquitous. To give more recognition to this complexity, management efforts should also focus on the area where adaptive variation is evident, and evolutionary acts are at play, to better protect species' resilience and adaptive potential in some natural systems.
Collapse
Affiliation(s)
- Thaïs A Bernos
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
- Rubenstein Ecosystem Science Laboratory, University of Vermont, 3 College St., Burlington, VT, 05401, USA
| | - Julie Gibelli
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada.
| | - Sozos Michaelides
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Hari Won
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
- Honam National Institute of Biological Resources, 99 Gohadoan-Gil, Mokpo, 58762, Republic of Korea
| | - Hyung-Bae Jeon
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
- National Institute of Biological Resources, 42 Hwangyeong-Ro, Seo-Gu, Incheon, 22689, Republic of Korea
| | - Kia Marin
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - David A Boguski
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | | | - Colin P Gallagher
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Dylan J Fraser
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
16
|
Prochotta D, Winter S, Fennessy J, Janke A. Population genomics of the southern giraffe. Mol Phylogenet Evol 2024; 201:108198. [PMID: 39276822 DOI: 10.1016/j.ympev.2024.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Studying wildlife taxonomic diversity and identifying distinct populations has traditionally been largely based on morphology and geographic origin. More recently, this method has been supplemented by genetic data from the mitochondrial genome. However, this is limited as only maternally inherited and may not reflect the true nature of a population's genetics. Within the giraffe (Giraffa spp.), subspecies and unique populations were successfully characterized using both mitochondrial and genomic DNA studies, which led to new insights and, in some cases, unexpected results that required further verification. Here, we sequenced the genomes of 85 southern giraffe (G. giraffa) individuals from ten populations across southern Africa for a detailed investigation into the genetic diversity and history of its two subspecies, the Angolan (G. g. angolensis) and the South African (G. g. giraffa) giraffe. While the overall genotypes show low levels of runs of homozygosity compared to other mammals, the degree of heterozygosity is limited despite the large population size of South African giraffe. The nuclear genotype is largely congruent with the mitochondrial genotype. However, we have identified that the distribution of the Angolan giraffe is not as far east as indicated in an earlier mitochondrial DNA study. Botswana's Central Kalahari Game Reserve giraffe are unique, with a clear admixture of Angolan and South African giraffe populations. However, the enigmatic desert-dwelling giraffe of northwest Namibia is locally distinct from other Angolan giraffe yet exhibits intra-subspecies signs of admixture resulting from a recent introduction of individuals from Namibia's Etosha National Park. Whole genome sequencing is an invaluable and nearly indispensable tool for wildlife management to uncover genetic diversity that is undetectable through mitogenomic, geographical, and morphological means.
Collapse
Affiliation(s)
- David Prochotta
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany; Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.
| | - Julian Fennessy
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia; School of Biology and Environmental Science, University College Dublin, Ireland.
| | - Axel Janke
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| |
Collapse
|
17
|
Palandačić A, Reier S, Diripasko OA, Jelić D, Stroj A, Wanka A, Marić D, Bogutskaya NG. Substygophily in Dinaric Karst: A Model Case of Locally Endemic Minnows Phoxinellus (Leuciscinae). Ecol Evol 2024; 14:e70648. [PMID: 39717638 PMCID: PMC11664320 DOI: 10.1002/ece3.70648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
The Dinaric Karst extends along the Adriatic coast of the Western Balkan Peninsula and is home to a group of "karst minnows" of the genera Delminichthys, Phoxinellus, and Telestes, which have adapted to the highly variable water conditions in the karst by spending up to several months underground, but require surface habitats for spawning, defining them as substygophiles. The three species of the genus Phoxinellus, P. alepidotus, P. pseudalepidotus, and P. dalmaticus, are defined by restricted ranges, making them vulnerable to pollution and extended draughts caused by the climate change. In this study, the phylogeny of Leusciscinae was reconstructed using 15 Phoxinellus and one Delminichthys adspersus, one Pelasgus epiroticus, and one Telestes polylepis complete mitochondrial genomes and the position of the genus Phoxinellus within the subfamily as sister species to the Chondrostoma clade was confirmed. The inter- and intrapopulation structure of the genus Phoxinellus was inferred using molecular (nuclear and mitochondrial data) and morphological analyses. For the molecular analysis, more than 150 historical specimens were analyzed for a short fragment of the cytochrome oxidase I (COI) barcoding region and 15 Phoxinellus specimens were subjected to single nucleotide polymorphism analysis. For morphological analysis, 121 Phoxinellus specimens were analyzed for 51 measurements and 8 counts. All analyses confirmed the clear delimitation of the three Phoxinellus species, but were insufficient to fully resolve the intrapopulation structure within the species. This study also included data from field surveys of Phoxinellus collected over the past 20 years, which showed that abundance is declining and ranges are shrinking. Phoxinellus are also threatened by invasive/introduced species. Based on cave observations/occurrence and morphological analysis, P. dalmaticus was classified as an advanced substygophile and P. alepidotus and P. pseudalepidotus were classified as basic stygophiles.
Collapse
Affiliation(s)
- Anja Palandačić
- First Zoological DepartmentVienna Museum of Natural HistoryViennaAustria
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Susanne Reier
- First Zoological DepartmentVienna Museum of Natural HistoryViennaAustria
| | | | - Dušan Jelić
- Croatian Institute for BiodiversityZagrebCroatia
| | | | - Alexandra Wanka
- First Zoological DepartmentVienna Museum of Natural HistoryViennaAustria
| | - Dario Marić
- Dobrič b.b.Široki BrijegBosnia and Herzegovina
| | - Nina G. Bogutskaya
- First Zoological DepartmentVienna Museum of Natural HistoryViennaAustria
- BIOTA j d.o.o.Dolga GoraSlovenia
| |
Collapse
|
18
|
Moran PA, Colgan TJ, Phillips KP, Coughlan J, McGinnity P, Reed TE. Whole-Genome Resequencing Reveals Polygenic Signatures of Directional and Balancing Selection on Alternative Migratory Life Histories. Mol Ecol 2024; 33:e17538. [PMID: 39497337 PMCID: PMC11589691 DOI: 10.1111/mec.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/27/2024]
Abstract
Migration in animals and associated adaptations to contrasting environments are underpinned by complex genetic architecture. Here, we explore the genomic basis of facultative anadromy in brown trout (Salmo trutta), wherein some individuals migrate to sea while others remain resident in natal rivers, to better understand how alternative migratory tactics (AMTs) are maintained evolutionarily. To identify genomic variants associated with AMTs, we sequenced whole genomes for 194 individual trout from five anadromous-resident population pairs, situated above and below waterfalls, in five different Irish rivers. These waterfalls act as natural barriers to upstream migration and hence we predicted that loci underpinning AMTs should be under similar divergent selection across these replicate pairs. A sliding windows based analysis revealed a highly polygenic adaptive divergence between anadromous and resident populations, encompassing 329 differentiated genomic regions. These regions were associated with 292 genes involved in various processes crucial for AMTs, including energy homeostasis, reproduction, osmoregulation, immunity, circadian rhythm and neural function. Furthermore, examining patterns of diversity we were able to link specific genes and biological processes to putative AMT trait classes: migratory-propensity, migratory-lifestyle and residency. Importantly, AMT outlier regions possessed higher genetic diversity than the background genome, particularly in the anadromous group, suggesting balancing selection may play a role in maintaining genetic variation. Overall, the results from this study provide important insights into the genetic architecture of migration and the evolutionary mechanisms shaping genomic diversity within and across populations.
Collapse
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- A‐LIFE, Section Ecology & EvolutionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Thomas J. Colgan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg, University MainzMainzGermany
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Canadian Rivers Institute, University of New BrunswickFrederictonNew BrunswickCanada
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
- Marine Institute, Furnace, NewportMayoIreland
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
19
|
Sotka EE, Hughes AR, Hanley TC, Hays CG. Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass. Mol Ecol 2024; 33:e17565. [PMID: 39474794 PMCID: PMC11589694 DOI: 10.1111/mec.17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.
Collapse
Affiliation(s)
- Erik E. Sotka
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - A. Randall Hughes
- Marine Science Center and Coastal Sustainability InstituteNortheastern UniversityNahantMassachusettsUSA
| | - Torrance C. Hanley
- Marine Science Center and Coastal Sustainability InstituteNortheastern UniversityNahantMassachusettsUSA
- Department of BiologySacred Heart UniversityFairfieldConnecticutUSA
| | - Cynthia G. Hays
- Department of BiologyKeene State CollegeKeeneNew HampshireUSA
| |
Collapse
|
20
|
Wang X, Pedersen CET, Athanasiadis G, Garcia-Erill G, Hanghøj K, Bertola LD, Rasmussen MS, Schubert M, Liu X, Li Z, Lin L, Balboa RF, Jørsboe E, Nursyifa C, Liu S, Muwanika V, Masembe C, Chen L, Wang W, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Persistent Gene Flow Suggests an Absence of Reproductive Isolation in an African Antelope Speciation Model. Syst Biol 2024; 73:979-994. [PMID: 39140829 PMCID: PMC11637686 DOI: 10.1093/sysbio/syae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called "Kingdon's Line." However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820, Gentofte, Denmark
| | - Georgios Athanasiadis
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal, 643, Les Corts, 08028, Barcelona,Spain
| | - Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Malthe Sebro Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Mikkel Schubert
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Xiaodong Liu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Zilong Li
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Long Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Emil Jørsboe
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, OX3 7LF, Regne Unit, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Old Road Campus, Headington, OX3 7LF, Regne Unit, Oxford, UK
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, 2934+RXP, Haidian District, 100193, Beijing, China
| | - Vincent Muwanika
- Department of Environmental Management, Makerere University, Wandegeya, Makerere, PO Box 7062, Kampala, Uganda
| | - Charles Masembe
- Department of Biology, Makerere University, Wandegeya, Makerere, PO Box 7062, Kampala, Uganda
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Anders Albrechtsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| |
Collapse
|
21
|
Hekimoğlu O, Sağlam İK. High Crimean-Congo hemorrhagic fever incidence linked to greater genetic diversity and differentiation in Hyalomma marginatum populations in Türkiye. Parasit Vectors 2024; 17:477. [PMID: 39587660 PMCID: PMC11590318 DOI: 10.1186/s13071-024-06530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Ticks are crucial vectors of a wide range of pathogens, posing significant threats to human and animal health globally. Understanding the genetic basis of tick biology and host-parasite interactions is essential for developing effective control programs. This study investigates the fine-scale genetic structure of Hyalomma marginatum Koch, 1844, the primary vector of Crimean-Congo hemorrhagic fever (CCHF) in Türkiye. Despite its significant public health importance, information regarding its population structure and genetic diversity is quite limited. METHODS We used restriction site-associated DNA sequencing (RAD-Seq) to obtain genome-wide sequence data from 10 tick populations in Türkiye, collected from regions with low, moderate, and high incidence rates of CCHF. Based on these data, we determined population structure and diversity of populations using principal component analysis (PCA) and admixture analysis. Furthermore, we calculated pairwise FST and utilized discriminant analysis of principal components (DAPC) to understand genetic differentiation between populations. RESULTS PCA and admixture analysis indicated minimal genetic structure between populations, but we detected notable genetic differentiation and high genetic diversity from regions with high CCHF rates. Furthermore, our DAPC identified 31 significant single-nucleotide polymorphisms (SNPs) associated with regions with high CCHF incidence, with 25 SNPs located near genes involved in critical biological functions such as nucleic acid binding, transmembrane transport, and proteolysis. These findings suggest that genetic variations in these regions may confer adaptive advantages in environments with high pathogen loads. CONCLUSIONS This study provides the first comprehensive analysis of H. marginatum genetic diversity in Türkiye, revealing significant differentiation in populations from CCHF-endemic regions. These results underscore the importance of considering fine-scale genetic diversity to fully understand the drivers of genetic variation in ticks and their implications for vectorial capacity.
Collapse
Affiliation(s)
- Olcay Hekimoğlu
- Faculty of Science, Department of Biology, Division of Ecology, Hacettepe University, 06800, Beytepe, Ankara, Türkiye.
| | - İsmail K Sağlam
- Faculty of Science, Department of Molecular Biology and Genetics, Koc University, 34450, Ýstanbul, Türkiye
| |
Collapse
|
22
|
Vilaça ST, Dalapicolla J, Soares R, Guedes NMR, Miyaki CY, Aleixo A. Prioritizing Conservation Areas for the Hyacinth Macaw ( Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data. Evol Appl 2024; 17:e70039. [PMID: 39564451 PMCID: PMC11573696 DOI: 10.1111/eva.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Estimates of current genetic diversity and population connectivity are especially important for endangered species that are subject to illegal harvesting and trafficking. Genetic monitoring can also ensure that management units are sustaining viable populations, while estimating genetic structure and population dynamics can influence genetic rescue efforts and reintroduction from captive breeding and confiscated animals. The Hyacinth Macaw (Anodorhynchus hyacinthinus) is a charismatic endangered species with a fragmented (allopatric) distribution. Using low coverage genomes, we aimed to investigate the dynamics across the remaining three large disjunct populations of Hyacinth Macaws in Brazil to inform conservation strategies. We obtained low coverage DNA data for 54 individuals from seven sampling sites. Our results showed that Hyacinth Macaws have four genetically structured clusters with relatively high levels of diversity. The Pantanal biome had two genetically distinct populations, with no obvious physical barriers that might explain this differentiation. We detected signs of gene flow between populations, with some geographical regions being more connected than others. Estimates of effective population size in the past million years of the species' evolutionary history showed a decline trend with the lowest Ne in all populations reached within the last few thousand years. Our findings suggest that populations from the Pantanal biome are key to connecting sites across its distribution, and maintaining the integrity of this habitat is important for protecting the species. Given the genetic structure found, we also highlight the need of conserving all wild populations to ensure the protection of the species' evolutionary potential.
Collapse
Affiliation(s)
| | - Jeronymo Dalapicolla
- Instituto Tecnológico Vale Belém Pará Brazil
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba João Pessoa Paraíba Brazil
| | - Renata Soares
- Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil
| | - Neiva Maria Robaldo Guedes
- Instituto Arara Azul Campo Grande Mato Grosso do Sul Brazil
- Programa de Pós-graduação em Meio Ambiente e Desenvolvimento Regional Universidade para o Desenvolvimento do Estado e da Região do Pantanal Campo Grande Mato Grosso do Sul Brazil
| | - Cristina Y Miyaki
- Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil
| | | |
Collapse
|
23
|
Yi H, Wang J, Dong S, Kang M. Genomic signatures of inbreeding and mutation load in tree ferns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1522-1535. [PMID: 39387366 DOI: 10.1111/tpj.17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Ferns (Pteridophyta), as the second largest group of vascular plants, play important roles in ecosystem functioning. Homosporous ferns exhibit a remarkable range of mating systems, from extreme inbreeding to obligate outcrossing, which may have significant evolutionary and ecological implications. Despite their significance, the impact of genome-wide inbreeding on genetic diversity and mutation load within the fern lineage remain largely unexplored. In this study, we utilized whole-genome sequencing to investigate the genomic signatures of inbreeding and genetic load in three Alsophila tree fern species. Our analysis revealed extremely high inbreeding in A. spinulosa, in contrast to the predominantly outcrossing observed in A. costularis and A. latebrosa. This difference likely reflects divergent mating systems and demographic histories. Consistent with its extreme inbreeding propensity, A. spinulosa exhibits reduced genetic diversity and a pronounced decline in effective population size. Comparison of genetic load revealed an overall reduction in deleterious mutations in the highly inbred A. spinulosa, highlighting that long-term inbreeding may have contributed to the purging of strongly deleterious mutations, thereby prolonging the survival of A. spinulosa. Despite this, however, A. spinulosa carries a substantive realized genetic load that may potentially instigate future fitness decline. Our findings illuminate the complex evolutionary interplay between inbreeding and mutation load in homosporous ferns, yielding insights with important implications for the conservation and management of these species.
Collapse
Affiliation(s)
- Huiqin Yi
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Jing Wang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Shiyong Dong
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Ming Kang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
24
|
Garcia-Erill G, Wang X, Rasmussen MS, Quinn L, Khan A, Bertola LD, Santander CG, Balboa RF, Ogutu JO, Pečnerová P, Hanghøj K, Kuja J, Nursyifa C, Masembe C, Muwanika V, Bibi F, Moltke I, Siegismund HR, Albrechtsen A, Heller R. Extensive Population Structure Highlights an Apparent Paradox of Stasis in the Impala (Aepyceros melampus). Mol Ecol 2024; 33:e17539. [PMID: 39373069 DOI: 10.1111/mec.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Impalas are unusual among bovids because they have remained morphologically similar over millions of years-a phenomenon referred to as evolutionary stasis. Here, we sequenced 119 whole genomes from the two extant subspecies of impala, the common (Aepyceros melampus melampus) and black-faced (A. m. petersi) impala. We investigated the evolutionary forces working within the species to explore how they might be associated with its evolutionary stasis as a taxon. Despite being one of the most abundant bovid species, we found low genetic diversity overall, and a phylogeographic signal of spatial expansion from southern to eastern Africa. Contrary to expectations under a scenario of evolutionary stasis, we found pronounced genetic structure between and within the two subspecies with indications of ancient, but not recent, gene flow. Black-faced impala and eastern African common impala populations had more runs of homozygosity than common impala in southern Africa, and, using a proxy for genetic load, we found that natural selection is working less efficiently in these populations compared to the southern African populations. Together with the fossil record, our results are consistent with a fixed-optimum model of evolutionary stasis, in which impalas in the southern African core of the range are able to stay near their evolutionary fitness optimum as a generalist ecotone species, whereas eastern African impalas may struggle to do so due to the effects of genetic drift and reduced adaptation to the local habitat, leading to recurrent local extinction in eastern Africa and re-colonisation from the South.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Biology and Genetics, Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Xi Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Quinn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anubhab Khan
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Bertola
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cindy G Santander
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Renzo F Balboa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph O Ogutu
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Kristian Hanghøj
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Casia Nursyifa
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles Masembe
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Vincent Muwanika
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ida Moltke
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans R Siegismund
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Rasmus Heller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Longo GC, Minich JJ, Allsing N, James K, Adams-Herrmann ES, Larson W, Hartwick N, Duong T, Muhling B, Michael TP, Craig MT. Crossing the Pacific: Genomics Reveals the Presence of Japanese Sardine (Sardinops melanosticta) in the California Current Large Marine Ecosystem. Mol Ecol 2024; 33:e17561. [PMID: 39440436 DOI: 10.1111/mec.17561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Recent increases in frequency and intensity of warm water anomalies and marine heatwaves have led to shifts in species ranges and assemblages. Genomic tools can be instrumental in detecting such shifts. In the early stages of a project assessing population genetic structure in Pacific Sardine (Sardinops sagax), we detected the presence of Japanese Sardine (Sardinops melanosticta) along the west coast of North America for the first time. We assembled a high quality, chromosome-scale reference genome of the Pacific Sardine and generated low coverage, whole genome sequence (lcWGS) data for 345 sardine collected in the California Current Large Marine Ecosystem (CCLME) in 2021 and 2022. Fifty individuals sampled in 2022 were identified as Japanese Sardine based on strong differentiation observed in lcWGS SNP and full mitogenome data. Although we detected a single case of mitochondrial introgression, we did not observe evidence for recent hybridization events. These findings change our understanding of Sardinops spp. distribution and dispersal in the Pacific and highlight the importance of long-term monitoring programs.
Collapse
Affiliation(s)
- Gary C Longo
- National Marine Fisheries Service, Southwest Fisheries Science Center, Ocean Associates, Inc., Under Contract to the National Oceanic and Atmospheric Administration, La Jolla, California, USA
| | - Jeremiah J Minich
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Nicholas Allsing
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kelsey James
- National Marine Fisheries Service, Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, California, USA
| | - Ella S Adams-Herrmann
- National Marine Fisheries Service, Southwest Fisheries Science Center, Ocean Associates, Inc., Under Contract to the National Oceanic and Atmospheric Administration, La Jolla, California, USA
- University of San Diego, San Diego, California, USA
- University of Central Florida, Department of Biology, Orlando, FL, USA
| | - Wes Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, Juneau, Alaska, USA
| | - Nolan Hartwick
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Tiffany Duong
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Barbara Muhling
- National Marine Fisheries Service, Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, California, USA
- Institute of Marine Sciences Fisheries Collaborative Program, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Matthew T Craig
- National Marine Fisheries Service, Southwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, La Jolla, California, USA
| |
Collapse
|
26
|
Caccavo JA, Arantes LS, Celemín E, Mbedi S, Sparmann S, Mazzoni CJ. Whole-genome resequencing improves the utility of otoliths as a critical source of DNA for fish stock research and monitoring. Mol Ecol Resour 2024; 24:e14013. [PMID: 39233613 DOI: 10.1111/1755-0998.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Fish ear bones, known as otoliths, are often collected in fisheries to assist in management, and are a common sample type in museum and national archives. Beyond their utility for ageing, morphological and trace element analysis, otoliths are a repository of valuable genomic information. Previous work has shown that DNA can be extracted from the trace quantities of tissue remaining on the surface of otoliths, despite the fact that they are often stored dry at room temperature. However, much of this work has used reduced representation sequencing methods in clean lab conditions, to achieve adequate yields of DNA, libraries and ultimately single-nucleotide polymorphisms (SNPs). Here, we pioneer the use of small-scale (spike-in) sequencing to screen contemporary otolith samples prepared in regular molecular biology (in contrast to clean) laboratories for contamination and quality levels, submitting for whole-genome resequencing only samples above a defined endogenous DNA threshold. Despite the typically low quality and quantity of DNA extracted from otoliths, we are able to produce whole-genome libraries and ultimately sets of filtered, unlinked and even putatively adaptive SNPs of ample numbers for downstream uses in population, climate and conservation genomics. By comparing with a set of tissue samples from the same species, we are able to highlight the quality and efficacy of otolith samples from DNA extraction and library preparation, to bioinformatic preprocessing and SNP calling. We provide detailed schematics, protocols and scripts of our approach, such that it can be adopted widely by the community, improving the use of otoliths as a source of valuable genomic data.
Collapse
Affiliation(s)
- Jilda Alicia Caccavo
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Department of Evolutionary Genetics, Leibniz-Institut für Zoo- und Wildtierforschung, IZW, Berlin, Germany
| | - Larissa S Arantes
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Department of Evolutionary Genetics, Leibniz-Institut für Zoo- und Wildtierforschung, IZW, Berlin, Germany
| | - Enrique Celemín
- Institute of Biochemistry and Biology, Evolutionary Biology & Systematic Zoology, University of Potsdam, Potsdam, Germany
| | - Susan Mbedi
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Museum für Naturkunde, Berlin, Germany
| | - Sarah Sparmann
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, BeGenDiv, Berlin, Germany
- Department of Evolutionary Genetics, Leibniz-Institut für Zoo- und Wildtierforschung, IZW, Berlin, Germany
| |
Collapse
|
27
|
Rossi C, Sinding MHS, Mullin VE, Scheu A, Erven JAM, Verdugo MP, Daly KG, Ciucani MM, Mattiangeli V, Teasdale MD, Diquelou D, Manin A, Bangsgaard P, Collins M, Lord TC, Zeibert V, Zorzin R, Vinter M, Timmons Z, Kitchener AC, Street M, Haruda AF, Tabbada K, Larson G, Frantz LAF, Gehlen B, Alhaique F, Tagliacozzo A, Fornasiero M, Pandolfi L, Karastoyanova N, Sørensen L, Kiryushin K, Ekström J, Mostadius M, Grandal-d'Anglade A, Vidal-Gorosquieta A, Benecke N, Kropp C, Grushin SP, Gilbert MTP, Merts I, Merts V, Outram AK, Rosengren E, Kosintsev P, Sablin M, Tishkin AA, Makarewicz CA, Burger J, Bradley DG. The genomic natural history of the aurochs. Nature 2024; 635:136-141. [PMID: 39478219 DOI: 10.1038/s41586-024-08112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/25/2024] [Indexed: 11/04/2024]
Abstract
Now extinct, the aurochs (Bos primigenius) was a keystone species in prehistoric Eurasian and North African ecosystems, and the progenitor of cattle (Bos taurus), domesticates that have provided people with food and labour for millennia1. Here we analysed 38 ancient genomes and found 4 distinct population ancestries in the aurochs-European, Southwest Asian, North Asian and South Asian-each of which has dynamic trajectories that have responded to changes in climate and human influence. Similarly to Homo heidelbergensis, aurochsen first entered Europe around 650 thousand years ago2, but early populations left only trace ancestry, with both North Asian and European B. primigenius genomes coalescing during the most recent glaciation. North Asian and European populations then appear separated until mixing after the climate amelioration of the early Holocene. European aurochsen endured the more severe bottleneck during the Last Glacial Maximum, retreating to southern refugia before recolonizing from Iberia. Domestication involved the capture of a small number of individuals from the Southwest Asian aurochs population, followed by early and pervasive male-mediated admixture involving each ancestral strain of aurochs after domestic stocks dispersed beyond their cradle of origin.
Collapse
Affiliation(s)
- Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Victoria E Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Amelie Scheu
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jolijn A M Erven
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Groningen Institute of Archaeology, University of Groningen, Groningen, The Netherlands
| | | | - Kevin G Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Marta Maria Ciucani
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Matthew D Teasdale
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deborah Diquelou
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Aurélie Manin
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Pernille Bangsgaard
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Collins
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | | | - Viktor Zeibert
- Institute of Archaeology and Steppe Civilizations, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Roberto Zorzin
- Sezione di Geologia e Paleontologia, Museo Civico di Storia Naturale di Verona, Verona, Italy
| | | | - Zena Timmons
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Martin Street
- LEIZA, Archaeological Research Centre and Museum for Human Behavioural Evolution, Schloss Monrepos, Neuwied, Germany
| | - Ashleigh F Haruda
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabbada
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Laurent A F Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Birgit Gehlen
- Institute for Prehistory and Protohistory, University of Cologne, Cologne, Germany
| | - Francesca Alhaique
- Bioarchaeology Service, Museo delle Civiltà, Piazza Guglielmo Marconi, Rome, Italy
| | - Antonio Tagliacozzo
- Bioarchaeology Service, Museo delle Civiltà, Piazza Guglielmo Marconi, Rome, Italy
| | | | - Luca Pandolfi
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Nadezhda Karastoyanova
- Department of Paleontology and Mineralogy, National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Kirill Kiryushin
- Department of Recreational Geography, Service, Tourism and Hospitality, Institute of Geography, Altai State University, Barnaul, Russian Federation
| | - Jonas Ekström
- The Biological Museum, Lund University, Arkivcentrum Syd, Lund, Sweden
| | - Maria Mostadius
- The Biological Museum, Lund University, Arkivcentrum Syd, Lund, Sweden
| | | | | | - Norbert Benecke
- German Archaeological Institute, Central Department, Berlin, Germany
| | - Claus Kropp
- Lauresham Laboratory for Experimental Archaeology, UNESCO-Welterbestätte Kloster Lorsch, Lorsch, Germany
| | - Sergei P Grushin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russian Federation
| | - M Thomas P Gilbert
- Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ilja Merts
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Viktor Merts
- Toraighyrov University, Joint Research Center for Archeological Studies, Pavlodar, Kazakhstan
| | - Alan K Outram
- Department of Archaeology and History, University of Exeter, Exeter, UK
| | - Erika Rosengren
- Department of Archaeology and Ancient History, Lund University, Lund, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
- Lund University Historical Museum, Lund, Sweden
| | - Pavel Kosintsev
- Paleoecology Laboratory, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
- Department of History, Institute of Humanities, Ural Federal University, Ekaterinburg, Russian Federation
| | - Mikhail Sablin
- Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
| | - Alexey A Tishkin
- Department of Archaeology, Ethnography and Museology, Altai State University, Barnaul, Russian Federation
| | - Cheryl A Makarewicz
- Archaeology Stable Isotope Laboratory, Institute of Pre- and Protohistoric Archaeology, University of Kiel, Kiel, Germany
- University of Haifa, Haifa, Israel
| | - Joachim Burger
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
28
|
de-Dios T, Fontsere C, Renom P, Stiller J, Llovera L, Uliano-Silva M, Sánchez-Gracia A, Wright C, Lizano E, Caballero B, Navarro A, Civit S, Robbins RK, Blaxter M, Marquès T, Vila R, Lalueza-Fox C. Whole genomes from the extinct Xerces Blue butterfly can help identify declining insect species. eLife 2024; 12:RP87928. [PMID: 39365295 PMCID: PMC11466284 DOI: 10.7554/elife.87928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The Xerces Blue (Glaucopsyche xerces) is considered to be the first butterfly to become extinct in historical times. It was notable for its chalky lavender wings with conspicuous white spots on the ventral wings. The last individuals were collected in their restricted habitat, in the dunes near the Presidio military base in San Francisco, in 1941. We sequenced the genomes of four 80- to 100-year-old Xerces Blue, and seven historical and one modern specimens of its closest relative, the Silvery Blue (Glaucopsyche lygdamus). We compared these to a novel annotated genome of the Green-Underside Blue (Glaucopsyche alexis). Phylogenetic relationships inferred from complete mitochondrial genomes indicate that Xerces Blue was a distinct species that diverged from the Silvery Blue lineage at least 850,000 years ago. Using nuclear genomes, both species experienced population growth during the Eemian interglacial period, but the Xerces Blue decreased to a very low effective population size subsequently, a trend opposite to that observed in the Silvery Blue. Runs of homozygosity and deleterious load in the former were significantly greater than in the later, suggesting a higher incidence of inbreeding. These signals of population decline observed in Xerces Blue could be used to identify and monitor other insects threatened by human activities, whose extinction patterns are still not well known.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Evolutionary BiologyBarcelonaSpain
- Institute of Genomics, University of TartuTartuEstonia
| | - Claudia Fontsere
- Institute of Evolutionary BiologyBarcelonaSpain
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Pere Renom
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Josefin Stiller
- Centre for Biodiversity Genomics, University of CopenhagenCopenhagenDenmark
| | | | | | - Alejandro Sánchez-Gracia
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | | | - Esther Lizano
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Arcadi Navarro
- Institute of Evolutionary BiologyBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Civit
- Departament of Genetics, Microbiology and Statistics-Institut de Recerca de la Biodiversitat (IRBio), Universitat de BarcelonaBarcelonaSpain
| | - Robert K Robbins
- Department of Entomology, National Museum of Natural History, Smithsonian InstitutionWashingtonUnited States
| | - Mark Blaxter
- Wellcome Sanger InstituteSaffron WaldenUnited Kingdom
| | - Tomàs Marquès
- Institute of Evolutionary BiologyBarcelonaSpain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de BarcelonaBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Roger Vila
- Institute of Evolutionary BiologyBarcelonaSpain
| | - Carles Lalueza-Fox
- Institute of Evolutionary BiologyBarcelonaSpain
- Museu de Ciències Naturals de BarcelonaBarcelonaSpain
| |
Collapse
|
29
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
30
|
Quiroga-Carmona M, Liphardt S, Bautista NM, Jayat P, Teta P, Malaney JL, McFarland T, Cook JA, Blumer LM, Herrera ND, Cheviron ZA, Good JM, D’Elía G, Storz JF. Species limits and hybridization in Andean leaf-eared mice ( Phyllotis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610610. [PMID: 39282442 PMCID: PMC11398333 DOI: 10.1101/2024.08.31.610610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Leaf-eared mice (genus Phyllotis) are among the most widespread and abundant small mammals in the Andean Altiplano, but species boundaries and distributional limits are often poorly delineated due to sparse survey data from remote mountains and high-elevation deserts. Here we report a combined analysis of mitochondrial DNA variation and whole-genome sequence (WGS) variation in Phyllotis mice to delimit species boundaries, to assess the timescale of diversification of the group, and to examine evidence for interspecific hybridization. Estimates of divergence dates suggest that most diversification of Phyllotis occurred during the past 3 million years. Consistent with the Pleistocene Aridification hypothesis, our results suggest that diversification of Phyllotis largely coincided with climatically induced environmental changes in the mid- to late Pleistocene. Contrary to the Montane Uplift hypothesis, most diversification in the group occurred well after the major phase of uplift of the Central Andean Plateau. Species delimitation analyses revealed surprising patterns of cryptic diversity within several nominal forms, suggesting the presence of much undescribed alpha diversity in the genus. Results of genomic analyses revealed evidence of ongoing hybridization between the sister species Phyllotis limatus and P. vaccarum and suggest that the contemporary zone of range overlap between the two species represents an active hybrid zone.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Schuyler Liphardt
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Naim M. Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| | - Pablo Jayat
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), San Miguel de Tucumán, Argentina
- Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito (UNdeC), Argentina
| | - Pablo Teta
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jason L. Malaney
- New Mexico Museum of Natural History and Science, Albuquerque, NM, United States
| | - Tabitha McFarland
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Joseph A. Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - L. Moritz Blumer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nathanael D. Herrera
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
31
|
Gamba D, Vahsen ML, Maxwell TM, Pirtel N, Romero S, Ee JJV, Penn A, Das A, Ben-Zeev R, Baughman O, Blaney CS, Bodkins R, Budha-Magar S, Copeland SM, Davis-Foust SL, Diamond A, Donnelly RC, Dunwiddie PW, Ensing DJ, Everest TA, Hoitink H, Holdrege MC, Hufbauer RA, Juzėnas S, Kalwij JM, Kashirina E, Kim S, Klisz M, Klyueva A, Langeveld M, Lutfy S, Martin D, Merkord CL, Morgan JW, Nagy DU, Ott JP, Puchalka R, Pyle LA, Rasran L, Rector BG, Rosche C, Sadykova M, Shriver RK, Stanislavschi A, Starzomski BM, Stone RL, Turner KG, Urza AK, VanWallendael A, Wegenschimmel CA, Zweck J, Brown CS, Leger EA, Blumenthal DM, Germino MJ, Porensky LM, Hooten MB, Adler PB, Lasky JR. Local adaptation to climate facilitates a global invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612725. [PMID: 39345363 PMCID: PMC11429938 DOI: 10.1101/2024.09.12.612725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Local adaptation may facilitate range expansion during invasions, but the mechanisms promoting destructive invasions remain unclear. Cheatgrass (Bromus tectorum), native to Eurasia and Africa, has invaded globally, with particularly severe impacts in western North America. We sequenced 307 genotypes and conducted controlled experiments. We found that diverse lineages invaded North America, where long-distance gene flow is common. Ancestry and phenotypic clines in the native range predicted those in the invaded range, indicating pre-adapted genotypes colonized different regions. Common gardens showed directional selection on flowering time that reversed between warm and cold sites, potentially maintaining clines. In the Great Basin, genomic predictions of strong local adaptation identified sites where cheatgrass is most dominant. Preventing new introductions that may fuel adaptation is critical for managing ongoing invasions.
Collapse
Affiliation(s)
- Diana Gamba
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Megan L. Vahsen
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Toby M. Maxwell
- Department of Biological Sciences, Boise State University; Boise, ID, USA
| | - Nikki Pirtel
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Seth Romero
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Justin J. Van Ee
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Amanda Penn
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Aayudh Das
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | - Rotem Ben-Zeev
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| | | | - C. Sean Blaney
- Atlantic Canada Conservation Data Centre; Sackville, NB, Canada
| | | | | | - Stella M. Copeland
- US Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center; Burns, OR, USA
| | | | - Alvin Diamond
- Department of Biological and Environmental Sciences, Troy University; Troy, Alabama, USA
| | - Ryan C. Donnelly
- Division of Biology, Kansas State University; Manhattan, KS, USA
| | | | - David J. Ensing
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada; Summerland, BC, Canada
| | | | | | - Martin C. Holdrege
- Northern Arizona University, Center for Adaptable Western Landscapes; Flagstaff, AZ, USA
| | - Ruth A. Hufbauer
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | - Sigitas Juzėnas
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University; Vilnius, Lithuania
| | - Jesse M. Kalwij
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology; Karlsruhe, Germany
| | | | - Sangtae Kim
- Department of Biology, Sungshin Women’s University; Seoul, Republic of Korea
| | - Marcin Klisz
- Department of Silviculture and Genetics of Forest Trees, Forest Research Institute; Raszyn, Poland
| | - Alina Klyueva
- Bryansk State University named after Academician I. G. Petrovsky; Bryansk, Russia
| | | | - Samuel Lutfy
- Caesar Kleberg Wildlife Research Institute, Texas A&M University - Kingsville; Kingsville, TX, USA
| | | | | | - John W. Morgan
- Department of Environment and Genetics, La Trobe University; Bundoora, Victoria, Australia
| | - Dávid U. Nagy
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | - Jacqueline P. Ott
- USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD, USA
| | - Radoslaw Puchalka
- Department of Ecology and Biogeography, Nicolaus Copernicus University; Torun, Poland
| | | | - Leonid Rasran
- University of Natural Resources and Life Sciences, Vienna; Vienna, Austria
| | - Brian G. Rector
- US Department of Agriculture, Agricultural Research Service, Invasive Species and Pollinator Health Research Unit; Albany, CA, USA
| | - Christoph Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg; Halle, Saale, Germany
| | | | - Robert K. Shriver
- Department of Natural Resources and Environmental Science, University of Nevada; Reno, NV, USA
| | - Alexandr Stanislavschi
- Department of Organic, Biochemical, and Food Engineering, Gheorghe Asachi Technical University of Iasi; Iasi, Romania
| | - Brian M. Starzomski
- School of Environmental Studies, University of Victoria; Victoria, BC, Canada
| | - Rachel L. Stone
- Department of Biology, Case Western Reserve University; Cleveland, OH, USA
| | - Kathryn G. Turner
- Department of Biological Sciences, Idaho State University; Pocatello, ID, USA
| | | | - Acer VanWallendael
- Department of Horticultural Science, North Carolina State University; Raleigh, NC, USA
| | | | - Justin Zweck
- Department of Ecosystem Science and Management, Pennsylvania State University; University Park, PA, USA
| | - Cynthia S. Brown
- Department of Agricultural Biology, Colorado State University; Fort Collins, CO, USA
| | | | - Dana M. Blumenthal
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Matthew J. Germino
- US Geological Survey, Forest and Rangeland Ecosystem Science Center; Boise, Idaho, USA
| | - Lauren M. Porensky
- US Department of Agriculture, Agricultural Research Service, Rangeland Resources and Systems Research Unit; Fort Collins, CO, USA
| | - Mevin B. Hooten
- Department of Statistics and Data Sciences, The University of Texas at Austin; Austin, TX, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University; Logan, UT, USA
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University; University Park, PA, USA
| |
Collapse
|
32
|
Sun Y, Lorenzen ED, Westbury MV. Late Pleistocene polar bear genomes reveal the timing of allele fixation in key genes associated with Arctic adaptation. BMC Genomics 2024; 25:826. [PMID: 39278943 PMCID: PMC11403954 DOI: 10.1186/s12864-024-10617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/12/2024] [Indexed: 09/18/2024] Open
Abstract
The polar bear (Ursus maritimus) occupies a relatively narrow ecological niche, with many traits adapted for cold temperatures, movement across snow, ice and open water, and for consuming highly lipid-dense prey species. The divergence of polar bears from brown bears (Ursus arctos) and their adaptation to their Arctic lifestyle is a well-known example of rapid evolution. Previous research investigating whole genomes uncovered twelve key genes that are highly differentiated between polar and brown bears, show signatures of selection in the polar bear lineage, and are associated with polar bear adaptation to the Arctic environment. Further research suggested fixed derived alleles in these genes arose from selection on both standing variation and de novo mutations in the evolution of polar bears. Here, we reevaluate these findings based on a larger and geographically more representative dataset of 119 polar bears and 135 brown bears, and assess the timing of derived allele fixation in polar bears by incorporating the genomes of two Late Pleistocene individuals (aged 130-100,000 years old and 100-70,000 years old). In contrast with previous results, we found no evidence of derived alleles fixed in present-day polar bears within the key genes arising from de novo mutation. Most derived alleles fixed in present-day polar bears were also fixed in the Late Pleistocene polar bears, suggesting selection occurred prior to 70,000 years ago. However, some derived alleles fixed in present-day polar bears were not fixed in the two Late Pleistocene polar bears, including at sites within APOB, LYST, and TTN. These three genes are associated with cardiovascular function, metabolism, and pigmentation, suggesting selection may have acted on different loci at different times.
Collapse
Affiliation(s)
- Yulin Sun
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- School of The Environment, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
33
|
Cauz-Santos LA, Samuel R, Metschina D, Christenhusz MJM, Dodsworth S, Dixon KW, Conran JG, Paun O, Chase MW. Recent speciation and adaptation to aridity in the ecologically diverse Pilbara region of Australia enabled the native tobaccos (Nicotiana; Solanaceae) to colonize all Australian deserts. Mol Ecol 2024; 33:e17498. [PMID: 39152668 DOI: 10.1111/mec.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Over the last 6 million years, the arid Australian Eremaean Zone (EZ) has remained as dry as it is today. A widely accepted hypothesis suggests that the flora and fauna of arid regions were more broadly distributed before aridification began. In Australia, this process started around 20 million years ago (Ma), leading to gradual speciation as the climate became increasingly arid. Here, we use genomic data to investigate the biogeography and timing of divergence of native allotetraploid tobaccos, Nicotiana section Suaveolentes (Solanaceae). The original allotetraploid migrants from South America were adapted to mesic areas of Australia and recently radiated in the EZ, including in sandy dune fields (only 1.2 Ma old), after developing drought adaptations. Coalescent and maximum likelihood analyses suggest that Nicotiana section Suaveolentes arrived on the continent around 6 Ma, with the ancestors of the Pilbara (Western Australian) lineages radiating there at the onset of extreme aridity 5 Ma by locally adapting to these various ancient, highly stable habitats. The Pilbara thus served as both a mesic refugium and cradle for adaptations to harsher conditions, due to its high topographical diversity, providing microhabitats with varying moisture levels and its proximity to the ocean, which buffers against extreme aridity. This enabled species like Nicotiana to survive in mesic refugia and subsequently adapt to more arid conditions. These results demonstrate that initially poorly adapted plant groups can develop novel adaptations in situ, permitting extensive and rapid dispersal despite the highly variable and unpredictable extreme conditions of the EZ.
Collapse
Affiliation(s)
- Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Dominik Metschina
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Maarten J M Christenhusz
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Kingsley W Dixon
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - John G Conran
- Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Mark W Chase
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
34
|
Fernandes AM, Cohn-Haft M, Fábio Silveira L, Aleixo A, Nascimento N, Olsson U. Speciation in savanna birds in South America: The case of the Least Nighthawk Chordeiles pusillus (Aves: Caprimulgidae) in and out of the Amazon. Mol Phylogenet Evol 2024; 198:108117. [PMID: 38852908 DOI: 10.1016/j.ympev.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The Least Nighthawk Chordeiles pusillus is widespread wherever there are savannas in the South American tropics, often in isolated patches, such as white-sands savannas in the Amazon rainforest realm. Here, we investigate genetic relationships between populations of the Least Nighthawk to understand historical processes leading to its diversification and to determine dispersal routes between northern and southern savannas by way of three hypothesized dispersal corridors by comparing samples from white-sand savannas to samples from other savannas outside of the Amazon rainforest region. We use 32 mtDNA samples from the range of C. pusillus to infer a dated phylogeny. In a subset of 17 samples, we use shotgun sequences to infer a distance-based phylogeny and to estimate individual admixture proportions. We calculate gene flow and shared alleles between white-sand and non-Amazonian populations using the ABBA-BABA test (D statistics), and Principal Component Analysis (PCA) to examine genetic structure within and between lineages. Finally, we use species distribution modelling (SDM) of conditions during the Last Glacial Maximum (LGM), currently, and in the future (2050-2080) to predict potential species occurrence under a climate change scenario. Two main clades (estimated to have diverged around 1.07 million years ago) were recovered with mtDNA sequences and Single Nucleotide Polymorphism (SNPs) and were supported by NGSadmix and PCA: one in the Amazon basin white-sand savannas, the other in the non-Amazonian savannas. Possible allele sharing between these clades was indicated by the D-statistics between northern non-Amazonian populations and the white-sand savanna population, but this was not corroborated by the admixture analyses. Dispersal among northern non-Amazonian populations may have occurred in a dry corridor between the Guianan and the Brazilian Shield, which has since moved eastward. Our data suggest that the lineages separated well before the Last Glacial Maximum, consequently dispersal could have happened at any earlier time during similar climatic conditions. Subsequently, non-Amazonian lineages became more divergent among themselves, possibly connecting and dispersing across the mouth of the Amazon River across Marajó island during favourable climatic conditions in the Pleistocene.
Collapse
Affiliation(s)
| | | | | | - Alexandre Aleixo
- Museu Paraense Emílio Goeldi, Belém, Brazil; Instituto Tecnológico Vale, Brazil
| | | | - Urban Olsson
- Department of Biology and Environmental Science, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
35
|
Thörn F, Soares AER, Müller IA, Päckert M, Frahnert S, van Grouw H, Kamminga P, Peona V, Suh A, Blom MPK, Irestedt M. Contemporary intergeneric hybridization and backcrossing among birds-of-paradise. Evol Lett 2024; 8:680-694. [PMID: 39328285 PMCID: PMC11424083 DOI: 10.1093/evlett/qrae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 09/28/2024] Open
Abstract
Despite large differences in morphology, behavior and lek-mating strategies the birds-of-paradise are known to hybridize occasionally, even across different genera. Many of these bird-of-paradise hybrids were originally described as distinct species based on large morphological differences when compared to recognized species. Nowadays, these specimens are generally recognized as hybrids based on morphological assessments. Having fascinated naturalists for centuries, hybrid specimens of birds-of-paradise have been collected and the specimens kept in Natural History Collections. In the present study, we utilize this remarkable resource in a museomics framework and evaluate the genomic composition of most described intergeneric hybrids and some intrageneric hybrids. We show that the majority of investigated specimens are first-generation hybrids and that the parental species, in most cases, are in line with prior morphological assessments. We also identify two specimens that are the result of introgressive hybridization between different genera. Additionally, two specimens exhibit hybrid morphologies but have no identifiable signals of hybridization, which may indicate that minor levels of introgression can have large morphological effects. Our findings provide direct evidence of contemporary introgressive hybridization taking place between genera of birds-of-paradise in nature, despite markedly different morphologies and lek-mating behaviors.
Collapse
Affiliation(s)
- Filip Thörn
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - André E R Soares
- Department of Medical Biochemistry and Microbiology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingo A Müller
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Päckert
- Section Ornithology, Senckenberg Natural History Collections, Museum für Tierkunde, Dresden, Germany
| | - Sylke Frahnert
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Hein van Grouw
- Bird Group, Department of Life Sciences, Natural History Museum, Tring, Herts, United Kingdom
| | | | - Valentina Peona
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Swiss Ornithological Institute—Vogelwarte, Sempach, Switzerland
| | - Alexander Suh
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology—Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mozes P K Blom
- Museum für Naturkunde—Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| |
Collapse
|
36
|
Eckert RJ, Sturm AB, Carreiro AM, Klein AM, Voss JD. Cryptic diversity of shallow and mesophotic Stephanocoenia intersepta corals across Florida Keys National Marine Sanctuary. Heredity (Edinb) 2024; 133:137-148. [PMID: 38937604 PMCID: PMC11350147 DOI: 10.1038/s41437-024-00698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
Population genetic analyses can provide useful data on species' regional connectivity and diversity which can inform conservation and restoration efforts. In this study, we quantified the genetic connectivity and diversity of Stephanocoenia intersepta corals from shallow (<30 m) to mesophotic (30-45 m) depths across Florida Keys National Marine Sanctuary. We generated single nucleotide polymorphism (SNP) markers to identify genetic structuring of shallow and mesophotic S. intersepta corals. We uncovered four distinct, cryptic genetic lineages with varying levels of depth-specificity. Shallow-specific lineages exhibited lower heterozygosity and higher inbreeding relative to depth-generalist lineages found across both shallow and mesophotic reefs. Estimation of recent genetic migration rates demonstrated that mesophotic sites are more prolific sources than shallow sites, particularly in the Lower Keys and Upper Keys. Additionally, we compared endosymbiotic Symbiodiniaceae among sampled S. intersepta using the ITS2 region and SYMPORTAL analysis framework, identifying symbionts from the genera Symbiodinium, Breviolum, and Cladocopium. Symbiodiniaceae varied significantly across depth and location and exhibited significant, but weak correlation with host lineage and genotype. Together, these data demonstrate that despite population genetic structuring across depth, some mesophotic populations may provide refuge for shallow populations moving forward and remain important contributors to the overall genetic diversity of this species throughout the region. This study highlights the importance of including mesophotic as well as shallow corals in population genetic assessments and informs future science-based management, conservation, and restoration efforts within Florida Keys National Marine Sanctuary.
Collapse
Affiliation(s)
- Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA.
| | - Alexis B Sturm
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Ashley M Carreiro
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Allison M Klein
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
37
|
Capblancq T, Sękiewicz K, Dering M. Forest genomics in the Caucasus through the lens of its dominant tree species - Fagus orientalis. Mol Ecol 2024; 33:e17475. [PMID: 39021282 DOI: 10.1111/mec.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
The last glacial period is known to have greatly influenced the demographic history of temperate forest trees, with important range contractions and post-glacial expansions that led to the formation of multiple genetic lineages and secondary contact zones in the Northern Hemisphere. These dynamics have been extensively studied for European and North American species but are still poorly understood in other temperate regions of rich biodiversity such as the Caucasus. Our study helps filling that gap by deciphering the genomic landscapes of F. orientalis across the South Caucasus. The use of genome-wide data confirmed a past demographic history strongly influenced by the Last Glacial Maximum, revealing two disjunct glacial refugia in the Colchis and Hyrcanian regions. The resulting patterns of genetic diversity, load and differentiation are not always concordant across the region, with genetic load pinpointing the location of the glacial refugia more efficiently than genetic diversity alone. The Hyrcanian forests show depleted genetic diversity and substantial isolation, even if long-distance gene flow is still present with the main centre of diversity in the Greater Caucasus. Finally, we characterize a strong heterogeneity of genetic diversity and differentiation along the species chromosomes, with noticeably a first chromosome showing low diversity and weak differentiation.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Écologie Alpine, Grenoble, France
| | | | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Silviculture, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
38
|
Bruxaux J, Zhao W, Hall D, Curtu AL, Androsiuk P, Drouzas AD, Gailing O, Konrad H, Sullivan AR, Semerikov V, Wang XR. Scots pine - panmixia and the elusive signal of genetic adaptation. THE NEW PHYTOLOGIST 2024; 243:1231-1246. [PMID: 38308133 DOI: 10.1111/nph.19563] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
Collapse
Affiliation(s)
- Jade Bruxaux
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Wei Zhao
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - David Hall
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
- Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden
| | | | - Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany
| | - Heino Konrad
- Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria
| | - Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| | - Vladimir Semerikov
- Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
39
|
Black AN, Mularo AJ, Jeon JY, Haukos D, Bondo KJ, Fricke KA, Gregory A, Grisham B, Lowe ZE, DeWoody JA. Discordance between taxonomy and population genomic data: An avian example relevant to the United States Endangered Species Act. PNAS NEXUS 2024; 3:pgae298. [PMID: 39131912 PMCID: PMC11313583 DOI: 10.1093/pnasnexus/pgae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024]
Abstract
Population genomics can reveal cryptic biological diversity that may impact fitness while simultaneously serving to delineate relevant conservation units. Here, we leverage the power of whole-genome resequencing for conservation by studying 433 individual lesser prairie-chicken (Tympanuchus pallidicinctus; LEPC, a federally endangered species of conservation concern in the United States) and greater prairie-chicken (Tympanuchus cupido; GRPC, a legally huntable species throughout much of its range). The genomic diversity of two formally recognized distinct population segments (DPSs) of LEPCs is similar, but they are genetically distinct. Neither DPS is depleted of its genomic diversity, neither is especially inbred, and temporal diversity is relatively stable in both conservation units. Interspecific differentiation between the two species was only slightly higher than that observed between LEPC DPSs, due largely to bidirectional introgression. The high resolution provided by our dataset identified a genomic continuum between the two species such that individuals sampled from the hybrid zone were imperfectly assigned to their presumptive species when considering only their physical characteristics. The admixture between the two species is reflected in the spectrum of individual ancestry coefficients, which has legal implications for the "take" of individuals under the Endangered Species Act. Overall, our data highlight the recurring dissonance between static policies and dynamic species boundaries that are increasingly obvious in the population genomic era.
Collapse
Affiliation(s)
- Andrew N Black
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
- Western Association of Fish and Wildlife Agencies, Boise, ID 83719, USA
| | - Andrew J Mularo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 66506, USA
| | - Jong Yoon Jeon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - David Haukos
- U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin J Bondo
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79410, USA
| | - Kent A Fricke
- Kansas Department of Wildlife and Parks, Emporia, KS 66801, USA
| | - Andy Gregory
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Blake Grisham
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX 79410, USA
| | - Zachary E Lowe
- Western Association of Fish and Wildlife Agencies, Boise, ID 83719, USA
| | - J Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 66506, USA
| |
Collapse
|
40
|
Berman LM, Wu MY, Baveja P, Cros E, Sin YCK, Prawiradilaga DM, Rheindt FE. Population structure in Mixornis tit-babblers across Sunda Shelf matches interfluvia of paleo-rivers. Mol Phylogenet Evol 2024; 197:108105. [PMID: 38754709 DOI: 10.1016/j.ympev.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/04/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Rivers constitute an important biogeographic divide in vast areas of tropical rainforest, such as the Amazon and Congo Basins. Southeast Asia's rainforests are currently fragmented across islands divided by sea, which has long obscured their extensive history of terrestrial connectivity as part of a vast (but now submerged) subcontinent - Sundaland - during most of the Quaternary. The role of paleo-rivers in determining population structure in Sundaic rainforests at a time when these forests were connected remains little understood. We examined the coloration of museum skins and used the genomic DNA of museum samples and freshly-collected blood tissue of a pair of Sundaic songbird species, the pin-striped and bold-striped tit-babblers (Mixornis gularis and M. bornensis, respectively), to assess the genetic affinity of populations on small Sundaic islands that have largely been ignored by modern research. Our genomic and morphological results place the populations from the Anambas and Natuna Islands firmly within M. gularis from the Malay Peninsula in western Sundaland, even though some of these islands are geographically much closer to Borneo, where M. bornensis resides. Our results reveal genetic structure consistent with the course of Sundaic paleo-rivers and the location of the interfluvia they formed, and add to a small but growing body of evidence that rivers would have been of equal biogeographic importance in Sundaland's former connected forest landscape as they are in Amazonia and the Congo Basin today.
Collapse
Affiliation(s)
- Laura Marie Berman
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore.
| | - Meng Yue Wu
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore
| | - Pratibha Baveja
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore
| | - Emilie Cros
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore
| | - Yong Chee Keita Sin
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore.
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jalan Raya, Jakarta Bogor KM 46, Cibinong 16911, Indonesia.
| | - Frank E Rheindt
- National University of Singapore, Department of Biological Sciences, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
41
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
42
|
Trinh MDL, Visintainer D, Günther J, Østerberg JT, da Fonseca RR, Fondevilla S, Moog MW, Luo G, Nørrevang AF, Crocoll C, Nielsen PV, Jacobsen S, Wendt T, Bak S, López‐Marqués RL, Palmgren M. Site-directed genotype screening for elimination of antinutritional saponins in quinoa seeds identifies TSARL1 as a master controller of saponin biosynthesis selectively in seeds. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2216-2234. [PMID: 38572508 PMCID: PMC11258981 DOI: 10.1111/pbi.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Climate change may result in a drier climate and increased salinization, threatening agricultural productivity worldwide. Quinoa (Chenopodium quinoa) produces highly nutritious seeds and tolerates abiotic stresses such as drought and high salinity, making it a promising future food source. However, the presence of antinutritional saponins in their seeds is an undesirable trait. We mapped genes controlling seed saponin content to a genomic region that includes TSARL1. We isolated desired genetic variation in this gene by producing a large mutant library of a commercial quinoa cultivar and screening the library for specific nucleotide substitutions using droplet digital PCR. We were able to rapidly isolate two independent tsarl1 mutants, which retained saponins in the leaves and roots for defence, but saponins were undetectable in the seed coat. We further could show that TSARL1 specifically controls seed saponin biosynthesis in the committed step after 2,3-oxidosqualene. Our work provides new important knowledge on the function of TSARL1 and represents a breakthrough for quinoa breeding.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Davide Visintainer
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Jan Günther
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Rute R. da Fonseca
- Section for BiodiversityGlobe Institute, University of CopenhagenKøbenhavn ØDenmark
| | | | - Max William Moog
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Guangbin Luo
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Anton F. Nørrevang
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Christoph Crocoll
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Philip V. Nielsen
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | | | - Søren Bak
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| | | | - Michael Palmgren
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
43
|
Andrade P, Alves JM, Pereira P, Rubin CJ, Silva E, Sprehn CG, Enbody E, Afonso S, Faria R, Zhang Y, Bonino N, Duckworth JA, Garreau H, Letnic M, Strive T, Thulin CG, Queney G, Villafuerte R, Jiggins FM, Ferrand N, Andersson L, Carneiro M. Selection against domestication alleles in introduced rabbit populations. Nat Ecol Evol 2024; 8:1543-1555. [PMID: 38907020 DOI: 10.1038/s41559-024-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Humans have moved domestic animals around the globe for thousands of years. These have occasionally established feral populations in nature, often with devastating ecological consequences. To understand how natural selection shapes re-adaptation into the wild, we investigated one of the most successful colonizers in history, the European rabbit. By sequencing the genomes of 297 rabbits across three continents, we show that introduced populations exhibit a mixed wild-domestic ancestry. We show that alleles that increased in frequency during domestication were preferentially selected against in novel natural environments. Interestingly, causative mutations for common domestication traits sometimes segregate at considerable frequencies if associated with less drastic phenotypes (for example, coat colour dilution), whereas mutations that are probably strongly maladaptive in nature are absent. Whereas natural selection largely targeted different genomic regions in each introduced population, some of the strongest signals of parallelism overlap genes associated with neuronal or brain function. This limited parallelism is probably explained by extensive standing genetic variation resulting from domestication together with the complex mixed ancestry of introduced populations. Our findings shed light on the selective and molecular mechanisms that enable domestic animals to re-adapt to the wild and provide important insights for the mitigation and management of invasive populations.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| | - Joel M Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Institute of Marine Research, Bergen, Norway
| | - Eugénio Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erik Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Yexin Zhang
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Never Bonino
- Estación Experimental Bariloche, Instituto Nacional de Tecnología Agropecuaria, Casilla de Correo Bariloche, Argentina
| | - Janine A Duckworth
- Wildlife Ecology and Management Group, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Hervé Garreau
- GenPhySE, Université de Toulouse, Castanet-Tolosan, France
| | - Mike Letnic
- Centre for Ecosystem Science, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, School of BEES, University of New South Wales, Sydney, New South Wales, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australian Capital Territory, Australia
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Carl-Gustaf Thulin
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Guillaume Queney
- ANTAGENE, Wildlife Genetics Laboratory, La Tour de Salvagny, France
| | | | | | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park, South Africa
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
| |
Collapse
|
44
|
Fonseca EM, Tran LN, Mendoza H, Gutenkunst RN. Modeling biases from low-pass genome sequencing to enable accurate population genetic inferences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604366. [PMID: 39091836 PMCID: PMC11291017 DOI: 10.1101/2024.07.19.604366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Low-pass genome sequencing is cost-effective and enables analysis of large cohorts. However, it introduces biases by reducing heterozygous genotypes and low-frequency alleles, impacting subsequent analyses such as demographic history inference. We developed a probabilistic model of low-pass biases from the Genome Analysis Toolkit (GATK) multi-sample calling pipeline, and we implemented it in the population genomic inference software dadi. We evaluated the model using simulated low-pass datasets and found that it alleviated low-pass biases in inferred demographic parameters. We further validated the model by downsampling 1000 Genomes Project data, demonstrating its effectiveness on real data. Our model is widely applicable and substantially improves model-based inferences from low-pass population genomic data.
Collapse
Affiliation(s)
- Emanuel M. Fonseca
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Linh N. Tran
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hannah Mendoza
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
45
|
Blom MP, Peona V, Prost S, Christidis L, Benz BW, Jønsson KA, Suh A, Irestedt M. Hybridization in birds-of-paradise: Widespread ancestral gene flow despite strong sexual selection in a lek-mating system. iScience 2024; 27:110300. [PMID: 39055907 PMCID: PMC11269930 DOI: 10.1016/j.isci.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Sexual selection can directly contribute to reproductive isolation and is an important mechanism that can lead to speciation. Lek-mating is one of the most extreme forms of sexual selection, but surprisingly does not seem to preclude occasional hybridization in nature. However, hybridization among lekking species may still be trivial if selection against offspring with intermediate phenotypes prohibits introgression. Here we investigate this further by sequencing the genomes of nearly all bird-of-paradise (Paradisaeidae) species and 10 museum specimens of putative hybrid origin. We find that intergeneric hybridization indeed still takes place despite extreme differentiation in form, plumage, and behavior. In parallel, the genomes of contemporary species contain widespread signatures of past introgression, demonstrating that hybridization has repeatedly resulted in shared genetic variation despite strong sexual isolation. Our study raises important questions about extrinsic factors that modulate hybridization probability and the evolutionary consequences of introgressive hybridization between lekking species.
Collapse
Affiliation(s)
- Mozes P.K. Blom
- Department for Evolutionary Diversity Dynamics, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Research, 10115 Berlin, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Valentina Peona
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Stefan Prost
- Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland
| | - Les Christidis
- Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Brett W. Benz
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Alexander Suh
- Department of Organismal Biology – Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, 752 36 Uppsala, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| |
Collapse
|
46
|
Zhou ZT, Owens GL, Larson WA, Lou RN, Sudmant PH. loco-pipe: an automated pipeline for population genomics with low-coverage whole-genome sequencing. BIOINFORMATICS ADVANCES 2024; 4:vbae098. [PMID: 39006965 PMCID: PMC11246161 DOI: 10.1093/bioadv/vbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Summary We developed loco-pipe, a Snakemake pipeline that seamlessly streamlines a set of essential population genomic analyses for low-coverage whole genome sequencing (lcWGS) data. loco-pipe is highly automated, easily customizable, massively parallelized, and thus is a valuable tool for both new and experienced users of lcWGS. Availability and implementation loco-pipe is published under the GPLv3. It is freely available on GitHub (github.com/sudmantlab/loco-pipe) and archived on Zenodo (doi.org/10.5281/zenodo.10425920).
Collapse
Affiliation(s)
- Zehua T Zhou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Wesley A Larson
- National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanographic and Atmospheric Administration, Auke Bay Laboratories, Juneau, AK 99801, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
47
|
Hennelly LM, Sarwar G, Fatima H, Werhahn G, Abbas FI, Khan AM, Mahmood T, Kachel S, Kubanychbekov Z, Waseem MT, Zahra Naqvi R, Hamid A, Abbas Y, Aisha H, Waseem M, Farooq M, Sacks BN. Genomic analysis of wolves from Pakistan clarifies boundaries among three divergent wolf lineages. J Hered 2024; 115:339-348. [PMID: 37897187 DOI: 10.1093/jhered/esad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023] Open
Abstract
Among the three main divergent lineages of gray wolf (Canis lupus), the Holarctic lineage is the most widespread and best studied, particularly in North America and Europe. Less is known about Tibetan (also called Himalayan) and Indian wolf lineages in southern Asia, especially in areas surrounding Pakistan where all three lineages are thought to meet. Given the endangered status of the Indian wolf in neighboring India and unclear southwestern boundary of the Tibetan wolf range, we conducted mitochondrial and genome-wide sequencing of wolves from Pakistan and Kyrgyzstan. Sequences of the mitochondrial D-loop region of 81 wolves from Pakistan indicated contact zones between Holarctic and Indian lineages across the northern and western mountains of Pakistan. Reduced-representation genome sequencing of eight wolves indicated an east-to-west cline of Indian to Holarctic ancestry, consistent with a contact zone between these two lineages in Pakistan. The western boundary of the Tibetan lineage corresponded to the Ladakh region of India's Himalayas with a narrow zone of admixture spanning this boundary from the Karakoram Mountains of northern Pakistan into Ladakh, India. Our results highlight the conservation significance of Pakistan's wolf populations, especially the remaining populations in Sindh and Southern Punjab that represent the highly endangered Indian lineage.
Collapse
Affiliation(s)
- Lauren M Hennelly
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
| | - Ghulam Sarwar
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Hira Fatima
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Geraldine Werhahn
- IUCN SCC Canid Specialist Group, Oxford, United Kingdom
- Wildlife Conservation Research Unit, Zoology, University of Oxford, Tubney, United Kingdom
| | | | - Abdul M Khan
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tariq Mahmood
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | - Muhammad T Waseem
- Zoological Science Division, Pakistan Museum of Natural History, Islamabad, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul Hamid
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Yasir Abbas
- Central Karakoram National Park, Skardu, Pakistan
| | - Hamera Aisha
- World Wildlife Fund, Pakistan, Islamabad, Pakistan
| | | | - Muhammad Farooq
- Department of Zoology, Wildlife and Fisheries, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
48
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
49
|
Przelomska NAS, Diaz RA, Ávila FA, Ballen GA, Cortés-B R, Kistler L, Chitwood DH, Charitonidou M, Renner SS, Pérez-Escobar OA, Antonelli A. Morphometrics and Phylogenomics of Coca (Erythroxylum spp.) Illuminate Its Reticulate Evolution, With Implications for Taxonomy. Mol Biol Evol 2024; 41:msae114. [PMID: 38982580 PMCID: PMC11233275 DOI: 10.1093/molbev/msae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 07/11/2024] Open
Abstract
South American coca (Erythroxylum coca and E. novogranatense) has been a keystone crop for many Andean and Amazonian communities for at least 8,000 years. However, over the last half-century, global demand for its alkaloid cocaine has driven intensive agriculture of this plant and placed it in the center of armed conflict and deforestation. To monitor the changing landscape of coca plantations, the United Nations Office on Drugs and Crime collects annual data on their areas of cultivation. However, attempts to delineate areas in which different varieties are grown have failed due to limitations around identification. In the absence of flowers, identification relies on leaf morphology, yet the extent to which this is reflected in taxonomy is uncertain. Here, we analyze the consistency of the current naming system of coca and its four closest wild relatives (the "coca clade"), using morphometrics, phylogenomics, molecular clocks, and population genomics. We include name-bearing type specimens of coca's closest wild relatives E. gracilipes and E. cataractarum. Morphometrics of 342 digitized herbarium specimens show that leaf shape and size fail to reliably discriminate between species and varieties. However, the statistical analyses illuminate that rounder and more obovate leaves of certain varieties could be associated with the subtle domestication syndrome of coca. Our phylogenomic data indicate extensive gene flow involving E. gracilipes which, combined with morphometrics, supports E. gracilipes being retained as a single species. Establishing a robust evolutionary-taxonomic framework for the coca clade will facilitate the development of cost-effective genotyping methods to support reliable identification.
Collapse
Affiliation(s)
- Natalia A S Przelomska
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Rudy A Diaz
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | | | - Gustavo A Ballen
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Rocío Cortés-B
- Herbario Forestal Universidad Distrital, Campus El Vivero, CR 5E 15-82 Bogotá, Colombia
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Martha Charitonidou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO 63130, USA
| | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, SE 41319 Göteborg, Sweden
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
50
|
Ciezarek AG, Mehta TK, Man A, Ford AGP, Kavembe GD, Kasozi N, Ngatunga BP, Shechonge AH, Tamatamah R, Nyingi DW, Cnaani A, Ndiwa TC, Di Palma F, Turner GF, Genner MJ, Haerty W. Ancient and Recent Hybridization in the Oreochromis Cichlid Fishes. Mol Biol Evol 2024; 41:msae116. [PMID: 38865496 PMCID: PMC11221657 DOI: 10.1093/molbev/msae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Cichlid fishes of the genus Oreochromis (tilapia) are among the most important fish for inland capture fisheries and global aquaculture. Deliberate introductions of non-native species for fisheries improvement and accidental escapees from farms have resulted in admixture with indigenous species. Such hybridization may be detrimental to native biodiversity, potentially leading to genomic homogenization of populations and the loss of important genetic material associated with local adaptation. By contrast, introgression may fuel diversification when combined with ecological opportunity, by supplying novel genetic combinations. To date, the role of introgression in the evolutionary history of tilapia has not been explored. Here we studied both ancient and recent hybridization in tilapia, using whole genome resequencing of 575 individuals from 23 species. We focused on Tanzania, a natural hotspot of tilapia diversity, and a country where hybridization between exotic and native species in the natural environment has been previously reported. We reconstruct the first genome-scale phylogeny of the genus and reveal prevalent ancient gene flow across the Oreochromis phylogeny. This has likely resulted in the hybrid speciation of one species, O. chungruruensis. We identify multiple cases of recent hybridization between native and introduced species in the wild, linked to the use of non-native species in both capture fisheries improvement and aquaculture. This has potential implications for both conservation of wild populations and the development of the global tilapia aquaculture industry.
Collapse
Affiliation(s)
- Adam G Ciezarek
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- Centre of Environment, Fisheries and Aquaculture Science (Cefas), Scientific Advice for Fisheries Management Team (SAFM), Lowestoft NR33 0H5, UK
| | - Tarang K Mehta
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Angela Man
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Antonia G P Ford
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London SW15 4NA, UK
| | | | - Nasser Kasozi
- National Agricultural Research Organisation, Buginyanya Zonal Agricultural Research and Development Institute, Mbale, Uganda
| | | | | | | | | | - Avner Cnaani
- Institute of Animal Science, Agricultural Research Organization, Rishon LeZion 7528809, Israel
| | - Titus C Ndiwa
- Department of Clinical Studies, University of Nairobi, Nairobi, Kenya
| | - Federica Di Palma
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | - George F Turner
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| |
Collapse
|