1
|
Marsili G, Pallotto C, Fortuna C, Amendola A, Fiorentini C, Esperti S, Blanc P, Suardi LR, Giulietta V, Argentini C. Fifty years after the first identification of Toscana virus in Italy: Genomic characterization of viral isolates within lineage A and aminoacidic markers of evolution. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105601. [PMID: 38830443 DOI: 10.1016/j.meegid.2024.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Toscana Virus (TosV) was firstly isolated from phlebotomine in our Institute about fifty years ago. Later, in 1984-1985, TosV infection, although asymptomatic in most cases, was shown to cause disease in humans, mainly fever and meningitis. By means of genetic analysis of part of M segment, we describe 3 new viral isolates obtained directly from cerebrospinal fluid or sera samples of patients diagnosed with TosV infection in July 2020 in Tuscany region. Phylogenesis was used to propose the clustering of TosV lineage A strains in 3 main groups, whereas deep mutational analysis based on 12 amino acid positions, allowed the identification of 9 putative strains. We discuss deep mutational analysis as a method to identify molecular signature of host adaptation and/or pathogenesis.
Collapse
Affiliation(s)
- Giulia Marsili
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Carlo Pallotto
- SOC Malattie Infettive 1, Azienda USL Toscana Centro, Bagno a Ripoli, Firenze, Italy; Clinica delle Malattie Infettive, Azienda Ospedaliera Santa Maria della Misericordia, Università di Perugia, Perugia, Italy
| | - Claudia Fortuna
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonello Amendola
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | | | - Sara Esperti
- SOC Malattie Infettive 1, Azienda USL Toscana Centro, Bagno a Ripoli, Firenze, Italy; Dipartimento di Malattie Infettive, Azienda Ospedaliero-Universitaria di Modena, Policlinico di Modena, Università di Modena e Reggio Emilia, Modena, Italy
| | - Pierluigi Blanc
- SOC Malattie Infettive 1, Azienda USL Toscana Centro, Bagno a Ripoli, Firenze, Italy; SOC Malattie Infettive 2, Azienda USL Toscana Centro, Pistoia, Italy
| | - Lorenzo Roberto Suardi
- SOC Malattie Infettive 1, Azienda USL Toscana Centro, Bagno a Ripoli, Firenze, Italy; UO Malattie Infettive, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Venturi Giulietta
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Claudio Argentini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
2
|
Laguna-Castro M, Rodríguez-Moreno A, Lázaro E. Evolutionary Adaptation of an RNA Bacteriophage to Repeated Freezing and Thawing Cycles. Int J Mol Sci 2024; 25:4863. [PMID: 38732084 PMCID: PMC11084849 DOI: 10.3390/ijms25094863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bacteriophage fitness is determined by factors influencing both their replication within bacteria and their ability to maintain infectivity between infections. The latter becomes particularly crucial under adverse environmental conditions or when host density is low. In such scenarios, the damage experienced by viral particles could lead to the loss of infectivity, which might be mitigated if the virus undergoes evolutionary optimization through replication. In this study, we conducted an evolution experiment involving bacteriophage Qβ, wherein it underwent 30 serial transfers, each involving a cycle of freezing and thawing followed by replication of the surviving viruses. Our findings show that Qβ was capable of enhancing its resistance to this selective pressure through various adaptive pathways that did not impair the virus replicative capacity. Notably, these adaptations predominantly involved mutations located within genes encoding capsid proteins. The adapted populations exhibited higher resistance levels than individual viruses isolated from them, and the latter surpassed those observed in single mutants generated via site-directed mutagenesis. This suggests potential interactions among mutants and mutations. In conclusion, our study highlights the significant role of extracellular selective pressures in driving the evolution of phages, influencing both the genetic composition of their populations and their phenotypic properties.
Collapse
Affiliation(s)
| | | | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, 28850 Torrejón de Ardoz, Madrid, Spain; (M.L.-C.); (A.R.-M.)
| |
Collapse
|
3
|
Domingo E, Martínez-González B, García-Crespo C, Somovilla P, de Ávila AI, Soria ME, Durán-Pastor A, Perales C. Puzzles, challenges, and information reservoir of SARS-CoV-2 quasispecies. J Virol 2023; 97:e0151123. [PMID: 38092661 PMCID: PMC10734546 DOI: 10.1128/jvi.01511-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Brenda Martínez-González
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
4
|
Lequime S. The sociality continuum of viruses: a commentary on Leeks et al. 2023. J Evol Biol 2023; 36:1568-1570. [PMID: 37975506 DOI: 10.1111/jeb.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Loguercio S, Calverley BC, Wang C, Shak D, Zhao P, Sun S, Budinger GS, Balch WE. Understanding the host-pathogen evolutionary balance through Gaussian process modeling of SARS-CoV-2. PATTERNS (NEW YORK, N.Y.) 2023; 4:100800. [PMID: 37602209 PMCID: PMC10436005 DOI: 10.1016/j.patter.2023.100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying signatures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used to monitor micro and macro features responsible for host-pathogen balance. The versatility of GP-based SCV defines starting point for understanding nature's evolutionary path to complexity through natural selection.
Collapse
Affiliation(s)
| | - Ben C. Calverley
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Chao Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Daniel Shak
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Shuhong Sun
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - William E. Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
6
|
Sun B, Ni M, Liu H, Liu D. Viral intra-host evolutionary dynamics revealed via serial passage of Japanese encephalitis virus in vitro. Virus Evol 2023; 9:veac103. [PMID: 37205166 PMCID: PMC10185921 DOI: 10.1093/ve/veac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 03/21/2023] [Indexed: 12/02/2023] Open
Abstract
Analyses of viral inter- and intra-host mutations could better guide the prevention and control of infectious diseases. For a long time, studies on viral evolution have focused on viral inter-host variations. Next-generation sequencing has accelerated the investigations of viral intra-host diversity. However, the theoretical basis and dynamic characteristics of viral intra-host mutations remain unknown. Here, using serial passages of the SA14-14-2 vaccine strain of Japanese encephalitis virus (JEV) as the in vitro model, the distribution characteristics of 1,788 detected intra-host single-nucleotide variations (iSNVs) and their mutated frequencies from 477 deep-sequenced samples were analyzed. Our results revealed that in adaptive (baby hamster kidney (BHK)) cells, JEV is under a nearly neutral selection pressure, and both non-synonymous and synonymous mutations represent an S-shaped growth trend over time. A higher positive selection pressure was observed in the nonadaptive (C6/36) cells, and logarithmic growth in non-synonymous iSNVs and linear growth in synonymous iSNVs were observed over time. Moreover, the mutation rates of the NS4B protein and the untranslated region (UTR) of the JEV are significantly different between BHK and C6/36 cells, suggesting that viral selection pressure is regulated by different cellular environments. In addition, no significant difference was detected in the distribution of mutated frequencies of iSNVs between BHK and C6/36 cells.
Collapse
Affiliation(s)
- Bangyao Sun
- School of Medical Laboratory, Weifang Medical University, Baotong West Street, Weifang 261053, China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Taiping Road 27#, Beijing 100850, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| |
Collapse
|
7
|
Hutson KS, Davidson IC, Bennett J, Poulin R, Cahill PL. Assigning cause for emerging diseases of aquatic organisms. Trends Microbiol 2023:S0966-842X(23)00031-8. [PMID: 36841735 DOI: 10.1016/j.tim.2023.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Resolving the cause of disease (= aetiology) in aquatic organisms is a challenging but essential goal, heightened by increasing disease prevalence in a changing climate and an interconnected world of anthropogenic pathogen spread. Emerging diseases play important roles in evolutionary ecology, wildlife conservation, the seafood industry, recreation, cultural practices, and human health. As we emerge from a global pandemic of zoonotic origin, we must focus on timely diagnosis to confirm aetiology and enable response to diseases in aquatic ecosystems. Those systems' resilience, and our own sustainable use of seafood, depend on it. Synchronising traditional and recent advances in microbiology that span ecological, veterinary, and medical fields will enable definitive assignment of risk factors and causal agents for better biosecurity management and healthier aquatic ecosystems.
Collapse
Affiliation(s)
- Kate S Hutson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Ian C Davidson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
8
|
Domingo E, García-Crespo C, Soria ME, Perales C. Viral Fitness, Population Complexity, Host Interactions, and Resistance to Antiviral Agents. Curr Top Microbiol Immunol 2023; 439:197-235. [PMID: 36592247 DOI: 10.1007/978-3-031-15640-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fitness of viruses has become a standard parameter to quantify their adaptation to a biological environment. Fitness determinations for RNA viruses (and some highly variable DNA viruses) meet with several uncertainties. Of particular interest are those that arise from mutant spectrum complexity, absence of population equilibrium, and internal interactions among components of a mutant spectrum. Here, concepts, fitness measurements, limitations, and current views on experimental viral fitness landscapes are discussed. The effect of viral fitness on resistance to antiviral agents is covered in some detail since it constitutes a widespread problem in antiviral pharmacology, and a challenge for the design of effective antiviral treatments. Recent evidence with hepatitis C virus suggests the operation of mechanisms of antiviral resistance additional to the standard selection of drug-escape mutants. The possibility that high replicative fitness may be the driver of such alternative mechanisms is considered. New broad-spectrum antiviral designs that target viral fitness may curtail the impact of drug-escape mutants in treatment failures. We consider to what extent fitness-related concepts apply to coronaviruses and how they may affect strategies for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
9
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
10
|
Bamford CGG, de Souza WM, Parry R, Gifford RJ. Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae). Virus Evol 2022; 8:veac085. [PMID: 36533146 PMCID: PMC9752770 DOI: 10.1093/ve/veac085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 01/24/2023] Open
Abstract
Flavivirids (family Flaviviridae) are a group of positive-strand ribonucleic acid (RNA) viruses that pose serious risks to human and animal health on a global scale. Here, we use flavivirid-derived deoxyribonucleic acid (DNA) sequences, identified in animal genomes, to reconstruct the long-term evolutionary history of family Flaviviridae. We demonstrate that flavivirids are >100 million years old and show that this timing can be combined with dates inferred from co-phyletic analysis to produce a cohesive overview of their evolution, distribution, and diversity wherein the main flavivirid subgroups originate in early animals and broadly co-diverge with major animal phyla. In addition, we reveal evidence that the 'classical flaviviruses' of vertebrates, most of which are transmitted via blood-feeding arthropod vectors, originally evolved in haematophagous arachnids and later acquired the capacity to be transmitted by insects. Our findings imply that the biological properties of flavivirids have been acquired gradually over the course of animal evolution. Thus, broad-scale comparative analysis will likely reveal fundamental insights into their biology. We therefore published our results via an open, extensible, database (Flavivirid-GLUE), which we constructed to facilitate the wider utilisation of genomic data and evolution-related domain knowledge in flavivirid research.
Collapse
|
11
|
Shestopalov AM, Alekseev AY, Glupov VV, Voevoda MI. Wild Animal Migration As a Potential Threat of Introduction of New Viruses into Russia. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:497-504. [PMID: 36091847 PMCID: PMC9447979 DOI: 10.1134/s1019331622040220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemic has shown how serious the problem of re-emerging zoonotic infections is for our existence. Migrations of animals, which are natural reservoirs of a particular virus, play a colossal role in the spread of pathogens to new territories. Examples are the migrations of both land animals (carnivores, rodents, and ungulates) and many marine mammals (pinnipeds and cetaceans). Yet the most interesting from the point of view of the speed and range of the spread of viral infections are migrations associated with flights. In nature, these can be migrations of insects, bats, and, of course, birds. Unfortunately, there are very few studies on the migration of these animals in Russia. Considering the problems related to climate change and other environmental factors, it is important to obtain up-to-date data on the changing animal migration routes and, as a consequence, to develop domestic equipment, particularly transmitters, to fix them.
Collapse
Affiliation(s)
- A. M. Shestopalov
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - A. Yu. Alekseev
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - V. V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - M. I. Voevoda
- Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
12
|
Martínez-González B, Soria ME, Vázquez-Sirvent L, Ferrer-Orta C, Lobo-Vega R, Mínguez P, de la Fuente L, Llorens C, Soriano B, Ramos-Ruíz R, Cortón M, López-Rodríguez R, García-Crespo C, Somovilla P, Durán-Pastor A, Gallego I, de Ávila AI, Delgado S, Morán F, López-Galíndez C, Gómez J, Enjuanes L, Salar-Vidal L, Esteban-Muñoz M, Esteban J, Fernández-Roblas R, Gadea I, Ayuso C, Ruíz-Hornillos J, Verdaguer N, Domingo E, Perales C. SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens 2022; 11:662. [PMID: 35745516 PMCID: PMC9227345 DOI: 10.3390/pathogens11060662] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, 08028 Barcelona, Spain; (C.F.-O.); (N.V.)
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, Universidad de Valencia, 46980 Valencia, Spain; (C.L.); (B.S.)
| | - Beatriz Soriano
- Biotechvana, “Scientific Park”, Universidad de Valencia, 46980 Valencia, Spain; (C.L.); (B.S.)
| | - Ricardo Ramos-Ruíz
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Antoni Durán-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, 28031 Madrid, Spain;
| | - Federico Morán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28005 Madrid, Spain;
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28222 Madrid, Spain;
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Ricardo Fernández-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, 28342 Madrid, Spain;
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, 08028 Barcelona, Spain; (C.F.-O.); (N.V.)
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
13
|
Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proc Natl Acad Sci U S A 2022; 119:e2121335119. [PMID: 35639694 PMCID: PMC9191635 DOI: 10.1073/pnas.2121335119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous pathogenic viruses are endemic in humans and cause a broad variety of diseases, but what is their potential for causing new pandemics? We show that most human pathogenic RNA viruses form multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and occupy distinct epidemiological niches that are not regionally or seasonally defined, and their persistence appears to stem from limited outbreaks in small communities so that only a small fraction of the global susceptible population is infected at any time. However, due to globalization, interaction and competition between lineages might increase, potentially leading to increased diversification and pathogenicity. Thus, endemic viruses appear to merit global attention with respect to the prevention of future pandemics. Many pathogenic viruses are endemic among human populations and can cause a broad variety of diseases, some potentially leading to devastating pandemics. How virus populations maintain diversity and what selective pressures drive population turnover is not thoroughly understood. We conducted a large-scale phylodynamic analysis of 27 human pathogenic RNA viruses spanning diverse life history traits, in search of unifying trends that shape virus evolution. For most virus species, we identify multiple, cocirculating lineages with low turnover rates. These lineages appear to be largely noncompeting and likely occupy semiindependent epidemiological niches that are not regionally or seasonally defined. Typically, intralineage mutational signatures are similar to interlineage signatures. The principal exception are members of the family Picornaviridae, for which mutations in capsid protein genes are primarily lineage defining. Interlineage turnover is slower than expected under a neutral model, whereas intralineage turnover is faster than the neutral expectation, further supporting the existence of independent niches. The persistence of virus lineages appears to stem from limited outbreaks within small communities, so that only a small fraction of the global susceptible population is infected at any time. As disparate communities become increasingly connected through globalization, interaction and competition between lineages might increase as well, which could result in changing selective pressures and increased diversification and/or pathogenicity. Thus, in addition to zoonotic events, ongoing surveillance of familiar, endemic viruses appears to merit global attention with respect to the prevention or mitigation of future pandemics.
Collapse
|
14
|
Chung H, Noh JY, Koo BS, Hong JJ, Kim HK. SARS-CoV-2 mutations acquired during serial passage in human cell lines are consistent with several of those found in recent natural SARS-CoV-2 variants. Comput Struct Biotechnol J 2022; 20:1925-1934. [PMID: 35474907 PMCID: PMC9021118 DOI: 10.1016/j.csbj.2022.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023] Open
Abstract
Since the outbreak of coronavirus disease (COVID-19) in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into diverse variants. Here, an early isolate of SARS-CoV-2 was serially passaged in multiple cell lines of human origin in triplicate, and selected mutations were compared to those found in natural SARS-CoV-2 variants. In the spike protein, Q493R and Q498R substitutions from passaged viruses were consistent with those in the B.1.1.529 (Omicron) variant. Y144del and H655Y substitutions from passaged viruses were also reported in B.1.1.7 (Alpha), P.1 (Gamma), and B.1.1.529 (Omicron) variants. Several single nucleotide polymorphisms (SNPs) found in first-passaged viruses have also been identified as selected mutation sites in serially passaged viruses. Considering the consistent mutations found between serially passaged SARS-CoV-2 and natural variants, there may be host-specific selective mutation patterns of viral evolution in humans. Additional studies on the selective mutations in SARS-CoV-2 experiencing diverse host environments will help elucidate the direction of SARS-CoV-2 evolution. Importance SARS-CoV-2 isolate (SARS-CoV-2/human/KOR/KCDC03-NCCP43326/2020) was serially passaged in A549, CaCO2, and HRT-18 cells in triplicate. After 12 times of serial passages in each cell lines, several consistent selected mutations were found on spike protein between the serially passaged SARS-CoV-2 in human cell lines and recent natural variants of SARS-CoV-2 like omicron. On the non-spike protein genes, selected mutations were more frequent in viruses passaged in Caco-2 and HRT-18 cells (Colon epithelial-like) than in those passaged in A549 cells (Lung epithelial-like). In addition, several SNPs identified after one round of passaging were consistently identified as the selected mutation sites in serially passaged viruses. Thus, mutation patterns of SARS-CoV-2 in certain host environments may provide researchers information to understand and predict future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hoyin Chung
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
15
|
Retel C, Kowallik V, Becks L, Feulner PGD. Strong Selection and High Mutation Supply Characterize Experimental Chlorovirus Evolution. Virus Evol 2022; 8:veac003. [PMID: 35169490 PMCID: PMC8838748 DOI: 10.1093/ve/veac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing how viruses evolve expands our understanding of the underlying fundamental processes, such as mutation, selection and drift. One group of viruses whose evolution has not yet been extensively studied is the Phycodnaviridae, a globally abundant family of aquatic large double-stranded (ds) DNA viruses. Here we studied the evolutionary change of Paramecium bursaria chlorella virus 1 during experimental coevolution with its algal host. We used pooled genome sequencing of six independently evolved populations to characterize genomic change over five time points. Across six experimental replicates involving either strong or weak demographic fluctuations, we found single nucleotide polymorphisms (SNPs) at sixty-seven sites. The occurrence of genetic variants was highly repeatable, with just two of the SNPs found in only a single experimental replicate. Three genes A122/123R, A140/145R and A540L showed an excess of variable sites, providing new information about potential targets of selection during Chlorella–Chlorovirus coevolution. Our data indicated that the studied populations were not mutation-limited and experienced strong positive selection. Our investigation highlighted relevant processes governing the evolution of aquatic large dsDNA viruses, which ultimately contributes to a better understanding of the functioning of natural aquatic ecosystems.
Collapse
Affiliation(s)
- Cas Retel
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Bio-geochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum 6047, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | | | | | | |
Collapse
|
16
|
Monaco AP. The selfish environment meets the selfish gene: Coevolution and inheritance of RNA and DNA pools: A model for organismal life incorporating coevolution, horizontal transfer, and inheritance of internal and external RNA and DNA pools.: A model for organismal life incorporating coevolution, horizontal transfer, and inheritance of internal and external RNA and DNA pools. Bioessays 2022; 44:e2100239. [PMID: 34985131 DOI: 10.1002/bies.202100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022]
Abstract
Throughout evolution, there has been interaction and exchange between RNA pools in the environment, and DNA and RNA pools of eukaryotic organisms. Metagenomic and metatranscriptomic sequencing of invertebrate hosts and their microbiota has revealed a rich evolutionary history of RNA virus shuttling between species. Horizontal transfer adapted the RNA pool for successful future interactions which lead to zoonotic transmission and detrimental RNA viral pandemics like SARS-CoV2. In eukaryotes, noncoding RNA (ncRNA) is an established mechanism derived from prokaryotes to defend against viral attack through innate immunity and regulation of host-derived mRNA. Transgenerational inheritance of ncRNA is evidence for feedforward adaptive immunity and epigenetically encoded environmental change across generations, which may explain the ''missing heritability'' of common disease. Causal graph theory and the Price Equation can model epigenetic inheritance involving dynamic internal and external RNA pools. Experimental designs should include metatranscriptomic analyses to understand how ncRNA responds to rapidly changing environmental conditions, within and between organisms, and across generations.
Collapse
Affiliation(s)
- Anthony P Monaco
- Office of the President, Ballou Hall, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
17
|
Amat JAR, Patton V, Chauché C, Goldfarb D, Crispell J, Gu Q, Coburn AM, Gonzalez G, Mair D, Tong L, Martinez-Sobrido L, Marshall JF, Marchesi F, Murcia PR. Long-term adaptation following influenza A virus host shifts results in increased within-host viral fitness due to higher replication rates, broader dissemination within the respiratory epithelium and reduced tissue damage. PLoS Pathog 2021; 17:e1010174. [PMID: 34919598 PMCID: PMC8735595 DOI: 10.1371/journal.ppat.1010174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness. As viruses are obligate intracellular pathogens, their ability to replicate and spread within their hosts is key for survival, even if it leads to severe disease or death of the host. Understanding the consequences of long-term virus adaptation after viral emergence is key for pandemic preparedness. H3N8 equine influenza virus (EIV) originated in birds and has circulated in horses since 1963, thus providing unique opportunities to study virus adaptation. We compared the replication kinetics of two EIVs of the same lineage but with different evolutionary histories: the earliest virus (EIV/63, isolated in 1963), and EIV/2003, which was isolated after 40 years of continuous circulation in horses. Experimental infections of cell lines (MDCK and E.Derm cells) and equine respiratory explants show that EIV evolved towards enhanced replication and cell-to-cell spread; but reduced tissue damage, confirming that viral fitness is adaptive and does not necessarily result in higher virulence.
Collapse
Affiliation(s)
- Julien A. R. Amat
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Veronica Patton
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joanna Crispell
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alice M. Coburn
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gaelle Gonzalez
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - John F. Marshall
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Abstract
The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
19
|
Abstract
Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.
Collapse
Affiliation(s)
- Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Celia Perales
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
20
|
Abstract
Microbes are constantly evolving. Laboratory studies of bacterial evolution increase our understanding of evolutionary dynamics, identify adaptive changes, and answer important questions that impact human health. During bacterial infections in humans, however, the evolutionary parameters acting on infecting populations are likely to be much more complex than those that can be tested in the laboratory. Nonetheless, human infections can be thought of as naturally occurring in vivo bacterial evolution experiments, which can teach us about antibiotic resistance, pathogenesis, and transmission. Here, we review recent advances in the study of within-host bacterial evolution during human infection and discuss practical considerations for conducting such studies. We focus on 2 possible outcomes for de novo adaptive mutations, which we have termed "adapt-and-live" and "adapt-and-die." In the adapt-and-live scenario, a mutation is long lived, enabling its transmission on to other individuals, or the establishment of chronic infection. In the adapt-and-die scenario, a mutation is rapidly extinguished, either because it carries a substantial fitness cost, it arises within tissues that block transmission to new hosts, it is outcompeted by more fit clones, or the infection resolves. Adapt-and-die mutations can provide rich information about selection pressures in vivo, yet they can easily elude detection because they are short lived, may be more difficult to sample, or could be maladaptive in the long term. Understanding how bacteria adapt under each of these scenarios can reveal new insights about the basic biology of pathogenic microbes and could aid in the design of new translational approaches to combat bacterial infections.
Collapse
Affiliation(s)
- Matthew J. Culyba
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
21
|
Barnard KN, Wasik BR, Alford BK, Hayward JJ, Weichert WS, Voorhees IEH, Holmes EC, Parrish CR. Sequence dynamics of three influenza A virus strains grown in different MDCK cell lines, including those expressing different sialic acid receptors. J Evol Biol 2021; 34:1878-1900. [PMID: 34114711 DOI: 10.1111/jeb.13890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Viruses are often cultured in cell lines for research and vaccine development, and those often differ from the natural hosts or tissues. Cell lines can also differ in the presence of virus receptors, such as the sialic acid (Sia) receptors used by influenza A viruses (IAV), which can vary in linkage (α2,3- or α2,6-linkage) and form (N-glycolylneuraminic acid [Neu5Gc] or N-acetylneuraminic acid [Neu5Ac]). The selective pressures resulting from passaging viruses in cell types with host-specific variations in viral receptors are still only partially understood. IAV are commonly cultured in MDCK cells which are both derived from canine kidney tubule epithelium and inherently heterogeneous. MDCK cells naturally present Neu5Ac and α2,3-linked Sia forms. Here, we examine natural MDCK variant lineages, as well as engineered variants that synthesize Neu5Gc and/or α2,6-linkages. We determined how viral genetic variation occurred within human H3N2, H1N1 pandemic and canine H3N2 IAV populations when serially passaged in MDCK cell lines that vary in cell type (MDCK-Type I or MDCK-Type II clones) and in Sia display. Deep sequencing of viral genomes showed small numbers of consensus-level mutations, mostly within the hemagglutinin (HA) gene. Both human IAV showed variants in the HA stem and the HA receptor-binding site of populations passaged in cells displaying Neu5Gc. Canine H3N2 showed variants near the receptor-binding site when passaged in cells displaying Neu5Gc or α2,6-linkages. Viruses replicated to low titres in MDCK-Type II cells, suggesting that not all cell types in heterogeneous MDCK cell populations are equally permissive to infection.
Collapse
Affiliation(s)
- Karen N Barnard
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Brynn K Alford
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Jessica J Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Wendy S Weichert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Ian E H Voorhees
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Al-Zaher A, Domingo-Calap P, Sanjuán R. Experimental virus evolution in cancer cell monolayers, spheroids, and tissue explants. Virus Evol 2021; 7:veab045. [PMID: 34040797 PMCID: PMC8134955 DOI: 10.1093/ve/veab045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Viral laboratory evolution has been used for different applications, such as modeling viral emergence, drug-resistance prediction, and therapeutic virus optimization. However, these studies have been mainly performed in cell monolayers, a highly simplified environment, raising concerns about their applicability and relevance. To address this, we compared the evolution of a model virus in monolayers, spheroids, and tissue explants. We performed this analysis in the context of cancer virotherapy by performing serial transfers of an oncolytic vesicular stomatitis virus (VSV-Δ51) in 4T1 mouse mammary tumor cells. We found that VSV-Δ51 gained fitness in each of these three culture systems, and that adaptation to the more complex environments (spheroids or explants) correlated with increased fitness in monolayers. Most evolved lines improved their ability to suppress β-interferon secretion compared to the VSV-Δ51 founder, suggesting that the selective pressure exerted by antiviral innate immunity was important in the three systems. However, system-specific patterns were also found. First, viruses evolved in monolayers remained more oncoselective that those evolved in spheroids, since the latter showed concomitant adaptation to non-tumoral mouse cells. Second, deep sequencing indicated that viral populations evolved in monolayers or explants tended to be more genetically diverse than those evolved in spheroids. Finally, we found highly variable outcomes among independent evolutionary lines propagated in explants. We conclude that experimental evolution in monolayers tends to be more reproducible than in spheroids or explants, and better preserves oncoselectivity. Our results also suggest that monolayers capture at least some relevant selective pressures present in more complex systems.
Collapse
Affiliation(s)
- Ahmed Al-Zaher
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, València 46980, Spain
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, C/ Catedrático Agustín Escardino 9, València 46980, Spain
| |
Collapse
|
23
|
Ryder SP, Morgan BR, Coskun P, Antkowiak K, Massi F. Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evol Bioinform Online 2021; 17:11769343211014167. [PMID: 34017166 PMCID: PMC8114311 DOI: 10.1177/11769343211014167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peren Coskun
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katianna Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
24
|
Identifying Potentially Beneficial Genetic Mutations Associated with Monophyletic Selective Sweep and a Proof-of-Concept Study with Viral Genetic Data. mSystems 2021; 6:6/1/e01151-20. [PMID: 33622855 PMCID: PMC8573955 DOI: 10.1128/msystems.01151-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic mutations play a central role in evolution. For a significantly beneficial mutation, a one-time mutation event suffices for the species to prosper and predominate through the process called “monophyletic selective sweep.” However, existing methods that rely on counting the number of mutation events to detect selection are unable to find such a mutation in selective sweep. We here introduce a method to detect mutations at the single amino acid/nucleotide level that could be responsible for monophyletic selective sweep evolution. The method identifies a genetic signature associated with selective sweep using the population genetic test statistic Tajima’s D. We applied the algorithm to ebolavirus, influenza A virus, and severe acute respiratory syndrome coronavirus 2 to identify known biologically significant mutations and unrecognized mutations associated with potential selective sweep. The method can detect beneficial mutations, possibly leading to discovery of previously unknown biological functions and mechanisms related to those mutations. IMPORTANCE In biology, research on evolution is important to understand the significance of genetic mutation. When there is a significantly beneficial mutation, a population of species with the mutation prospers and predominates, in a process called “selective sweep.” However, there are few methods that can find such a mutation causing selective sweep from genetic data. We here introduce a novel method to detect such mutations. Applying the method to the genomes of ebolavirus, influenza viruses, and the novel coronavirus, we detected known biologically significant mutations and identified mutations the importance of which is previously unrecognized. The method can deepen our understanding of molecular and evolutionary biology.
Collapse
|
25
|
The Early Evolution of Oral Poliovirus Vaccine Is Shaped by Strong Positive Selection and Tight Transmission Bottlenecks. Cell Host Microbe 2020; 29:32-43.e4. [PMID: 33212020 PMCID: PMC7815045 DOI: 10.1016/j.chom.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023]
Abstract
The emergence of circulating vaccine-derived polioviruses through evolution of the oral polio vaccine (OPV) poses a significant obstacle to polio eradication. Understanding the early genetic changes that occur as OPV evolves and transmits is important for preventing future outbreaks. Here, we use deep sequencing to define the evolutionary trajectories of type 2 OPV in a vaccine trial. By sequencing 497 longitudinal stool samples from 271 OPV2 recipients and household contacts, we were able to examine the extent of convergent evolution in vaccinated individuals and the amount of viral diversity that is transmitted. In addition to rapid reversion of key attenuating mutations, we identify strong selection at 19 sites across the genome. We find that a tight transmission bottleneck limits the onward transmission of these early adaptive mutations. Our results highlight the distinct evolutionary dynamics of live attenuated virus vaccines and have important implications for the success of next-generation OPV.
Collapse
|
26
|
García-Crespo C, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Vázquez-Sirvent L, Gómez J, Briones C, Gregori J, Quer J, Perales C, Domingo E. Dissimilar Conservation Pattern in Hepatitis C Virus Mutant Spectra, Consensus Sequences, and Data Banks. J Clin Med 2020; 9:jcm9113450. [PMID: 33121037 PMCID: PMC7692060 DOI: 10.3390/jcm9113450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The influence of quasispecies dynamics on long-term virus diversification in nature is a largely unexplored question. Specifically, whether intra-host nucleotide and amino acid variation in quasispecies fit the variation observed in consensus sequences or data bank alignments is unknown. Genome conservation and dynamics simulations are used for the computational design of universal vaccines, therapeutic antibodies and pan-genomic antiviral agents. The expectation is that selection of escape mutants will be limited when mutations at conserved residues are required. This strategy assumes long-term (epidemiologically relevant) conservation but, critically, does not consider short-term (quasispecies-dictated) residue conservation. We calculated mutant frequencies of individual loci from mutant spectra of hepatitis C virus (HCV) populations passaged in cell culture and from infected patients. Nucleotide or amino acid conservation in consensus sequences of the same populations, or in the Los Alamos HCV data bank did not match residue conservation in mutant spectra. The results relativize the concept of sequence conservation in viral genetics and suggest that residue invariance in data banks is an insufficient basis for the design of universal viral ligands for clinical purposes. Our calculations suggest relaxed mutational restrictions during quasispecies dynamics, which may contribute to higher calculated short-term than long-term viral evolutionary rates.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
| | - María Eugenia Soria
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Isabel Gallego
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
| | - Ana Isabel de Ávila
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
| | - Brenda Martínez-González
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Carlos Briones
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Liver Unit, Liver Diseases—Viral Hepatitis, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, 08174 Barcelona, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Liver Unit, Liver Diseases—Viral Hepatitis, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Celia Perales
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Correspondence: or (C.P.); (E.D.)
| | - Esteban Domingo
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Correspondence: or (C.P.); (E.D.)
| |
Collapse
|
27
|
Morens DM, Fauci AS. Emerging Pandemic Diseases: How We Got to COVID-19. Cell 2020; 182:1077-1092. [PMID: 32846157 PMCID: PMC7428724 DOI: 10.1016/j.cell.2020.08.021] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases prevalent in humans and animals are caused by pathogens that once emerged from other animal hosts. In addition to these established infections, new infectious diseases periodically emerge. In extreme cases they may cause pandemics such as COVID-19; in other cases, dead-end infections or smaller epidemics result. Established diseases may also re-emerge, for example by extending geographically or by becoming more transmissible or more pathogenic. Disease emergence reflects dynamic balances and imbalances, within complex globally distributed ecosystems comprising humans, animals, pathogens, and the environment. Understanding these variables is a necessary step in controlling future devastating disease emergences.
Collapse
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, Kramer LD, LeDuc JW, Monath TP, Taubenberger JK. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg 2020; 103:955-959. [PMID: 32700664 PMCID: PMC7470595 DOI: 10.4269/ajtmh.20-0849] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic is among the deadliest infectious diseases to have emerged in recent history. As with all past pandemics, the specific mechanism of its emergence in humans remains unknown. Nevertheless, a large body of virologic, epidemiologic, veterinary, and ecologic data establishes that the new virus, SARS-CoV-2, evolved directly or indirectly from a β-coronavirus in the sarbecovirus (SARS-like virus) group that naturally infect bats and pangolins in Asia and Southeast Asia. Scientists have warned for decades that such sarbecoviruses are poised to emerge again and again, identified risk factors, and argued for enhanced pandemic prevention and control efforts. Unfortunately, few such preventive actions were taken resulting in the latest coronavirus emergence detected in late 2019 which quickly spread pandemically. The risk of similar coronavirus outbreaks in the future remains high. In addition to controlling the COVID-19 pandemic, we must undertake vigorous scientific, public health, and societal actions, including significantly increased funding for basic and applied research addressing disease emergence, to prevent this tragic history from repeating itself.
Collapse
Affiliation(s)
- David M. Morens
- American Committee on Arthropod-Borne Viruses, American Society of Tropical Medicine and Hygiene, Arlington, Virginia
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joel G. Breman
- American Society of Tropical Medicine and Hygiene, Arlington, Virginia
| | - Charles H. Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute, Melbourne, Australia
| | | | - Gerald T. Keusch
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts
- National Emerging Infectious Diseases Laboratory at Boston University, Boston, Massachusetts
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - James W. LeDuc
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas P. Monath
- American Society of Tropical Medicine and Hygiene, Arlington, Virginia
- Crozet BioPharma LLC, Devens, Massachusetts
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Visher E, Boots M. The problem of mediocre generalists: population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proc Biol Sci 2020; 287:20201230. [PMID: 32811306 PMCID: PMC7482275 DOI: 10.1098/rspb.2020.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/29/2023] Open
Abstract
Many of our theories for the generation and maintenance of diversity in nature depend on the existence of specialist biotic interactions which, in host-pathogen systems, also shape cross-species disease emergence. As such, niche breadth evolution, especially in host-parasite systems, remains a central focus in ecology and evolution. The predominant explanation for the existence of specialization in the literature is that niche breadth is constrained by trade-offs, such that a generalist is less fit on any particular environment than a given specialist. This trade-off theory has been used to predict niche breadth (co)evolution in both population genetics and eco-evolutionary models, with the different modelling methods providing separate, complementary insights. However, trade-offs may be far from universal, so population genetics theory has also proposed alternate mechanisms for costly generalism, including mutation accumulation. However, these mechanisms have yet to be integrated into eco-evolutionary models in order to understand how the mechanism of costly generalism alters the biological and ecological circumstances predicted to maintain specialism. In this review, we outline how population genetics and eco-evolutionary models based on trade-offs have provided insights for parasite niche breadth evolution and argue that the population genetics-derived mutation accumulation theory needs to be better integrated into eco-evolutionary theory.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Ringgold Standard Institution, Penryn, Cornwall, UK
| |
Collapse
|
30
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
31
|
Zhang J, Liu H, Wang J, Wang J, Zhang J, Wang J, Zhang X, Ji H, Ding Z, Xia H, Zhang C, Zhao Q, Liang G. Origin and evolution of emerging Liao ning Virus (genus Seadornavirus, family Reoviridae). Virol J 2020; 17:105. [PMID: 32664965 PMCID: PMC7359424 DOI: 10.1186/s12985-020-01382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background Liao ning virus (LNV) is a member of the genus Seadornavirus, family Reoviridae and has been isolated from kinds of vectors in Asia and Australia. However, there are no systematic studies describe the molecular genetic evolution and migration of LNVs. With the development of bioinformatics, viral genetic data combining the information of virus isolation time and locations could be integrated to infer the virus evolution and spread in nature. Methods Here, a phylogenetic and phylogeographic analysis using Bayesian Markov chain Monte Carlo simulations was conducted on the LNVs isolated from a variety of vectors during 1990–2014 to identify the evolution and migration patterns of LNVs. Results The results demonstrated that the LNV could be divided into 3 genotypes, of which genotype 1 mainly composed of LNVs isolated from Australia during 1990 to 2014 and the original LNV strain (LNV-NE97–31) isolated from Liaoning province in northern China in 1997, genotype 2 comprised of the isolates all from Xinjiang province in western China and genotype 3 consisted the isolates from Qinghai and Shanxi province of central China. LNVs emerged about 272 years ago and gradually evolved into three lineages in the order genotype 1, genotype 2 and genotype 3. Following phylogeographic analysis, it shows genotype 1 LNVs transmitted from Australia (113°E-153°E,10°S-42°S) to Liaoning province (118°E-125°E,38°N-43°N) in Northeast Asian continent then further spread across the central part of China to western China (75°E-95°E,35°N-50°N). Conclusion LNVs were initially isolated from Liaoning province of China in the Northeast Asia, however, the present study revealed that LNVs were first appeared in Australia in the South Pacific region and transmitted to mainland China then rapidly spread across China and evolved three different genotypes. The above results suggested that LNV had the characteristics of long-distance transmission and there were great genetic diversity existed in the LNV population. Notably, current information of 80 strains of LNVs are limited. It is of great importance to strengthen the surveillance of LNVs to explore its real origin in nature and monitoring of the LNVs’ population variation and maintain vigilance to avoid LNV breaking through the species barrier and further clarify its relationship to human and animal infection.
Collapse
Affiliation(s)
- Jun Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China.
| | - Jiahui Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Jiheng Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Jianming Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Jiayue Wang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Xin Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Hongfang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Zhongfeng Ding
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Chunyang Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Qian Zhao
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, 255049, People's Republic of China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| |
Collapse
|
32
|
Tamukong YB, Collum TD, Stone AL, Kappagantu M, Sherman DJ, Rogers EE, Dardick C, Culver JN. Dynamic changes impact the plum pox virus population structure during leaf and bud development. Virology 2020; 548:192-199. [PMID: 32758716 DOI: 10.1016/j.virol.2020.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Plum pox virus (PPV) is a worldwide threat to stone fruit production. Its woody perennial hosts provide a dynamic environment for virus evolution over multiple growing seasons. To investigate the impact seasonal host development plays in PPV population structure, next generation sequencing of ribosome associated viral genomes, termed translatome, was used to assess PPV variants derived from phloem or whole leaf tissues over a range of plum leaf and bud developmental stages. Results show that translatome PPV variants occur at proportionately higher levels in bud and newly developing leaf tissues that have low infection levels while more mature tissues with high infection levels display proportionately lower numbers of viral variants. Additional variant analysis identified distinct groups based on population frequency as well as sets of phloem and whole tissue specific variants. Combined, these results indicate PPV population dynamics are impacted by the tissue type and developmental stage of their host.
Collapse
Affiliation(s)
- Yvette B Tamukong
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Tamara D Collum
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA; USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Andrew L Stone
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Madhu Kappagantu
- Institute for Bioscience and Biotechnology Research, College Park, MD, USA
| | - Diana J Sherman
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Elizabeth E Rogers
- USDA, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD, USA
| | - Christopher Dardick
- USDA, Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | - James N Culver
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, College Park, MD, USA.
| |
Collapse
|
33
|
Ryder SP, Morgan BR, Massi F. Analysis of Rapidly Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32577650 DOI: 10.1101/2020.05.27.120105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two cohorts of SARS-CoV-2 genomic sequences to identify rapidly emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, twenty variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5'UTR, including a set of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-stable molecular switch in the 3'UTR. Finally, five variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M stem loop, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. This analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences, as rapidly emerging variations in these regions could lead to drug resistance.
Collapse
|
34
|
Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol Mol Biol Rev 2020; 84:e00061-19. [PMID: 32132243 PMCID: PMC7062200 DOI: 10.1128/mmbr.00061-19] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven "Baltimore classes" (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Mart Krupovic
- Institut Pasteur, Archaeal Virology Unit, Department of Microbiology, Paris, France
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
35
|
A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. INFECTION GENETICS AND EVOLUTION 2020; 82:104278. [PMID: 32165244 DOI: 10.1016/j.meegid.2020.104278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
RNA genetic elements include many important animal and plant pathogens. They share high mutability, a trait that has multiple implications for the interactions with their host organisms. Here we review evidence of a new adaptive feature of RNA viruses that we term "broadly diversifying selection". It constitutes a new type of positive selection without participation of any external selective agent, and which is built upon a progressive increase of the number of different genomes that dominate the population. The evidence was provided by analyses of mutant spectrum composition of two important viral pathogens, foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) after prolonged replication in their respective cell culture environment. Despite being fueled by mutations that arise randomly and in absence of an external guiding selective force, this type of selection prepares the viral population for a response to selective forces still to occur. Since current evidence suggests that broadly diversifying selection is favored by elevated mutation rates and population sizes, it may constitute a more general behavior, relevant also to the adaptive dynamics of microbial populations and cancer cells.
Collapse
|
36
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
37
|
Domingo E. Long-term virus evolution in nature. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153321 DOI: 10.1016/b978-0-12-816331-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Viruses spread to give rise to epidemics and pandemics, and some key parameters that include virus and host population numbers determine virus persistence or extinction in nature. Viruses evolve at different rates depending on the polymerase copying fidelity during genome replication and a number of environmental influences. Calculated rates of evolution in nature vary depending on the time interval between virus isolations. In particular, intrahost evolution is generally more rapid that interhost evolution, and several possible mechanisms for this difference are considered. The mechanisms by which the error-prone viruses evolve are very unlikely to render the operation of a molecular clock (constant rate of incorporation of mutations in the evolving genomes), although a clock is assumed in many calculations. Several computational tools permit the alignment of viral sequences and the establishment of phylogenetic relationships among viruses. The evolution of the virus in the form of dynamic mutant clouds in each infected individual, together with multiple environmental parameters renders the emergence and reemergence of viral pathogens an unpredictable event, another facet of biological complexity.
Collapse
|
38
|
Akkina R, Garry R, Bréchot C, Ellerbrok H, Hasegawa H, Menéndez-Arias L, Mercer N, Neyts J, Romanowski V, Segalés J, Vahlne A. 2019 meeting of the global virus network. Antiviral Res 2019; 172:104645. [PMID: 31697957 PMCID: PMC7127664 DOI: 10.1016/j.antiviral.2019.104645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
The Global Virus Network (GVN) was established in 2011 to strengthen research and responses to emerging viral causes of human disease and to prepare against new viral pandemics. There are now 52 GVN Centers of Excellence and 9 Affiliate laboratories in 32 countries. The 11th International GVN meeting was held from June 9-11, 2019 in Barcelona, Spain and was jointly organized with the Spanish Society of Virology. A common theme throughout the meeting was globalization and climate change. This report highlights the recent accomplishments of GVN researchers in several important areas of medical virology, including severe virus epidemics, anticipation and preparedness for changing disease dynamics, host-pathogen interactions, zoonotic virus infections, ethical preparedness for epidemics and pandemics, one health and antivirals.
Collapse
Affiliation(s)
- Ramesh Akkina
- Colorado State University. Microbiology, Immunology and Pathology, USA
| | | | | | - Heinz Ellerbrok
- Robert Koch Institute. Center for International Health Protection, Germany
| | - Hideki Hasegawa
- National Institute of Infectious Diseases. Department of Pathology, Japan
| | | | | | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Belgium
| | - Victor Romanowski
- Universidad Nacional de La Plata. IBBM, Facultad de Ciencias Exactas, Argentina
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, and Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), UAB, Bellaterra, Spain
| | - Anders Vahlne
- Karolinska Institutet, Stockholm, Sweden; Global Virus Network, Baltimore, MD, USA.
| |
Collapse
|
39
|
Risso-Ballester J, Sanjuán R. High Fidelity Deep Sequencing Reveals No Effect of ATM, ATR, and DNA-PK Cellular DNA Damage Response Pathways on Adenovirus Mutation Rate. Viruses 2019; 11:v11100938. [PMID: 31614688 PMCID: PMC6832117 DOI: 10.3390/v11100938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Most DNA viruses exhibit relatively low rates of spontaneous mutation. However, the molecular mechanisms underlying DNA virus genetic stability remain unclear. In principle, mutation rates should not depend solely on polymerase fidelity, but also on factors such as DNA damage and repair efficiency. Most eukaryotic DNA viruses interact with the cellular DNA damage response (DDR), but the role of DDR pathways in preventing mutations in the virus has not been tested empirically. To address this goal, we serially transferred human adenovirus type 5 in cells in which the telangiectasia-mutated PI3K-related protein kinase (ATM), the ATM/Rad3-related (ATR) kinase, and the DNA-dependent protein kinase (DNA-PK) were chemically inactivated, as well as in control cells displaying normal DDR pathway functioning. High-fidelity deep sequencing of these viral populations revealed mutation frequencies in the order of one-millionth, with no detectable effect of the inactivation of DDR mediators ATM, ATR, and DNA-PK on adenovirus sequence variability. This suggests that these DDR pathways do not play a major role in determining adenovirus genetic diversity.
Collapse
Affiliation(s)
- Jennifer Risso-Ballester
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| |
Collapse
|
40
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
41
|
Ciccozzi M, Lai A, Zehender G, Borsetti A, Cella E, Ciotti M, Sagnelli E, Sagnelli C, Angeletti S. The phylogenetic approach for viral infectious disease evolution and epidemiology: An updating review. J Med Virol 2019; 91:1707-1724. [PMID: 31243773 DOI: 10.1002/jmv.25526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
In the last decade, the phylogenetic approach is recurrent in molecular evolutionary analysis. On 12 May, 2019, about 2 296 213 papers are found, but typing "phylogeny" or "epidemiology AND phylogeny" only 199 804 and 20 133 are retrieved, respectively. Molecular epidemiology in infectious diseases is widely used to define the source of infection as so as the ancestral relationships of individuals sampled from a population. Coalescent theory and phylogeographic analysis have had scientific application in several, recent pandemic events, and nosocomial outbreaks. Hepatitis viruses and immunodeficiency virus (human immunodeficiency virus) have been largely studied. Phylogenetic analysis has been recently applied on Polyomaviruses so as in the more recent outbreaks due to different arboviruses type as Zika and chikungunya viruses discovering the source of infection and the geographic spread. Data on sequences isolated by the microorganism are essential to apply the phylogenetic tools and research in the field of infectious disease phylodinamics is growing up. There is the need to apply molecular phylogenetic and evolutionary methods in areas out of infectious diseases, as translational genomics and personalized medicine. Lastly, the application of these tools in vaccine strategy so as in antibiotic and antiviral researchers are encouraged.
Collapse
Affiliation(s)
- Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Roma, Italy
| | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Ciotti
- Laboratory of Molecular Virology, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
42
|
Díaz-Muñoz SL. Uncovering Virus-Virus Interactions by Unifying Approaches and Harnessing High-Throughput Tools. mSystems 2019; 4:e00121-19. [PMID: 31164405 PMCID: PMC6584877 DOI: 10.1128/msystems.00121-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023] Open
Abstract
Virus-host interactions have received much attention in virology. Virus-virus interactions can occur when >1 virus infects a host and can be deemed social when one virus affects the fitness of another virus, as in the well-known case of superinfection exclusion. Coinfection and subsequent social interactions can change viral pathogenicity, host range, and genetic composition, with implications for human health and viral evolution. I propose that this field can be advanced by bringing new perspectives into virology (e.g., social evolution theory) and uniting disciplinary divides within virology (classical, host-focused, and ecoevolutionary). The development of novel high-throughput tools that meld molecular and evolutionary approaches can harness viral diversity as an experimental asset to understand complex viral social interactions. A greater knowledge of virus-virus interactions will lead to the reformulation of basic concepts of virology and advances in applied virology, with new treatments that harness interactions between viruses to fight viral and bacterial infections.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
- Genome Center, University of California, Davis, Davis, California, USA
| |
Collapse
|