1
|
Kahn R, Derado G, Hannapel EJ, Vander Kelen P, Kunz JM, Edens C. Factors Associated with Legionella Detection in the Water Systems of National Lodging Organization Facilities with Water Management Programs in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:939. [PMID: 39063515 PMCID: PMC11276625 DOI: 10.3390/ijerph21070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
A better understanding of risk factors and the predictive capability of water management program (WMP) data in detecting Legionella are needed to inform the efforts aimed at reducing Legionella growth and preventing outbreaks of Legionnaires' disease. Using WMPs and Legionella testing data from a national lodging organization in the United States, we aimed to (1) identify factors associated with Legionella detection and (2) assess the ability of WMP disinfectant and temperature metrics to predict Legionella detection. We conducted a logistic regression analysis to identify WMP metrics associated with Legionella serogroup 1 (SG1) detection. We also estimated the predictive values for each of the WMP metrics and SG1 detection. Of 5435 testing observations from 2018 to 2020, 411 (7.6%) had SG1 detection, and 1606 (29.5%) had either SG1 or non-SG1 detection. We found failures in commonly collected WMP metrics, particularly at the primary test point for total disinfectant levels in hot water, to be associated with SG1 detection. These findings highlight that establishing and regularly monitoring water quality parameters for WMPs may be important for preventing Legionella growth and subsequent disease. However, while unsuitable water quality parameter results are associated with Legionella detection, this study found that they had poor predictive value, due in part to the low prevalence of SG1 detection in this dataset. These findings suggest that Legionella testing provides critical information to validate if a WMP is working, which cannot be obtained through water quality parameter measurements alone.
Collapse
Affiliation(s)
- Rebecca Kahn
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Gordana Derado
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
| | - Elizabeth J. Hannapel
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
| | - Patrick Vander Kelen
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Jasen M. Kunz
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Chris Edens
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
| |
Collapse
|
2
|
Mada PK, Khan MH. Legionella-Induced Rhabdomyolysis and Acute Kidney Injury: A Case Report. Cureus 2024; 16:e62066. [PMID: 38989332 PMCID: PMC11235156 DOI: 10.7759/cureus.62066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Legionella pneumonia is a severe form of pneumonia caused by the bacterium Legionella pneumophila. It often presents with atypical symptoms and can lead to complications such as rhabdomyolysis and acute kidney injury (AKI). Here, we report a case of Legionella pneumonia-induced rhabdomyolysis and AKI in a 32-year-old male. Laboratory investigations revealed elevated creatinine kinase levels and acute kidney injury. Further investigation confirmed Legionella pneumonia. The patient was promptly treated with appropriate antibiotics and supportive care, resulting in clinical improvement and resolution of rhabdomyolysis and AKI. This case underscores the importance of considering Legionella pneumonia as a potential cause of rhabdomyolysis and AKI, especially in patients with atypical pneumonia presentations.
Collapse
Affiliation(s)
| | - Muhammad H Khan
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| |
Collapse
|
3
|
Wang Y, Yi SM, Huang SM, Xu WX, Wei YW, Qu Q, Qu J. Efficacy of omadacycline in the treatment of Legionella pneumonia: a case report. Front Cell Infect Microbiol 2024; 14:1380312. [PMID: 38836055 PMCID: PMC11148271 DOI: 10.3389/fcimb.2024.1380312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Legionella, one of the main pathogens that causes community-acquired pneumonia, can lead to Legionella pneumonia, a condition characterized predominantly by severe pneumonia. This disease, caused by the bacterium Legionella pneumophila, can quickly progress to critical pneumonia and is often associated with damage to multiple organs. As a result, it requires close attention in terms of clinical diagnosis and treatment. Omadacycline, a new type of tetracycline derivative belonging to the aminomethylcycline class of antibiotics, is a semi-synthetic compound derived from minocycline. Its key structural feature, the aminomethyl modification, allows omadacycline to overcome bacterial resistance and broadens its range of effectiveness against bacteria. Clinical studies have demonstrated that omadacycline is not metabolized in the body, and patients with hepatic and renal dysfunction do not need to adjust their dosage. This paper reports a case of successful treatment of Legionella pneumonia with omadacycline in a patient who initially did not respond to empirical treatment with moxifloxacin. The patient also experienced electrolyte disturbance, as well as dysfunction in the liver and kidneys, delirium, and other related psychiatric symptoms.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Traffic Hospital of Hunan Province, Changsha, China
| | - Shui-Min Yi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Si-Min Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Foresea Life Insurance Shaoguan Hospital, Shaoguan, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
4
|
Spretz MW, Orrukem MM, Khwaja B, Karnath B. Legionella pneumonia: A Case of Fever Prolonged for 10 Days. Cureus 2024; 16:e59979. [PMID: 38854237 PMCID: PMC11162253 DOI: 10.7759/cureus.59979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Legionnaires' disease is a potentially severe type of pneumonia most often caused by the organism Legionella pneumophila. Exposure to this bacterial pathogen typically happens in the community but may also occur in the hospital setting. This report describes the case of a patient who presented due to 10 days of fever, shortness of breath, and diarrhea, with initial imaging demonstrating multifocal pneumonia. The patient was appropriately started on empiric antibiotics for community-acquired pneumonia and admitted to the medicine floor. The patient showed no meaningful improvement in his initial hospital course on empiric antibiotics with continued oxygen requirements. Meanwhile, urine Legionella antigen testing returned positive on hospital day four, and after tailoring antibiotics accordingly, the patient's clinical status improved significantly. This case report highlights the efficacy of broad testing in the initial admission and the need for constant re-evaluation in the context of a patient not improving with appropriate therapy.
Collapse
Affiliation(s)
- Matthew W Spretz
- Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Martin M Orrukem
- Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Bisma Khwaja
- Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Bernard Karnath
- Internal Medicine, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
5
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
6
|
Thizy G, Flahault A, Scemla A, Roux O, Jarraud S, Lebeaux D, Pouchot J, Gautier-Vargas G, Malvezzi P, Murris M, Vuotto F, Girerd S, Pansu N, Antonini T, Elkrief L, Barrou B, Besch C, Blot M, Boignard A, Brenier H, Coilly A, Gouezel C, Hannah K, Housssel-Debry P, Jouan J, Lecuyer H, Limelette A, Luyt CE, Melloni B, Pison C, Rafat C, Rebibou JM, Savier E, Schvartz B, Scatton O, Toure F, Varnous S, Vidal P, Savoye E, Ader F, Lortholary O, Lanternier F, Lafont E. Legionnaires Disease in Solid Organ Transplant Recipients: A Decade-Long Nationwide Study in France. Chest 2024; 165:507-520. [PMID: 37839586 DOI: 10.1016/j.chest.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Legionnaires disease (LD) is a rare, life-threatening opportunistic bacterial infection that poses a significant risk to patients with impaired cell-mediated immunity such as solid organ transplant recipients. However, the epidemiologic features, clinical presentation, and outcomes of LD in this population are poorly described. RESEARCH QUESTION What are the clinical manifestations, radiologic presentation, risk factors for severity, treatment, and outcome of LD in solid organ transplant recipients? STUDY DESIGN AND METHODS In this 10-year multicenter retrospective cohort study in France, where LD notification is mandatory, patients were identified by hospital discharge databases. Diagnosis of LD relied on positive culture findings from any respiratory sample, positive urinary antigen test (UAT) results, positive specific serologic findings, or a combination thereof. Severe LD was defined as admission to the ICU. RESULTS One hundred one patients from 51 transplantation centers were eligible; 64 patients (63.4%) were kidney transplant recipients. Median time between transplantation and LD was 5.6 years (interquartile range, 1.5-12 years). UAT results were positive in 92% of patients (89/97). Among 31 patients with positive culture findings in respiratory samples, Legionella pneumophila serogroup 1 was identified in 90%. Chest CT imaging showed alveolar consolidation in 98% of patients (54 of 57), ground-glass opacity in 63% of patients (36 of 57), macronodules in 21% of patients (12 of 57), and cavitation in 8.8% of patients (5 of 57). Fifty-seven patients (56%) were hospitalized in the ICU. In multivariate analysis, severe LD was associated with negative UAT findings at presentation (P = .047), lymphopenia (P = .014), respiratory symptoms (P = .010), and pleural effusion (P = .039). The 30-day and 12-month mortality rates were 8% (8 of 101) and 20% (19 of 97), respectively. In multivariate analysis, diabetes mellitus was the only factor associated with 12-month mortality (hazard ratio, 3.2; 95% OR, 1.19-8.64; P = .022). INTERPRETATION LD is a late and severe complication occurring in solid organ transplant recipients that may present as pulmonary nodules on which diabetes impacts its long-term prognosis.
Collapse
Affiliation(s)
- Guillaume Thizy
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrien Flahault
- Service de Néphrologie et Transplantation Rénale, CHRU Nancy-Brabois, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Anne Scemla
- Service de Transplantation Rénale, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Olivier Roux
- Service d'Hépatologie, Hôpital Beaujon, Université Paris Cité, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France
| | - Sophie Jarraud
- Centre National de Référence des Légionelles, Institut des Agents Infectieux, Hospices Civils de Lyon, France; Centre International de Recherche en Infectiologie, Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, France
| | - David Lebeaux
- Unité Mobile d'Infectiologie, Service de Microbiologie, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacques Pouchot
- Service de Médecine Interne, Hôpital Européen Georges Pompidou, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Gabriela Gautier-Vargas
- Service de Néphrologie et Transplantation, Hôpital Civil, CHRU Hautepierre, Université de Strasbourg, Strasbourg, France
| | - Paolo Malvezzi
- Service de Néphrologie, Dialyse, Aphérèses et Transplantation, CHU Grenoble Alpes, Université de Grenoble, la Tronche, France
| | - Marlene Murris
- Service de Pneumologie-Consultation Mucoviscidose, Pôle Voies Respiratoires, CHU de Toulouse-Hôpital Larrey, Université de Toulouse, Toulouse, France
| | - Fanny Vuotto
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Lille, Université de Lille, Lille, France
| | - Sophie Girerd
- Service de Néphrologie et Transplantation Rénale, CHRU Nancy-Brabois, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Nathalie Pansu
- Service de Maladies Infectieuses et Tropicales, CHU Gui de Chauliac, Université de Montpellier, Montpellier, France
| | - Teresa Antonini
- Service d'Hépatologie, Hôpital Universitaire Croix-Rousse, Lyon, France; Cancer Research Center of Lyon, INSERM U1052, Lyon, France
| | - Laure Elkrief
- Service d'Hépatologie, CHRU de Tours, Hôpital Trousseau, Université de Tours, Chambray-lès-Tours, France
| | - Benoit Barrou
- Département d'Urologie, Néphrologie et Transplantation, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Camille Besch
- Service de Chirurgie Hépato-Bilio-Pancréatique et Transplantation Hépatique, CHRU Hautepierre, Université de Strasbourg, Strasbourg, France
| | - Mathieu Blot
- Département de Maladies Infectieuses, Centre Hospitalo-Universitaire de Dijon-Bourgogne, Université de Bourgogne, France
| | - Aude Boignard
- Service de Cardiologie, CHU de Grenoble, CHU Grenoble Alpes, Université de Grenoble, Grenoble, France
| | - Henri Brenier
- Service de Néphrologie, Centre Hospitalier Universitaire Pontchaillou, Hôpital Universitaire de Pontchaillou, Université de Rennes, Rennes, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, AP-HP Hôpital Paul-Brousse, Université Paris-Saclay, Villejuif, France
| | - Corentin Gouezel
- Service d'Anesthésie et Réanimation de Chirurgie Cardiaque, Hôpital Bichat, Université Paris Cité, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Kaminski Hannah
- Service de Néphrologie, Transplantation Dialyse, Aphérèses, CHU de Bordeaux, Hôpital Pellegrin, Université de Bordeaux, Bordeaux, France
| | - Pauline Housssel-Debry
- Service d'Hépatologie et Transplantation Hépatique, Hôpital Universitaire de Pontchaillou, Université de Rennes, Rennes, France
| | - Jerome Jouan
- Service de Chirurgie Cardiaque, CHU Limoges, Centre Hospitalier et Universitaire de Limoges, Université de Limoges, Limoges, France
| | - Hervé Lecuyer
- Service de Microbiologie Clinique, Hôpital Necker Enfants-Malades, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne Limelette
- Laboratoire de Microbiologie, Hôpital Robert Debré, CHU de Reims, Université de Reims, Reims, France
| | - Charles Edouard Luyt
- Médecine Intensive Réanimation, Hôpital Pitié-Salpêtrière, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Boris Melloni
- Service de Pathologie Respiratoire, CHU Limoges, Centre Hospitalier et Universitaire de Limoges, Université de Limoges, Limoges, France
| | - Christophe Pison
- Service de Pneumologie Physiologie, Pôle Thorax et Vaisseaux, CHU Grenoble Alpes, Université de Grenoble, Grenoble, France
| | - Cédric Rafat
- Service de Soins Intensifs Néphrologique et Rein Aigu, Hôpital Tenon, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Michel Rebibou
- Service de Néphrologie, Transplantation Hémodialyse, CHU, Université de Dijon, Dijon, France
| | - Eric Savier
- Service de Chirurgie Digestive et Hépato-Bilio-Pancréatique, Transplantation Hépatique, CHU Pitié-Salpêtriere, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Betoul Schvartz
- Service de Néphrologie, Hémodialyse, Transplantation Rénale, CHU de Reims, Université de Reims, Reims, France
| | - Olivier Scatton
- Service de Chirurgie Digestive Hépato-Bilio-Pancréatique et Transplantation Hépatique, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Fatouma Toure
- Service Néphrologie, CHU Limoges, Centre Hospitalier et Universitaire de Limoges, Université de Limoges, Limoges, France
| | - Shaida Varnous
- Service de Chirurgie Cardiaque et Thoracique, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pauline Vidal
- Laboratoire de Bactériologie-Hygiène, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emilie Savoye
- Organ and Tissue Procurement and Transplantation Department, French Biomedicine Agency, Saint Denis La Plaine, France
| | - Florence Ader
- Centre National de Référence des Légionelles, Institut des Agents Infectieux, Hospices Civils de Lyon, France; Centre International de Recherche en Infectiologie, Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, France; Service de Maladies Infectieuses et Tropicales, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Hôpital Universitaire Croix-Rousse, Lyon, France
| | - Olivier Lortholary
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Emmanuel Lafont
- Service de Maladies Infectieuses et Tropicales, Hôpital Universitaire, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
7
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
McMullen CKM, Dougherty B, Medeiros DT, Yasvinski G, Sharma D, Thomas MK. Estimating the burden of illness caused by domestic waterborne Legionnaires' disease in Canada: 2015-2019. Epidemiol Infect 2024; 152:e18. [PMID: 38204334 PMCID: PMC10894893 DOI: 10.1017/s0950268824000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Legionellosis is a disease caused by the bacterium Legionella that most commonly presents as Legionnaires' disease (LD), a severe form of pneumonia. From 2015 to 2019, an average of 438 LD cases per year were reported in Canada. However, it is believed that the actual number of cases is much higher, since LD may be underdiagnosed and underreported. The purpose of this study was to develop an estimate of the true incidence of illnesses, hospitalizations, and deaths associated with LD in Canada. Values were derived using a stochastic model, based on Canadian surveillance data from 2015 to 2019, which were scaled up to account for underdiagnosis and underreporting. Overall, there were an estimated 1,113 (90% CrI: 737-1,730) illnesses, 1,008 (90% CrI: 271-2,244) hospitalizations, and 34 (90% CrI: 4-86) deaths due to domestically acquired waterborne LD annually in Canada from 2015 to 2019. It was further estimated that only 36% of illnesses and 39% of hospitalizations and deaths were captured in surveillance, and that 22% of illnesses were caused by Legionella serogroups and species other than Legionella pneumophila serogroup 1 (non-Lp1). This study highlights the true burden and areas for improvement in Canada's surveillance and detection of LD.
Collapse
Affiliation(s)
- Carrie K. M. McMullen
- Foodborne Disease and Antimicrobial Resistance Surveillance Division, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Guelph, ON, Canada
| | - Brendan Dougherty
- Foodborne Disease and Antimicrobial Resistance Surveillance Division, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Guelph, ON, Canada
| | - Diane T. Medeiros
- Water Quality Division, Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Gordon Yasvinski
- Water Quality Division, Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Deepak Sharma
- Water Quality Division, Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - M. Kate Thomas
- Foodborne Disease and Antimicrobial Resistance Surveillance Division, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Infectious Diseases and Vaccination Programs Branch, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
9
|
Endo M, Jo T, Konishi T, Kumazawa R, Matsui H, Yasunaga H. Association between the Timing of Urinary Antigen Testing and Outcomes in Legionella Pneumonia Patients: A Nationwide Database Study. Intern Med 2024; 63:51-56. [PMID: 37225496 PMCID: PMC10824650 DOI: 10.2169/internalmedicine.1115-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/02/2023] [Indexed: 05/26/2023] Open
Abstract
Objective Recommendations on the timing of Legionella urinary antigen tests for community-acquired pneumonia patients differ among guidelines in Japan, the United States, and European nations. We therefore evaluated the association between the timing of urinary antigen tests and in-hospital mortality in patients with Legionella pneumonia. Methods We conducted a retrospective cohort study using the Diagnosis Procedure Combination database, a nationwide database of acute care inpatients in Japan. Patients who underwent Legionella urinary antigen tests on the day of admission formed the tested group. Patients who were tested on day 2 of admission or later or were unexamined formed the control group. We performed a propensity score matching analysis to compare in-hospital mortality, length of hospital stay and duration of antibiotics use between the two groups. Results Of the 9,254 eligible patients, 6,933 were included in the tested group. One-to-one propensity score matching generated 1,945 pairs. The tested group had a significantly lower 30-day in-hospital mortality than the control group (5.7 vs. 7.7%; odds ratio, 0.72; 95% confidence intervals, 0.55-0.95; p=0.020). The tested group also showed a significantly shorter length of stay and duration of antibiotics use than the control group. Conclusion Urine antigen testing upon admission was associated with better outcomes in patients with Legionella pneumonia. Urine antigen tests upon admission may be recommended for all patients with severe community-acquired pneumonia.
Collapse
Affiliation(s)
- Masayuki Endo
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Japan
| | - Taisuke Jo
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Respiratory Medicine, The University of Tokyo Hospital, Japan
| | - Takaaki Konishi
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Japan
| | - Ryosuke Kumazawa
- Center for Clinical Sciences, National Center for Global Health and Medicine, Japan
| | - Hiroki Matsui
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Japan
| |
Collapse
|
10
|
Kunz JM, Hannapel E, Vander Kelen P, Hils J, Hoover ER, Edens C. Effects of the COVID-19 Pandemic on Legionella Water Management Program Performance across a United States Lodging Organization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6885. [PMID: 37835155 PMCID: PMC10572137 DOI: 10.3390/ijerph20196885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Legionella, the bacterium that causes Legionnaires' disease, can grow and spread in building water systems and devices. The COVID-19 pandemic impacted building water systems through reductions in water usage. Legionella growth risk factors can be mitigated through control measures, such as flushing, to address stagnation, as part of a water management program (WMP). A national lodging organization (NLO) provided WMP data, including Legionella environmental testing results for periods before and during the pandemic. The statistical analysis revealed an increased risk of water samples testing positive for Legionella during the pandemic, with the greatest increase in risk observed at the building's cold-water entry test point. Sample positivity did not vary by season, highlighting the importance of year-round Legionella control activities. The NLO's flushing requirements may have prevented an increased risk of Legionella growth during the pandemic. However, additional control measures may be needed for some facilities that experience Legionella detections. This analysis provides needed evidence for the use of flushing to mitigate the impacts of building water stagnation, as well as the value of routine Legionella testing for WMP validation. Furthermore, this report reinforces the idea that WMPs remain the optimal tool to reduce the risk of Legionella growth and spread in building water systems.
Collapse
Affiliation(s)
- Jasen M. Kunz
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Mailstop H24-11, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Elizabeth Hannapel
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-6, 1600 Clifton Road, Atlanta, GA 30333, USA; (E.H.); (C.E.)
| | - Patrick Vander Kelen
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Mailstop S106-5, 4770 Buford Highway, Atlanta, GA 30341, USA; (P.V.K.); (E.R.H.)
| | - Janie Hils
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Mailstop S106-5, 4770 Buford Highway, Atlanta, GA 30341, USA; (P.V.K.); (E.R.H.)
- Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, TN 37830, USA
| | - Edward Rickamer Hoover
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Mailstop S106-5, 4770 Buford Highway, Atlanta, GA 30341, USA; (P.V.K.); (E.R.H.)
| | - Chris Edens
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-6, 1600 Clifton Road, Atlanta, GA 30333, USA; (E.H.); (C.E.)
| |
Collapse
|
11
|
Miller A, Reddy PJ, Randolph D, Breton PP, Dickinson P, Hyde MJ. A Rare Case of Community-Acquired Pneumonia Only Presenting With Diarrhea, Abdominal Pain, and Fever: A Case Report. Cureus 2023; 15:e44368. [PMID: 37779758 PMCID: PMC10540503 DOI: 10.7759/cureus.44368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Legionnaires' disease is an atypical pneumonia caused by Legionella pneumophila (L. pneumophila) pneumonia that features slow onset, nonproductive cough, fatigue, headache, sore throat, myalgias, and malaise. It can be difficult to diagnose, as it presents with extrapulmonary symptoms, and delay in treatment can be fatal. Here, we present the case of a previously healthy 32-year-old Caucasian male with Legionnaires disease who only presented to the clinic with abdominal pain and diarrhea. The patient did not have any pulmonary symptoms at the initial presentation. This presentation did not fit the diagnostic tools available for Legionnaires' disease, including a validated clinical prediction rule, which ruled out L. pneumophila infection with a sensitivity of 97% and a negative predictive value of 99.4%. Due to the complaint of abdominal pain, a flat/upright abdominal X-ray was ordered, which includes a chest X-ray. Upon analyzing the chest X-ray, a right lower lobe consolidation was identified, prompting an L. pneumophila urinary test to be added to the lab orders. This case represents the difficulties in diagnosing Legionnaires' disease due to the diverse clinical complexities of presentations, which may solely involve abdominal complaints.
Collapse
Affiliation(s)
- Austin Miller
- Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Punuru J Reddy
- Internal Medicine, Decatur Morgan Hospital, Decatur, USA
| | - Derrick Randolph
- Family and Community Medicine, Decatur Morgan Hospital, Decatur, USA
| | - Philip P Breton
- Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | | | | |
Collapse
|
12
|
Moffa MA, Rock C, Galiatsatos P, Gamage SD, Schwab KJ, Exum NG. Legionellosis on the rise: A scoping review of sporadic, community-acquired incidence in the United States. Epidemiol Infect 2023; 151:e133. [PMID: 37503568 PMCID: PMC10540183 DOI: 10.1017/s0950268823001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Over the past two decades, the incidence of legionellosis has been steadily increasing in the United States though there is noclear explanation for the main factors driving the increase. While legionellosis is the leading cause of waterborne outbreaks in the US, most cases are sporadic and acquired in community settings where the environmental source is never identified. This scoping review aimed to summarise the drivers of infections in the USA and determine the magnitude of impact each potential driver may have. A total of 1,738 titles were screened, and 18 articles were identified that met the inclusion criteria. Strong evidence was found for precipitation as a major driver, and both temperature and relative humidity were found to be moderate drivers of incidence. Increased testing and improved diagnostic methods were classified as moderate drivers, and the ageing U.S. population was a minor driver of increasing incidence. Racial and socioeconomic inequities and water and housing infrastructure were found to be potential factors explaining the increasing incidence though they were largely understudied in the context of non-outbreak cases. Understanding the complex relationships between environmental, infrastructure, and population factors driving legionellosis incidence is important to optimise mitigation strategies and public policy.
Collapse
Affiliation(s)
- Michelle A. Moffa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clare Rock
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Hospital Epidemiology and Infection Control, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Panagis Galiatsatos
- Medicine for the Greater Good, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shantini D. Gamage
- U.S. Department of Veterans Affairs, National Infectious Diseases Service, Veterans Health Administration, Washington, DC, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kellogg J. Schwab
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Natalie G. Exum
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Kubicki K, Vargas A, O'Dwyer R. Clinical Reasoning: A 47-Year-Old Man With an Upper Respiratory Infection, Acute Confusion, Dysarthria, and Ataxia. Neurology 2023; 100:978-983. [PMID: 36697240 PMCID: PMC10186246 DOI: 10.1212/wnl.0000000000206864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/12/2022] [Indexed: 01/26/2023] Open
Abstract
A patient presenting with acute confusion, dysarthria, and appendicular ataxia with gait instability warrants a broad differential including emergent consideration of acute ischemic or hemorrhagic stroke. Moreover, in acute to subacute presentations, a wide array of etiologies including infectious causes, toxins, or autoimmune conditions may be considered. This article features a 47-year-old man who presented acutely with confusion, severe dysarthria, left upper extremity dysmetria, and unsteady gait. In this case, these neurologic signs were preceded by symptoms of an upper respiratory infection. In addition, MRI brain without contrast demonstrated a small focus of hyperintensity on diffusion-weighted imaging in the splenium of the corpus callosum with apparent diffusion coefficient match. The article illustrates a diagnostic approach in evaluating a patient with this constellation of clinical and radiologic findings, as well as pertinent management considerations. A comprehensive overview of other potential causative factors of the imaging findings is described to augment the reader's differential diagnosis. Finally, a literature review pertaining to the revealed diagnosis highlights the epidemiologic relevance and important clinical pearls.
Collapse
Affiliation(s)
- Konrad Kubicki
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, IL.
| | - Alejandro Vargas
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Rebecca O'Dwyer
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| |
Collapse
|
14
|
Mazi PB, Sahrmann JM, Olsen MA, Coler-Reilly A, Rauseo AM, Pullen M, Zuniga-Moya JC, Powderly WG, Spec A. The Geographic Distribution of Dimorphic Mycoses in the United States for the Modern Era. Clin Infect Dis 2023; 76:1295-1301. [PMID: 36366776 PMCID: PMC10319749 DOI: 10.1093/cid/ciac882] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The dimorphic mycoses (DMs) of the United States-Histoplasma, Coccidioides, and Blastomyces-commonly known as endemic mycoses of North America (in addition to Paracoccidioides) are increasingly being diagnosed outside their historical areas of endemicity. Despite this trend, the maps outlining their geographic distributions have not been updated in more than half a century using a large, nationwide database containing individual-patient-level data. METHODS This was a retrospective analysis of >45 million Medicare fee-for-service beneficiaries from 1 January 2007 through 31 December 2016. Diagnoses of histoplasmosis, coccidioidomycosis, and blastomycosis were defined by International Classification of Diseases, Ninth/10th Revision, codes. The primary outcome was the incidence of histoplasmosis, coccidioidomycosis, and blastomycosis for each US county. Clinically meaningful thresholds for incidence were defined as 100 cases/100 000 person-years for histoplasmosis and coccidioidomycosis and 50 cases/100 000 person-years for blastomycosis. RESULTS There were 79 749 histoplasmosis, 37 726 coccidioidomycosis, and 6109 blastomycosis diagnoses in unique persons from 2007-2016 across 3143 US counties. Considering all US states plus Washington, DC, 94% (48/51) had ≥1 county above the clinically relevant threshold for histoplasmosis, 69% (35/51) for coccidioidomycosis, and 78% (40/51) for blastomycosis. CONCLUSIONS Persons with histoplasmosis, coccidioidomycosis, and blastomycosis are diagnosed in significant numbers outside their historical geographic distributions established >50 years ago. Clinicians should consider DM diagnoses based on compatible clinical syndromes with less emphasis placed on patients' geographic exposure. Increased clinical suspicion leading to a subsequent increase in DM diagnostic testing would likely result in fewer missed diagnoses, fewer diagnostic delays, and improved patient outcomes.
Collapse
Affiliation(s)
- Patrick B Mazi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - John M Sahrmann
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Margaret A Olsen
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ariella Coler-Reilly
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Adriana M Rauseo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Matthew Pullen
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julio C Zuniga-Moya
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - William G Powderly
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
15
|
Gleason JA, Newby R, Gaynor JJ, Lee LH, Chu T, Bliese AD, Taylor CW, Yoon P, DeLorenzo S, Pranitis D, Bella J. Legionella monitoring results by water quality characteristics in a large public water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55974-55988. [PMID: 36913019 DOI: 10.1007/s11356-023-26198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Legionella, the causative agent of Legionnaires' disease, is an emerging concern for water utilities. Passaic Valley Water Commission (PVWC) is a public drinking water supplier, which provides treated surface water to approximately 800,000 customers in New Jersey. To evaluate the occurrence of Legionella in the PVWC distribution system, swab, first draw, and flushed cold water samples were collected from total coliform sites (n = 58) during a summer and winter sampling event. Endpoint PCR detection methods were combined with culture for Legionella detection. Among 58 total coliform sites during the summer, 17.2% (10/58) of first draw samples were positive for 16S and mip Legionella DNA markers and 15.5% (9/58) in flushed samples. Across both summer and winter sampling, a total of four out of 58 sites had low-level culture detection of Legionella spp. (0.5-1.6 CFU/mL) among first draw samples. Only one site had both a first and flush draw detection (8.5 CFU/mL and 1.1 CFU/mL) for an estimated culture detection frequency of 0% in the summer and 1.7% in the winter among flushed draw samples. No L. pneumophila was detected by culture. Legionella DNA detection was significantly greater in the summer than in the winter, and detection was greater in samples collected from areas treated with phosphate. No statistical difference was found between first draw and flush sample detection. Total organic carbon, copper, and nitrate were significantly associated with Legionella DNA detection.
Collapse
Affiliation(s)
- Jessie A Gleason
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, 135 East State Street, P.O. Box 369, Trenton, NJ, 08625, USA.
| | - Robert Newby
- Division of Science, New Jersey Department of Environmental Protection, 428 East State Street, P.O. Box 420, Trenton, NJ, 08625, USA
| | - John J Gaynor
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Lee H Lee
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave, South Orange, NJ, 07076, USA
| | - Alorah D Bliese
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Calvin W Taylor
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Paul Yoon
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave, South Orange, NJ, 07076, USA
| | - Suzanne DeLorenzo
- Passaic Valley Water Commission, 1525 Main Avenue, Totowa, NJ, 07512, USA
| | - David Pranitis
- Passaic Valley Water Commission, 1525 Main Avenue, Totowa, NJ, 07512, USA
| | - Joe Bella
- Passaic Valley Water Commission, 1525 Main Avenue, Totowa, NJ, 07512, USA
| |
Collapse
|
16
|
Dutka P, Liu Y, Maggi S, Ghosal D, Wang J, Carter SD, Zhao W, Vijayrajratnam S, Vogel JP, Jensen GJ. Structure and Function of the Dot/Icm T4SS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533729. [PMID: 36993699 PMCID: PMC10055428 DOI: 10.1101/2023.03.22.533729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The Legionella pneumophila Dot/Icm type IV secretion system (T4SS) delivers effector proteins into host cells during infection. Despite its significance as a potential drug target, our current understanding of its atomic structure is limited to isolated subcomplexes. In this study, we used subtomogram averaging and integrative modeling to construct a nearly-complete model of the Dot/Icm T4SS accounting for seventeen protein components. We locate and provide insights into the structure and function of six new components including DotI, DotJ, DotU, IcmF, IcmT, and IcmX. We find that the cytosolic N-terminal domain of IcmF, a key protein forming a central hollow cylinder, interacts with DotU, providing insight into previously uncharacterized density. Furthermore, our model, in combination with analyses of compositional heterogeneity, explains how the cytoplasmic ATPase DotO is connected to the periplasmic complex via interactions with membrane-bound DotI/DotJ proteins. Coupled with in situ infection data, our model offers new insights into the T4SS-mediated secretion mechanism.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yuxi Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stefano Maggi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jue Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wei Zhao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
17
|
Clinical and Laboratory Diagnosis of Legionella Pneumonia. Diagnostics (Basel) 2023; 13:diagnostics13020280. [PMID: 36673091 PMCID: PMC9858276 DOI: 10.3390/diagnostics13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumonia is a relatively rare but extremely progressive pulmonary infection with high mortality. Traditional cultural isolation remains the gold standard for the diagnosis of Legionella pneumonia. However, its harsh culture conditions, long turnaround time, and suboptimal sensitivity do not meet the clinical need for rapid and accurate diagnosis, especially for critically ill patients. So far, pathogenic detection techniques including serological assays, urinary antigen tests, and mass spectrometry, as well as nucleic acid amplification technique, have been developed, and each has its own advantages and limitations. This review summarizes the clinical characteristics and imaging findings of Legionella pneumonia, then discusses the advances, advantages, and limitations of the various pathogenetic detection techniques used for Legionella pneumonia diagnosis. The aim is to provide rapid and accurate guiding options for early identification and diagnosis of Legionella pneumonia in clinical practice, further easing healthcare burden.
Collapse
|
18
|
Reece ST, Kaufmann SH. Host Defenses to Intracellular Bacteria. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
19
|
Ortí-Lucas RM, Luciano E. New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:744-750. [PMID: 35264765 PMCID: PMC8906530 DOI: 10.1038/s41370-022-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It's pivotal to control the presence of legionella in sanitary structures. So, it's important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index. METHODS A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method. RESULTS Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples. SIGNIFICANCE We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires' disease in hospital settings.
Collapse
Affiliation(s)
- Rafael Manuel Ortí-Lucas
- Research group on Public Health and Patient Safety, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Eugenio Luciano
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
20
|
Rutile-TiO2/PtO2 Glass Coatings Disinfects Aquatic Legionella pneumophila via Morphology Change and Endotoxin Degradation under LED Irradiation. Catalysts 2022. [DOI: 10.3390/catal12080856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is the causative agent of Legionnaires’ disease and Pontiac fever, collectively known as legionellosis. L. pneumophila infection occurs through inhalation of contaminated aerosols from water systems in workplaces and institutions. The development of disinfectants that can eliminate L. pneumophila in such water systems without evacuating people is needed to prevent the spread of L. pneumophila. Photocatalysts are attractive disinfectants that do not harm human health. In particular, the TiO2 photocatalyst kills L. pneumophila under various conditions, but its mode of action is unknown. Here, we confirmed the high performance of TiO2 photocatalyst containing PtO2 via the degradation of methylene blue (half-value period: 19.2 min) and bactericidal activity against Escherichia coli (half-value period: 15.1 min) in water. Using transmission electron microscopy, we demonstrate that the disinfection of L. pneumophila (half-value period: 6.7 min) by TiO2 photocatalyst in water is accompanied by remarkable cellular membrane and internal damage to L. pneumophila. Assays with limulus amebocyte lysate and silver staining showed the release of endotoxin from L. pneumophila due to membrane damage and photocatalytic degradation of this endotoxin. This is the first study to demonstrate the disinfection mechanisms of TiO2 photocatalyst, namely, via morphological changes and membrane damage of L. pneumophila. Our results suggest that TiO2 photocatalyst might be effective in controlling the spread of L. pneumophila.
Collapse
|
21
|
Lancaster EC, Lee J. Potential environmental and health risk when returning to normal amidst COVID-19 vaccination. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 26:100328. [PMID: 35155880 PMCID: PMC8817624 DOI: 10.1016/j.coesh.2022.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the SARS-CoV-2 pandemic and restricted occupancy in work and school settings, there is a heightened risk for Legionella infection. An increase of stagnation in water pipe systems with limited water usage stimulates biofilm build-up, further facilitating Legionella proliferation. Individuals can inhale infected water aerosols and develop Legionellosis that can progress into mild flu-like symptoms or severe pneumonia. While SARS-CoV-2 vaccinations have been introduced globally, there is a concern for bacterial coinfections as individuals resume normal activities. Even with new SARS-CoV-2 variants circulating, Legionella persists as a public health threat as vulnerable communities' restrictions fluctuate. Proper water monitoring and management are critical while reopening communities. This article features Legionella characteristics and novel case reports amidst the pandemic. This article encourages greater awareness for building managers to minimize water stagnancy by disinfecting water distribution systems and promotes healthcare professionals to properly diagnose other illnesses during the ongoing pandemic to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Emma C Lancaster
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
- Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Gattuso G, Rizzo R, Lavoro A, Spoto V, Porciello G, Montagnese C, Cinà D, Cosentino A, Lombardo C, Mezzatesta ML, Salmeri M. Overview of the Clinical and Molecular Features of Legionella Pneumophila: Focus on Novel Surveillance and Diagnostic Strategies. Antibiotics (Basel) 2022; 11:370. [PMID: 35326833 PMCID: PMC8944609 DOI: 10.3390/antibiotics11030370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is one of the most threatening nosocomial pathogens. The implementation of novel and more effective surveillance and diagnostic strategies is mandatory to prevent the occurrence of legionellosis outbreaks in hospital environments. On these bases, the present review is aimed to describe the main clinical and molecular features of L. pneumophila focusing attention on the latest findings on drug resistance mechanisms. In addition, a detailed description of the current guidelines for the disinfection and surveillance of the water systems is also provided. Finally, the diagnostic strategies available for the detection of Legionella spp. were critically reviewed, paying the attention to the description of the culture, serological and molecular methods as well as on the novel high-sensitive nucleic acid amplification systems, such as droplet digital PCR.
Collapse
Affiliation(s)
- Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Vincenzoleo Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Concetta Montagnese
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy; (G.P.); (C.M.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.G.); (R.R.); (A.L.); (V.S.); (A.C.); (C.L.); (M.L.M.)
| |
Collapse
|
23
|
Sanchez A, Elliott EI, Wang P, Spichler-Moffarah A. Legionella pneumophila and Staphylococcus aureus co-infections in a patient with SARS-CoV-2. BMJ Case Rep 2022; 15:e248536. [PMID: 35232746 PMCID: PMC8889248 DOI: 10.1136/bcr-2021-248536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/04/2022] Open
Abstract
A man fully mRNA-vaccinated against COVID-19 presented to our hospital with an acute febrile illness, respiratory symptoms and a positive test for SARS-CoV-2. He was later found early into hospitalisation to have two morbid bacterial co-infections: Legionella pneumophila serogroup 1 and methicillin-resistant Staphylococcus aureus (MRSA). Although this patient was initially admitted for COVID-19 management, his initial presentation was remarkable for lobar pneumonia, hyponatraemia and rhabdomyolysis more compatible with Legionnaire's disease than severe COVID-19. On discovery of MRSA pneumonia as a second bacterial infection, immunosuppressive COVID-19 therapies were discontinued and targeted antibiotics towards both bacterial co-infections were initiated. The patient's successful recovery highlighted the need to have high suspicion for bacterial co-infections in patients presenting with community-acquired pneumonia and a positive SARS-CoV-2 test, as patients with serious bacterial co-infections may have worse outcomes with use of immunosuppressive COVID-19 therapies.
Collapse
Affiliation(s)
- Andrew Sanchez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eric I Elliott
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anne Spichler-Moffarah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Salahie S, Szpunar S, Saravolatz L. Clinical Predictors and Outcome for Legionnaire's Disease versus Bacteremic Pneumococcal Pneumonia. Am J Med Sci 2022; 364:176-180. [DOI: 10.1016/j.amjms.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/01/2022]
|
25
|
Barskey AE, Derado G, Edens C. Rising Incidence of Legionnaires' Disease and Associated Epidemiologic Patterns, United States, 1992-2018. Emerg Infect Dis 2022; 28:527-538. [PMID: 35195513 PMCID: PMC8888234 DOI: 10.3201/eid2803.211435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reported Legionnaires' disease (LD) cases began increasing in the United States in 2003 after relatively stable numbers for >10 years; reasons for the rise are unclear. We compared epidemiologic patterns associated with cases reported to the Centers for Disease Control and Prevention before and during the rise. The age-standardized average incidence was 0.48 cases/100,000 population during 1992-2002 compared with 2.71 cases/100,000 in 2018. Reported LD incidence increased in nearly every demographic, but increases tended to be larger in demographic groups with higher incidence. During both periods, the largest number of cases occurred among White persons, but the highest incidence was in Black or African American persons. Incidence and increases in incidence were generally largest in the East North Central, Middle Atlantic, and New England divisions. Seasonality was more pronounced during 2003-2018, especially in the Northeast and Midwest. Rising incidence was most notably associated with increasing racial disparities, geographic focus, and seasonality.
Collapse
|
26
|
Mraz AL, Weir MH. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Systematic Review Part II Growth within and Egress from a Host Cell. Microorganisms 2022; 10:141. [PMID: 35056590 PMCID: PMC8780890 DOI: 10.3390/microorganisms10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern, due to its ability to cause a severe pneumonia, Legionnaires' Disease (LD), and the challenges in controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental stressors and to increase its growth rate, which increases the bacteria's infectivity to human host cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to human macrophages without replicating within a host protozoan cell, the replication within, and egress from, a protozoan host cell is an integral part of the bacteria's lifecycle. While there is a great deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This systematic review summarizes the information in the literature regarding L. pneumophila's growth within and egress from the host cell, summarizes the genes which affect these processes, and calculates how oxidative stress can downregulate those genes.
Collapse
Affiliation(s)
- Alexis L. Mraz
- School of Nursing, Health, Exercise Science, The College of New Jersey, P.O. Box 7718, 2000 Pennington Rd., Ewing, NJ 08628, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
- Sustainability Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
27
|
National survey of physicians in Japan regarding their use of diagnostic tests for legionellosis. J Infect Chemother 2021; 28:129-134. [PMID: 34933785 DOI: 10.1016/j.jiac.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Bacterial culture remains the gold standard for the diagnosis of legionellosis. However, past reports indicate that most physicians use the urinary antigen test (UAT) alone. Combining it with other tests is important, especially in patients with negative UAT results. The aim of this study was to investigate the current situation of legionellosis diagnostics and clarify the issues that need to be addressed. METHODS Between March 1, 2021 and April 30, 2021, a questionnaire survey was conducted in an anonymous manner among physicians working in Japan. Questionnaires were generated on a website and asked questions in a multiple-choice format. RESULTS Valid responses were received from 309 physicians during the study period. Most (92.9%) physicians reported using UAT as the initial test for patients suspected of having legionellosis, and <10% reported using other tests (e.g., culture, nucleic acid amplification test [NAAT], Gimenez staining, and serum antibody titer measurement [ATM]). When the initial test result was negative, 63% of physicians reported not conducting additional tests. Even when they chose to run additional tests, at most 27.8%, 23.6%, 12.3%, and 10.4% of all physicians used NAAT, culture, Gimenez staining, and serum ATM, respectively. The major reasons for not using tests other than UAT were "unavailability in the medical facility," "long turn-around time," and "difficult to collect sputum." CONCLUSIONS The present survey revealed that most physicians in Japan used UAT alone for diagnosing legionellosis. Eliminating barriers to creating a reasonable environment and edification of physicians are needed to improve the current situation.
Collapse
|
28
|
Kao AS, Myer S, Wickrama M, Ismail R, Hettiarachchi M. Multidisciplinary Management of Legionella Disease in Immunocompromised Patients. Cureus 2021; 13:e19214. [PMID: 34873543 PMCID: PMC8638927 DOI: 10.7759/cureus.19214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumonia is a gram-negative bacterial infection commonly associated with aerosol transmission from contaminated water sources. Impaired immunity leads to delayed clearance of infection and further predisposes individuals with Legionella pneumonia at risk of developing complications. We present a case report on a renal transplant patient with comorbid cardiac and renal dysfunction who developed community-acquired Legionella pneumonia. The case emphasizes the importance of adopting a multidisciplinary approach when managing Legionella infection in patients with multiple comorbidities and immunosuppressive states.
Collapse
Affiliation(s)
- Andrew S Kao
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Stephanie Myer
- Internal Medicine, Detroit Medical Center Sinai Grace Hospital, Detroit, USA
| | - Madappuli Wickrama
- Internal Medicine, Detroit Medical Center Sinai Grace Hospital, Detroit, USA
| | - Rana Ismail
- Medicine, Detroit Medical Center Sinai Grace Hospital, Detroit, USA
| | | |
Collapse
|
29
|
Glažar Ivče D, Rončević D, Šantić M, Cenov A, Tomić Linšak D, Mićović V, Lušić D, Glad M, Ljubas D, Vukić Lušić D. Is a Proactive Approach to Controlling Legionella in the Environment Justified? Food Technol Biotechnol 2021; 59:314-324. [PMID: 34759763 PMCID: PMC8542184 DOI: 10.17113/ftb.59.03.21.7016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Research background Legionella are Gram-negative bacteria that are ubiquitous in the natural environment. Contaminated water in man-made water systems is a potential source of transmission of legionnaires’ disease. The aim of this study is to explore the prevalence of Legionella pneumophila in the drinking water distribution system (DWDS) of Primorje-Gorski Kotar (PGK) County, Croatia, for the period 2013-2019, coupled with the incidence of legionnaires’ disease. A number of L. pneumophila-positive samples (>100 CFU/L), serogroup distribution and the degree of contamination of specific facilities (health and aged care, tourism, and sports) were assessed. Based on the obtained results, the reasoning for the implementation of a mandatory Legionella environmental surveillance program was assessed. Experimental approach Sample testing for Legionella was carried out according to the standard method for enumeration of this bacterium. A heterotrophic plate count (HPC) and Pseudomonas aeruginosa number were analysed along with the basic physicochemical indicators of drinking water quality. The research period was divided into two parts, namely, the 2013-2018 period (before implementation of the prevention program, after the outbreak of legionnaires’ disease), and the year 2019 (proactive approach, no disease cases recorded). Results and conclusion During the 7-year observation period in PGK County, an increase in the number of samples tested for Legionella was found. An increase in Legionella-positive samples (particularly pronounced during the warmer part of the year) was recorded, along with a growing trend in the number of reported legionnaires’ disease cases. In addition to hot water systems, the risk of Legionella colonisation also applies to cold water systems. Health and aged care facilities appear to be at highest risk. In addition to the higher proportion of positive samples and a higher degree of microbiological load in these facilities, the highest proportion of L. pneumophila SGs 2-14 was identified. Due to the diagnostic limitations of the applied tests, the number of legionnaires’ disease cases is underdiagnosed. Novelty and scientific contribution The introduction of a mandatory preventive approach to monitoring Legionella in DWDS water samples, along with the definition of national criteria for the interpretation of the results will create the preconditions for diagnosis and adequate treatment of larger numbers of legionnaires’ disease cases.
Collapse
Affiliation(s)
- Daniela Glažar Ivče
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Dobrica Rončević
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Health Studies, Viktora cara Emina 5, 51000 Rijeka, Croatia
| | - Marina Šantić
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Arijana Cenov
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Dijana Tomić Linšak
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vladimir Mićović
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Health Studies, Viktora cara Emina 5, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Dražen Lušić
- Faculty of Health Studies, Viktora cara Emina 5, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.,Center for Advanced Computing and Modelling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Marin Glad
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Davor Ljubas
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, Croatia
| | - Darija Vukić Lušić
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.,Center for Advanced Computing and Modelling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| |
Collapse
|
30
|
Hospital-acquired Legionella pneumonia outbreak at an academic medical center: Lessons learned. Am J Infect Control 2021; 49:1014-1020. [PMID: 33631307 DOI: 10.1016/j.ajic.2021.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND An outbreak of Legionella pneumonia occurred at a university hospital using copper-silver ionization for potable water disinfection. We present the epidemiological and laboratory investigation of the outbreak, and associated case-control study. METHODS Cases were defined by syndrome compatible with Legionella pneumonia with laboratory-confirmed Legionella infection. The water circuit and disinfection system were assessed, and water samples collected for Legionella culture. Whole genome multi-locus sequence typing (wgMLST) was used to compare the genetic similarity of patient and environmental isolates. A case-control study was conducted to identify risk factors for Legionella pneumonia. RESULTS We identified 13 cases of hospital-acquired Legionella. wgMLST revealed >99.9% shared allele content among strains isolated from clinical and water samples. Smoking (P= .008), steroid use (P= .007), and documented shower during hospitalization (P= .03) were risk factors for Legionella pneumonia on multivariable analysis. Environmental assessment identified modifications to the hospital water system had occurred in the month preceding the outbreak. Multiple mitigation efforts and application of point of use water filters stopped the outbreak. CONCLUSIONS Potable water system Legionella colonization occurs despite existing copper-silver ionization systems, particularly after structural disruptions. Multidisciplinary collaboration and direct monitoring for Legionella are important for outbreak prevention. Showering is a modifiable risk factor for nosocomial Legionella pneumonia. Shower restriction and point-of-use filters merit consideration during an outbreak.
Collapse
|
31
|
Glueck NK, O'Brien KM, Seguin DC, Starai VJ. Legionella pneumophila LegC7 effector protein drives aberrant endoplasmic reticulum:endosome contacts in yeast. Traffic 2021; 22:284-302. [PMID: 34184807 DOI: 10.1111/tra.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Legionella pneumophila is a facultative intracellular bacterial pathogen, causing the severe form of pneumonia known as Legionnaires' disease. Legionella actively alters host organelle trafficking through the activities of "effector" proteins secreted via a type-IVB secretion system, in order to construct the bacteria-laden Legionella-containing vacuole (LCV) and prevent lysosomal degradation. The LCV is created with membrane derived from host endoplasmic reticulum (ER), secretory vesicles and phagosomes, although the precise molecular mechanisms that drive its synthesis remain poorly understood. In an effort to characterize the in vivo activity of the LegC7/YlfA SNARE-like effector protein from Legionella in the context of eukaryotic membrane trafficking in yeast, we find that LegC7 interacts with the Emp46p/Emp47p ER-to-Golgi glycoprotein cargo adapter complex, alters ER morphology and induces aberrant ER:endosome interactions, as measured by visualization of ER cargo degradation, reconstitution of split-GFP proteins and enhanced oxidation of the ER lumen. LegC7-dependent toxicity, disruption of ER morphology and ER:endosome fusion events were dependent upon endosomal VPS class C tethering complexes and the endosomal t-SNARE, Pep12p. This work establishes a model in which LegC7 functions to recruit host ER material to the bacterial phagosome during infection by driving ER:endosome contacts, potentially through interaction with host membrane tethering complexes and/or cargo adapters.
Collapse
Affiliation(s)
- Nathan K Glueck
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Kevin M O'Brien
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Danielle C Seguin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
32
|
Hunter CM, Salandy SW, Smith JC, Edens C, Hubbard B. Racial Disparities in Incidence of Legionnaires' Disease and Social Determinants of Health: A Narrative Review. Public Health Rep 2021; 137:660-671. [PMID: 34185609 DOI: 10.1177/00333549211026781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Racial and socioeconomic disparities in the incidence of Legionnaires' disease have been documented for the past 2 decades; however, the social determinants of health (SDH) that contribute to these disparities are not well studied. The objective of this narrative review was to characterize SDH to inform efforts to reduce disparities in the incidence of Legionnaires' disease. METHODS We conducted a narrative review of articles published from January 1979 through October 2019 that focused on disparities in the incidence of Legionnaires' disease and pneumonia (inclusive of bacterial pneumonia and/or community-acquired pneumonia) among adults and children (excluding articles that were limited to people aged <18 years). We identified 220 articles, of which 19 met our criteria: original research, published in English, and examined Legionnaires' disease or pneumonia, health disparities, and SDH. We organized findings using the Healthy People 2030 SDH domains: economic stability, education access and quality, social and community context, health care access and quality, and neighborhood and built environment. RESULTS Of the 19 articles reviewed, multiple articles examined disparities in incidence of Legionnaires' disease and pneumonia related to economic stability/income (n = 13) and comorbidities (n = 10), and fewer articles incorporated SDH variables related to education (n = 3), social support (none), health care access (n = 1), and neighborhood and built environment (n = 6) in their analyses. CONCLUSIONS Neighborhood and built-environment factors such as housing, drinking water infrastructure, and pollutant exposures represent critical partnership and research opportunities. More research that incorporates SDH and multilevel, cross-sector interventions is needed to address disparities in Legionnaires' disease incidence.
Collapse
Affiliation(s)
- Candis M Hunter
- 1242 Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Simone W Salandy
- 1242 Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica C Smith
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris Edens
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian Hubbard
- 1242 Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
33
|
Baker-Goering M, Roy K, Edens C, Collier S. Economic Burden of Legionnaires' Disease, United States, 2014. Emerg Infect Dis 2021; 27:255-257. [PMID: 33350911 PMCID: PMC7774564 DOI: 10.3201/eid2701.191198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Through the use of published estimates of medical costs and new calculations of productivity losses, we estimate the lifetime economic burden of 2014 Legionnaires’ disease cases in the United States at ≈$835 million. This total includes $21 million in productivity losses caused by absenteeism and $412 million in productivity losses caused by premature deaths.
Collapse
|
34
|
Jasper AS, Musuuza JS, Tischendorf JS, Stevens VW, Gamage SD, Osman F, Safdar N. Are Fluoroquinolones or Macrolides Better for Treating Legionella Pneumonia? A Systematic Review and Meta-analysis. Clin Infect Dis 2021; 72:1979-1989. [PMID: 32296816 PMCID: PMC8315122 DOI: 10.1093/cid/ciaa441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America recommends either a fluoroquinolone or a macrolide as a first-line antibiotic treatment for Legionella pneumonia, but it is unclear which antibiotic leads to optimal clinical outcomes. We compared the effectiveness of fluoroquinolone versus macrolide monotherapy in Legionella pneumonia using a systematic review and meta-analysis. METHODS We conducted a systematic search of literature in PubMed, Cochrane, Scopus, and Web of Science from inception to 1 June 2019. Randomized controlled trials and observational studies comparing macrolide with fluoroquinolone monotherapy using clinical outcomes in patients with Legionella pneumonia were included. Twenty-one publications out of an initial 2073 unique records met the selection criteria. Following PRISMA guidelines, 2 reviewers participated in data extraction. The primary outcome was mortality. Secondary outcomes included clinical cure, time to apyrexia, length of hospital stay (LOS), and the occurrence of complications. The review and meta-analysis was registered with PROSPERO (CRD42019132901). RESULTS Twenty-one publications with 3525 patients met inclusion criteria. The mean age of the population was 60.9 years and 67.2% were men. The mortality rate for patients treated with fluoroquinolones was 6.9% (104/1512) compared with 7.4% (133/1790) among those treated with macrolides. The pooled odds ratio assessing risk of mortality for patients treated with fluoroquinolones versus macrolides was 0.94 (95% confidence interval, .71-1.25, I2 = 0%, P = .661). Clinical cure, time to apyrexia, LOS, and the occurrence of complications did not differ for patients treated with fluoroquinolones versus macrolides. CONCLUSIONS We found no difference in the effectiveness of fluoroquinolones versus macrolides in reducing mortality among patients with Legionella pneumonia.
Collapse
Affiliation(s)
- Annie S Jasper
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Jackson S Musuuza
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Jessica S Tischendorf
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Vanessa W Stevens
- Informatics, Decision Enhancement, and Analytic Sciences Center of Innovation, Veterans Affairs (VA) Salt Lake City Health Care System, Salt Lake City, Utah, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Shantini D Gamage
- National Infectious Diseases Service, Specialty Care Services, Veterans Health Administration, US Department of Veterans Affairs, Washington, DC, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fauzia Osman
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Nasia Safdar
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Boczek LA, Tang M, Formal C, Lytle D, Ryu H. Comparison of two culture methods for the enumeration of Legionella pneumophila from potable water samples. JOURNAL OF WATER AND HEALTH 2021; 19:468-477. [PMID: 34152299 PMCID: PMC8358784 DOI: 10.2166/wh.2021.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Legionella infections have steadily increased in the United States over the last 20 years, and most of these infections have been attributed to contaminated water. The gold standard for confirmation of Legionella presence in water is culturing with Buffered Charcoal Yeast Extract (BCYE) agar. Following many modifications, this method is still time-consuming, expensive, and can take longer than 10 days for full confirmation. The Legiolert is a newer and simpler culture product that is claimed to be able to quantify Legionella pneumophila in 7 days with high sensitivity and specificity and does not need further confirmation for the presence of L. pneumophila. This study compared the culturability of L. pneumophila occurring in a simulated home plumbing system using both Legiolert and BCYE agar methods. Out of 185 water samples, Legiolert and BCYE method detected L. pneumophila in 83 and 85% of the samples, respectively. The two methods were determined to be statistically equivalent for culturability of L. pneumophila, though the detected levels by Legiolert were slightly higher than the BCYE method. The molecular confirmation of positive (n = 254) and negative wells (n = 82) with Legiolert also showed a high specificity of 96.5% (i.e., 3.5% false positives (9/254) and 0% false negatives (0/82)).
Collapse
Affiliation(s)
- Laura A Boczek
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA E-mail:
| | - Min Tang
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA E-mail:
| | - Casey Formal
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA E-mail:
| | - Darren Lytle
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA E-mail:
| | - Hodon Ryu
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA E-mail:
| |
Collapse
|
36
|
Millar BC, Ferris J, Murphy A, Reid N, Moore JE. Re-opening hairdressing salons, barber shops and gyms following COVID-19 lockdown: reducing risks from Legionella species through successful domestic steam disinfection of showerheads. Access Microbiol 2021; 3:000229. [PMID: 34151181 PMCID: PMC8209635 DOI: 10.1099/acmi.0.000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Given the importance of disinfecting showerheads from Legionella species and the lack of instructions as to how to successfully achieve this, the aim of this study was to examine the ability of domestic steam disinfection to successfully disinfect showerheads from Legionella species. Steam disinfection of Legionella pneumophila [n=3; L. pneumophila serogroup 2–15 (wildtype environmental water isolate); L. pneumophila serogroup 1 NCTC11192 (reference strain); L. pneumophila serogroup 1 (wildtype environmental water isolate)], L. erythra (wildtype environmental water isolate) and L. bozemanii CRM11368M (reference strain) were examined in this study. Steam disinfection employing a baby bottle steam disinfector device eradicated all Legionella organisms tested. Steam disinfection, when performed properly under the manufacturer’s instructions, offers a relatively inexpensive, simple, versatile and widely available technology for the elimination of Legionella species from contaminated showerheads. We therefore advocate the employment of such devices to regularly disinfect showerheads and shower tubing in hairdressing salons, barber shops and gyms, as a critical control in the elimination of these organisms from these sources, thereby enhancing customer/client/staff safety.
Collapse
Affiliation(s)
- Beverley C Millar
- School of Medicine, Dentistry and Biomedical Sciences, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Northern Ireland, Belfast BT9 7BL, UK.,Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Northern Ireland, Belfast BT9 7AD, UK
| | - Jonalyn Ferris
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Northern Ireland, Belfast BT9 7AD, UK
| | - Alan Murphy
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Northern Ireland, Belfast BT9 7AD, UK
| | - Norman Reid
- Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Northern Ireland, Belfast BT9 7AD, UK
| | - John E Moore
- School of Medicine, Dentistry and Biomedical Sciences, The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Northern Ireland, Belfast BT9 7BL, UK.,Laboratory for Disinfection and Pathogen Elimination Studies, Northern Ireland Public Health Laboratory, Nightingale (Belfast City) Hospital, Northern Ireland, Belfast BT9 7AD, UK
| |
Collapse
|
37
|
Fukushima S, Hagiya H, Otsuka Y, Koyama T, Otsuka F. Trends in the incidence and mortality of legionellosis in Japan: a nationwide observational study, 1999-2017. Sci Rep 2021; 11:7246. [PMID: 33790327 PMCID: PMC8012643 DOI: 10.1038/s41598-021-86431-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/10/2021] [Indexed: 01/09/2023] Open
Abstract
This study examined temporal trend, seasonality, and geographical variations of legionellosis incidence and mortality in Japan. This nationwide observational study used the Japanese Vital Statistics and Infectious Diseases Weekly Report (1999-2017) data to calculate legionellosis crude and age-adjusted incidence and mortality rates per 100,000 population by age and sex. Incidence was compared among the 4 seasons and regional incidence among 47 prefectures. Of 13,613 (11,194 men) people with legionellosis in Japan, 725 (569 men) were fatal. Increasing incidence trend occurred from 0.0004 (1999) to 1.37 (2017) per 100,000 population. People aged ≥ 70 years accounted for 43.1% overall; men's age-adjusted incidence rate was consistently approximately five times higher than for women. Significantly higher incidence occurred in summer than in winter (p = 0.013). Geographically, highest incidence (≥ 2.0 per 100,000 population) occurred in Hokuriku District, with increasing trends in Hokkaido and middle-part of Japan. Estimated fatality rates decreased consistently at 5.9% (95% confidence interval: - 8.1, - 3.5) annually, from 1999 to 2017, with no trend change point. Increasing legionellosis incidence occurred in Japan during 1999-2017, with declining estimated fatality rates. In this aging society and warming world, disease clinical burden may further deteriorate in future due to increasing incidence trends.
Collapse
Affiliation(s)
- Shinnosuke Fukushima
- Department of General Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.
| | - Yuki Otsuka
- Department of General Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Toshihiro Koyama
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Fumio Otsuka
- Department of General Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
38
|
Evaluation of Four Lateral Flow Assays for the Detection of Legionella Urinary Antigen. Microorganisms 2021; 9:microorganisms9030493. [PMID: 33652772 PMCID: PMC7996842 DOI: 10.3390/microorganisms9030493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Urinary antigen tests (UATs) are often used to diagnose Legionnaires’ disease as they are rapid and easy to perform on readily obtainable urine samples without the need for specialized skills compared to conventional methods. Recently developed automated readers for UATs may provide objective results interpretation, especially in cases of weak result bands. Using 53 defined patient urine samples, we evaluated the performance of the BinaxNOW Legionella Antigen Card (Abbott), ImmuView S. pneumoniae and Legionella (SSI Diagnostica), STANDARD F Legionella Ag FIA (SD Biosensor), and Sofia Legionella FIA (Quidel) simultaneously with their respective automated readers. Automatic and visual interpretation of result bands were also compared for the immunochromatography-based BinaxNOW and ImmuView UATs. Overall sensitivity and specificity of Legionella UATs were 53.9–61.5% and 90.0–94.9%, respectively. All four UATs successfully detected all samples from L. pneumophila serogroup 1-positive patients, but most failed to detect samples for Legionella spp., or other serogroups. Automatic results interpretation of results was found to be mostly concordant with visual results reading. In conclusion, the performance of the four UATs were similar to each other in the detection of Legionella urinary antigen with no major difference between automated or visual results reading.
Collapse
|
39
|
Dagan A, Epstein D, Mahagneh A, Nashashibi J, Geffen Y, Neuberger A, Miller A. Community-acquired versus nosocomial Legionella pneumonia: factors associated with Legionella-related mortality. Eur J Clin Microbiol Infect Dis 2021; 40:1419-1426. [PMID: 33527200 DOI: 10.1007/s10096-021-04172-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
Over the past decade, changes in the diagnosis and management of Legionella pneumonia occurred and risk factors for severe infection and increased mortality were identified. Previous reports found that nosocomial infection is associated with higher mortality while others showed no differences. We aimed to evaluate the differences in the clinical course and mortality rates between hospital-acquired pneumonia (HAP) and community-acquired pneumonia (CAP) caused by Legionella pneumophila. A retrospective cohort study of patients admitted due to Legionella pneumonia between January 2012 through November 2019 was conducted in a tertiary referral center (Rambam Health Care Campus, Haifa, Israel). The primary outcome was 30-day Legionella pneumonia-related mortality. A multivariable logistic regression was performed to determine whether a nosocomial infection is an independent predictor of mortality. One hundred nine patients were included. Seventy (64.2%) had CAP and 39 (35.8%) had HAP. The groups were comparable regarding age, gender, and comorbidities. Time to diagnosis was longer and the number of patients receiving initial empiric anti-Legionella spp. treatment was smaller in the HAP group (8 days [IQR 5.5-12.5] vs. 5 days [IQR 3-8], p < 0.001 and 65.5% vs. 78.6%, p = 0.003, respectively). Patients with HAP had higher 30-day mortality, 41% vs. 18.6%, p = 0.02. In a multivariable logistic regression model, only pneumonia severity index and nosocomial source were independently associated with increased mortality. HAP caused by Legionella spp. is independently associated with increased mortality when compared to CAP caused by the same pathogen. The possible reasons for this increased mortality include late diagnosis and delayed initiation of appropriate treatment.
Collapse
Affiliation(s)
- Avner Dagan
- Department of Internal Medicine "B", Rambam Health Care Campus, Haifa, Israel
| | - Danny Epstein
- Critical Care Division, Rambam Health Care Campus, HaAliya HaShniya St. 8, 3109601, Haifa, Israel.
| | - Ahmad Mahagneh
- Department of Diagnostic Imaging, Rambam Health Care Center, Haifa, Israel
| | - Jeries Nashashibi
- Department of Internal Medicine "D", Rambam Health Care Campus, Haifa, Israel
| | - Yuval Geffen
- Clinical Microbiology Laboratory, Rambam Health Care Campus, Haifa, Israel
| | - Ami Neuberger
- Department of Internal Medicine "B", Rambam Health Care Campus, Haifa, Israel.,Infectious Diseases Unit, Rambam Health Care Campus, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Asaf Miller
- Medical Intensive Care Unit, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
40
|
Abstract
Legionellosis is a serious bacterial infection characterized by atypical pneumonia primarily due to infection with Legionella pneumophila, and bathing can be a potential cause of this infection. Legionellosis was first identified in 1977, and it is caused by Gram-negative bacteria belonging to the genus Legionella. Legionellosis remains an important public health threat, particularly in Japan, where the population is rapidly aging, thereby becoming more at risk of developing severe disease and accompanying life-threatening pneumonia. The bacteria are most commonly transmitted via the inhalation of contaminated aerosols produced and broadcast via water sprays, jets or mists. Infection can also occur via the aspiration of contaminated water or ice, or through inhalation of contaminated dust. Because the signs and symptoms of Legionnaires' disease (LD), as well as radiographic imaging are similar to pneumonia caused by other pathogens, a specific diagnostic test is required, such as a urine antigen detection test. Six clinical and laboratory parameters, a high body temperature, a non-productive cough, low serum sodium and platelet counts, and high lactate dehydrogenase (LDH) and c-reactive protein concentrations can be used to reliably predict the likelihood of LD. The first choices for chemotherapy are fluoroquinolone and macrolide antibiotic drugs. The main goals of LD prevention measures are 1) the prevention of microbial growth and biofilm formation, 2) the removal of all biofilm formed on equipment and in facilities, 3) minimizing aerosol splash and spread, and 4) minimizing bacterial contamination from external sources. It is apparent that, in Japan, where hot spring (onsen) bathing is common among aged people, strict regulations need to be in place - and enforced - to ensure that all Japanese onsens and spas provide a safe environment and undertake regular, effective infection control practices.
Collapse
|
41
|
Camões J, Lobato CT, Beires F, Gomes E. Legionella and SARS-CoV-2 Coinfection in a Patient With Pneumonia - An Outbreak in Northern Portugal. Cureus 2021; 13:e12476. [PMID: 33552790 PMCID: PMC7857337 DOI: 10.7759/cureus.12476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has plagued virtually every continent and country, and Portugal is no exception. The high number of cases has caused a major burden on health services and obvious economic consequences, forcing an important reformulation in the health sectors' organization. In the past weeks, counties in the country's northern coastal region have reported an increasing number of Legionella cases, whose origin is yet to be determined. This exacerbates the already important pressure on the region's health facilities. We present a case of a patient diagnosed with Legionella pneumonia and concomitant coronavirus disease 2019 (COVID-19) pneumonia, highlighting the need for etiological investigation not only for common community agents but also for pandemic pathogens and regional outbreaks.
Collapse
Affiliation(s)
- João Camões
- Intensive Care Unit, Unidade Local de Saúde de Matosinhos - Hospital Pedro Hispano, Porto, PRT
| | - Carolina Tintim Lobato
- Intensive Care Unit, Unidade Local de Saúde de Matosinhos - Hospital Pedro Hispano, Porto, PRT
| | - Francisca Beires
- Department of Internal Medicine, Unidade Local de Saúde de Matosinhos - Hospital Pedro Hispano, Porto, PRT
| | - Ernestina Gomes
- Intensive Care Unit, Unidade Local de Saúde de Matosinhos - Hospital Pedro Hispano, Porto, PRT
| |
Collapse
|
42
|
A Methodology for Classifying Root Causes of Outbreaks of Legionnaires' Disease: Deficiencies in Environmental Control and Water Management. Microorganisms 2021; 9:microorganisms9010089. [PMID: 33401429 PMCID: PMC7824450 DOI: 10.3390/microorganisms9010089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/03/2022] Open
Abstract
We piloted a methodology for collecting and interpreting root cause—or environmental deficiency (ED)—information from Legionnaires’ disease (LD) outbreak investigation reports. The methodology included a classification framework to assess common failures observed in the implementation of water management programs (WMPs). We reviewed reports from fourteen CDC-led investigations between 1 January 2015 and 21 June 2019 to identify EDs associated with outbreaks of LD. We developed an abstraction guide to standardize data collection from outbreak reports and define relevant parameters. We categorized each ED according to three criteria: ED type, WMP-deficiency type, and source of deficiency. We calculated the prevalence of EDs among facilities and explored differences between facilities with and without WMPs. A majority of EDs identified (81%) were classified as process failures. Facilities with WMPs (n = 8) had lower prevalence of EDs attributed to plumbed devices (9.1%) and infrastructure design (0%) than facilities without WMPs (n = 6; 33.3% and 24.2%, respectively). About three quarters (72%) of LD cases and 81% of the fatalities in our sample originated at facilities without a WMP. This report highlights the importance of WMPs in preventing and mitigating outbreaks of LD. Building water system process management is a primary obstacle toward limiting the root causes of LD outbreaks. Greater emphasis on the documentation, verification, validation, and continuous program review steps will be important in maximizing the effectiveness of WMPs.
Collapse
|
43
|
Hozalski RM, LaPara TM, Zhao X, Kim T, Waak MB, Burch T, McCarty M. Flushing of Stagnant Premise Water Systems after the COVID-19 Shutdown Can Reduce Infection Risk by Legionella and Mycobacterium spp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15914-15924. [PMID: 33232602 DOI: 10.1021/acs.est.0c06357] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is concern about potential exposure to opportunistic pathogens when reopening buildings closed due to the COVID-19 pandemic. In this study, water samples were collected before, during, and after flushing showers in five unoccupied (i.e., for ∼2 months) university buildings with quantification of opportunists via a cultivation-based assay (Legionella pneumophila only) and quantitative PCR. L. pneumophila were not detected by either method; Legionella spp., nontuberculous mycobacteria (NTM), and Mycobacterium avium complex (MAC), however, were widespread. Using quantitative microbial risk assessment (QMRA), the estimated risks of illness from exposure to L. pneumophila and MAC via showering were generally low (i.e., less than a 10-7 daily risk threshold), with the exception of systemic infection risk from MAC exposure in some buildings. Flushing rapidly restored the total chlorine (as chloramine) residual and decreased bacterial gene targets to building inlet concentrations within 30 min. During the postflush stagnation period, the residual chlorine dissipated within a few days and bacteria rebounded, approaching preflush concentrations after 6-7 days. These results suggest that flushing can quickly improve water quality in unoccupied buildings, but the improvement may only last a few days.
Collapse
Affiliation(s)
- Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Taegyu Kim
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis 55455, Minnesota, United States
| | - Michael B Waak
- Norwegian University of Science and Technology, Trondheim 7031, Norway
- Department of Infrastructure, SINTEF Community, Trondheim 7031, Norway
| | - Tucker Burch
- Agricultural Research Service, U.S. Department of Agriculture, Marshfield, Wisconsin 54449, United States
| | - Michael McCarty
- School of Public Health, University of Minnesota, Minneapolis 55455, Minnesota, United States
| |
Collapse
|
44
|
Paranjape K, Bédard É, Shetty D, Hu M, Choon FCP, Prévost M, Faucher SP. Unravelling the importance of the eukaryotic and bacterial communities and their relationship with Legionella spp. ecology in cooling towers: a complex network. MICROBIOME 2020; 8:157. [PMID: 33183356 PMCID: PMC7664032 DOI: 10.1186/s40168-020-00926-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cooling towers are a major source of large community-associated outbreaks of Legionnaires' disease, a severe pneumonia. This disease is contracted when inhaling aerosols that are contaminated with bacteria from the genus Legionella, most importantly Legionella pneumophila. How cooling towers support the growth of this bacterium is still not well understood. As Legionella species are intracellular parasites of protozoa, it is assumed that protozoan community in cooling towers play an important role in Legionella ecology and outbreaks. However, the exact mechanism of how the eukaryotic community contributes to Legionella ecology is still unclear. Therefore, we used 18S rRNA gene amplicon sequencing to characterize the eukaryotic communities of 18 different cooling towers. The data from the eukaryotic community was then analysed with the bacterial community of the same towers in order to understand how each community could affect Legionella spp. ecology in cooling towers. RESULTS We identified several microbial groups in the cooling tower ecosystem associated with Legionella spp. that suggest the presence of a microbial loop in these systems. Dissolved organic carbon was shown to be a major factor in shaping the eukaryotic community and may be an important factor for Legionella ecology. Network analysis, based on co-occurrence, revealed that Legionella was correlated with a number of different organisms. Out of these, the bacterial genus Brevundimonas and the ciliate class Oligohymenophorea were shown, through in vitro experiments, to stimulate the growth of L. pneumophila through direct and indirect mechanisms. CONCLUSION Our results suggest that Legionella ecology depends on the host community, including ciliates and on several groups of organisms that contribute to its survival and growth in the cooling tower ecosystem. These findings further support the idea that some cooling tower microbiomes may promote the survival and growth of Legionella better than others. Video Abstract.
Collapse
Affiliation(s)
- Kiran Paranjape
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Émilie Bédard
- Department of Civil Engineering, Polytechnique Montreal, Montréal, QC, Canada
| | - Deeksha Shetty
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Mengqi Hu
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Fiona Chan Pak Choon
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Michèle Prévost
- Department of Civil Engineering, Polytechnique Montreal, Montréal, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
45
|
Laribi A, Allegra S, Souiri M, Mzoughi R, Othmane A, Girardot F. Legionella pneumophila sg1-sensing signal enhancement using a novel electrochemical immunosensor in dynamic detection mode. Talanta 2020; 215:120904. [PMID: 32312449 DOI: 10.1016/j.talanta.2020.120904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023]
Abstract
This work presents a comparison between static and dynamic modes of biosensing using a novel microfluidic assay for continuous and quantitative detection of Legionella pneumophila sg1 in artificial water samples. A self-assembled monolayer of 16-amino-1-hexadecanethiol (16-AHT) was covalently linked to a gold substrate, and the resulting modified surface was used to immobilize an anti-Legionella pneumophila monoclonal antibody (mAb). The modified surfaces formed during the biosensor functionalization steps were characterized using electrochemical measurements and microscopic imaging techniques. Under static conditions, the biosensor exhibited a wide linear response range from 10 to 108 CFU/mL and a detection limit of 10 CFU/mL. Using a microfluidic system, the biosensor responses exhibited a linear relationship for low bacterial concentrations ranging from 10 to 103 CFU/mL under dynamic conditions and an enhancement of sensing signals by a factor of 4.5 compared to the sensing signals obtained under static conditions with the same biosensor for the detection of Legionella cells in artificially contaminated samples.
Collapse
Affiliation(s)
- Ahlem Laribi
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France; Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia.
| | - Séverine Allegra
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| | - Mina Souiri
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Ridha Mzoughi
- Regional Laboratory of Hygiene, University Hospital Farhat Hached, 4000 Sousse, Tunisia and Laboratory of Analysis Treatment and Valorization of Pollutants and Products, Faculty of Pharmacy, 5000, Monastir, Tunisia
| | - Ali Othmane
- Laboratory of Advanced Materials and Interfaces, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Françoise Girardot
- Environments, Territories, Societies (EVS) Lab, Mixed Research Unit (Jean Monnet University - French National Centre for Scientific Research) 5600, University of Lyon, F42023, France
| |
Collapse
|
46
|
Mudali G, Kilgore PE, Salim A, McElmurry SP, Zervos M. Trends in Legionnaires' Disease-Associated Hospitalizations, United States, 2006-2010. Open Forum Infect Dis 2020; 7:ofaa296. [PMID: 32855985 PMCID: PMC7443102 DOI: 10.1093/ofid/ofaa296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023] Open
Abstract
Background Legionella pneumophila is a waterborne cause of both healthcare-associated and community-acquired pneumonia. Legionella pneumophila serogroup 1 is responsible for 80% of infections. There is currently limited published disease burden data on Legionnaires’ disease-associated hospitalization in the United States. Methods In this study, we estimated the annual incidence of Legionnaires’ disease-associated hospitalizations in United States and identified demographic, temporal, and regional characteristics of individuals hospitalized for Legionnaires’ disease. A retrospective study was conducted using the National Hospital Discharge Survey (NHDS) data from 2006 to 2010. The NHDS is a nationally representative US survey, which includes estimates of inpatient stays in short-stay hospitals in the United States, excluding federal, military, and Veterans Administration hospitals. All discharges assigned with the Legionnaires’ disease International Classification of Diseases 9th Clinical Modification discharge diagnostic code (482.84) were included in this study. Results We observed the annual incidence and number of Legionnaires’ disease-associated hospitalizations (per 100 000 population) in the United States by year, age, sex, race, and region. Over a 5-year period, 14 574 individuals experienced Legionnaires’ disease-associated hospitalizations in the United States The annual population-adjusted incidence (per 100 000 population) of Legionnaires’ disease-associated hospitalizations was 5.37 (95% confidence interval [CI], 5.12–5.64) in 2006, 7.06 (95% CI, 6.80–7.40) in 2007, 8.77 (95% CI, 8.44–9.11) in 2008, 17.07 (95% CI, 16.62–17.54) in 2009, and 9.66 (95% CI, 9.32–10.01) in 2010. A summer peak of Legionnaires’ disease-associated hospitalizations occurred from June through September in 2006, 2007, 2008, and 2010. Conclusions Legionnaires’ disease-associated hospitalizations significantly increased over the 5-year study period. The increasing disease burden of Legionnaires’ disease suggests that large segments of the US population are at risk for exposure to this waterborne pathogen.
Collapse
Affiliation(s)
- Gayathri Mudali
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Abdulbaset Salim
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Shawn P McElmurry
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, Michigan, USA
| | - Marcus Zervos
- Department of Infectious Diseases, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
47
|
Flick H, Arns BM, Bolitschek J, Bucher B, Cima K, Gingrich E, Handzhiev S, Hochmair M, Horak F, Idzko M, Jaksch P, Kovacs G, Kropfmüller R, Lamprecht B, Löffler-Ragg J, Meilinger M, Olschewski H, Pfleger A, Puchner B, Puelacher C, Prior C, Rodriguez P, Salzer H, Schenk P, Schindler O, Stelzmüller I, Strenger V, Täubl H, Urban M, Wagner M, Wimberger F, Zacharasiewicz A, Zwick RH, Eber E. Management of patients with SARS-CoV-2 infections and of patients with chronic lung diseases during the COVID-19 pandemic (as of 9 May 2020) : Statement of the Austrian Society of Pneumology (ASP). Wien Klin Wochenschr 2020; 132:365-386. [PMID: 32533443 PMCID: PMC7291190 DOI: 10.1007/s00508-020-01691-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is currently a challenge worldwide. In Austria, a crisis within the healthcare system has so far been prevented. The treatment of patients with community-acquired pneumonia (CAP), including SARS-CoV‑2 infections, should continue to be based on evidence-based CAP guidelines during the pandemic; however, COVID-19 specific adjustments are useful. The treatment of patients with chronic lung diseases has to be adapted during the pandemic but must still be guaranteed.
Collapse
Affiliation(s)
- Holger Flick
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | - Brigitte Bucher
- Department of Pulmonology, Tirol Kliniken, Hospital Hochzirl-Natters, Natters, Austria
| | - Katharina Cima
- Department of Pulmonology, Tirol Kliniken, Hospital Hochzirl-Natters, Natters, Austria
| | | | - Sabin Handzhiev
- Department of Pulmonology, University Hospital Krems, Krems, Austria
| | - Maximilian Hochmair
- Respiratory Oncology Unit, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Department of Internal and Respiratory Medicine, Krankenhaus Nord-Klinik Floridsdorf, Vienna, Austria
| | | | - Marco Idzko
- Division of Pulmonology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Roland Kropfmüller
- Department of Pulmonology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Bernd Lamprecht
- Department of Pulmonology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II (Infectious Diseases, Pneumology, Rheumatology), Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Meilinger
- Department of Internal and Respiratory Medicine, Krankenhaus Nord-Klinik Floridsdorf, Vienna, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Andreas Pfleger
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | | | | | | | - Patricia Rodriguez
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Helmut Salzer
- Department of Pulmonology, Kepler University Hospital, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Peter Schenk
- Department of Pulmonology, Landesklinikum Hochegg, Grimmenstein, Austria
| | - Otmar Schindler
- Department of Internal, Respiratory and Critical Care Medicine, State Hospital II, Location Enzenbach, Gratwein-Straßengel, Austria
| | | | - Volker Strenger
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | - Helmut Täubl
- Department of Pulmonology, Tirol Kliniken, Hospital Hochzirl-Natters, Natters, Austria
| | - Matthias Urban
- Department of Internal and Respiratory Medicine, Krankenhaus Nord-Klinik Floridsdorf, Vienna, Austria
| | - Marlies Wagner
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria
| | | | - Angela Zacharasiewicz
- Department of Paediatrics, Teaching Hospital of the Medical University of Vienna, Wilhelminen Hospital, Vienna, Austria
| | | | - Ernst Eber
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34/2, 8036, Graz, Austria.
| |
Collapse
|
48
|
Cooley LA, Pondo T, Francois Watkins LK, Shah P, Schrag S. Population-Based Assessment of Clinical Risk Factors for Legionnaires' Disease. Clin Infect Dis 2020; 70:2428-2431. [PMID: 31617567 PMCID: PMC9067372 DOI: 10.1093/cid/ciz771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/07/2019] [Indexed: 09/16/2024] Open
Abstract
We used US population-based surveillance data to characterize clinical risk factors for Legionnaires' disease (LD). The LD incidence increased by age and the risk was elevated for 12 clinical conditions, when compared to healthy adults. This information can be used to guide testing, treatment, and public health prevention efforts.
Collapse
Affiliation(s)
- Laura A Cooley
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracy Pondo
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Louise K Francois Watkins
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Priti Shah
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephanie Schrag
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
49
|
Flick H, Arns BM, Bolitschek J, Bucher B, Cima K, Gingrich E, Handzhiev S, Hochmair M, Horak F, Idzko M, Jaksch P, Kovacs G, Kropfmüller R, Lamprecht B, Löffler-Ragg J, Meilinger M, Olschewski H, Pfleger A, Puchner B, Puelacher C, Prior C, Rodriguez P, Salzer H, Schenk P, Schindler O, Stelzmüller I, Strenger V, Täubl H, Urban M, Wagner M, Wimberger F, Zacharasiewicz A, Zwick RH, Eber E. [Statement of the Austrian Society of Pneumology (ASP)]. WIENER KLINISCHES MAGAZIN : BEILAGE ZUR WIENER KLINISCHEN WOCHENSCHRIFT 2020; 23:92-115. [PMID: 32427192 PMCID: PMC7232599 DOI: 10.1007/s00740-020-00350-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is currently a challenge worldwide. In Austria, a crisis within the health care system has so far been avoided. The treatment of patients with community-acquired pneumonia (CAP), including SARS-CoV‑2 infections, should continue to be based on evidence-based CAP guidelines during the pandemic. However, COVID-19-specific adjustments are useful. The treatment of patients with chronic lung diseases must be adapted during the pandemic, but must still be guaranteed.
Collapse
Affiliation(s)
- H. Flick
- Klinische Abteilung für Pulmonologie, Univ. Klinik für Innere Medizin, Medizinische Universität Graz/LKH Graz Ost, Graz, Österreich
| | - B. M. Arns
- 1. Medizinische Abteilung, Hanusch Krankenhaus, Wien, Österreich
| | | | - B. Bucher
- Abteilung für Pneumologie, Tirol Kliniken, Landeskrankenhaus Hochzirl-Natters, Natters, Österreich
| | - K. Cima
- Abteilung für Pneumologie, Tirol Kliniken, Landeskrankenhaus Hochzirl-Natters, Natters, Österreich
| | - E. Gingrich
- Lungenfachärztliche Ordination, Wien, Österreich
| | - S. Handzhiev
- Klinische Abteilung für Pneumologie, Universitätsklinikum Krems, Krems, Österreich
| | - M. Hochmair
- Karl Landsteiner Institut für Lungenforschung und pneumologische Onkologie, Krankenhaus Nord – Klinik Floridsdorf, Wien, Österreich
| | - F. Horak
- Allergiezentrum Wien West, Wien, Österreich
| | - M. Idzko
- Klinische Abteilung für Pulmologie, Univ. Klinik für Innere Medizin II, Medizinische Universität Wien/AKH Wien, Wien, Österreich
| | - P. Jaksch
- Klinische Abteilung für Thoraxchirurgie, Univ. Klinik für Chirurgie, Medizinische Universität Wien/AKH Wien, Wien, Österreich
| | - G. Kovacs
- Klinische Abteilung für Pulmonologie, Univ. Klinik für Innere Medizin, Medizinische Universität Graz/LKH Graz Ost, Graz, Österreich
- Ludwig Boltzmann Institut für Lungengefäßforschung Graz, Graz, Österreich
| | - R. Kropfmüller
- Klinik für Lungenheilkunde/Pneumologie, Medizinische Fakultät, Johannes Kepler Universität, Linz, Österreich
| | - B. Lamprecht
- Klinik für Lungenheilkunde/Pneumologie, Medizinische Fakultät, Johannes Kepler Universität, Linz, Österreich
| | - J. Löffler-Ragg
- Pneumologische Ambulanz, Univ. Klinik für Innere Medizin II, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - M. Meilinger
- Abteilung für Innere Medizin und Pneumologie, Krankenhaus Nord – Klinik Floridsdorf, Wien, Österreich
| | - H. Olschewski
- Klinische Abteilung für Pulmonologie, Univ. Klinik für Innere Medizin, Medizinische Universität Graz/LKH Graz Ost, Graz, Österreich
- Ludwig Boltzmann Institut für Lungengefäßforschung Graz, Graz, Österreich
| | - A. Pfleger
- Klinische Abteilung für pädiatrische Pulmonologie und Allergologie, Univ. Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Auenbruggerplatz 34/2, 8036 Graz, Österreich
| | - B. Puchner
- Department für Pneumologie, Reha Zentrum Münster, Münster, Österreich
| | - C. Puelacher
- Interdisziplinäres Schlaflabor, Telfs, Österreich
| | - C. Prior
- Lungenfachärztliche Ordination, Innsbruck, Österreich
| | - P. Rodriguez
- Klinische Abteilung für pädiatrische Pulmonologie und Allergologie, Univ. Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Auenbruggerplatz 34/2, 8036 Graz, Österreich
| | - H. Salzer
- Klinik für Lungenheilkunde/Pneumologie, Medizinische Fakultät, Johannes Kepler Universität, Linz, Österreich
| | - P. Schenk
- Abteilung Pulmologie, Landesklinikum Hochegg, Grimmenstein, Österreich
| | - O. Schindler
- Abteilung für Innere Medizin und Pneumologie, LKH Graz II, Standort Enzenbach, Gratwein, Österreich
| | | | - V. Strenger
- Klinische Abteilung für pädiatrische Pulmonologie und Allergologie, Univ. Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Auenbruggerplatz 34/2, 8036 Graz, Österreich
| | - H. Täubl
- Abteilung für Pneumologie, Tirol Kliniken, Landeskrankenhaus Hochzirl-Natters, Natters, Österreich
| | - M. Urban
- Abteilung für Innere Medizin und Pneumologie, Krankenhaus Nord – Klinik Floridsdorf, Wien, Österreich
| | - M. Wagner
- Klinische Abteilung für pädiatrische Pulmonologie und Allergologie, Univ. Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Auenbruggerplatz 34/2, 8036 Graz, Österreich
| | - F. Wimberger
- Ordensklinikum Elisabethinen Linz, Linz, Österreich
| | - A. Zacharasiewicz
- Abteilung für Kinder- und Jugendheilkunde, Wilhelminenspital der Stadt Wien, Lehrkrankenhaus der Medizinischen Universität Wien, Wien, Österreich
| | - R. H. Zwick
- Ambulante Pneumologische Rehabilitation, Therme Wien Med, Wien, Österreich
| | - E. Eber
- Klinische Abteilung für pädiatrische Pulmonologie und Allergologie, Univ. Klinik für Kinder- und Jugendheilkunde, Medizinische Universität Graz, Auenbruggerplatz 34/2, 8036 Graz, Österreich
| |
Collapse
|
50
|
Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, Cooley LA, Dean NC, Fine MJ, Flanders SA, Griffin MR, Metersky ML, Musher DM, Restrepo MI, Whitney CG. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2020; 200:e45-e67. [PMID: 31573350 PMCID: PMC6812437 DOI: 10.1164/rccm.201908-1581st] [Citation(s) in RCA: 1879] [Impact Index Per Article: 469.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: This document provides evidence-based clinical practice guidelines on the management of adult patients with community-acquired pneumonia. Methods: A multidisciplinary panel conducted pragmatic systematic reviews of the relevant research and applied Grading of Recommendations, Assessment, Development, and Evaluation methodology for clinical recommendations. Results: The panel addressed 16 specific areas for recommendations spanning questions of diagnostic testing, determination of site of care, selection of initial empiric antibiotic therapy, and subsequent management decisions. Although some recommendations remain unchanged from the 2007 guideline, the availability of results from new therapeutic trials and epidemiological investigations led to revised recommendations for empiric treatment strategies and additional management decisions. Conclusions: The panel formulated and provided the rationale for recommendations on selected diagnostic and treatment strategies for adult patients with community-acquired pneumonia.
Collapse
MESH Headings
- Adult
- Ambulatory Care
- Anti-Bacterial Agents/therapeutic use
- Antigens, Bacterial/urine
- Blood Culture
- Chlamydophila Infections/diagnosis
- Chlamydophila Infections/drug therapy
- Chlamydophila Infections/metabolism
- Community-Acquired Infections/diagnosis
- Community-Acquired Infections/drug therapy
- Culture Techniques
- Drug Therapy, Combination
- Haemophilus Infections/diagnosis
- Haemophilus Infections/drug therapy
- Haemophilus Infections/metabolism
- Hospitalization
- Humans
- Legionellosis/diagnosis
- Legionellosis/drug therapy
- Legionellosis/metabolism
- Macrolides/therapeutic use
- Moraxellaceae Infections/diagnosis
- Moraxellaceae Infections/drug therapy
- Moraxellaceae Infections/metabolism
- Pneumonia, Bacterial/diagnosis
- Pneumonia, Bacterial/drug therapy
- Pneumonia, Mycoplasma/diagnosis
- Pneumonia, Mycoplasma/drug therapy
- Pneumonia, Mycoplasma/metabolism
- Pneumonia, Pneumococcal/diagnosis
- Pneumonia, Pneumococcal/drug therapy
- Pneumonia, Pneumococcal/metabolism
- Pneumonia, Staphylococcal/diagnosis
- Pneumonia, Staphylococcal/drug therapy
- Pneumonia, Staphylococcal/metabolism
- Radiography, Thoracic
- Severity of Illness Index
- Sputum
- United States
- beta-Lactams/therapeutic use
Collapse
|