1
|
Chen Z, Zhang Y, Wu X, Chen L, Li X, Wang G. UV-B radiation increased the sensitivity of Tibetan soil cyanobacterium Loriellopsis cavernicola to the herbicide glyphosate. CHEMOSPHERE 2023:139141. [PMID: 37285984 DOI: 10.1016/j.chemosphere.2023.139141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The high concentrations of herbicide and UV-B radiation are two stresses for Tibetan soil microorganisms, but there is limited information about the combined effects of herbicide and UV-B radiation on their levels of stress. In this study, the Tibetan soil cyanobacterium Loriellopsis cavernicola was used to investigate the combined inhibitory effect of the herbicide glyphosate and UV-B radiation on the cyanobacterial photosynthetic electron transport through an analysis of the photosynthetic activity, photosynthetic pigments, chlorophyll fluorescence and antioxidant system activity. The results demonstrated that treatment with herbicide or UV-B radiation and the combination of both stresses caused a decrease in the photosynthetic activity, interfered with the photosynthetic electron transport, and caused the accumulation of oxygen radicals and the degradation of photosynthetic pigments. In contrast, the combined treatment of glyphosate and UV-B radiation had a synergistic effect, i.e., the sensitivity of cyanobacteria to glyphosate increased in the presence of UV-B radiation, which caused the photosynthesis of cyanobacteria to have a greater impact. Since cyanobacteria are the primary producers of soil ecosystems, a high intensity of UV-B radiation in the plateau areas could enhance the inhibition of glyphosate on cyanobacteria, which could affect the ecological health and sustainable development of plateau soils.
Collapse
Affiliation(s)
- Zixu Chen
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Yixiao Zhang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China
| | - Xinguo Wu
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Lanzhou Chen
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Xiaoyan Li
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China.
| | - Gaohong Wang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China.
| |
Collapse
|
2
|
Llewellyn D, Golem S, Foley E, Dinka S, Jones AMP, Zheng Y. Indoor grown cannabis yield increased proportionally with light intensity, but ultraviolet radiation did not affect yield or cannabinoid content. FRONTIERS IN PLANT SCIENCE 2022; 13:974018. [PMID: 36237501 PMCID: PMC9551646 DOI: 10.3389/fpls.2022.974018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Cannabis (Cannabis sativa) flourishes under high light intensities (LI); making it an expensive commodity to grow in controlled environments, despite its high market value. It is commonly believed that cannabis secondary metabolite levels may be enhanced both by increasing LI and exposure to ultraviolet radiation (UV). However, the sparse scientific evidence is insufficient to guide cultivators for optimizing their lighting protocols. We explored the effects of LI and UV exposure on yield and secondary metabolite composition of a high Δ9-tetrahydrocannabinol (THC) cannabis cultivar 'Meridian'. Plants were grown under short day conditions for 45 days under average canopy photosynthetic photon flux densities (PPFD, 400-700 nm) of 600, 800, and 1,000 μmol m-2 s-1, provided by light emitting diodes (LEDs). Plants exposed to UV had PPFD of 600 μmol m-2 s-1 plus either (1) UVA; 50 μmol m-2 s-1 of UVA (315-400 nm) from 385 nm peak LEDs from 06:30 to 18:30 HR for 45 days or (2) UVA + UVB; a photon flux ratio of ≈1:1 of UVA and UVB (280-315 nm) from a fluorescent source at a photon flux density of 3.0 μmol m-2 s-1, provided daily from 13:30 to 18:30 HR during the last 20 days of the trial. All aboveground biomass metrics were 1.3-1.5 times higher in the highest vs. lowest PPFD treatments, except inflorescence dry weight - the most economically relevant parameter - which was 1.6 times higher. Plants in the highest vs. lowest PPFD treatment also allocated relatively more biomass to inflorescence tissues with a 7% higher harvest index. There were no UV treatment effects on aboveground biomass metrics. There were also no intensity or UV treatment effects on inflorescence cannabinoid concentrations. Sugar leaves (i.e., small leaves associated with inflorescences) of plants in the UVA + UVB treatment had ≈30% higher THC concentrations; however, UV did not have any effect on the total THC in thesefoliar tissues. Overall, high PPFD levels can substantially increase cannabis yield, but we found no commercially relevant benefits of adding UV to indoor cannabis production.
Collapse
Affiliation(s)
- David Llewellyn
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | - Youbin Zheng
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Palma CFF, Castro-Alves V, Morales LO, Rosenqvist E, Ottosen CO, Hyötyläinen T, Strid Å. Metabolic changes in cucumber leaves are enhanced by blue light but differentially affected by UV interactions with light signalling pathways in the visible spectrum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111326. [PMID: 35696926 DOI: 10.1016/j.plantsci.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet radiation (UV, 280-400 nm) as an environmental signal triggers metabolic acclimatory responses. However, how different light qualities affect UV acclimation during growth is poorly understood. Here, cucumber plants (Cucumis sativus) were grown under blue, green, red, or white light in combination with UV. Their effects on leaf metabolites were determined using untargeted metabolomics. Blue and white growth light triggered increased levels of compounds related to primary and secondary metabolism, including amino acids, phenolics, hormones, and compounds related to sugar metabolism and the TCA cycle. In contrast, supplementary UV in a blue or white light background decreased leaf content of amino acids, phenolics, sugars, and TCA-related compounds, without affecting abscisic acid, auxin, zeatin, or jasmonic acid levels. However, in plants grown under green light, UV induced increased levels of phenolics, hormones (auxin, zeatin, dihydrozeatin-7-N-dihydrozeatin, jasmonic acid), amino acids, sugars, and TCA cycle-related compounds. Plants grown under red light with UV mainly showed decreased sugar content. These findings highlight the importance of the blue light component for metabolite accumulation. Also, data on interactions of UV with green light on the one hand, and blue or white light on the other, further contributes to our understanding of light quality regulation of plant metabolism.
Collapse
Affiliation(s)
| | - Victor Castro-Alves
- School of Science and Technology, Man-Technology-Environment Research Centre (MTM), Örebro University, SE-70182 Örebro, Sweden
| | - Luis Orlando Morales
- School of Science and Technology, Örebro Life Science Centre, Örebro University, SE-70182 Örebro, Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences, Institute of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 9, DK-2630 Tåstrup, Denmark
| | - Carl-Otto Ottosen
- Aarhus University, Plant Food and Climate, Department of Food Science, Agrofoodpark 48, DK-8200 Aarhus, Denmark
| | - Tuulia Hyötyläinen
- School of Science and Technology, Man-Technology-Environment Research Centre (MTM), Örebro University, SE-70182 Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro Life Science Centre, Örebro University, SE-70182 Örebro, Sweden.
| |
Collapse
|
4
|
Rodriguez-Morrison V, Llewellyn D, Zheng Y. Cannabis Inflorescence Yield and Cannabinoid Concentration Are Not Increased With Exposure to Short-Wavelength Ultraviolet-B Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:725078. [PMID: 34795683 PMCID: PMC8593374 DOI: 10.3389/fpls.2021.725078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 05/25/2023]
Abstract
Before ultraviolet (UV) radiation can be used as a horticultural management tool in commercial Cannabis sativa (cannabis) production, the effects of UV on cannabis should be vetted scientifically. In this study we investigated the effects of UV exposure level on photosynthesis, growth, inflorescence yield, and secondary metabolite composition of two indoor-grown cannabis cultivars: 'Low Tide' (LT) and 'Breaking Wave' (BW). After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈225 μmol⋅m-2⋅s-1 in an 18-h light/6-h dark photoperiod, plants were grown for 9 weeks in a 12-h light/12-h dark "flowering" photoperiod under a canopy-level PPFD of ≈400 μmol⋅m-2⋅s-1. Supplemental UV radiation was provided daily for 3.5 h at UV photon flux densities ranging from 0.01 to 0.8 μmol⋅m-2⋅s-1 provided by light-emitting diodes (LEDs) with a peak wavelength of 287 nm (i.e., biologically-effective UV doses of 0.16 to 13 kJ⋅m-2⋅d-1). The severity of UV-induced morphology (e.g., whole-plant size and leaf size reductions, leaf malformations, and stigma browning) and physiology (e.g., reduced leaf photosynthetic rate and reduced Fv/Fm) symptoms intensified as UV exposure level increased. While the proportion of the total dry inflorescence yield that was derived from apical tissues decreased in both cultivars with increasing UV exposure level, total dry inflorescence yield only decreased in LT. The total equivalent Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) concentrations also decreased in LT inflorescences with increasing UV exposure level. While the total terpene content in inflorescences decreased with increasing UV exposure level in both cultivars, the relative concentrations of individual terpenes varied by cultivar. The present study suggests that using UV radiation as a production tool did not lead to any commercially relevant benefits to cannabis yield or inflorescence secondary metabolite composition.
Collapse
Affiliation(s)
| | | | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Xie L, Solhaug KA, Song Y, Johnsen B, Olsen JE, Tollefsen KE. Effects of artificial ultraviolet B radiation on the macrophyte Lemna minor: a conceptual study for toxicity pathway characterization. PLANTA 2020; 252:86. [PMID: 33057834 PMCID: PMC7560917 DOI: 10.1007/s00425-020-03482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
UVB radiation caused irradiance-dependent and target-specific responses in non-UVB acclimated Lemna minor. Conceptual toxicity pathways were developed to propose causal relationships between UVB-mediated effects at multiple levels of biological organisation. Macrophytes inhabit waterways around the world and are used in hydroponics or aquaponics for different purposes such as feed and wastewater treatment and are thus exposed to elevated levels of UVB from natural and artificial sources. Although high UVB levels are harmful to macrophytes, mechanistic understanding of irradiance-dependent effects and associated modes of action in non-UVB acclimated plants still remains low. The present study was conducted to characterise the irradiance-dependent mechanisms of UVB leading to growth inhibition in Lemna minor as an aquatic macrophyte model. The L. minor were continuously exposed to UVB (0.008-4.2 W m-2) and constant UVA (4 W m-2) and photosynthetically active radiation, PAR (80 µmol m-2 s-1) for 7 days. A suite of bioassays was deployed to assess effects on oxidative stress, photosynthesis, DNA damage, and transcription of antioxidant biosynthesis, DNA repair, programmed cell death, pigment metabolism and respiration. The results showed that UVB triggered both irradiance-dependent and target-specific effects at multiple levels of biological organization, whereas exposure to UVA alone did not cause any effects. Inhibition of photosystem II and induction of carotenoids were observed at 0.23 W m-2, whereas growth inhibition, excessive reactive oxygen species, lipid peroxidation, cyclobutane pyrimidine dimer formation, mitochondrial membrane potential reduction and chlorophyll depletion were observed at 0.5-1 W m-2. Relationships between responses at different levels of biological organization were used to establish a putative network of toxicity pathways to improve our understanding of UVB effects in aquatic macrophytes under continuous UVB exposures. Additional studies under natural illuminations were proposed to assess whether these putative toxicity pathways may also be relevant for more ecologically relevant exposure scenarios.
Collapse
Affiliation(s)
- Li Xie
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - Bjørn Johnsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
- Norwegian Radiation and Nuclear Safety Authority (DSA), 1361, Østerås, Norway
| | - Jorunn Elisabeth Olsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
- Faculty of Biosciences, Institute of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway.
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
6
|
Palma CFF, Castro-Alves V, Morales LO, Rosenqvist E, Ottosen CO, Strid Å. Spectral Composition of Light Affects Sensitivity to UV-B and Photoinhibition in Cucumber. FRONTIERS IN PLANT SCIENCE 2020; 11:610011. [PMID: 33469462 PMCID: PMC7813804 DOI: 10.3389/fpls.2020.610011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Ultraviolet B (UV-B) (280-315 nm) and ultraviolet A (UV-A) (315-400 nm) radiation comprise small portions of the solar radiation but regulate many aspects of plant development, physiology and metabolism. Until now, how plants respond to UV-B in the presence of different light qualities is poorly understood. This study aimed to assess the effects of a low UV-B dose (0.912 ± 0.074 kJ m-2 day-1, at a 6 h daily UV exposure) in combination with four light treatments (blue, green, red and broadband white at 210 μmol m-2 s-1 Photosynthetically active radiation [PAR]) on morphological and physiological responses of cucumber (Cucumis sativus cv. "Lausanna RZ F1"). We explored the effects of light quality backgrounds on plant morphology, leaf gas exchange, chlorophyll fluorescence, epidermal pigment accumulation, and on acclimation ability to saturating light intensity. Our results showed that supplementary UV-B significantly decreased biomass accumulation in the presence of broad band white, blue and green light, but not under red light. UV-B also reduced the photosynthetic efficiency of CO2 fixation (α) when combined with blue light. These plants, despite showing high accumulation of anthocyanins, were unable to cope with saturating light conditions. No significant effects of UV-B in combination with green light were observed for gas exchange and chlorophyll fluorescence parameters, but supplementary UV-B significantly increased chlorophyll and flavonol contents in the leaf epidermis. Plants grown under red light and UV-B significantly increased maximum photosynthetic rate and dark respiration compared to pure red light. Additionally, red and UV-B treated plants exposed to saturating light intensity showed higher quantum yield of photosystem II (PSII), fraction of open PSII centres and electron transport rate and showed no effect on the apparent maximum quantum efficiency of PSII photochemistry (Fv/Fm) or non-photochemical quenching, in contrast to solely red-light conditions. These findings provide new insights into how plants respond to UV-B radiation in the presence of different light spectra.
Collapse
Affiliation(s)
| | - Victor Castro-Alves
- School of Science and Technology, Örebro Life Science Centre, Örebro University, Örebro, Sweden
| | - Luis Orlando Morales
- School of Science and Technology, Örebro Life Science Centre, Örebro University, Örebro, Sweden
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, Crop Sciences, University of Copenhagen, Taastrup, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Aarhus, Denmark
- *Correspondence: Carl-Otto Ottosen,
| | - Åke Strid
- School of Science and Technology, Örebro Life Science Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
7
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Khudyakova AY, Kreslavski VD, Shmarev AN, Lyubimov VY, Shirshikova GN, Pashkovskiy PP, Kuznetsov VV, Allakhverdiev SI. Impact of UV-B radiation on the photosystem II activity, pro-/antioxidant balance and expression of light-activated genes in Arabidopsis thaliana hy4 mutants grown under light of different spectral composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:14-20. [PMID: 30897399 DOI: 10.1016/j.jphotobiol.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 11/27/2022]
Abstract
The effect of UV-B irradiation on the photosystem II (PSII) activity, the content of photosynthetic and UV-absorbing pigments (UAPs), activity of antioxidant enzymes such as catalase (CAT) and peroxidase (POD), as well as H2O2 content in 25-day-old wild type (WT) and the cryptochrome 1 (Cry1) mutant hy4 of Arabidopsis thaliana Col-0 plants was studied. In addition, expression of photoreceptor genes Cry1, Cry2 and UVR8, photomorphogenetic gene COP1 and transcription factors genes HY5, HYH, the gene of chlorophyll-binding protein of the PSII CAB1 as well as the flavonoid biosynthesis genes CHS, PAL and thylakoid ascorbate peroxidase gene tAPX was examined. It has been shown that UV-B leads to a decrease in the photochemical activity of PSII (FV/FM) and the PSII performance index (PIABS) of WT plants grown on white (WL) and red (RL) light and also hy4 mutants grown on WL, RL and blue light (BL). In plants grown on BL and WL, the decrease in the PSII photochemical activity was significantly greater in hy4 compared to WT. The PSII of WT plants grown in BL was resistant to UV-B. The UAPs content of hy4 grown on BL and WL was lower than that in WT. The POD and CAT activities of WT grown in BL were significantly higher than in the mutant. In WT and hy4 plants grown in RL, a noticeable difference in these enzymes activity was not found. In both types of plants grown in BL and RL, the expression of photomorphogenetic genes HYH, HY5 markedly increased after UV-B treatment but the expression of the UV-B photoreceptor gene UVR8 was reduced in hy4 grown in BL and RL. It is assumed that reduced resistance of PSII in hy4 plants grown in BL and WL can be associated with low UAPs content as well as lowered POD and CAT activities. In addition, we suggest the lowered expression of UVR8 and COP1 genes caused by Cry1 deficiency leads to a shift of balance of oxidants and antioxidants towards oxidants.
Collapse
Affiliation(s)
- Aleksandra Yu Khudyakova
- Russian Academy of Sciences, Institute of Basic Biological Problems, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Vladimir D Kreslavski
- Russian Academy of Sciences, Institute of Basic Biological Problems, Institutskaya Street 2, Pushchino, Moscow 142290, Russia; Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya Street 35, Moscow 127276, Russia.
| | - Aleksandr N Shmarev
- Russian Academy of Sciences, Institute of Basic Biological Problems, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Valery Yu Lyubimov
- Russian Academy of Sciences, Institute of Basic Biological Problems, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Galina N Shirshikova
- Russian Academy of Sciences, Institute of Basic Biological Problems, Institutskaya Street 2, Pushchino, Moscow 142290, Russia
| | - Pavel P Pashkovskiy
- Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Vladimir V Kuznetsov
- Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Suleyman I Allakhverdiev
- Russian Academy of Sciences, Institute of Basic Biological Problems, Institutskaya Street 2, Pushchino, Moscow 142290, Russia; Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya Street 35, Moscow 127276, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia; Department of Molecular and Cell Biology, Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow 141700, Russia; Bionanotechnology Laboratory, Azerbaijan National Academy of Sciences, Institute of Molecular Biology and Biotechnology, Matbuat Avenue 2a, Baku 1073, Azerbaijan.
| |
Collapse
|
9
|
Hui R, Jia R, Zhao Y, Song G, Gao Y. Comparative physiological responses of Microcoleus vaginatus and Bryum argenteum to enhanced UV-B radiation under field conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:262-274. [PMID: 32172769 DOI: 10.1071/fp18193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/08/2018] [Indexed: 06/10/2023]
Abstract
UV-B radiation is an important environmental factor affecting the composition and function of biological soil crusts (BSCs). The aim of this study was to compare the effects of enhanced UV-B radiation on BSCs from Tengger Desert, north-western China, which are dominated by the cyanobacterium Microcoleus vaginatus Gom. and moss Bryum argenteum Hedw. The BSCs were exposed to four UV-B supplemental treatments, including 2.75 (control), 3.08, 3.25, and 3.41Wm-2, for 40 days under field condition. In both the studied organisms, UV-B radiation significantly affected the physiological properties (total flavonoids, soluble proteins, soluble sugars, and proline contents). While marginally enhanced UV-B radiation for a short period favoured the growth of M. vaginatus and B. argenteum, excessively high and prolonged UV-B radiation suppressed the physiological properties of the two organisms. Moreover, response index revealed that UV-B radiation had more detrimental effects on B. argenteum, suggesting that B. argenteum is more sensitive to UV-B radiation than M. vaginatus. The findings of this study could help to predict and evaluate the possible changes in the structure and function of desert ecosystems, based on the variation in physiological responses of M. vaginatus and B. argenteum to enhanced UV-B radiation.
Collapse
Affiliation(s)
- Rong Hui
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Rongliang Jia
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yang Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Guang Song
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yanhong Gao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
10
|
Holub P, Nezval J, Štroch M, Špunda V, Urban O, Jansen MAK, Klem K. Induction of phenolic compounds by UV and PAR is modulated by leaf ontogeny and barley genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:81-93. [PMID: 30143263 DOI: 10.1016/j.plaphy.2018.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 05/26/2023]
Abstract
We investigated the effect of leaf ontogeny and barley genotype on the accumulation of phenolic compounds (PhCs) induced by ultraviolet (UV) and photosynthetically active radiation (PAR). We hypothesized that different groups of PhCs are induced in leaves differing in ontogeny, and that this has consequences for protective functions and the need for other protection mechanisms. Generally, lower constitutive contents of PhCs (under conditions of UV exclusion and reduced PAR) were found in a UV-sensitive genotype (Barke) compared to a tolerant genotype (Bonus). However, UV and PAR induced accumulation of PhCs exceeded the constitutive amounts several fold. Specifically, lutonarin, 3-feruloylquinic acid, unidentified hydroxycinnamic acid and luteolin derivatives were markedly enhanced by high PAR and UV irradiances. Leaves developed during UV and PAR treatments had higher PhCs contents than mature leaves already fully developed at the onset of the UV and PAR treatment. UV and PAR treatments had, however, a minor effect on saponarin and unidentified apigenin derivatives which occur particularly in mature leaves of the tolerant genotype Bonus. In addition, high UV and PAR intensities increased the total content of xanthophylls (VAZ), while chlorophyll content was reduced, particularly in developing leaves. A redundancy analysis revealed positive associations between most of PhCs and VAZ and a negative association between total chlorophylls and carotenoids. Non-linear relationships between VAZ and lutonarin and other PhCs indicate that VAZ accumulation can compensate for the insufficient efficiency of anti-oxidative protection mediated by PhCs. Accordingly, we conclude that UV and PAR-induced accumulation of PhCs is affected by leaf ontogeny, however, this effect is compound-specific.
Collapse
Affiliation(s)
- Petr Holub
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic
| | - Jakub Nezval
- University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Michal Štroch
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Vladimír Špunda
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Otmar Urban
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic
| | - Marcel A K Jansen
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic; University of Cork, School of Biological, Earth and Environmental Science, Distillery Fields, Cork, Ireland
| | - Karel Klem
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic.
| |
Collapse
|
11
|
Liu L, Gregan SM, Winefield C, Jordan B. Comparisons of controlled environment and vineyard experiments in Sauvignon blanc grapes reveal similar UV-B signal transduction pathways for flavonol biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:44-53. [PMID: 30348327 DOI: 10.1016/j.plantsci.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
UV-B radiation is an environmental challenge affecting a number of metabolic functions in plants. Plants protect themselves from this potentially damaging radiation through synthesising UV-absorbing compounds such as flavonoids. This study aims to investigate the effect of UV-B on flavonoid biosynthesis in Sauvignon blanc grapes. In particular, a comparison has been made between controlled environment (CE) and vineyard trials to better understand molecular mechanisms of low/high fluence UV-B responses and how the results relate to each other in the context of flavonoid biosynthesis. Following exposure to supplemental UV-B in the CE, both flavonols and gene expression exhibited UV-B induced response. Flavonols, particularly quercetin/kaempferol 3-O-glycosides were increased at distinct stages of berry development. All genes measured showed a significant developmental regulation. VvFLS4, VvCHS1, VvMYB12, VvHY5 and PR (VvTL1 and VvChi4A/4B) increased due to UV-B in the CE experiments. However, PR were not responsive to the natural UV-B fluence in vineyard but were significantly induced at later stages of development. Overall, despite very different conditions in the CE and vineyard the majority of UV-B induced responses are similar. Only PR activities in the CE cabinets reflect a higher fluence stress response that is not reflected in the natural lower UV-B fluence environment.
Collapse
Affiliation(s)
- Linlin Liu
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Scott M Gregan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Christopher Winefield
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| | - Brian Jordan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand.
| |
Collapse
|
12
|
Yun H, Lim S, Kim YX, Lee Y, Lee S, Lee D, Park K, Sung J. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:66-74. [PMID: 29870880 DOI: 10.1016/j.jplph.2018.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation.
Collapse
Affiliation(s)
- Hyejin Yun
- Division of Soil and Fertilizer, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea; Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sunhyung Lim
- Division of Metabolic Engineering, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Yangmin X Kim
- Division of Soil and Fertilizer, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Yejin Lee
- Division of Soil and Fertilizer, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Seulbi Lee
- Division of Soil and Fertilizer, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Deogbae Lee
- Division of Soil and Fertilizer, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Keewoong Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Jwakyung Sung
- Division of Soil and Fertilizer, NAS, RDA, 166 Nongsaengmyeong-ro, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
13
|
Suthaparan A, Solhaug KA, Stensvand A, Gislerød HR. Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:141-148. [DOI: 10.1016/j.jphotobiol.2017.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023]
|
14
|
Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2017; 8:278. [PMID: 28303147 PMCID: PMC5332372 DOI: 10.3389/fpls.2017.00278] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 05/06/2023]
Abstract
Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.
Collapse
Affiliation(s)
- Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology of Leiden, Leiden UniversityLeiden, Netherlands
| | | | | |
Collapse
|
15
|
Verdaguer D, Jansen MAK, Llorens L, Morales LO, Neugart S. UV-A radiation effects on higher plants: Exploring the known unknown. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 255:72-81. [PMID: 28131343 DOI: 10.1016/j.plantsci.2016.11.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 05/02/2023]
Abstract
Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account.
Collapse
Affiliation(s)
- Dolors Verdaguer
- Environmental Sciences Department, Faculty of Sciences, University of Girona, Campus de Montilivi, C/Maria Aurèlia Capmany I Farnés, 69, E-17003 Girona, Spain.
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Field, North Mall, Cork, Ireland.
| | - Laura Llorens
- Environmental Sciences Department, Faculty of Sciences, University of Girona, Campus de Montilivi, C/Maria Aurèlia Capmany I Farnés, 69, E-17003 Girona, Spain.
| | - Luis O Morales
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Center, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979, Grossbeeren, Germany.
| |
Collapse
|
16
|
Manova V, Georgieva R, Borisov B, Stoilov L. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways. PHYSIOLOGIA PLANTARUM 2016; 158:236-253. [PMID: 27021252 DOI: 10.1111/ppl.12446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria.
| | - Ralitsa Georgieva
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| | - Borislav Borisov
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
- National Bank for Industrial Microorganisms and Cell Cultures, Sofia, 1756, Bulgaria
| | - Lubomir Stoilov
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
| |
Collapse
|
17
|
Sztatelman O, Grzyb J, Gabryś H, Banaś AK. The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment. BMC PLANT BIOLOGY 2015; 15:281. [PMID: 26608826 PMCID: PMC4660668 DOI: 10.1186/s12870-015-0667-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/17/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Ultraviolet B (UV-B) irradiation can influence many cellular processes. Irradiation with high UV-B doses causes chlorophyll degradation, a decrease in the expression of genes associated with photosynthesis and its subsequent inhibition. On the other hand, sublethal doses of UV-B are used in post-harvest technology to prevent yellowing in storage. To address this inconsistency the effect of short, high-dose UV-B irradiation on detached Arabidopsis thaliana leaves was examined. RESULTS Two different experimental models were used. After short treatment with a high dose of UV-B the Arabidopsis leaves were either put into darkness or exposed to constant light for up to 4 days. UV-B inhibited dark-induced chlorophyll degradation in Arabidopsis leaves in a dose-dependent manner. The expression of photosynthesis-related genes, chlorophyll content and photosynthetic efficiency were higher in UV-B -treated leaves left in darkness. UV-B treatment followed by constant light caused leaf yellowing and induced the expression of senescence-related genes. Irrespective of light treatment a high UV-B dose led to clearly visible cell death 3 days after irradiation. CONCLUSIONS High doses of UV-B have opposing effects on leaves depending on their light status after UV treatment. In darkened leaves short UV-B treatment delays the appearance of senescence symptoms. When followed by light treatment, the same doses of UV-B result in chlorophyll degradation. This restricts the potential usability of UV treatment in postharvest technology to crops which are stored in darkness.
Collapse
Affiliation(s)
- Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
- Current address: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, 02-106, Poland.
| | - Joanna Grzyb
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warszawa, 02-668, Poland.
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
- The Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| |
Collapse
|
18
|
Štroch M, Materová Z, Vrábl D, Karlický V, Šigut L, Nezval J, Špunda V. Protective effect of UV-A radiation during acclimation of the photosynthetic apparatus to UV-B treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:90-6. [PMID: 26233710 DOI: 10.1016/j.plaphy.2015.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/10/2015] [Accepted: 07/17/2015] [Indexed: 05/07/2023]
Abstract
We examined the acclimation response of the photosynthetic apparatus of barley (Hordeum vulgare L.) to a combination of UV-A and UV-B radiation (UVAB) and to UV-B radiation alone. Our aim was to evaluate whether UV-A radiation prevents UV-B-induced damage to the photosynthetic apparatus and whether UV-A pre-acclimation is required to mitigate the negative influence of UV-B radiation. Barley plants were grown from seeds under low photosynthetically active radiation (50 μmol m(-2) s(-1)) either in the absence or presence of UV-A radiation (UVA- and UVA+ plants, respectively). After 8 days of development, plants were exposed simultaneously to UV-A and UV-B radiation for the next 6 days. Additionally, UVA- plants were exposed to UV-B radiation alone. The UVA+ plants had a higher CO2 assimilation rate near the light-saturation region (A(N)) and a higher content of both total chlorophylls (Chls) and total carotenoids than the UVA- plants. Chls content, A(N), the potential quantum yield of photosystem II (PSII) photochemistry (F(V)/F(M)), the capacity of light-induced thermal energy dissipation and the efficiency of excitation energy transfer within PSII remained the same or even increased in both UVA+ and UVA- plants after UVAB treatment. On the contrary, exposure of UVA- plants to UV-B radiation itself led to a reduction in all these characteristics. We revealed that the presence of UV-A radiation during UVAB treatment not only mitigated but completely eliminated the negative effect of UV-B radiation on the functioning of the photosynthetic apparatus and that UV-A pre-acclimation was not crucial for development of this UV-A-induced resistance against UV-B irradiation.
Collapse
Affiliation(s)
- Michal Štroch
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic; Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic.
| | - Zuzana Materová
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic
| | - Daniel Vrábl
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic
| | - Václav Karlický
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic; Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| | - Ladislav Šigut
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic; Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| | - Jakub Nezval
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic
| | - Vladimír Špunda
- Faculty of Science, University of Ostrava, 30. dubna 22, CZ-701 03, Ostrava 1, Czech Republic; Global Change Research Centre, Academy of Sciences of the Czech Republic, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| |
Collapse
|
19
|
Klem K, Holub P, Štroch M, Nezval J, Špunda V, Tříska J, Jansen MAK, Robson TM, Urban O. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:74-83. [PMID: 25583309 DOI: 10.1016/j.plaphy.2015.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/06/2015] [Indexed: 05/05/2023]
Abstract
The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley.
Collapse
Affiliation(s)
- Karel Klem
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Michal Štroch
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Jakub Nezval
- University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Vladimír Špunda
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Jan Tříska
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Marcel A K Jansen
- University of Cork, School of Biological, Earth and Environmental Science, Distillery Fields, Cork, Ireland
| | - T Matthew Robson
- University of Helsinki, Department of Biosciences, Plant Biology, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Otmar Urban
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic.
| |
Collapse
|
20
|
Robson TM, Klem K, Urban O, Jansen MAK. Re-interpreting plant morphological responses to UV-B radiation. PLANT, CELL & ENVIRONMENT 2015; 38:856-66. [PMID: 24890713 DOI: 10.1111/pce.12374] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/08/2014] [Accepted: 05/11/2014] [Indexed: 05/02/2023]
Abstract
There is a need to reappraise the effects of UV-B radiation on plant morphology in light of improved mechanistic understanding of UV-B effects, particularly elucidation of the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor. We review responses at cell and organismal levels, and explore their underlying regulatory mechanisms, function in UV protection and consequences for plant fitness. UV-induced morphological changes include thicker leaves, shorter petioles, shorter stems, increased axillary branching and altered root:shoot ratios. At the cellular level, UV-B morphogenesis comprises changes in cell division, elongation and/or differentiation. However, notwithstanding substantial new knowledge of molecular, cellular and organismal UV-B responses, there remains a clear gap in our understanding of the interactions between these organizational levels, and how they control plant architecture. Furthermore, despite a broad consensus that UV-B induces relatively compact architecture, we note substantial diversity in reported phenotypes. This may relate to UV-induced morphological changes being underpinned by different mechanisms at high and low UV-B doses. It remains unproven whether UV-induced morphological changes have a protective function involving shading and decreased leaf penetration of UV-B, counterbalancing trade-offs such as decreased photosynthetic light capture and plant-competitive abilities. Future research will need to disentangle seemingly contradictory interactions occurring at the threshold UV dose where regulation and stress-induced morphogenesis overlap.
Collapse
Affiliation(s)
- T Matthew Robson
- Department of Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | | | | | | |
Collapse
|
21
|
Siipola SM, Kotilainen T, Sipari N, Morales LO, Lindfors AV, Robson TM, Aphalo PJ. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. PLANT, CELL & ENVIRONMENT 2015; 38:941-52. [PMID: 25040832 DOI: 10.1111/pce.12403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 05/20/2023]
Abstract
Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.
Collapse
Affiliation(s)
- Sari M Siipola
- Plant Biology Division, Department of Biosciences, University of Helsinki, PO Box 56, Helsinki, 00014, Finland
| | | | | | | | | | | | | |
Collapse
|
22
|
Morales LO, Brosché M, Vainonen JP, Sipari N, Lindfors AV, Strid Å, Aphalo PJ. Are solar UV-B- and UV-A-dependent gene expression and metabolite accumulation in Arabidopsis mediated by the stress response regulator RADICAL-INDUCED CELL DEATH1? PLANT, CELL & ENVIRONMENT 2015; 38:878-891. [PMID: 24689869 DOI: 10.1111/pce.12341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/04/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Wavelengths in the ultraviolet (UV) region of the solar spectrum, UV-B (280-315 nm) and UV-A (315-400 nm), are key environmental signals modifying several aspects of plant physiology. Despite significant advances in the understanding of plant responses to UV-B and the identification of signalling components involved, there is limited information on the molecular mechanisms that control UV-B signalling in plants under natural sunlight. Here, we aimed to corroborate the previous suggested role for RADICAL-INDUCED CELL DEATH1 (RCD1) in UV-B signalling under full spectrum sunlight. Wild-type Arabidopsis thaliana and the rcd1-1 mutant were used in an experimental design outdoors where UV-B and UV-A irradiances were manipulated using plastic films, and gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation and metabolite profiles were analysed in the leaves. At the level of transcription, RCD1 was not directly involved in the solar UV-B regulation of genes with functions in UV acclimation, hormone signalling and stress-related markers. Furthermore, RCD1 had no role on PDX1 accumulation but modulated the UV-B induction of flavonoid accumulation in leaves of Arabidopsis exposed to solar UV. We conclude that RCD1 does not play an active role in UV-B signalling but rather modulates UV-B responses under full spectrum sunlight.
Collapse
Affiliation(s)
- Luis O Morales
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland; School of Chemical Technology, Department of Forest Products Technology, Aalto University, FI-00076, Aalto, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Sunlight and Soil–Litter Mixing: Drivers of Litter Decomposition in Drylands. PROGRESS IN BOTANY 2015. [DOI: 10.1007/978-3-319-08807-5_11] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Kataria S, Jajoo A, Guruprasad KN. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:55-66. [PMID: 24725638 DOI: 10.1016/j.jphotobiol.2014.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/01/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022]
Abstract
Increased UV-B radiation on the earth's surface due to depletion of stratospheric ozone layer is one of the changes of current climate-change pattern. The deleterious effects of UV-B radiation on photosynthesis and photosynthetic productivity of plants are reviewed. Perusal of relevant literature reveals that UV-B radiation inflicts damage to the photosynthetic apparatus of green plants at multiple sites. The sites of damage include oxygen evolving complex, D1/D2 reaction center proteins and other components on the donor and acceptor sides of PS II. The radiation inactivates light harvesting complex II and alters gene expression for synthesis of PS II reaction center proteins. Mn cluster of water oxidation complex is the most important primary target of UV-B stress whereas D1 and D2 proteins, quinone molecules and cytochrome b are the subsequent targets of UV-B. In addition, photosynthetic carbon reduction is also sensitive to UV-B radiation which has a direct effect on the activity and content of Rubisco. Some indirect effects of UV-B radiation include changes in photosynthetic pigments, stomatal conductance and leaf and canopy morphology. The failure of protective mechanisms makes PS II further vulnerable to the UV-B radiation. Reactive oxygen species are involved in UV-B induced responses in plants, both as signaling and damaging agents. Exclusion of ambient UV components under field conditions results in the enhancement of the rate of photosynthesis, PS II efficiency and subsequently increases the biomass accumulation and crop yield. It is concluded that predicted future increase in UV-B irradiation will have significant impact on the photosynthetic efficiency and the productivity of higher plants.
Collapse
Affiliation(s)
- Sunita Kataria
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452001, India.
| | - Anjana Jajoo
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452001, India
| | - Kadur N Guruprasad
- School of Life Science, Devi Ahilya University, Khandwa Road, Indore 452001, India
| |
Collapse
|
25
|
Barnes PW, Kersting AR, Flint SD, Beyschlag W, Ryel RJ. Adjustments in epidermal UV-transmittance of leaves in sun-shade transitions. PHYSIOLOGIA PLANTARUM 2013; 149:200-13. [PMID: 23330642 DOI: 10.1111/ppl.12025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 05/07/2023]
Abstract
Epidermal UV transmittance (TUV ) and UV-absorbing compounds were measured in sun and shade leaves of Populus tremuloides and Vicia faba exposed to contrasting light environments under field conditions to evaluate UV acclimation potentials and regulatory roles of photosynthetically active radiation (PAR) and UV in UV-shielding. Within a natural canopy of P. tremuloides, TUV ranged from 4 to 98% and showed a strong nonlinear relationship with mid-day horizontal fluxes of PAR [photon flux density (PFD) = 6-1830 µmol m⁻² s⁻¹]; similar patterns were found for V. faba leaves that developed under a comparable PFD range. A series of field transfer experiments using neutral-density shade cloth and UV blocking/transmitting films indicated that PAR influenced TUV during leaf development to a greater degree than UV, and shade leaves of both species increased their UV-shielding when exposed to full sun; however, this required the presence of UV, with both UV-A and UV-B required for full acclimation. TUV of sun leaves of both species was largely unresponsive to shade either with or without UV. In most, but not all cases, changes in TUV were associated with alterations in the concentration of whole-leaf UV-absorbing compounds. These results suggest that, (1) moderate-to-high levels of PAR alone during leaf development can induce substantial UV-protection in field-grown plants, (2) mature shade leaves have the potential to adjust their UV-shielding which may reduce the detrimental effects of UV that could occur following sudden exposures to high light and (3) under field conditions, PAR and UV play different roles in regulating UV-shielding during and after leaf development.
Collapse
Affiliation(s)
- Paul W Barnes
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, 70118, USA
| | | | | | | | | |
Collapse
|
26
|
Giorgi A, Manzo A, Vagge I, Panseri S. Effect of Light Environment on Growth and Phenylpropanoids of Yarrow (Achillea collina cv. SPAK) Grown in the Alps. Photochem Photobiol 2013; 90:113-20. [PMID: 23927610 DOI: 10.1111/php.12150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
A 2-year field study on the effect of different light environments, obtained by using cladding materials (polyethylene films and shade net) able to cut off specific regions of the photosynthetically active radiation and ultraviolet wavebands, on the growth and phenylpropanoids content of Achillea collina grown in the Alps was conducted. Overall the plant growth was strongly enhanced in the second growing season irrespective of radiation treatment. The light environment did not affect total biomass accumulation, but only carbon allocation to leaves or inflorescences. Indeed the phenylpropanoid levels in inflorescences appeared to be more sensitive to the light environment than leaves as the latter showed high constitutive amounts of these compounds. However, the use of polyethylene films improved to some extent the content of caffeic acid derivatives in leaves. Our results showed that yarrow production, in the alpine situation considered, is influenced by the growing season and the light environment, providing a basis to optimize its quality, depending on the concentration of bioactive compounds, by means of proper agronomic practices.
Collapse
Affiliation(s)
- Annamaria Giorgi
- Centre for Applied Studies in the Sustainable Management and Protection of the Mountain Environment - Ge.S.Di.Mont., Università degli Studi di Milano, Brescia, Italy.,Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Manzo
- Centre for Applied Studies in the Sustainable Management and Protection of the Mountain Environment - Ge.S.Di.Mont., Università degli Studi di Milano, Brescia, Italy
| | - Ilda Vagge
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Sara Panseri
- Centre for Applied Studies in the Sustainable Management and Protection of the Mountain Environment - Ge.S.Di.Mont., Università degli Studi di Milano, Brescia, Italy.,Department of Veterinary Science and Public Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Comont D, Winters A, Gomez LD, McQueen-Mason SJ, Gwynn-Jones D. Latitudinal variation in ambient UV-B radiation is an important determinant of Lolium perenne forage production, quality, and digestibility. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2193-2204. [PMID: 23580749 PMCID: PMC3654412 DOI: 10.1093/jxb/ert077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Few studies to date have considered the responses of agriculturally important forage grasses to UV-B radiation. Yet grasses such as Lolium perenne have a wide current distribution, representing exposure to a significant variation in ambient UV-B. The current study investigated the responses of L. perenne (cv. AberDart) to a simulated latitudinal gradient of UV-B exposure, representing biologically effective UV-B doses at simulated 70, 60, 50, 40, and 30° N latitudes. Aspects of growth, soluble compounds, and digestibility were assessed, and results are discussed in relation to UV-B effects on forage properties and the implications for livestock and bio-ethanol production. Aboveground biomass production was reduced by approximately 12.67% with every 1 kJ m(-2) day(-1) increase in biologically weighted UV-B. As a result, plants grown in the highest UV-B treatment had a total biomass of just 13.7% of controls. Total flavonoids were increased by approximately 76% by all UV-B treatments, while hydroxycinnamic acids increased in proportion to the UV-B dose. Conversely, the digestibility of the aboveground biomass and concentrations of soluble fructans were reduced by UV-B exposure, although soluble sucrose, glucose, and fructose concentrations were unaffected. These results highlight the capacity for UV-B to directly affect forage productivity and chemistry, with negative consequences for digestibility and bioethanol production. Results emphasize the need for future development and distribution of L. perenne varieties to take UV-B irradiance into consideration.
Collapse
Affiliation(s)
- David Comont
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DA, Wales, UK
| | - Ana Winters
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DA, Wales, UK
| | - Leonardo D Gomez
- CNAP, Biology Department, University of York, Heslington, York, YO10 5DD, UK
| | | | - Dylan Gwynn-Jones
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DA, Wales, UK
| |
Collapse
|
28
|
Bernal M, Llorens L, Badosa J, Verdaguer D. Interactive effects of UV radiation and water availability on seedlings of six woody Mediterranean species. PHYSIOLOGIA PLANTARUM 2013; 147:234-47. [PMID: 22671961 DOI: 10.1111/j.1399-3054.2012.01660.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 05/02/2023]
Abstract
To assess the effects of UV radiation and its interaction with water availability on Mediterranean plants, we performed an experiment with seedlings of six Mediterranean species (three mesophytes vs three xerophytes) grown in a glasshouse from May to October under three UV conditions (without UV, with UVA and with UVA+UVB) and two irrigation levels (watered to saturation and low watered). Morphological, physiological and biochemical measures were taken. Exposure to UVA+UVB increased the overall leaf mass per area (LMA) and the leaf carotenoids/chlorophyll a + b ratio of plants in relation to plants grown without UV or with UVA, respectively. In contrast, we did not find a general effect of UV on the leaf content of phenols or UVB-absorbing compounds of the studied species. Regarding plant growth, UV inhibited the above-ground biomass production of well-watered plants of Pistacia lentiscus. Conversely, under low irrigation, UVA tended to abolish the reduction in growth experienced by P. lentiscus plants growing in a UV-free environment, in accordance with UVA-enhanced apparent electron transport rate (ETR) values under drought in this species. UVA also induced an overall increase in root biomass when plants of the studied species were grown under a low water supply. In conclusion, while plant exposition to UVA favored root growth under water shortage, UVB addition only gave rise to photoprotective responses, such as the increase in LMA or in the leaf carotenoids/chlorophyll a + b ratio of plants. Species-specific responses to UV were not related with the xerophytic or mesophytic character of the studied species.
Collapse
Affiliation(s)
- Meritxell Bernal
- Environmental Sciences Department, University of Girona, C/M. Aurèlia Capmany 69, E-17071, Girona, Spain.
| | | | | | | |
Collapse
|
29
|
|
30
|
Comont D, Winters A, Gwynn-Jones D. Acclimation and interaction between drought and elevated UV-B in A. thaliana: Differences in response over treatment, recovery and reproduction. Ecol Evol 2012; 2:2695-709. [PMID: 23170206 PMCID: PMC3501623 DOI: 10.1002/ece3.387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/27/2022] Open
Abstract
Here, a factorial experiment was used to investigate the interactive effects of a UV-B episode and concurrent progressive drought on the growth, chemistry, and reproductive success of A. thaliana. Both drought and UV-B negatively affected rosette growth, although UV-B had the greater effect. Acclimation to UV-B involved adjustment of leaf morphology, while drought induced accumulation of soluble sugars and phenolics. All plants recovered from treatments, but the cost of recovery was a developmental delay resulting in alteration in phenological timings. Combined treatments interacted causing additive negative effects on growth following exposure. This may be linked with inhibition of soluble sugar accumulation by UV-B, restricting the capacity for osmotic adjustment in response to drought. Following cessation of treatments, relative growth rate (RGR) and net assimilation rate (NAR) were significantly stimulated in plants treated with combined drought and UV-B. This interaction alleviated subsequent impacts of elevated UV-B on silique yield and reproductive timings. This study demonstrates the potential for interaction between these two common environmental factors. Furthermore, it shows the changeable nature of these interactions over the course of exposure and recovery through to reproduction, highlighting the need for sustained assessment of such interactions over a plant's lifecycle.
Collapse
Affiliation(s)
- David Comont
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University Ceredigion, SY23 3DA, WALES, UK
| | | | | |
Collapse
|
31
|
Morales LO, Tegelberg R, Brosché M, Lindfors A, Siipola S, Aphalo PJ. Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula. PHYSIOLOGIA PLANTARUM 2011; 143:261-70. [PMID: 21883252 DOI: 10.1111/j.1399-3054.2011.01511.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The physiological mechanisms controlling plant responses to dynamic changes in ambient solar ultraviolet (UV) radiation are not fully understood: this information is important to further comprehend plant adaptation to their natural habitats. We used the fluorimeter Dualex to estimate in vivo the epidermal flavonoid contents by measuring epidermal UV absorbance (A(375) ) in Betula pendula Roth (silver birch) leaves of different ages under altered UV. Seedlings were grown in a greenhouse for 15 days without UV and transferred outdoors under three UV treatments (UV-0, UV-A and UV-A+B) created by three types of plastic film. After 7 and 13 days, Dualex measurements were taken at adaxial and abaxial epidermis of the first three leaves (L1, L2 and L3) of the seedlings. After 14 days, some of the seedlings were reciprocally swapped amongst the treatments to study the accumulation of epidermal flavonoids in the youngest unfolded leaves (L3) during leaf expansion under changing solar UV environments. A(375) of the leaves responded differently to the UV treatment depending on their position. UV-B increased the A(375) in the leaves independently of leaf position. L3 quickly adjusted A(375) in their epidermis according to the UV they received and these adjustments were affected by previous UV exposure. The initial absence of UV-A+B or UV-A, followed by exposure to UV-A+B, particularly enhanced leaf A(375) . Silver birch leaves modulate their protective pigments in response to changes in the UV environment during their expansion, and their previous UV exposure history affects the epidermal-absorbance achieved during later UV exposure.
Collapse
Affiliation(s)
- Luis O Morales
- Department of Biosciences, Plant Biology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Sampath-Wiley P, Jahnke LS. A new filter that accurately mimics the solar UV-B spectrum using standard UV lamps: the photochemical properties, stabilization and use of the urate anion liquid filter. PLANT, CELL & ENVIRONMENT 2011; 34:261-269. [PMID: 20955223 DOI: 10.1111/j.1365-3040.2010.02240.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The physiological effects unique to solar ultraviolet (UV)-B exposure (280-315 nm) are difficult to accurately replicate in the laboratory. This study evaluates the effectiveness of the sodium urate anion in a liquid filter that yields a spectrum nearly indistinguishable from the solar UV-B spectrum while filtering the emissions of widely used UV-B lamps. The photochemical properties and stability of this filter are examined and weighed against a typical spectrum of ground-level solar UV-B radiation. To test the effectiveness of this filter, light-saturated photosynthetic oxygen evolution rates were measured following exposure to UV-B filtered either by this urate filter or the widely used cellulose acetate (CA) filter. The ubiquitous marine Chlorophyte alga Dunaliella tertiolecta was tested under identical UV-B flux densities coupled with ecologically realistic fluxes of UV-A and visible radiation for 6 and 12 h exposures. These results indicate that the urate-filtered UV-B radiation yields minor photosynthetic inhibition when compared with exposures lacking in UV-B. This is in agreement with published experiments using solar radiation. In sharp contrast, radiation filtered by CA filters produced large inhibition of photosynthesis.
Collapse
Affiliation(s)
- Priya Sampath-Wiley
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|
33
|
UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 100:67-75. [PMID: 20627615 DOI: 10.1016/j.jphotobiol.2010.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 01/03/2023]
Abstract
Modulation of secondary metabolites by UV-B involves changes in gene expression, enzyme activity and accumulation of defence metabolites. After exposing peppermint (Mentha x piperita L.) plants grown in field (FP) and in a growth chamber (GCP) to UV-B irradiation, we analysed by qRT-PCR the expression of genes involved in terpenoid biosynthesis and encoding: 1-deoxy-D-xylulose-5-phosphate synthase (Dxs), 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (Mds), isopentenyl diphosphate isomerase (Ippi), geranyl diphosphate synthase (Gpps), (-)-limonene synthase (Ls), (-)-limonene-3-hydroxylase (L3oh), (+)-pulegone reductase (Pr), (-)-menthone reductase (Mr), (+)-menthofuran synthase (Mfs), farnesyl diphosphate synthase (Fpps) and a putative sesquiterpene synthase (S-TPS). GCP always showed a higher terpenoid content with respect to FP. We found that in both FP and GCP, most of these genes were regulated by the UV-B treatment. The amount of most of the essential oil components, which were analysed by gas chromatography-mass spectrometry (GC-MS), was not correlated to gene expression. The total phenol composition was found to be always increased after UV-B irradiation; however, FP always showed a higher phenol content with respect to GCP. Liquid chromatography-mass spectrometry (LC-ESI-MS/MS) analyses revealed the presence of UV-B absorbing flavonoids such as eriocitrin, hesperidin, and kaempferol 7-O-rutinoside whose content significantly increased in UV-B irradiated FP, when compared to GCP. The results of this work show that UV-B irradiation differentially modulates the expression of genes involved in peppermint essential oil biogenesis and the content of UV-B absorbing flavonoids. Plants grown in field were better adapted to increasing UV-B irradiation than plants cultivated in growth chambers. The interplay between terpenoid and phenylpropanoid metabolism is also discussed.
Collapse
|
34
|
Younis MEB, Hasaneen MNAG, Abdel-Aziz HMM. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings. PLANT SIGNALING & BEHAVIOR 2010; 5:1197-203. [PMID: 20505357 PMCID: PMC3115348 DOI: 10.4161/psb.5.10.11978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/03/2010] [Accepted: 04/03/2010] [Indexed: 05/05/2023]
Abstract
Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV-radiation.
Collapse
|
35
|
Singh A, Sarkar A, Singh S, Agrawal SB. Investigation of supplemental ultraviolet-B-induced changes in antioxidative defense system and leaf proteome in radish (Raphanus sativus L. cv Truthful): an insight to plant response under high oxidative stress. PROTOPLASMA 2010; 245:75-83. [PMID: 20401732 DOI: 10.1007/s00709-010-0138-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/15/2010] [Indexed: 05/20/2023]
Abstract
Impact of supplemental UV-B (sUV-B) has been investigated on photosynthetic pigments, antioxidative enzymes, metabolites, and protein profiling of radish plants under realistic field conditions. Exposure of sUV-B leads to oxidative damage in plants. However, plants possess a number of UV-protection mechanisms including a stimulation of antioxidant defense system. It caused alteration in reactive oxygen species metabolism primarily by decreasing catalase activity vis-à-vis enhanced activities of other enzymatic (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbic acid) antioxidants. Qualitative analysis of samples also showed significant reductions in photosynthetic pigments and protein content. After sUV-B exposure, protein profile showed differences mainly at eight points--126.8, 84.8, 71.9, 61.5, 47.8, 40.6, 38.9, and 17.5 kDa, whereas protein(s) of 38.9 kDa showed increment. Results of the present investigation clearly showed the adverse effect of sUV-B on total biomass at final harvest.
Collapse
Affiliation(s)
- Akansha Singh
- Ecology Research Circle, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | |
Collapse
|
36
|
Götz M, Albert A, Stich S, Heller W, Scherb H, Krins A, Langebartels C, Seidlitz HK, Ernst D. PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period. PROTOPLASMA 2010; 243:95-103. [PMID: 19669863 DOI: 10.1007/s00709-009-0064-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 07/13/2009] [Indexed: 05/20/2023]
Abstract
Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 micromol m(-2) s(-1)) and high biologically effective UV irradiation (UV-B(BE) 180 mW m(-2)) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 micromol m(-2) s(-1)) and low UV-B (UV-B(BE) 25 mW m(-2)) resulted in somewhat lower levels of quercetin products compared to the high-UV-B(BE) conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 micromol m(-2) s(-1)) and high UV-B (UV-B(BE) 180 mW m(-2)), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315-400 nm) in UV action on A. thaliana.
Collapse
Affiliation(s)
- Michael Götz
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morales LO, Tegelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. TREE PHYSIOLOGY 2010; 30:923-34. [PMID: 20519675 DOI: 10.1093/treephys/tpq051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultraviolet (UV) radiation is an important environmental factor for plant communities; however, plant responses to solar UV are not fully understood. Here, we report differential effects of solar UV-A and UV-B radiation on the expression of flavonoid pathway genes and phenolic accumulation in leaves of Betula pendula Roth (silver birch) seedlings grown outdoors. Plants were exposed for 30 days to six UV treatments created using three types of plastic film. Epidermal flavonoids measured in vivo decreased when UV-B was excluded. In addition, the concentrations of six flavonoids determined by high-performance liquid chromatography-mass spectrometry declined linearly with UV-B exclusion, and transcripts of PAL and HYH measured by quantitative real-time polymerase chain reaction were expressed at lower levels. UV-A linearly regulated the accumulation of quercetin-3-galactoside and quercetin-3-arabinopyranoside and had a quadratic effect on HYH expression. Furthermore, there were strong positive correlations between PAL expression and accumulation of four flavonols under the UV treatments. Our findings in silver birch contribute to a more detailed understanding of plant responses to solar UV radiation at both molecular and metabolite levels.
Collapse
Affiliation(s)
- Luis O Morales
- Department of Biosciences, Division of Plant Biology, PO Box 65 (Biocenter 3, Viikinkaari 1), FIN-00014, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Behn H, Albert A, Marx F, Noga G, Ulbrich A. Ultraviolet-B and photosynthetically active radiation interactively affect yield and pattern of monoterpenes in leaves of peppermint (Mentha x piperita L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7361-7367. [PMID: 20481601 DOI: 10.1021/jf9046072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Solar radiation is a key environmental signal in regulation of plant secondary metabolism. Since metabolic responses to light and ultraviolet (UV) radiation exposure are known to depend on the ratio of spectral ranges (e.g., UV-B/PAR), we examined effects of different UV-B radiation (280-315 nm) and photosynthetically active radiation (PAR, 400-700 nm) levels and ratios on yield and pattern of monoterpenoid essential oil of peppermint. Experiments were performed in exposure chambers, technically equipped for realistic simulation of natural climate and radiation. The experimental design comprised four irradiation regimes created by the combination of two PAR levels including or excluding UV-B radiation. During flowering, the highest essential oil yield was achieved at high PAR (1150 micromol m(-2) s(-1)) and approximate ambient UV-B radiation (0.6 W m(-2)). Regarding the monoterpene pattern, low PAR (550 micromol m(-2) s(-1)) and the absence of UV-B radiation led to reduced menthol and increased menthone contents and thereby to a substantial decrease in oil quality. Essential oil yield could not be correlated with density or diameter of peltate glandular trichomes, the epidermal structures specialized on biosynthesis, and the accumulation of monoterpenes. The present results lead to the conclusion that production of high quality oils (fulfilling the requirements of the Pharmacopoeia Europaea) requires high levels of natural sunlight. In protected cultivation, the use of UV-B transmitting covering materials is therefore highly recommended.
Collapse
Affiliation(s)
- Helen Behn
- Section Crop and Horticultural Sciences, Institute of Crop Sciences and Resource Conservation, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
39
|
Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 99:87-92. [DOI: 10.1016/j.jphotobiol.2010.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
40
|
Xu C, Sullivan JH. Reviewing the technical designs for experiments with ultraviolet-B radiation and impact on photosynthesis, DNA and secondary metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:377-387. [PMID: 20377699 DOI: 10.1111/j.1744-7909.2010.00939.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ultraviolet-B (UV-B) portion of sunlight has received much attention in the last three decades, because radiation from this spectral region increases due to the stratospheric ozone depletion, which results from increases of chlorofluorocarbons in the atmosphere. Plant responses to UV-B exposure vary greatly and the interpretation of and comparison between studies is hindered, mainly by the contrasting experimental conditions used and interactive factors such as low light levels and possible artifacts due to the artificial experimental conditions. It seems likely that increases in solar UV-B radiation of the magnitude anticipated under current stratospheric ozone projections will not significantly inhibit photosynthesis and cause DNA damage in plants. This is in part due to the well-evolved protection mechanisms present in most plant species. One of the significant plant responses to UV-B is changes in foliar secondary chemistry, which could be translated into significant effects at higher trophic levels through plant-herbivore interactions and decomposition. Enhanced UV-B radiation due to stratospheric ozone depletion could also cause morphological changes that would affect competitive interactions, especially if contrasting UV-B sensitivity exists among the competitors.
Collapse
Affiliation(s)
- Chenping Xu
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
41
|
Impacts of Ultraviolet Radiation on Interactions Between Plants and Herbivorous Insects: A Chemo-Ecological Perspective. PROGRESS IN BOTANY 72 2010. [DOI: 10.1007/978-3-642-13145-5_12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Xu C, Sullivan JH, Garrett WM, Caperna TJ, Natarajan S. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. PHYTOCHEMISTRY 2008; 69:38-48. [PMID: 17645898 DOI: 10.1016/j.phytochem.2007.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/04/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) was used to systematically investigate the impact of solar ultraviolet-B (UV-B) radiation on the soybean leaf proteome. In order to investigate the protective role of flavonoids against UV-B, two isolines of the Clark cultivar (the standard line with moderate levels of flavonoids and the magenta line with reduced flavonoids) were grown in the field with or without natural levels of UV-B. The 12-day-old first trifoliates were harvested for proteomic analysis. More than 300 protein spots were reproducibly resolved and detected on each gel. Statistical analysis showed that 67 protein spots were significantly (P<0.05) affected by solar UV-B. Many more spots were altered by UV-B in the magenta line than in the standard line. Another 12 protein spots were not altered by UV-B but showed significantly (P<0.05) different accumulations between the two lines, and for most spots the line-specific differences were also observed under UV-B exclusion. Most of the differentially accumulated spots were identified by mass spectrometry. The proteins were quite diverse, and were involved in metabolism, energy, protein destination/storage, protein synthesis, disease/defense, transcription, and secondary metabolism. The results suggest that high levels of flavonoids lead to a reduction in UV-B sensitivity at the proteomic level.
Collapse
Affiliation(s)
- Chenping Xu
- University of Maryland, Department of Plant Science and Landscape Architecture, College Park, MD 20742, United States
| | | | | | | | | |
Collapse
|
43
|
Bergquist SAM, Gertsson UE, Nordmark LYG, Olsson ME. Ascorbic acid, carotenoids, and visual quality of baby spinach as affected by shade netting and postharvest storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8444-8451. [PMID: 17880149 DOI: 10.1002/jsfa.2956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Baby spinach ( Spinacia oleracea L.) was grown under three types of shade netting (high transmittance, spectrum-altering, and low transmittance) to study the effect on the concentrations of vitamin C (ascorbic acid and dehydroascorbic acid), carotenoids, and chlorophyll and on the visual quality of the leaves. The spinach was sown in April and August and harvested at two growth stages. After harvest, leaves were stored in polypropylene bags at 2 and 10 degrees C. Shading significantly decreased the ascorbic acid concentration of April-sown spinach by 12-33%, but in the August-sown spinach, the response was inconsistent. Concentrations of total carotenoids and total chlorophylls were significantly higher under the nettings in many cases, especially under the spectrum-altering and low-transmittance nettings. Postharvest visual quality and postharvest persistence of the compounds analyzed were not greatly affected by shading. We conclude that these shade nettings are acceptable to use in baby spinach production when it comes to the studied aspects of internal and external quality of the produce.
Collapse
Affiliation(s)
- Sara A M Bergquist
- Swedish University of Agricultural Sciences, Department of Horticulture, P.O. Box 44, SE-230 53 Alnarp, Sweden.
| | | | | | | |
Collapse
|
44
|
Zinser C, Seidlitz HK, Welzl G, Sandermann H, Heller W, Ernst D, Rau W. Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:913-22. [PMID: 16893592 DOI: 10.1016/j.jplph.2006.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 06/07/2006] [Indexed: 05/11/2023]
Abstract
There is limited information on the impact of present-day ultraviolet-B (UV-B) radiation on a reprogramming of gene expression in crops. Summer wheat was cultivated in controlled environmental facilities under simulated realistic climatic conditions. We investigated the effect of different regimes of UV-B radiation on summer wheat (Triticum aestivum L.) cultivars Nandu, Star and Turbo. Until recently, these were most important in Bavaria. Different cultivars of crops often show great differences in their sensitivity towards UV-B radiation. To identify genes that might be involved in UV-B defence mechanisms, we first analyzed selected genes known to be involved in plant defence mechanisms. RNA gel blot analysis of RNA isolated from the flag leaf of 84-day-old plants showed differences in transcript levels among the cultivars. Flag leaves are known to be important for grain development, which was completed at 84 days post-anthesis. Catalase 2 (Cat2) transcripts were elevated by increased UV irradiation in all cultivars with highest levels in cv. Nandu. Pathogenesis-related protein 1 (PR1) transcripts were elevated only in cv. Star. A minor influence on transcripts for phenylalanine ammonia-lyase (PAL) was observed in all three cultivars. This indicates different levels of acclimation to UV-B radiation in the wheat cultivars studied. To analyze these responses in more detail, UV-B-exposed flag leaves of 84-day-old wheat (cv. Nandu) were pooled to isolate cDNAs of induced genes by suppression-subtractive hybridization (SSH). Among the initially isolated cDNA clones, 13 were verified by RNA gel blot analysis showing an up-regulation at elevated levels of UV-B radiation. Functional classification revealed genes encoding proteins associated with protein assembly, chaperonins, programmed cell death and signal transduction. We also studied growth, flowering time, ear development and yield as more typical agricultural parameters. Plant growth of young plants was reduced at increased UV-B radiation. Flowering and ear development were delayed concomitantly, whereas total grain weight was not influenced at any of the UV-B irradiation regimes.
Collapse
Affiliation(s)
- Christian Zinser
- Institute of Biochemical Plant Pathology, GSF-National Research Center for Environment and Health, 85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Pradhan MK, Joshi PN, Nair JS, Ramaswamy NK, Iyer RK, Biswal B, Biswal UC. UV-B exposure enhances senescence of wheat leaves: Modulation by photosynthetically active radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2006; 45:221-9. [PMID: 16850336 DOI: 10.1007/s00411-006-0055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 06/19/2006] [Indexed: 05/10/2023]
Abstract
The alterations in structure and function of photosystem II (PS II) during the senescence of primary leaves of wheat seedlings have been compared with the changes induced by ultraviolet-B (UV-B) radiation in the presence or absence of photosynthetically active radiation (PAR). The results indicated that the senescence-induced loss in pigment content, thylakoid membrane integrity and carotenoid-to-chlorophyll (Car-to-Chl) energy transfer efficiency was intensified by exposure to UV-B radiation. Different parameters for the measurement of PS II activity, such as Chl a fluorescence, O2-evolution and thermoluminescence intensity, were altered during senescence and these alterations were furthered by UV-B irradiation. The damage of photosynthetic apparatus by UV-B exposure in the presence of PAR was less than the damage in absence of PAR. The activation of molecular defense mechanisms could be a factor in the alleviation of UV-B damage in the presence of PAR.
Collapse
Affiliation(s)
- M K Pradhan
- Anchal College, Padampur P O: Rajborasambar, 768036 Bargarh, Orissa, India
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Donald T Krizek
- Sustainable Agricultural Systems Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, MD, USA.
| | | |
Collapse
|
48
|
Barkan L, Evans MA, Edwards GE. Increasing UV-B Induces Biphasic Leaf Cell Expansion in Phaseolus vulgaris, Suggesting Multiple Mechanisms for Controlling Plant Growth. Photochem Photobiol 2006. [DOI: 10.1562/2006-01-30-ra-788r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Minda R, Ramchandani J, Joshi VP, Bhattacharjee SK. A homozygous recA mutant of Synechocystis PCC6803: construction strategy and characteristics eliciting a novel RecA independent UVC resistance in dark. Mol Genet Genomics 2005; 274:616-24. [PMID: 16261348 DOI: 10.1007/s00438-005-0054-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
We report here the construction of a homozygous recA460::cam insertion mutant of Synechocystis sp. PCC 6803 that may be useful for plant molecular genetics by providing a plant like host free of interference from homologous recombination. The homozygous recA460::cam mutant is highly sensitive to UVC under both photoreactivating and non-photoreactivating conditions compared to the wild type (WT). The liquid culture of the mutant growing in approximately 800 lx accumulates nonviable cells to the tune of 86% as estimated by colony counts on plates incubated at the same temperature and light intensity. The generation time of recA mutant in standard light intensity (2,500 lx) increases to 50 h compared to 28 h in lower light intensity (approximately 800 lx) that was used for selection, thus explaining the earlier failures to obtain a homozygous recA mutant. The WT, in contrast, grows at faster rate (23 h generation time) in standard light intensity compared to that at approximately 800 lx (26 h). The Synechocystis RecA protein supports homologous recombination during conjugation in recA (-) mutant of Escherichia coli, but not the SOS response as measured by UV sensitivity. It is suggested that using this homozygous recA460::cam mutant, investigations can now be extended to dissect the network of DNA repair pathways involved in housekeeping activities that may be more active in cyanobacteria than in heterotrophs. Using this mutant for the first time we provide a genetic evidence of a mechanism independent of RecA that causes enhanced UVC resistance on light to dark transition.
Collapse
Affiliation(s)
- Renu Minda
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | | | | | | |
Collapse
|
50
|
Mori M, Yoshida K, Ishigaki Y, Matsunaga T, Nikaido O, Kameda K, Kondo T. UV-B protective effect of a polyacylated anthocyanin, HBA, in flower petals of the blue morning glory, Ipomoea tricolor cv. Heavenly Blue. Bioorg Med Chem 2005; 13:2015-20. [PMID: 15727855 DOI: 10.1016/j.bmc.2005.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 01/09/2005] [Accepted: 01/10/2005] [Indexed: 11/18/2022]
Abstract
The protective effects of polyacylated anthocyanin, heavenly blue anthocyanin (HBA), in blue flower petals of morning glory (Ipomoea tricolor cv. Heavenly Blue) against UV-B induced DNA damage were examined. We first clarified the concentration of HBA in epidermal vacuoles to be 12mM, and then constructed a UV-B irradiating apparatus resembling flower petal tissue to assess the screening effect of HBA. Monochromatic (280 and 310nm) or broad UV-B induced DNA lesions were reduced completely by the HBA filter to the same molecular numbers as those in living petal epidermis. However, diluted HBA solution and trisdeacyl HBA did not have the same reduction effect. HBA was more tolerant to solar radiation than trisdeacyl HBA. These data strongly suggest that polyacylated anthocyanins in flower petals can screen harmful UV-B efficiently. This action might be largely due to aromatic acyl residues.
Collapse
Affiliation(s)
- Mihoko Mori
- Graduate School of Human Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|