1
|
Kondegowda NG, Filipowska J, Do JS, Leon-Rivera N, Li R, Hampton R, Ogyaadu S, Levister C, Penninger JM, Reijonen H, Levy CJ, Vasavada RC. RANKL/RANK is required for cytokine-induced beta cell death; osteoprotegerin, a RANKL inhibitor, reverses rodent type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadf5238. [PMID: 37910614 PMCID: PMC10619938 DOI: 10.1126/sciadv.adf5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Treatment for type 1 diabetes (T1D) requires stimulation of functional β cell regeneration and survival under stress. Previously, we showed that inhibition of the RANKL/RANK [receptor activator of nuclear factor kappa Β (NF-κB) ligand] pathway, by osteoprotegerin and the anti-osteoporotic drug denosumab, induces rodent and human β cell proliferation. We demonstrate that the RANK pathway mediates cytokine-induced rodent and human β cell death through RANK-TRAF6 interaction and induction of NF-κB activation. Osteoprotegerin and denosumab protected β cells against this cytotoxicity. In human immune cells, osteoprotegerin and denosumab reduce proinflammatory cytokines in activated T-cells by inhibiting RANKL-induced activation of monocytes. In vivo, osteoprotegerin reversed recent-onset T1D in nonobese diabetic/Ltj mice, reduced insulitis, improved glucose homeostasis, and increased plasma insulin, β cell proliferation, and mass in these mice. Serum from T1D subjects induced human β cell death and dysfunction, but not α cell death. Osteoprotegerin and denosumab reduced T1D serum-induced β cell cytotoxicity and dysfunction. Inhibiting RANKL/RANK could have therapeutic potential.
Collapse
Affiliation(s)
- Nagesha Guthalu Kondegowda
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna Filipowska
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeong-su Do
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rollie Hampton
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selassie Ogyaadu
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Camilla Levister
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Helena Reijonen
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Carol J. Levy
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rupangi C. Vasavada
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Kalaitzoglou E, Fowlkes JL, Thrailkill KM. Mouse models of type 1 diabetes and their use in skeletal research. Curr Opin Endocrinol Diabetes Obes 2022; 29:318-325. [PMID: 35749285 PMCID: PMC9271636 DOI: 10.1097/med.0000000000000737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW In this review, we describe the three primary mouse models of insulin-deficiency diabetes that have been used to study the effects of type 1 diabetes (T1D) on skeletal outcomes. These models include streptozotocin (chemically)-induced diabetes, autoimmune-mediated diabetes (the nonobese diabetes mouse), and a mutation in the insulin gene (the Akita mouse). We then describe the skeletal findings and/or skeletal phenotypes that have been delineated using these models. RECENT FINDINGS Humans with T1D have decreased bone mineral density and an increased risk for fragility fracture. Mouse models of insulin-deficiency diabetes (hereafter denoted as T1D) in many ways recapitulate these skeletal deficits. Utilizing techniques of microcomputed tomography, bone histomorphometry, biomechanical testing and fracture modeling, bone biomarker analysis, and Raman spectroscopy, mouse models of T1D have demonstrated abnormalities in bone mineralization, bone microarchitecture, osteoblast function, abnormal bone turnover, and diminished biomechanical properties of bone. SUMMARY Mouse models have provided significant insights into the underlying mechanisms involved in the abnormalities of bone observed in T1D in humans. These translational models have provided targets and pathways that may be modifiable to prevent skeletal complications of T1D.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - John L Fowlkes
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Piñeros AR, Kulkarni A, Gao H, Orr KS, Glenn L, Huang F, Liu Y, Gannon M, Syed F, Wu W, Anderson CM, Evans-Molina C, McDuffie M, Nadler JL, Morris MA, Mirmira RG, Tersey SA. Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes. Cell Rep 2022; 39:111011. [PMID: 35767947 PMCID: PMC9297711 DOI: 10.1016/j.celrep.2022.111011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of β cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in β cells exhibit an increase in a population of β cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in β cells promotes autoimmunity during type 1 diabetes progression.
Collapse
Affiliation(s)
- Annie R Piñeros
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kara S Orr
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Glenn
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Fei Huang
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University and Department of Veterans Affairs, Tennessee Valley Authority, Nashville, TN, USA
| | - Farooq Syed
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenting Wu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cara M Anderson
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA
| | - Carmella Evans-Molina
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Marcia McDuffie
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Jerry L Nadler
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Margaret A Morris
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Raghavendra G Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Sarah A Tersey
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
Lin JR, Huang SH, Wu CH, Chen YW, Hong ZJ, Cheng CP, Sytwu HK, Lin GJ. Valproic Acid Suppresses Autoimmune Recurrence and Allograft Rejection in Islet Transplantation through Induction of the Differentiation of Regulatory T Cells and Can Be Used in Cell Therapy for Type 1 Diabetes. Pharmaceuticals (Basel) 2021; 14:ph14050475. [PMID: 34067829 PMCID: PMC8157191 DOI: 10.3390/ph14050475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T cell-mediated autoimmune disease. Both CD4+ and CD8+ T cells are highly responsible for the destruction of β cells within the pancreatic islets of Langerhans. Previous studies have revealed that regulatory T (Treg) cells play a critical role in the homeostasis of the immune system as well as immune tolerance to autoantigens, thereby preventing autoimmunity. Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Previous reports have demonstrated that VPA treatment decreases the incidence and severity of collagen-induced arthritis and experimental autoimmune neuritis by increasing the population of Treg cells in these mouse disease models. Given the effect of VPA in the induction of Treg cells’ population, we evaluated the therapeutic potential and the protective mechanism of VPA treatment in the suppression of graft autoimmune rejection and immune recurrence in syngeneic or allogenic islet transplantation mouse models. In our study, we found that the treatment of VPA increased the expression of forkhead box P3 (FOXP3), which is a critical transcription factor that controls Treg cells’ development and function. Our data revealed that 400 mg/kg VPA treatment in recipients effectively prolonged the survival of syngeneic and allogenic islet grafts. The percentage of Treg cells in splenocytes increased in VPA-treated recipients. We also proved that adoptive transfer of VPA-induced Tregs to the transplanted recipients effectively prolonged the survival of islet grafts. The results of this study provide evidence of the therapeutic potential and the underlying mechanism of VPA treatment in syngeneic islet transplantation for T1D. It also provides experimental evidence for cell therapy by adoptive transferring of in vitro VPA-induced Tregs for the suppression of autoimmune recurrence.
Collapse
Affiliation(s)
- Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei 23741, Taiwan;
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gu-Jiun Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 11490, Taiwan; (S.-H.H.); (C.-P.C.)
- Correspondence: ; Tel.: +886-287-923-100 (ext. 18709)
| |
Collapse
|
5
|
Schleier Y, Moreno-Loaiza O, López Alarcón MM, Lopes Martins EG, Braga BC, Ramos IP, Galina A, Medei EH. NOD Mice Recapitulate the Cardiac Disturbances Observed in Type 1 Diabetes. J Cardiovasc Transl Res 2021; 14:271-282. [PMID: 32468298 DOI: 10.1007/s12265-020-10039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
This work aimed at testing the hypothesis that NOD/ShiLtJ mice (NOD) recapitulate the cardiac disturbances observed on type 1 diabetes (T1D). NOD mice were studied 4 weeks after the onset of hyperglycemia, and NOR/Lt mice matched as control. Cardiac function was evaluated by echocardiography and electrocardiography (ECG). Action potentials (AP) and Ca2+ transients were evaluated at whole heart level. Heart mitochondrial function was evaluated by high-resolution respirometry and H2O2 release. NOD mice presented a reduction in hearth weight. Mitochondrial oxygen fluxes and H2O2 release were similar between NOD and NOR mice. ECG revealed a QJ interval prolongation in NOD mice. Furthermore, AP duration at 30% of repolarization was increased, and it depicted slower Ca2+ transient kinetics. NOD mice presented greater number/severity of ventricular arrhythmias both in vivo and in vitro. In conclusion, NOD mice evoked cardiac electrical and calcium handling disturbances similar to the observed in T1D. Graphical Abstract .
Collapse
Affiliation(s)
- Ygor Schleier
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Oscar Moreno-Loaiza
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Micaela López Alarcón
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduarda Gabrielle Lopes Martins
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Cabral Braga
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isalira Peroba Ramos
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emiliano Horacio Medei
- Laboratory of Cardioimmunology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Carlos Chagas Filho Biophysics Institute - UFRJ, Avenida Carlos Chagas Filho, 373-CCS-Bloco G, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
6
|
Bianchi S, Martínez Allo VC, Massimino M, Lavignolle Heguy MDR, Borzone FR, Gomez Bustillo S, Chasseing NA, Libertun C, Montaner AD, Rabinovich GA, Toscano MA, Lux-Lantos VA, Bianchi MS. Oligonucleotide IMT504 Improves Glucose Metabolism and Controls Immune Cell Mediators in Female Diabetic NOD Mice. Nucleic Acid Ther 2020; 31:155-171. [PMID: 33347786 DOI: 10.1089/nat.2020.0901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes occurs as a consequence of progressive autoimmune destruction of beta cells. A potential treatment for this disease should address the immune attack on beta cells and their preservation/regeneration. The objective of this study was to elucidate whether the immunomodulatory synthetic oligonucleotide IMT504 was able to ameliorate diabetes in NOD mice and to provide further understanding of its mechanism of action. We found that IMT504 restores glucose homeostasis in a diabetes mouse model similar to human type 1 diabetes, by regulating expression of immune modulatory factors and improving beta cell function. IMT504 treatment markedly improved fasting glycemia, insulinemia, and homeostatic model assessment of beta cell function (HOMA-Beta cell) index. Moreover, this treatment increased islet number and decreased apoptosis, insulitis, and CD45+ pancreas-infiltrating leukocytes. In a long-term treatment, we observed improvement of glucose metabolism up to 9 days after IMT504 cessation and increased survival after 15 days of the last IMT504 injection. We postulate that interleukin (IL)-12B (p40), possibly acting as a homodimer, and Galectin-3 (Gal-3) may function as mediators of this immunomodulatory action. Overall, these results validate the therapeutic activity of IMT504 as a promising drug for type 1 diabetes and suggest possible downstream mediators of its immunomodulatory effect.
Collapse
Affiliation(s)
- Stefania Bianchi
- Laboratoio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Verónica C Martínez Allo
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Milena Massimino
- Laboratoio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Del R Lavignolle Heguy
- Laboratoio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Francisco R Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Gomez Bustillo
- Instituto de Ciencia y Tecnología César Milstein-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Pablo Cassará, Buenos Aires, Argentina
| | - Norma A Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos Libertun
- Laboratoio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro D Montaner
- Instituto de Ciencia y Tecnología César Milstein-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación Pablo Cassará, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marta A Toscano
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Victoria A Lux-Lantos
- Laboratoio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Bianchi
- Laboratoio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Bäckhed F, Burkart V, Roden M. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49908-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Katsube H, Hinami Y, Yamazoe T, Inoue YH. Endoplasmic reticulum stress-induced cellular dysfunction and cell death in insulin-producing cells results in diabetes-like phenotypes in Drosophila. Biol Open 2019; 8:bio046524. [PMID: 31822470 PMCID: PMC6955230 DOI: 10.1242/bio.046524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
The destruction of pancreatic β cells leads to reduced insulin secretion and eventually causes diabetes. Various types of cellular stress are thought to be involved in destruction and/or malfunction of these cells. We show that endoplasmic reticulum (ER) stress accumulation in insulin-producing cells (IPCs) generated diabetes-like phenotypes in Drosophila To promote the accumulation of extra ER stress, we induced a dominant-negative form of a Drosophila ER chaperone protein (Hsc70-3DN) and demonstrate that it causes the unfolded-protein response (UPR) in various tissues. The numbers of IPCs decreased owing to apoptosis induction mediated by caspases. The apoptosis was driven by activation of Dronc, and subsequently by Drice and Dcp-1. Accordingly, the relative mRNA-expression levels of Drosophila insulin-like peptides significantly decreased. Consistent with these results, we demonstrate that glucose levels in larval haemolymph were significantly higher than those of controls. Accumulation of ER stress induced by continuous Hsc70-3DN expression in IPCs resulted in the production of undersized flies. Ectopic expression of Hsc70-3DN can induce more efficient ER stress responses and more severe phenotypes. We propose that ER stress is responsible for IPC loss and dysfunction, which results in diabetes-related pathogenesis in this Drosophila diabetes model. Moreover, inhibiting apoptosis partially prevents the ER stress-induced diabetes-like phenotypes.
Collapse
Affiliation(s)
- Hiroka Katsube
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| | - Yukiko Hinami
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| | - Tatsuki Yamazoe
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Matsugasaki, Kyoto, Japan, 606-0962
| |
Collapse
|
9
|
Simon MC, Reinbeck AL, Wessel C, Heindirk J, Jelenik T, Kaul K, Arreguin-Cano J, Strom A, Blaut M, Bäckhed F, Burkart V, Roden M. Distinct alterations of gut morphology and microbiota characterize accelerated diabetes onset in nonobese diabetic mice. J Biol Chem 2019; 295:969-980. [PMID: 31822562 DOI: 10.1074/jbc.ra119.010816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
The rising prevalence of type 1 diabetes (T1D) over the past decades has been linked to lifestyle changes, but the underlying mechanisms are largely unknown. Recent findings point to gut-associated mechanisms in the control of T1D pathogenesis. In nonobese diabetic (NOD) mice, a model of T1D, diabetes development accelerates after deletion of the Toll-like receptor 4 (TLR4). We hypothesized that altered intestinal functions contribute to metabolic alterations, which favor accelerated diabetes development in TLR4-deficient (TLR4-/-) NOD mice. In 70-90-day-old normoglycemic (prediabetic) female NOD TLR4+/+ and NOD TLR4-/- mice, gut morphology and microbiome composition were analyzed. Parameters of lipid metabolism, glucose homeostasis, and mitochondrial respiratory activity were measured in vivo and ex vivo Compared with NOD TLR4+/+ mice, NOD TLR4-/- animals showed lower muscle mass of the small intestine, higher abundance of Bacteroidetes, and lower Firmicutes in the large intestine, along with lower levels of circulating short-chain fatty acids (SCFA). These changes are associated with higher body weight, hyperlipidemia, and severe insulin and glucose intolerance, all occurring before the onset of diabetes. These mice also exhibited insulin resistance-related abnormalities of energy metabolism, such as lower total respiratory exchange rates and higher hepatic oxidative capacity. Distinct alterations of gut morphology and microbiota composition associated with reduction of circulating SCFA may contribute to metabolic disorders promoting the progression of insulin-deficient diabetes/T1D development.
Collapse
Affiliation(s)
- Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.,Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, S-41348 Gothenburg, Sweden
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Julia Heindirk
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Juan Arreguin-Cano
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition, D-14558 Potsdam-Rehbrücke, Germany
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, S-41348 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, D-40225 Düsseldorf, Germany .,German Center for Diabetes Research (DZD), D-85764 München-Neuherberg, Germany.,Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Shtylla B, Gee M, Do A, Shabahang S, Eldevik L, de Pillis L. A Mathematical Model for DC Vaccine Treatment of Type I Diabetes. Front Physiol 2019; 10:1107. [PMID: 31555144 PMCID: PMC6742690 DOI: 10.3389/fphys.2019.01107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Type I diabetes (T1D) is an autoimmune disease that can be managed, but for which there is currently no cure. Recent discoveries, particularly in mouse models, indicate that targeted modulation of the immune response has the potential to move an individual from a diabetic to a long-term, if not permanent, healthy state. In this paper we develop a single compartment mathematical model that captures the dynamics of dendritic cells (DC and tDC), T cells (effector and regulatory), and macrophages in the development of type I diabetes. The model supports the hypothesis that differences in macrophage clearance rates play a significant role in determining whether or not an individual is likely to become diabetic subsequent to a significant immune challenge. With this model we are able to explore the effects of strengthening the anti-inflammatory component of the immune system in a vulnerable individual. Simulations indicate that there are windows of opportunity in which treatment intervention is more likely to be beneficial in protecting an individual from entering a diabetic state. This model framework can be used as a foundation for modeling future T1D treatments as they are developed.
Collapse
Affiliation(s)
- Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, United States
| | - Marissa Gee
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| | - An Do
- Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, United States
| | | | - Leif Eldevik
- Aditx Therapeutics, Inc., Loma Linda, CA, United States
| | - Lisette de Pillis
- Mathematics Department, Harvey Mudd College, Claremont, CA, United States
| |
Collapse
|
11
|
Peterson KR, Gutierrez DA, Kikuchi T, Anderson-Baucum EK, Winn NC, Shuey MM, Bolus WR, McGuinness OP, Hasty AH. Impaired insulin signaling in the B10.D2- Hc0 H2d H2- T18c/oSnJ mouse model of complement factor 5 deficiency. Am J Physiol Endocrinol Metab 2019; 317:E200-E211. [PMID: 31084499 PMCID: PMC6732470 DOI: 10.1152/ajpendo.00042.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
Given the chemoattractant potential of complement factor 5 (C5) and its increased expression in adipose tissue (AT) of obese mice, we determined whether this protein of the innate immune system impacts insulin action. C5 control (C5cont) and spontaneously C5-deficient (C5def, B10.D2-Hc0 H2d H2-T18c/oSnJ) mice were placed on low- and high-fat diets to investigate their inflammatory and metabolic phenotypes. Adenoviral delivery was used to evaluate the effects of exogenous C5 on systemic metabolism. C5def mice gained less weight than controls while fed a high-fat diet, accompanied by reduced AT inflammation, liver mass, and liver triglyceride content. Despite these beneficial metabolic effects, C5def mice demonstrated severe glucose intolerance and systemic insulin resistance, as well as impaired insulin signaling in liver and AT. C5def mice also exhibited decreased expression of insulin receptor (INSR) gene and protein, as well as improper processing of pro-INSR. These changes were not due to the C5 deficiency alone as other C5-deficient models did not recapitulate the INSR processing defect; rather, in addition to the mutation in the C5 gene, whole genome sequencing revealed an intronic 31-bp deletion in the Insr gene in the B10.D2-Hc0 H2d H2-T18c/oSnJ model. Irrespective of the genetic defect, adenoviral delivery of C5 improved insulin sensitivity in both C5cont and C5def mice, indicating an insulin-sensitizing function of C5.
Collapse
Affiliation(s)
- Kristin R Peterson
- Department of Pharmacology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Dario A Gutierrez
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
- Investigational Biology, Merck Exploratory Science Center , Cambridge, Massachusetts
| | - Takuya Kikuchi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Emily K Anderson-Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Megan M Shuey
- Department of Genetic Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - William R Bolus
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
12
|
Purcell AW, Sechi S, DiLorenzo TP. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Diabetes 2019; 68:879-886. [PMID: 31010879 PMCID: PMC6477901 DOI: 10.2337/dbi18-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is caused, in part, by T cell-mediated destruction of insulin-producing β-cells. High risk for disease, in those with genetic susceptibility, is predicted by the presence of two or more autoantibodies against insulin, the 65-kDa form of glutamic acid decarboxylase (GAD65), insulinoma-associated protein 2 (IA-2), and zinc transporter 8 (ZnT8). Despite this knowledge, we still do not know what leads to the breakdown of tolerance to these autoantigens, and we have an incomplete understanding of T1D etiology and pathophysiology. Several new autoantibodies have recently been discovered using innovative technologies, but neither their potential utility in monitoring disease development and treatment nor their role in the pathophysiology and etiology of T1D has been explored. Moreover, neoantigen generation (through posttranslational modification, the formation of hybrid peptides containing two distinct regions of an antigen or antigens, alternative open reading frame usage, and translation of RNA splicing variants) has been reported, and autoreactive T cells that target these neoantigens have been identified. Collectively, these new studies provide a conceptual framework to understand the breakdown of self-tolerance, if such modifications occur in a tissue- or disease-specific context. A recent workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases brought together investigators who are using new methods and technologies to identify autoantigens and characterize immune responses toward these proteins. Researchers with diverse expertise shared ideas and identified resources to accelerate antigen discovery and the detection of autoimmune responses in T1D. The application of this knowledge will direct strategies for the identification of improved biomarkers for disease progression and treatment response monitoring and, ultimately, will form the foundation for novel antigen-specific therapeutics. This Perspective highlights the key issues that were addressed at the workshop and identifies areas for future investigation.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Salvatore Sechi
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
13
|
Nakayama M, Michels AW. Determining Antigen Specificity of Human Islet Infiltrating T Cells in Type 1 Diabetes. Front Immunol 2019; 10:365. [PMID: 30906293 PMCID: PMC6418007 DOI: 10.3389/fimmu.2019.00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/13/2019] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes, the immune mediated form of diabetes, represents a prototypical organ specific autoimmune disease in that insulin producing pancreatic islets are specifically targeted by T cells. The disease is now predictable in humans with the measurement of type 1 diabetes associated autoantibodies (islet autoantibodies) in the peripheral blood which are directed against insulin and beta cell proteins. With an increasing incidence of disease, especially in young children, large well-controlled clinical prevention trials using antigen specific immunotherapy have been completed but with limited clinical benefit. To improve outcomes, it is critical to understand the antigen and T cell receptor repertoires of those cells that infiltrate the target organ, pancreatic islets, in human type 1 diabetes. With international networks to identify organ donors with type 1 diabetes, improved immunosequencing platforms, and the ability to reconstitute T cell receptors of interest into immortalized cell lines allows antigen discovery efforts for rare tissue specific T cells. Here we review the disease pathogenesis of type 1 diabetes with a focus on human islet infiltrating T cell antigen discovery efforts, which provides necessary knowledge to define biomarkers of disease activity and improve antigen specific immunotherapy approaches for disease prevention.
Collapse
Affiliation(s)
- Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
14
|
Tyagi RK, Tandel N, Deshpande R, Engelman RW, Patel SD, Tyagi P. Humanized Mice Are Instrumental to the Study of Plasmodium falciparum Infection. Front Immunol 2018; 9:2550. [PMID: 30631319 PMCID: PMC6315153 DOI: 10.3389/fimmu.2018.02550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023] Open
Abstract
Research using humanized mice has advanced our knowledge and understanding of human haematopoiesis, non-adaptive and adaptive immunity, autoimmunity, infectious disease, cancer biology, and regenerative medicine. Challenges posed by the human-malaria parasite Plasmodium falciparum include its complex life cycle, the evolution of drug resistance against anti-malarials, poor diagnosis, and a lack of effective vaccines. Advancements in genetically engineered and immunodeficient mouse strains, have allowed for studies of the asexual blood stage, exoerythrocytic stage and the transition from liver-to-blood stage infection, in a single vertebrate host. This review discusses the process of "humanization" of various immunodeficient/transgenic strains and their contribution to translational biomedical research. Our work reviews the strategies employed to overcome the remaining-limitations of the developed human-mouse chimera(s).
Collapse
Affiliation(s)
- Rajeev K. Tyagi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical parasitology Unit, Institute Pasteur, Paris, France
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | | | - Robert W. Engelman
- Department of Pediatrics, Pathology and Cell Biology, University of South Florida, Tampa, FL, United States
| | | | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering, GD Goenka University, Gurgaon, India
| |
Collapse
|
15
|
Dotta F, Ventriglia G, Snowhite IV, Pugliese A. MicroRNAs: markers of β-cell stress and autoimmunity. Curr Opin Endocrinol Diabetes Obes 2018; 25:237-245. [PMID: 29846238 DOI: 10.1097/med.0000000000000420] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We discuss current knowledge about microRNAs (miRNAs) in type 1 diabetes (T1D), an autoimmune disease leading to severe loss of pancreatic β-cells. We describe: the role of cellular miRNAs in regulating immune functions and pathways impacting insulin secretion and β-cell survival; circulating miRNAs as disease biomarkers. RECENT FINDINGS Studies examined miRNAs in experimental models and patients, including analysis of tissues from organ donors, peripheral blood cells, and circulating miRNAs in serum, plasma, and exosomes. Studies employed diverse designs and methodologies to detect miRNAs and measure their levels. Selected miRNAs have been linked to the regulation of key biological pathways and disease pathogenesis; several circulating miRNAs are associated with having T1D, islet autoimmunity, disease progression, and immune and metabolic functions, for example, C-peptide secretion, in multiple studies. SUMMARY A growing literature reveals multiple roles of miRNAs in T1D, provide new clues into the regulation of disease mechanisms, and identify reproducible associations. Yet challenges remain, and the field will benefit from joint efforts to analyze results, compare methodologies, formally test the robustness of miRNA associations, and ultimately move towards validating robust miRNA biomarkers.
Collapse
Affiliation(s)
- Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena
- Fondazione Umberto di Mario, Toscana Life Sciences, Siena, Italy
| | - Giuliana Ventriglia
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena
- Fondazione Umberto di Mario, Toscana Life Sciences, Siena, Italy
| | | | - Alberto Pugliese
- Diabetes Research Institute
- Department of Medicine, Division of Endocrinology and Metabolism
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
16
|
Tahvili S, Törngren M, Holmberg D, Leanderson T, Ivars F. Paquinimod prevents development of diabetes in the non-obese diabetic (NOD) mouse. PLoS One 2018; 13:e0196598. [PMID: 29742113 PMCID: PMC5942776 DOI: 10.1371/journal.pone.0196598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Quinoline-3-carboxamides (Q compounds) are immunomodulatory compounds that have shown efficacy both in autoimmune disease and cancer. We have in here investigated the impact of one such compound, paquinimod, on the development of diabetes in the NOD mouse model for type I diabetes (T1D). In cohorts of NOD mice treated with paquinimod between weeks 10 to 20 of age and followed up until 40 weeks of age, we observed dose-dependent reduction in incidence of disease as well as delayed onset of disease. Further, in contrast to untreated controls, the majority of NOD mice treated from 15 weeks of age did not develop diabetes at 30 weeks of age. Importantly, these mice displayed significantly less insulitis, which correlated with selectively reduced number of splenic macrophages and splenic Ly6Chi inflammatory monocytes at end point as compared to untreated controls. Collectively, these results demonstrate that paquinimod treatment can significantly inhibit progression of insulitis to T1D in the NOD mouse. We propose that the effect of paquinimod on disease progression may be related to the reduced number of these myeloid cell populations. Our finding also indicates that this compound could be a candidate for clinical development towards diabetes therapy in humans.
Collapse
Affiliation(s)
- Sahar Tahvili
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Dan Holmberg
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Active Biotech AB, Lund, Sweden
| | - Fredrik Ivars
- Immunology group, Section for Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Racine JJ, Stewart I, Ratiu J, Christianson G, Lowell E, Helm K, Allocco J, Maser RS, Chen YG, Lutz CM, Roopenian D, Schloss J, DiLorenzo TP, Serreze DV. Improved Murine MHC-Deficient HLA Transgenic NOD Mouse Models for Type 1 Diabetes Therapy Development. Diabetes 2018; 67:923-935. [PMID: 29472249 PMCID: PMC5909999 DOI: 10.2337/db17-1467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/12/2018] [Indexed: 02/04/2023]
Abstract
Improved mouse models for type 1 diabetes (T1D) therapy development are needed. T1D susceptibility is restored to normally resistant NOD.β2m-/- mice transgenically expressing human disease-associated HLA-A*02:01 or HLA-B*39:06 class I molecules in place of their murine counterparts. T1D is dependent on pathogenic CD8+ T-cell responses mediated by these human class I variants. NOD.β2m-/--A2.1 mice were previously used to identify β-cell autoantigens presented by this human class I variant to pathogenic CD8+ T cells and for testing therapies to attenuate such effectors. However, NOD.β2m-/- mice also lack nonclassical MHC I family members, including FcRn, required for antigen presentation, and maintenance of serum IgG and albumin, precluding therapies dependent on these molecules. Hence, we used CRISPR/Cas9 to directly ablate the NOD H2-Kd and H2-Db classical class I variants either individually or in tandem (cMHCI-/-). Ablation of the H2-Ag7 class II variant in the latter stock created NOD mice totally lacking in classical murine MHC expression (cMHCI/II-/-). NOD-cMHCI-/- mice retained nonclassical MHC I molecule expression and FcRn activity. Transgenic expression of HLA-A2 or -B39 restored pathogenic CD8+ T-cell development and T1D susceptibility to NOD-cMHCI-/- mice. These next-generation HLA-humanized NOD models may provide improved platforms for T1D therapy development.
Collapse
|
18
|
Ostrov DA, Alkanani A, McDaniel KA, Case S, Baschal EE, Pyle L, Ellis S, Pöllinger B, Seidl KJ, Shah VN, Garg SK, Atkinson MA, Gottlieb PA, Michels AW. Methyldopa blocks MHC class II binding to disease-specific antigens in autoimmune diabetes. J Clin Invest 2018; 128:1888-1902. [PMID: 29438107 DOI: 10.1172/jci97739] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Major histocompatibility (MHC) class II molecules are strongly associated with many autoimmune disorders. In type 1 diabetes (T1D), the DQ8 molecule is common, confers significant disease risk, and is involved in disease pathogenesis. We hypothesized that blocking DQ8 antigen presentation would provide therapeutic benefit by preventing recognition of self-peptides by pathogenic T cells. We used the crystal structure of DQ8 to select drug-like small molecules predicted to bind structural pockets in the MHC antigen-binding cleft. A limited number of the predicted compounds inhibited DQ8 antigen presentation in vitro, with 1 compound preventing insulin autoantibody production and delaying diabetes onset in an animal model of spontaneous autoimmune diabetes. An existing drug with a similar structure, methyldopa, specifically blocked DQ8 in patients with recent-onset T1D and reduced inflammatory T cell responses to insulin, highlighting the relevance of blocking disease-specific MHC class II antigen presentation to treat autoimmunity.
Collapse
Affiliation(s)
- David A Ostrov
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Aimon Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen A McDaniel
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stephanie Case
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Erin E Baschal
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Laura Pyle
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, Colorado, USA
| | - Sam Ellis
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Clinical Pharmacy, University of Colorado, Aurora, Colorado, USA
| | | | | | - Viral N Shah
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Satish K Garg
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
19
|
Kent SC, Mannering SI, Michels AW, Babon JAB. Deciphering the Pathogenesis of Human Type 1 Diabetes (T1D) by Interrogating T Cells from the "Scene of the Crime". Curr Diab Rep 2017; 17:95. [PMID: 28864875 PMCID: PMC5600889 DOI: 10.1007/s11892-017-0915-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Autoimmune-mediated destruction of insulin-producing β-cells within the pancreas results in type 1 diabetes (T1D), which is not yet preventable or curable. Previously, our understanding of the β-cell specific T cell repertoire was based on studies of autoreactive T cell responses in the peripheral blood of patients at risk for, or with, T1D; more recently, investigations have included immunohistochemical analysis of some T cell specificities in the pancreas from organ donors with T1D. Now, we are able to examine live, islet-infiltrating T cells from donors with T1D. RECENT FINDINGS Analysis of the T cell repertoire isolated directly from the pancreatic islets of donors with T1D revealed pro-inflammatory T cells with targets of known autoantigens, including proinsulin and glutamic acid decarboxylase, as well as modified autoantigens. We have assayed the islet-infiltrating T cell repertoire for autoreactivity and function directly from the inflamed islets of T1D organ donors. Design of durable treatments for prevention of or therapy for T1D requires understanding this repertoire.
Collapse
Affiliation(s)
- Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria, 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, Victoria, 3065, Australia
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenny Aurielle B Babon
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, ASC7-2041, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
20
|
Haddad CS, Bhattacharya P, Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Elshabrawy HA, Epstein AL, Prabhakar BS. Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice. Autoimmunity 2016; 49:298-311. [PMID: 27245356 DOI: 10.1080/08916934.2016.1183657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Earlier, we have shown that GM-CSF derived bone marrow (BM) dendritic cells (G-BMDCs) can expand Foxp3(+) regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3(+)CD103(+)CD38(-) stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3(+)CD103(-)CD38(+) labile-phenotype Tregs in the thymus and increased autoreactive CD4(+) T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4(+) T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using ex vivo cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2.
Collapse
Affiliation(s)
- Christine S Haddad
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Palash Bhattacharya
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Khaled Alharshawi
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Alejandra Marinelarena
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Prabhakaran Kumar
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Osama El-Sayed
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Hatem A Elshabrawy
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| | - Alan L Epstein
- b Department of Pathology , University of Southern California Keck School of Medicine , Los Angeles , CA , USA
| | - Bellur S Prabhakar
- a Department of Microbiology and Immunology , University of Illinois College of Medicine , Chicago , IL , USA and
| |
Collapse
|
21
|
McGuiness B, Gibney SM, Beumer W, Versnel MA, Sillaber I, Harkin A, Drexhage HA. Exaggerated Increases in Microglia Proliferation, Brain Inflammatory Response and Sickness Behaviour upon Lipopolysaccharide Stimulation in Non-Obese Diabetic Mice. Neuroimmunomodulation 2016; 23:137-150. [PMID: 27529430 PMCID: PMC5296925 DOI: 10.1159/000446370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED The non-obese diabetic (NOD) mouse, an established model for autoimmune diabetes, shows an exaggerated reaction of pancreas macrophages to inflammatory stimuli. NOD mice also display anxiety when immune-stimulated. Chronic mild brain inflammation and a pro-inflammatory microglial activation is critical in psychiatric behaviour. OBJECTIVE To explore brain/microglial activation and behaviour in NOD mice at steady state and after systemic lipopolysaccharide (LPS) injection. METHODS Affymetrix analysis on purified microglia of pre-diabetic NOD mice (8-10 weeks) and control mice (C57BL/6 and CD1 mice, the parental non-autoimmune strain) at steady state and after systemic LPS (100 μg/kg) administration. Quantitative PCR was performed on the hypothalamus for immune activation markers (IL-1β, IFNγ and TNFα) and growth factors (BDNF and PDGF). Behavioural profiling of NOD, CD1, BALB/c and C57BL/6 mice at steady state was conducted and sickness behaviour/anxiety in NOD and CD1 mice was monitored before and after LPS injection. RESULTS Genome analysis revealed cell cycle/cell death and survival aberrancies of NOD microglia, substantiated as higher proliferation on BrdU staining. Inflammation signs were absent. NOD mice had a hyper-reactive response to novel environments with some signs of anxiety. LPS injection induced a higher expression of microglial activation markers, a higher brain pro-inflammatory set point (IFNγ, IDO) and a reduced expression of BDNF and PDGF after immune stimulation in NOD mice. NOD mice displayed exaggerated and prolonged sickness behaviour after LPS administration. CONCLUSION After stimulation with LPS, NOD mice display an increased microglial proliferation and an exaggerated inflammatory brain response with reduced BDNF and PDGF expression and increased sickness behaviour as compared to controls.
Collapse
Affiliation(s)
- Barry McGuiness
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Sinead M. Gibney
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Wouter Beumer
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Andrew Harkin
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
- *Prof. Hemmo A. Drexhage, Department of Immunology, Na1105, Erasmus MC's Gravendijkwal 230 NL-3015 CE Rotterdam (The Netherlands) E-Mail
| |
Collapse
|
22
|
Lin Y, Sun Z. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes. Diabetes 2015; 64:4298-311. [PMID: 26340932 PMCID: PMC4657580 DOI: 10.2337/db15-0066] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Autoimmunity
- Cell Adhesion
- Cell Line, Tumor
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Genetic Therapy
- Insulin/blood
- Insulin/metabolism
- Insulin Resistance
- Insulin Secretion
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Klotho Proteins
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, 129 Strain
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, Mutant Strains
- Phosphorylation
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
23
|
Gómez-Touriño I, Simón-Vázquez R, Alonso-Lorenzo J, Arif S, Calviño-Sampedro C, González-Fernández Á, Pena-González E, Rodríguez J, Viñuela-Roldán J, Verdaguer J, Cordero OJ, Peakman M, Varela-Calvino R. Characterization of the autoimmune response against the nerve tissue S100β in patients with type 1 diabetes. Clin Exp Immunol 2015; 180:207-17. [PMID: 25516468 DOI: 10.1111/cei.12572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes results from destruction of insulin-producing beta cells in pancreatic islets and is characterized by islet cell autoimmunity. Autoreactivity against non-beta cell-specific antigens has also been reported, including targeting of the calcium-binding protein S100β. In preclinical models, reactivity of this type is a key component of the early development of insulitis. To examine the nature of this response in type 1 diabetes, we identified naturally processed and presented peptide epitopes derived from S100β, determined their affinity for the human leucocyte antigen (HLA)-DRB1*04:01 molecule and studied T cell responses in patients, together with healthy donors. We found that S100β reactivity, characterized by interferon (IFN)-γ secretion, is a characteristic of type 1 diabetes of varying duration. Our results confirm S100β as a target of the cellular autoimmune response in type 1 diabetes with the identification of new peptide epitopes targeted during the development of the disease, and support the preclinical findings that autoreactivity against non-beta cell-specific autoantigens may have a role in type 1 diabetes pathogenesis.
Collapse
Affiliation(s)
- I Gómez-Touriño
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mukherjee G, Chaparro RJ, Schloss J, Smith C, Bando CD, DiLorenzo TP. Glucagon-reactive islet-infiltrating CD8 T cells in NOD mice. Immunology 2015; 144:631-40. [PMID: 25333865 DOI: 10.1111/imm.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated destruction of the insulin-producing β cells in pancreatic islets. A number of islet antigens recognized by CD8 T cells that contribute to disease pathogenesis in non-obese diabetic (NOD) mice have been identified; however, the antigenic specificities of the majority of the islet-infiltrating cells have yet to be determined. The primary goal of the current study was to identify candidate antigens based on the level and specificity of expression of their genes in mouse islets and in the mouse β cell line MIN6. Peptides derived from the candidates were selected based on their predicted ability to bind H-2K(d) and were examined for recognition by islet-infiltrating T cells from NOD mice. Several proteins, including those encoded by Abcc8, Atp2a2, Pcsk2, Peg3 and Scg2, were validated as antigens in this way. Interestingly, islet-infiltrating T cells were also found to recognize peptides derived from proglucagon, whose expression in pancreatic islets is associated with α cells, which are not usually implicated in type 1 diabetes pathogenesis. However, type 1 diabetes patients have been reported to have serum autoantibodies to glucagon, and NOD mouse studies have shown a decrease in α cell mass during disease pathogenesis. Our finding of islet-infiltrating glucagon-specific T cells is consistent with these reports and suggests the possibility of α cell involvement in development and progression of disease.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Studies over the past 35 years in the nonobese diabetic (NOD) mouse have shown that a number of agents can prevent or even reverse type 1 diabetes mellitus (T1DM); however, these successes have not been replicated in human clinical trials. Although some of these interventions have delayed disease onset or progression in subsets of participants, none have resulted in a complete cure. Even in the most robust responders, the treatments do not permanently preserve insulin secretion or stimulate the proliferation of β cells, as has been observed in mice. The shortfalls of translating NOD mouse studies into the clinic questions the value of using this model in preclinical studies. In this Perspectives, we suggest how immunological and genetic differences between NOD mice and humans might contribute to the differential outcomes and suggest ways in which the mouse model might be modified or applied as a tool to develop treatments and improve understanding of clinical trial outcomes.
Collapse
Affiliation(s)
- James C Reed
- Department of Immunobiology, 300 George Street, #353E, New Haven, CT 06520, USA
| | - Kevan C Herold
- Department of Immunobiology, Department of Internal Medicine, Yale University, 300 George Street, #353E, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Babad J, Mukherjee G, Follenzi A, Ali R, Roep BO, Shultz LD, Santamaria P, Yang OO, Goldstein H, Greiner DL, DiLorenzo TP. Generation of β cell-specific human cytotoxic T cells by lentiviral transduction and their survival in immunodeficient human leucocyte antigen-transgenic mice. Clin Exp Immunol 2015; 179:398-413. [PMID: 25302633 DOI: 10.1111/cei.12465] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2014] [Indexed: 01/23/2023] Open
Abstract
Several β cell antigens recognized by T cells in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D) are also T cell targets in the human disease. While numerous antigen-specific therapies prevent diabetes in NOD mice, successful translation of rodent findings to patients has been difficult. A human leucocyte antigen (HLA)-transgenic mouse model incorporating human β cell-specific T cells might provide a better platform for evaluating antigen-specific therapies. The ability to study such T cells is limited by their low frequency in peripheral blood and the difficulty in obtaining islet-infiltrating T cells from patients. We have worked to overcome this limitation by using lentiviral transduction to 'reprogram' primary human CD8 T cells to express three T cell receptors (TCRs) specific for a peptide derived from the β cell antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP265-273 ) and recognized in the context of the human class I major histocompatibility complex (MHC) molecule HLA-A2. The TCRs bound peptide/MHC multimers with a range of avidities, but all bound with at least 10-fold lower avidity than the anti-viral TCR used for comparison. One exhibited antigenic recognition promiscuity. The β cell-specific human CD8 T cells generated by lentiviral transduction with one of the TCRs released interferon (IFN)-γ in response to antigen and exhibited cytotoxic activity against peptide-pulsed target cells. The cells engrafted in HLA-A2-transgenic NOD-scid IL2rγ(null) mice and could be detected in the blood, spleen and pancreas up to 5 weeks post-transfer, suggesting the utility of this approach for the evaluation of T cell-modulatory therapies for T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- J Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rondas D, Crèvecoeur I, D'Hertog W, Ferreira GB, Staes A, Garg AD, Eizirik DL, Agostinis P, Gevaert K, Overbergh L, Mathieu C. Citrullinated glucose-regulated protein 78 is an autoantigen in type 1 diabetes. Diabetes 2015; 64:573-86. [PMID: 25204978 DOI: 10.2337/db14-0621] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Posttranslational modifications of self-proteins play a substantial role in the initiation or propagation of the autoimmune attack in several autoimmune diseases, but their contribution to type 1 diabetes is only recently emerging. In the current study, we demonstrate that inflammatory stress, induced by the cytokines interleukin-1β and interferon-γ, leads to citrullination of GRP78 in β-cells. This is coupled with translocation of this endoplasmic reticulum chaperone to the β-cell plasma membrane and subsequent secretion. Importantly, expression and activity of peptidylarginine deiminase 2, one of the five enzymes responsible for citrullination and a candidate gene for type 1 diabetes in mice, is increased in islets from diabetes-prone nonobese diabetic (NOD) mice. Finally, (pre)diabetic NOD mice have autoantibodies and effector T cells that react against citrullinated GRP78, indicating that inflammation-induced citrullination of GRP78 in β-cells generates a novel autoantigen in type 1 diabetes, opening new avenues for biomarker development and therapeutic intervention.
Collapse
Affiliation(s)
- Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Wannes D'Hertog
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - An Staes
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Death Research and Therapy, KU Leuven, Leuven, Belgium
| | - Decio L Eizirik
- Laboratory of Experimental Medicine and Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, KU Leuven, Leuven, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Powell DR, Doree D, Jeter-Jones S, Ding ZM, Zambrowicz B, Sands A. Sotagliflozin improves glycemic control in nonobese diabetes-prone mice with type 1 diabetes. Diabetes Metab Syndr Obes 2015; 8:121-7. [PMID: 25759591 PMCID: PMC4346285 DOI: 10.2147/dmso.s76342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Oral agents are needed that improve glycemic control without increasing hypoglycemic events in patients with type 1 diabetes (T1D). Sotagliflozin may meet this need, because this compound lowers blood glucose through the insulin-independent mechanisms of inhibiting kidney SGLT2 and intestinal SGLT1. We examined the effect of sotagliflozin on glycemic control and rate of hypoglycemia measurements in T1D mice maintained on a low daily insulin dose, and compared these results to those from mice maintained in better glycemic control with a higher daily insulin dose alone. MATERIALS AND METHODS Nonobese diabetes-prone mice with cyclophosphamide-induced T1D were randomized to receive one of four daily treatments: 0.2 U insulin/vehicle, 0.05 U insulin/vehicle, 0.05 U insulin/2 mg/kg sotagliflozin or 0.05 U insulin/30 mg/kg sotagliflozin. Insulin was delivered subcutaneously by micro-osmotic pump; the day after pump implantation, mice received their first of 22 once-daily oral doses of sotagliflozin or vehicle. Glycemic control was monitored by measuring fed blood glucose and hemoglobin A1c levels. RESULTS Blood glucose levels decreased rapidly and comparably in the 0.05 U insulin/sotagliflozin-treated groups and the 0.2 U insulin/vehicle group compared to the 0.05 U insulin/vehicle group, which had significantly higher levels than the other three groups from day 2 through day 23. A1c levels were also significantly higher in the 0.05 U insulin/vehicle group compared to the other three groups on day 23. Importantly, the 0.2 U insulin/vehicle group had, out of 100 blood glucose measurements, 13 that were <70 mg/dL compared to one of 290 for the other three groups combined. CONCLUSION Sotagliflozin significantly improved glycemic control, without increasing the rate of hypoglycemia measurements, in diabetic mice maintained on a low insulin dose. This sotagliflozin-mediated improvement in glycemic control was comparable to that achieved by raising the insulin dose alone, but was not accompanied by the increased rate of hypoglycemia measurements observed with the higher insulin dose.
Collapse
Affiliation(s)
- David R Powell
- Lexicon Pharmaceuticals, The Woodlands, TX, USA
- Correspondence: David R Powell, Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, TX 77381-1160, USA, Tel +1 281 863 3060, Fax +1 281 863 8115, Email
| | - Deon Doree
- Lexicon Pharmaceuticals, The Woodlands, TX, USA
| | | | | | | | | |
Collapse
|
29
|
Kern J, Drutel R, Leanhart S, Bogacz M, Pacholczyk R. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome. PLoS One 2014; 9:e112467. [PMID: 25379761 PMCID: PMC4224485 DOI: 10.1371/journal.pone.0112467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren’s syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9–23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Flow Cytometry
- Genetic Variation/immunology
- Insulin/genetics
- Insulin/immunology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Salivary Glands/immunology
- Salivary Glands/metabolism
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Xerostomia/immunology
Collapse
Affiliation(s)
- Joanna Kern
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Robert Drutel
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Silvia Leanhart
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Marek Bogacz
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Rafal Pacholczyk
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
30
|
Kondrashova A, Hyöty H. Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int Rev Immunol 2014; 33:284-95. [PMID: 24611784 DOI: 10.3109/08830185.2014.889130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes is caused by an immune-mediated destruction of insulin producing beta-cells in the pancreas. The risk of the disease is determined by interactions between more than 40 different susceptibility genes and yet unidentified environmental factors. The rapidly increasing incidence indicates that these environmental agents have a significant role in the pathogenesis. Microbes have associated with both increased and decreased risk reflecting their possible role as risk or protective factors. Two main hypotheses have been proposed to explain these effects: the hygiene hypothesis suggests that microbial exposures in early childhood stimulate immunoregulatory mechanisms which control autoimmune reactions (analogy with allergy), while the triggering hypothesis suggests that specific microbes damage insulin producing cells. Certain viruses, particularly enteroviruses, are currently the main candidates for such risk microbes. Enteroviruses cause diabetes in animals and have associated with increased risk of type 1 diabetes in epidemiological studies. They have also been detected in the pancreas of diabetic patients. Possible protective effect of microbes has been studied in animal models and in epidemiological studies, where certain enteral microbes (e.g. hepatitis A virus and Helicobacter pylori) and patterns of gut microbiome have associated with low risk of type 1 diabetes. In conclusion, these microbial effects offer attractive possibilities for the development of preventive interventions for type 1 diabetes based on the elimination of triggering agents (e.g. enterovirus vaccines) or use of protective microbes as probiotics.
Collapse
|
31
|
Involvement of suppressive B-lymphocytes in the mechanism of tolerogenic dendritic cell reversal of type 1 diabetes in NOD mice. PLoS One 2014; 9:e83575. [PMID: 24465383 PMCID: PMC3894962 DOI: 10.1371/journal.pone.0083575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023] Open
Abstract
The objective of the study was to identify immune cell populations, in addition to Foxp3+ T-regulatory cells, that participate in the mechanisms of action of tolerogenic dendritic cells shown to prevent and reverse type 1 diabetes in the Non-Obese Diabetic (NOD) mouse strain. Co-culture experiments using tolerogenic dendritic cells and B-cells from NOD as well as transgenic interleukin-10 promoter-reporter mice along with transfer of tolerogenic dendritic cells and CD19+ B-cells into NOD and transgenic mice, showed that these dendritic cells increased the frequency and numbers of interleukin-10-expressing B-cells in vitro and in vivo. The expansion of these cells was a consequence of both the proliferation of pre-existing interleukin-10-expressing B-lymphocytes and the conversion of CD19+ B-lymphcytes into interleukin-10-expressing cells. The tolerogenic dendritic cells did not affect the suppressive activity of these B-cells. Furthermore, we discovered that the suppressive murine B-lymphocytes expressed receptors for retinoic acid which is produced by the tolerogenic dendritic cells. These data assist in identifying the nature of the B-cell population increased in response to the tolerogenic dendritic cells in a clinical trial and also validate very recent findings demonstrating a mechanistic link between human tolerogenic dendritic cells and immunosuppressive regulatory B-cells.
Collapse
|
32
|
Märker T, Kriebel J, Wohlrab U, Burkart V, Habich C. Adipocytes from New Zealand obese mice exhibit aberrant proinflammatory reactivity to the stress signal heat shock protein 60. J Diabetes Res 2014; 2014:187153. [PMID: 24672802 PMCID: PMC3941600 DOI: 10.1155/2014/187153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 11/29/2022] Open
Abstract
Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60) induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD), New Zealand obese (NZO), and C57BL/6J mice were analyzed for Hsp60 binding, Hsp60-activated signaling pathways, and Hsp60-induced release of the chemokine CXCL-1 (KC), interleukin 6 (IL-6), and macrophage chemoattractant protein-1 (MCP-1). Hsp60 showed specific binding to (pre-)adipocytes of NOD, NZO, and C57BL/6J mice. Hsp60 binding involved conserved binding structure(s) and Hsp60 epitopes and was strongest to NZO mouse-derived mature adipocytes. Hsp60 exposure induced KC, IL-6, and MCP-1 release from (pre-)adipocytes of all mouse strains with a pronounced increase of IL-6 release from NZO mouse-derived adipocytes. Compared to NOD and C57BL/6J mouse derived cells, Hsp60-induced formation of IL-6, KC, and MCP-1 from NZO mouse-derived (pre-)adipocytes strongly depended on NF κ B-activation. Increased Hsp60 binding and Hsp60-induced IL-6 release by mature adipocytes of NZO mice suggest that enhanced adipocyte reactivity to the stress signal Hsp60 contributes to inflammatory processes underlying diabetes associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Tina Märker
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Jennifer Kriebel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Ulrike Wohlrab
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- *Volker Burkart:
| | - Christiane Habich
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Advances in our understanding of the pathophysiology of Type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond) 2013; 126:1-18. [PMID: 24020444 DOI: 10.1042/cs20120627] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T1D (Type 1 diabetes) is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Studies in T1D patients have been limited by the availability of pancreatic samples, a protracted pre-diabetic phase and limitations in markers that reflect β-cell mass and function. The NOD (non-obese diabetic) mouse is currently the best available animal model of T1D, since it develops disease spontaneously and shares many genetic and immunopathogenic features with human T1D. Consequently, the NOD mouse has been extensively studied and has made a tremendous contribution to our understanding of human T1D. The present review summarizes the key lessons from NOD mouse studies concerning the genetic susceptibility, aetiology and immunopathogenic mechanisms that contribute to autoimmune destruction of β-cells. Finally, we summarize the potential and limitations of immunotherapeutic strategies, successful in NOD mice, now being trialled in T1D patients and individuals at risk of developing T1D.
Collapse
|
34
|
da Rosa LC, Chiuso-Minicucci F, Zorzella-Pezavento SFG, França TGD, Ishikawa LLW, Colavite PM, Balbino B, Tavares LCB, Silva CL, Marques C, Ikoma MRV, Sartori A. Bacille Calmette-Guérin/DNAhsp65 prime-boost is protective against diabetes in non-obese diabetic mice but not in the streptozotocin model of type 1 diabetes. Clin Exp Immunol 2013; 173:430-7. [PMID: 23692306 DOI: 10.1111/cei.12140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 12/14/2022] Open
Abstract
Type I diabetes is a disease caused by autoimmune destruction of the beta cells in the pancreas that leads to a deficiency in insulin production. The aim of this study was to evaluate the prophylactic potential of a prime-boost strategy involving bacille Calmette-Guérin (BCG) and the pVAXhsp65 vaccine (BCG/DNAhsp65) in diabetes induced by streptozotocin (STZ) in C57BL/6 mice and also in spontaneous type 1 diabetes in non-obese diabetic (NOD) mice. BCG/DNAhsp65 vaccination in NOD mice determined weight gain, protection against hyperglycaemia, decreased islet inflammation, higher levels of cytokine production by the spleen and a reduced number of regulatory T cells in the spleen compared with non-immunized NOD mice. In the STZ model, however, there was no significant difference in the clinical parameters. Although this vaccination strategy did not protect mice in the STZ model, it was very effective in NOD mice. This is the first report demonstrating that a prime-boost strategy could be explored as an immunomodulatory procedure in autoimmune diseases.
Collapse
Affiliation(s)
- L C da Rosa
- Department of Microbiology and Immunology, Biosciences Institute, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 2013; 87:162-71. [PMID: 23954708 DOI: 10.1016/j.bcp.2013.08.006] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 02/07/2023]
Abstract
Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology, target identification, and in the in vivo evaluation of novel therapeutic agents and treatments. In the wake of numerous clinical trial failures of new chemical entities (NCEs) with promising preclinical profiles, animal models in all therapeutic areas have been increasingly criticized for their limited ability to predict NCE efficacy, safety and toxicity in humans. The present review discusses some of the challenges associated with the evaluation and predictive validation of animal models, as well as methodological flaws in both preclinical and clinical study designs that may contribute to the current translational failure rate. The testing of disease hypotheses and NCEs in multiple disease models necessitates evaluation of pharmacokinetic/pharmacodynamic (PK/PD) relationships and the earlier development of validated disease-associated biomarkers to assess target engagement and NCE efficacy. Additionally, the transparent integration of efficacy and safety data derived from animal models into the hierarchical data sets generated preclinically is essential in order to derive a level of predictive utility consistent with the degree of validation and inherent limitations of current animal models. The predictive value of an animal model is thus only as useful as the context in which it is interpreted. Finally, rather than dismissing animal models as not very useful in the drug discovery process, additional resources, like those successfully used in the preclinical PK assessment used for the selection of lead NCEs, must be focused on improving existing and developing new animal models.
Collapse
|
36
|
Steward CA, Gonzalez JM, Trevanion S, Sheppard D, Kerry G, Gilbert JGR, Wicker LS, Rogers J, Harrow JL. The non-obese diabetic mouse sequence, annotation and variation resource: an aid for investigating type 1 diabetes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat032. [PMID: 23729657 PMCID: PMC3668384 DOI: 10.1093/database/bat032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Model organisms are becoming increasingly important for the study of complex diseases such as type 1 diabetes (T1D). The non-obese diabetic (NOD) mouse is an experimental model for T1D having been bred to develop the disease spontaneously in a process that is similar to humans. Genetic analysis of the NOD mouse has identified around 50 disease loci, which have the nomenclature Idd for insulin-dependent diabetes, distributed across at least 11 different chromosomes. In total, 21 Idd regions across 6 chromosomes, that are major contributors to T1D susceptibility or resistance, were selected for finished sequencing and annotation at the Wellcome Trust Sanger Institute. Here we describe the generation of 40.4 mega base-pairs of finished sequence from 289 bacterial artificial chromosomes for the NOD mouse. Manual annotation has identified 738 genes in the diabetes sensitive NOD mouse and 765 genes in homologous regions of the diabetes resistant C57BL/6J reference mouse across 19 candidate Idd regions. This has allowed us to call variation consequences between homologous exonic sequences for all annotated regions in the two mouse strains. We demonstrate the importance of this resource further by illustrating the technical difficulties that regions of inter-strain structural variation between the NOD mouse and the C57BL/6J reference mouse can cause for current next generation sequencing and assembly techniques. Furthermore, we have established that the variation rate in the Idd regions is 2.3 times higher than the mean found for the whole genome assembly for the NOD/ShiLtJ genome, which we suggest reflects the fact that positive selection for functional variation in immune genes is beneficial in regard to host defence. In summary, we provide an important resource, which aids the analysis of potential causative genes involved in T1D susceptibility. Database URLs:http://www.sanger.ac.uk/resources/mouse/nod/; http://vega-previous.sanger.ac.uk/info/data/mouse_regions.html
Collapse
Affiliation(s)
- Charles A Steward
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Immunotherapy with Tolerogenic Dendritic Cells Alone or in Combination with Rapamycin Does Not Reverse Diabetes in NOD Mice. ISRN ENDOCRINOLOGY 2013; 2013:346987. [PMID: 23555060 PMCID: PMC3608187 DOI: 10.1155/2013/346987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/22/2013] [Indexed: 11/17/2022]
Abstract
Type 1 diabetes is a metabolic disease caused by autoimmunity towards β -cells. Different strategies have been developed to restore β -cell function and to reestablish immune tolerance to prevent and cure the disease. Currently, there is no effective treatment strategy to restore endogenous insulin secretion in patients with type 1 diabetes. This study aims to restore insulin secretion in diabetic mice with experimental antigen-specific immunotherapy alone or in combination with rapamycin, a compound well known for its immunomodulatory effect. Nonobese diabetic (NOD) mice develop spontaneous type 1 diabetes after 12 weeks of age. Autologous tolerogenic dendritic cells-consisting in dendritic cells pulsed with islet apoptotic cells-were administered to diabetic NOD mice alone or in combination with rapamycin. The ability of this therapy to revert type 1 diabetes was determined by assessing the insulitis score and by measuring both blood glucose levels and C-peptide concentration. Our findings indicate that tolerogenic dendritic cells alone or in combination with rapamycin do not ameliorate diabetes in NOD mice. These results suggest that alternative strategies may be considered for the cure of type 1 diabetes.
Collapse
|
38
|
Giocanti-Auregan A, Tadayoni R, Ahn L, Pena J, D’Amico D. Revue systématique de la littérature des modèles murins de rétinopathie diabétique. J Fr Ophtalmol 2013; 36:268-76. [DOI: 10.1016/j.jfo.2012.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/25/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
|
39
|
Wang P, Moore A. Theranostic magnetic resonance imaging of type 1 diabetes and pancreatic islet transplantation. Quant Imaging Med Surg 2012; 2:151-62. [PMID: 23256077 DOI: 10.3978/j.issn.2223-4292.2012.08.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/27/2012] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus results in impaired insulin production by pancreatic islets due to autoimmunity. Islet transplantation has recently emerged as a promising treatment for this disease. To visualize and monitor endogenous and transplanted islets, non-invasive strategies are currently being developed. These include strategies for in vivo magnetic resonance imaging of microvascular changes during diabetes development, tracking the recruitment of diabetogenic T cells to the pancreas, and imaging of endogenous and transplanted islet mass. The combination of MR imaging agents with therapy is a novel state-of-the-art theranostic approach that has a tremendous potential for type 1 diabetes management. Though still in its infancy, theranostic MR imaging has shown certain encouraging progress. Here we provide an overview of the latest accomplishments in this area as it applies to changes in islet vasculature during diabetes development, monitoring autoimmune attack mediated by T cells, and imaging of transplanted islets. Future challenges and opportunities in the area of theranostic MRI are discussed as well.
Collapse
Affiliation(s)
- Ping Wang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | | |
Collapse
|
40
|
Chhabra P, Schlegel K, Okusa MD, Lobo PI, Brayman KL. Naturally occurring immunoglobulin M (nIgM) autoantibodies prevent autoimmune diabetes and mitigate inflammation after transplantation. Ann Surg 2012; 256:634-41. [PMID: 22964733 PMCID: PMC3875377 DOI: 10.1097/sla.0b013e31826b4ba9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether polyclonal serum naturally occurring immunoglobulin M (nIgM) therapy prevents the onset and progression of autoimmune diabetes and promotes islet allograft survival. BACKGROUND nIgM deficiency is associated with an increased tendency toward autoimmune disease development. Elevated levels of nIgM anti-leukocyte autoantibodies are associated with fewer graft rejections. METHODS Four- to five-week-old female nonobese diabetic (NOD) littermates received intraperitoneal nIgM or phosphate-buffered saline/bovine serum albumin/immunoglobulin G (100 μg followed by 50-75 μg biweekly) until 18 weeks of age. C57BL/6 recipients of 300 BALB/c or 50 C57BL/6 islet grafts received saline or nIgM. RESULTS Eighty percent control mice (n = 30) receiving saline became diabetic by 18 to 20 weeks of age. In contrast, none of 33 of nIgM-treated mice became diabetic (P < 0.0001). Discontinuing therapy resulted in hyperglycemia in only 9 of 33 mice at 22 weeks postdiscontinuation, indicating development of β-cell unresponsiveness. nIgM therapy initiated at 11 weeks of age resulted in hyperglycemia in only 20% of treated animals (n = 20) compared with 80% of controls (P < 0.0001). Treatment of mildly diabetic mice with nIgM (75 μg 3× per week) restored normoglycemia (n = 5), whereas severely diabetic mice required minimal dose islet transplant with nIgM to restore normoglycemia (n = 4). The mean survival time of BALB/c islet allografts transplanted in streptozotocin-induced diabetic C57BL/6 mice was 41.2 ± 3.3 days for nIgM-treated recipients (n = 4, fifth recipient remains normoglycemic) versus 10.2 ± 2.6 days for controls (n = 5) (P < 0.001). Also, after syngeneic transplantation, time taken to return to normoglycemia was 15.4 ± 3.6 days for nIgM-treated recipients (n = 5) and more than 35 days for controls (n = 4). CONCLUSIONS nIgM therapy demonstrates potential in preventing the onset and progression of autoimmune diabetes and in promoting islet graft survival.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, Division of Transplantation, University of Virginia School of Medicine, Charlottesville, VA
| | - Kailo Schlegel
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Mark D. Okusa
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Peter I. Lobo
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Kenneth L. Brayman
- Department of Surgery, Division of Transplantation, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
41
|
Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, Regazzi R. Changes in microRNA expression contribute to pancreatic β-cell dysfunction in prediabetic NOD mice. Diabetes 2012; 61:1742-51. [PMID: 22537941 PMCID: PMC3379668 DOI: 10.2337/db11-1086] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the initial phases of type 1 diabetes, pancreatic islets are invaded by immune cells, exposing β-cells to proinflammatory cytokines. This unfavorable environment results in gene expression modifications leading to loss of β-cell functions. To study the contribution of microRNAs (miRNAs) in this process, we used microarray analysis to search for changes in miRNA expression in prediabetic NOD mice islets. We found that the levels of miR-29a/b/c increased in islets of NOD mice during the phases preceding diabetes manifestation and in isolated mouse and human islets exposed to proinflammatory cytokines. Overexpression of miR-29a/b/c in MIN6 and dissociated islet cells led to impairment in glucose-induced insulin secretion. Defective insulin release was associated with diminished expression of the transcription factor Onecut2, and a consequent rise of granuphilin, an inhibitor of β-cell exocytosis. Overexpression of miR-29a/b/c also promoted apoptosis by decreasing the level of the antiapoptotic protein Mcl1. Indeed, a decoy molecule selectively masking the miR-29 binding site on Mcl1 mRNA protected insulin-secreting cells from apoptosis triggered by miR-29 or cytokines. Taken together, our findings suggest that changes in the level of miR-29 family members contribute to cytokine-mediated β-cell dysfunction occurring during the initial phases of type 1 diabetes.
Collapse
Affiliation(s)
- Elodie Roggli
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sonia Gattesco
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dorothée Caille
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire Briet
- Institut National de Santé et de Recherche Médicale U986, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Boitard
- Institut National de Santé et de Recherche Médicale U986, Paris, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Romano Regazzi
- Department of Cell Biology and Morphology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Romano Regazzi,
| |
Collapse
|
42
|
Melton DA. Using stem cells to study and possibly treat type 1 diabetes. Philos Trans R Soc Lond B Biol Sci 2011; 366:2307-11. [PMID: 21727136 DOI: 10.1098/rstb.2011.0019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Stem cells with the potential to form many different cell types are actively studied for their possible use in cell replacement therapies for several diseases. In addition, the differentiated derivatives of stem cells are being used as reagents to test for drugs that slow or correct disease phenotypes found in several degenerative diseases. This paper explores these approaches in the context of type 1 or juvenile diabetes, pointing to recent successes as well as the technical and theoretical challenges that lie ahead in the path to new treatments and cures.
Collapse
Affiliation(s)
- D A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Howard Hughes Medical Institute, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
43
|
DiLorenzo TP. Multiple antigens versus single major antigen in type 1 diabetes: arguing for multiple antigens. Diabetes Metab Res Rev 2011; 27:778-83. [PMID: 22069259 DOI: 10.1002/dmrr.1251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our recent review of the literature revealed that approximately 20 antigens are now known to be targeted by T cells in the NOD mouse model of the autoimmune disease type 1 diabetes. Of these, insulin has received considerable attention and has been described by some in the research community as an 'initiating' or 'single major' antigen in the disease. Insulin may indeed be worthy of these titles, at least in NOD mice and in the context of the particular major histocompatibility complex molecules expressed in this strain. However, here we present arguments in favour of viewing type 1 diabetes as a disease in which multiple antigens should be considered, rather than just one. In our view, other antigens may prove to be more worthy of these titles in humans, and the major histocompatibility complex molecules expressed may well be a determining factor. Furthermore, even if insulin is 'the initiating antigen' in type 1 diabetes, multiple pathogenic specificities are known to exist even during the prediabetic period and it is at our peril that we ignore them. The recent discovery of novel beta-cell antigens, e.g. ZnT8 and chromogranin A, has taught us that we still have much to learn about the targets of the autoimmune response in type 1 diabetes. Increased knowledge will promote a clearer picture of disease pathogenesis and will better position the field to be successful in its translational goals of immune monitoring and disease prevention and reversal.
Collapse
Affiliation(s)
- Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
44
|
Samanta D, Mukherjee G, Ramagopal UA, Chaparro RJ, Nathenson SG, DiLorenzo TP, Almo SC. Structural and functional characterization of a single-chain peptide-MHC molecule that modulates both naive and activated CD8+ T cells. Proc Natl Acad Sci U S A 2011; 108:13682-7. [PMID: 21825122 PMCID: PMC3158197 DOI: 10.1073/pnas.1110971108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8(+) T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8(+) T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK(d).IGRP) by using the class I MHC molecule H-2K(d) and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(206-214)), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK(d).IGRP tetramers bound specifically to cognate CD8(+) T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-γ response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8(+) T cells makes them a potential intervention strategy in early and late stages of disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Teresa P. DiLorenzo
- Departments of Microbiology and Immunology
- Medicine/Division of Endocrinology, and
| | - Steven C. Almo
- Biochemistry
- Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
45
|
Babad J, Geliebter A, DiLorenzo TP. T-cell autoantigens in the non-obese diabetic mouse model of autoimmune diabetes. Immunology 2010; 131:459-65. [PMID: 21039471 DOI: 10.1111/j.1365-2567.2010.03362.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The non-obese diabetic (NOD) mouse model of autoimmune (type 1) diabetes has contributed greatly to our understanding of disease pathogenesis and has facilitated the development and testing of therapeutic strategies to combat the disease. Although the model is a valuable immunological tool in its own right, it reaches its fullest potential in areas where its findings translate to the human disease. Perhaps the foremost example of this is the field of T-cell antigen discovery, from which diverse benefits can be derived, including the development of antigen-specific disease interventions. The majority of NOD T-cell antigens are also targets of T-cell autoimmunity in patients with type 1 diabetes, and several of these are currently being evaluated in clinical trials. Here we review the journeys of these antigens from bench to bedside. We also discuss several recently identified NOD T-cell autoantigens whose translational potential warrants further investigation.
Collapse
Affiliation(s)
- Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|