1
|
Yang C, Wang H, Chen J, Zhang Y, Huang J, Chen J. The key metabolite of fruit flavor change in different ripening stages of Baccaure ramiflora. Food Chem X 2024; 24:101894. [PMID: 39498255 PMCID: PMC11532438 DOI: 10.1016/j.fochx.2024.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Baccaurea ramiflora has an unstable ripening period. Herein, five typical periods of fruit ripening of 'LR' Baccaurea ramiflora were analyzed by non-targeted metabolomics techniques. The results showed that ripening started 73 days after flowering and reached the ripening criterion at 93 days, a total of 451 differential metabolites were identified for the five periods. KEGG enrichment pathway showed that significant changes in citric acid were significantly correlated with changes in the downstream substance spermine (R 2 = 0.9068, y = -5.49 + 0.66×), while citric acid (R 2 = 0.9982) and spermine (R 2 = 0.9841) were negatively correlated with the sugar-acid ratio. Citric acid was the main component of titratable acid and spermine (R 2 = 0.9991) was positively correlated with titratable acid. We speculated that citric acid is a key taste marker for fruit ripening in 'LR' B. ramiflora. The results of the study provide new metabolic evidence for flavor changes and scientific basis for their quality improvement and exploitation in B. ramiflora.
Collapse
Affiliation(s)
- Chongcheng Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huachen Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaqi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Zhang
- Jiangxi Ganzhou Eco-environmental Monitoring Center, Ganzhou 341000, China
| | - Jianjian Huang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Jie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Huang Y, Zhu C, Hu Y, Yan S, Luo Z, Zou Y, Wu W, Zeng J. Integrated hormone and transcriptome profiles provide insight into the pericarp differential development mechanism between Mandarin 'Shatangju' and 'Chunhongtangju'. FRONTIERS IN PLANT SCIENCE 2024; 15:1461316. [PMID: 39450074 PMCID: PMC11499144 DOI: 10.3389/fpls.2024.1461316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Introduction Citrus reticulata cv. 'Chunhongtangju' was mutated from Mandarin 'Shatangju', which has been identified as a new citrus variety. Mandarin 'Chunhongtangju' fruits were late-ripening for about two months than Mandarin 'Shatangju'. Methods To understand the pericarp differential development mechanism in Mandarin 'Shatangju' (CK) and 'Chunhongtangju' (LM), hormones and transcriptome profiles of pericarps were performed in different development stages: Young fruit stage (CK1/LM1), Expansion and Turning color stage (CK2), Expansion stage (LM2), Turning color stage (LM3), and Maturity stage (CK3/LM4). Results In this study, the development of LM was significantly slower, and the maturity was significantly delayed. At the same stage, most hormones in Mandarin 'Chunhongtangju' pericarps were higher than that in 'Shatangju' such as gibberellin A24, cis(+)-12-oxophytodienoic acid, and L-phenylalanine. The deficiency of hormones in late-maturing pericarps was mainly manifested in ABA, 12-OHJA, MeSAG, and ABA-GE. Differences in transcriptome profiles between the two citrus varieties are primarily observed in energy metabolism, signal transduction such as MAPK signaling pathway and plant hormone signaling, and biosynthesis of secondary metabolites. After analyzing the hormones and transcriptome data, we found that the top genes and hormones, such as Cs_ont_5g020040 (transcription elongation factor, TFIIS), Cs_ont_7g021670 (BAG family molecular chaperone regulator 5, BAG5), Cs_ont_2g025760 (40S ribosomal protein S27, Rps27), 5-deoxystrigol, salicylic acid 2-O-β-glucosid, and gibberellin A24, contributed significantly to gene transcription and hormone synthesis. Discussion This study suggests that the variances of pericarp development between the two varieties are linked to variations in the transcription levels of genes associated with energy and secondary metabolism, signal transduction related genes. These findings expand our understanding of the complex transcriptional and hormonal regulatory hierarchy during pericarp development.
Collapse
Affiliation(s)
- Yongjing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Yibo Hu
- Deqing County Agricultural Technology Promotion Center, Zhaoqing, China
| | - Sanjiao Yan
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Zhimin Luo
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Yanping Zou
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Wen Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| |
Collapse
|
3
|
Deschamps E, Durand-Hulak M, Castagnos D, Hubert-Roux M, Schmitz I, Froelicher Y, Afonso C. Metabolite Variations during the First Weeks of Growth of Immature Citrus sinensis and Citrus reticulata by Untargeted Liquid Chromatography-Mass Spectrometry/Mass Spectrometry Metabolomics. Molecules 2024; 29:3718. [PMID: 39202798 PMCID: PMC11357260 DOI: 10.3390/molecules29163718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Immature citruses are an important resource for the pharmaceutical industry due to their high levels of metabolites with health benefits. In this study, we used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to investigate the changes associated with fruit size in immature citrus fruits in the first weeks of growth. Three orange cultivars (Citrus sinensis 'Navel', Citrus sinensis 'Valencia', and Citrus sinensis 'Valencia Late') and a mandarin (Citrus reticulata Blanco 'Fremont') were separated into eight fruit sizes, extracted, and analyzed. Statistical analyses revealed a distinct separation between the mandarin and the oranges based on 56 metabolites, with an additional separation between the 'Navel' orange and the 'Valencia' and 'Valencia Late' oranges based on 21 metabolites. Then, metabolites that evolved significantly with fruit size growth were identified, including 40 up-regulated and 31 down-regulated metabolites. This study provides new insights into the metabolite modifications of immature Citrus sinensis and Citrus reticulata in the first weeks of growth and emphasizes the significance of including early sampled fruits in citrus maturation studies.
Collapse
Affiliation(s)
- Estelle Deschamps
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Marie Durand-Hulak
- EARL DURAND Olivier, Domaine de la Triballe, 34820 Guzargues, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France;
| | - Denis Castagnos
- ORIL Industrie, Servier Group, 13 r Auguste Desgenétais, 76210 Bolbec, France;
| | - Marie Hubert-Roux
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Isabelle Schmitz
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, Station INRAE, 20230 San Giuliano, France;
| | - Carlos Afonso
- Institut National des Sciences Appliquées (INSA) Rouen Normandie, Univ Rouen Normandie, Centre National de la Recherche Scientifique (CNRS), Normandie Univ, Chimie Organique et Bioorganique Réactivité et Analyse (COBRA) UMR 6014, INC3M FR 3038, 76000 Rouen, France; (E.D.); (M.H.-R.)
| |
Collapse
|
4
|
Salama A, Gouida MSO, Yassen NN, Sedik AA. Immunoregulatory role of hesperidin against ovalbumin (OVA)-induced bronchial asthma and depression in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3363-3378. [PMID: 37950769 PMCID: PMC11074047 DOI: 10.1007/s00210-023-02833-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Links between bronchial asthma and depression have recently become a great subject of interest. The present study was carried out to assess the protective role of hesperidin against ovalbumin (OVA)-induced bronchial asthma that is associated with depression in rats, for this purpose, four groups. Rats were sensitized with intraperitoneal administration of 200 μg OVA/10 mg aluminum hydroxide (Al (OH) 3 for 3 consecutive days then at day 11 followed by intranasal challenge with OVA (1.5 mg/kg) at days 19, 20, and 21. Rats were pretreated with hesperidin (100 & 200 mg/kg) 1h before OVA challenge. At the end of the study, behavioral tests, biochemical indices, and histopathological architectures of lung and brain tissues were evaluated. Our findings showed that hesperidin significantly ameliorated the reduction in motor activity, motor coordination, forced swimming, CD4, CD25 and foxp3, interleukin-10 (IL-10), dopamine, serotonin, and neurotrophin-3 (NT3) as well as alleviated the elevation in transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), iL-5, and immunoglobulin E (IgE). In addition, hesperidin reduced cellular infiltration, alveolar sacs damage, the bronchioles wall disruption, and nuclei pyknosis in neuron cells. Finally, hesperidin may provide protection against OVA-induced asthma and depression. This impact could be mediated in part by its anti-inflammatory and immunoregulatory properties.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mona S O Gouida
- Genetics Unit, Faculty of Medicine, Children Hospital, Mansoura University, Mansoura, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
5
|
Chu LL, Zheng WX, Liu HQ, Sheng XX, Wang QY, Wang Y, Hu CG, Zhang JZ. ACC SYNTHASE4 inhibits gibberellin biosynthesis and FLOWERING LOCUS T expression during citrus flowering. PLANT PHYSIOLOGY 2024; 195:479-501. [PMID: 38227428 DOI: 10.1093/plphys/kiae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.
Collapse
Affiliation(s)
- Le-Le Chu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Xuan Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hai-Qiang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing-Xing Sheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Ye Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Gen Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-Zhi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Tian S, Yang Y, Fang B, Uddin S, Liu X. The CrMYB33 transcription factor positively coordinate the regulation of both carotenoid accumulation and chlorophyll degradation in the peel of citrus fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108540. [PMID: 38518398 DOI: 10.1016/j.plaphy.2024.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Citrus, cultivated extensively across the globe, possesses considerable economic importance and nutritional value. With the degradation of chlorophyll and accumulation of carotenoids, mature citrus fruits develop an orange-yellow peel, enhancing fruit value and consumer preference. MYB transcription factors (TFs) exert a significant role in diverse plant developmental processes and investigating their involvement in fruit coloration is crucial for developing new cultivars. This work aimed to characterize a citrus TF, CrMYB33, whose expression was found to be positively correlated with carotenoid biosynthesis during fruit ripening. The interference of CrMYB33 expression in citrus fruit resulted in inhibition of carotenoid accumulation, down-regulation of carotenoid biosynthetic genes, and a slower rate of chlorophyll degradation. Conversely, overexpression of CrMYB33 in tomato (Solanum lycopersicum) enhanced chlorophyll degradation and carotenoid biosynthesis, resulting in a deeper red coloration of the fruits. Furthermore, the transcription of associated genes was upregulated in CrMYB33-overexpressing tomato fruits. Additional assays reveal that CrMYB33 exhibits direct links and activation of the promoters of lycopene β-cyclase 2 (CrLCYb2), and β-carotene hydroxylases 2 (CrBCH2), both crucial genes in the carotenoid biosynthetic pathway. Additionally, it was found to inhibit chlorophyllase (CrCLH), a gene essential in chlorophyll degradation. These findings provide insight into the observed changes in LCYb2, BCH2, and CLH expression in the transgenic lines under investigation. In conclusion, our study revealed that CrMYB33 modulates carotenoid accumulation and chlorophyll degradation in citrus fruits through transcriptionally activating genes involved in metabolic pathways.
Collapse
Affiliation(s)
- Shulin Tian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Saleem Uddin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Salem A, Khandaker MM, Mahmud K, Alsufyani SJ, Majrashi AA, Rashid ZM, Alenazi MM, Osman N, Badaluddin NA. Enhancing photosynthesis and root development for better fruit quality, aroma, and lessening of radioactive materials in key lime (Citrus aurantifolia) using Trichoderma harzianum and Bacillus thuringiensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108295. [PMID: 38154296 DOI: 10.1016/j.plaphy.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
The present study was conducted to investigate the effects of Trichoderma harzianum and Bacillus thuringiensis alone or with gradual levels of NPK on photosynthesis, growth, fruit quality, aroma improvement and reduced radionuclides of key lime fruits. The lemon seedlings were treated with (T0) without fertilizers as control, (T1) 100g of NPK at 100%, (T2) 5 g of Trichoderma. harzianum at 50% + 50 g of NPK at 50%, (T3) 5 g of Bacillus thuringiensis at 50% + 50 g of NPK at 50 %, (T4) 7.5 g of Trichoderma harzianum at 75% + 25 g of NPK at 25 %, (T5) 7.5 g of Bacillus thuringiensis at 75% + 25 g of NPK at 25 %, (T6) 10 g of Trichoderma harzianum at 100 % and (T7)10 g of Bacillus thuringiensis at 100 %. The results showed that T2 increased net photosynthetic rate, stomatal conductance, transpiration rate, internal CO2 concentration, fresh and dry root biomass by 209%, 74%, 56%, 376%, 69.4% and 71.6%, while, T5 increased root volume, root length, and root tip number by 27.1%, 167%, and 67%, respectively over the control trees. The microbial treatments developed cortex, vascular cylinder and tracheal elements of the root. Fruit number, length, diameter, weight, pulp thickness, pulp/peel ratio, juice, total soluble solids (TSS), pigment contents and antioxidant activity increased significantly in the T2 treatment. Vitamin C, total phenols, total flavonoids, and total sugar content increased by 1.59-, 1.66-, 1.44- and 2.07- fold in T5 treated fruits compared to the control. The two microbes increased volatile compounds and decreased radionucleotides in the fruit, moreover, 27 identified and 2 (two) unmatched volatile compounds were identified by GCMS analysis. It is concluded that T. harzianum and B. thuringiensis with 25-50 g NPK treatments improved photosynthesis, root structure, fruit growth, fruit quality, aroma and lessened radionuclides in key lime fruits.
Collapse
Affiliation(s)
- Abdelmoaty Salem
- School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
| | - Mohammad Moneruzzaman Khandaker
- School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia.
| | - Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43000 Seri Kembangan, Selangor, Malaysia; Biodiversity Unit, Institute of Bioscience, Universiti Putra Malaysia, 43000 Seri Kembangan, Selangor, Malaysia
| | - Sultan J Alsufyani
- Department of Physics, College of Science, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Ali Abdullah Majrashi
- Department of Biological Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Zalilawati Mat Rashid
- School of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Mekhled Mutiran Alenazi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Normaniza Osman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Noor Afiza Badaluddin
- School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
| |
Collapse
|
8
|
Zhu K, Chen H, Mei X, Lu S, Xie H, Liu J, Chai L, Xu Q, Wurtzel ET, Ye J, Deng X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. PLANT PHYSIOLOGY 2023; 193:519-536. [PMID: 37224514 DOI: 10.1093/plphys/kiad300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene β-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suwen Lu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Heping Xie
- The Experimental Station of Loose-skin Mandarins in Yichang, Agricultural Technical Service Center of Yiling District, Yichang, Hubei 443100, China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lijun Chai
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Xu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, NY 10468, USA
- The Graduate Center, The City University of New York, New York, NY 10016-16 4309, USA
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Archer L, Kunwar S, Alferez F, Batuman O, Albrecht U. Trunk Injection of Oxytetracycline for Huanglongbing Management in Mature Grapefruit and Sweet Orange Trees. PHYTOPATHOLOGY 2023; 113:1010-1021. [PMID: 36474420 DOI: 10.1094/phyto-09-22-0330-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Huanglongbing (HLB) is a devastating bacterial disease associated with 'Candidatus Liberibacter asiaticus'. The location of the pathogen within the vasculature of the tree has left growers with limited options for the effective management of the disease. Trunk injection is a crop protection technique that applies therapeutics directly into the xylem of woody tree species and allows for their systemic uptake and transport, which may provide more effective management of vascular diseases such as HLB. In this study, mature 'Valencia' and 'Hamlin' sweet orange (Citrus sinensis) and 'Duncan' grapefruit (C. paradisi) trees were injected with oxytetracycline (OTC) in the spring and/or fall to evaluate the effects of injection timing and response to injection. In addition to seasonal evaluations of tree health and bacterial titer, preharvest fruit drop, yield, and fruit quality were measured at harvest to determine the effects of OTC injection. The benefits associated with injection included a reduction in fruit drop, an increase in fruit yield and fruit size, and improvements in juice quality. However, results varied due to the timing of injection and were not consistent across all three varieties. Residue analysis at different time points after injection suggests that trunk injection effectively delivers therapeutics to mature citrus trees. This study provides fundamental information on the short-term benefits associated with trunk injection of OTC for HLB management in citrus groves. The potential for use of trunk injection at the commercial scale and the possible risks are discussed.
Collapse
Affiliation(s)
- Leigh Archer
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Sanju Kunwar
- Plant Pathology Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Fernando Alferez
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Ute Albrecht
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| |
Collapse
|
10
|
Gong J, Zhang H, Zeng Y, Cheng Y, Sun X, Wang P. Combining BN-PAGE and microscopy techniques to investigate pigment-protein complexes and plastid transitions in citrus fruit. PLANT METHODS 2022; 18:124. [PMID: 36403000 PMCID: PMC9675244 DOI: 10.1186/s13007-022-00956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chlorophyll and carotenoids, the most widely distributed lipophilic pigments in plants, contribute to fruit coloration during development and ripening. These pigments are assembled with pigment-protein complexes localized at plastid membrane. Pigment-protein complexes are essential for multiple cellular processes, however, their identity and composition in fruit have yet to be characterized. RESULTS By using BN-PAGE technique in combination with microscopy, we studied pigment-protein complexes and plastid transformation in the purified plastids from the exocarp of citrus fruit. The discontinuous sucrose gradient centrifugation was used to isolate total plastids from kumquat fruit, and the purity of isolated plastids was assessed by microscopy observation and western blot analysis. The isolated plastids at different coloring stages were subjected to pigment autofluorescence observation, western blot, two-dimensional electrophoresis analysis and BN-PAGE assessment. Our results demonstrated that (i) chloroplasts differentiate into chromoplasts during fruit coloring, and this differentiation is accompanied with a decrease in the chlorophyll/carotenoid ratio; (ii) BN-PAGE analysis reveals the profiles of macromolecular protein complexes among different types of plastids in citrus fruit; and (iii) the degradation rate of chlorophyll-protein complexes varies during the transition from chloroplasts to chromoplasts, with the stability generally following the order of LHCII > PS II core > LHC I > PS I core. CONCLUSIONS Our optimized methods for both plastid separation and BN-PAGE assessment provide an opportunity for developing a better understanding of pigment-protein complexes and plastid transitions in plant fruit. These attempts also have the potential for expanding our knowledge on the sub-cellular level synchronism of protein changes and pigment metabolism during the transition from chloroplasts to chromoplasts.
Collapse
Affiliation(s)
- Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
11
|
Ferrer V, Paymal N, Quinton C, Tomi F, Luro F. Investigations of the Chemical Composition and Aromatic Properties of Peel Essential Oils throughout the Complete Phase of Fruit Development for Two Cultivars of Sweet Orange ( Citrus sinensis (L.) Osb.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2747. [PMID: 36297771 PMCID: PMC9610080 DOI: 10.3390/plants11202747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The peel essential oil (PEO) of sweet orange is used for flavoring liquors or foods and in the perfumery and cosmetics industry. The fruit maturity stage can modify the essential oil composition and aromatic properties, but little information is available on the evolution of PEO during the entire time set of fruit development. In this study, the yield, chemical composition and aromatic profile over the three phases of orange development were monitored. Four fruit traits (peel color, weight, acidity and sweetness) were recorded to characterize fruit development. Fruits of two sweet orange cultivars were sampled every two weeks from June to May of the next year. PEO was obtained by hydrodistillation and analyzed by gas chromatography coupled with a flame ionization detector (GC-FID). Compounds were identified with GC coupled with mass spectrometry (GC/MS). Ten expert panelists using the descriptor intensity method described the aromatic profile of PEO samples. The PEO composition was richer in oxygenated compounds at early fruit development stages, with an aromatic profile presenting greener notes. During fruit growth (Phases I and II), limonene's proportion increased considerably as a few aliphatic aldehydes brought the characteristic of orange aroma. During fruit maturation (from November to March), the PEO composition and aromatic profile were relatively stable. Later, some modifications were observed. Regardless of the fruit development stage, the two sweet oranges presented distinct PEO compositions and aromatic profiles. These results constitute a temporal reference for the chemical and aromatic evolution of sweet orange PEO in the fruit development process under Mediterranean conditions. During the first two phases of fruit development, many changes occur in the PEO composition and aroma, suggesting that their exploitation could create new products.
Collapse
Affiliation(s)
- Vincent Ferrer
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
- Rémy Cointreau, Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Noémie Paymal
- Rémy Cointreau, Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Carole Quinton
- Rémy Cointreau, Les Molières, 49124 Saint-Barthélemy-d’Anjou, France
| | - Félix Tomi
- UMR SPE 6134, Université de Corse, CNRS, Equipe chimie et Biomasse, 20000 Ajaccio, France
| | - François Luro
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France
| |
Collapse
|
12
|
Perez-Roman E, Borredá C, Tadeo FR, Talon M. Transcriptome analysis of the pulp of citrus fruitlets suggests that domestication enhanced growth processes and reduced chemical defenses increasing palatability. FRONTIERS IN PLANT SCIENCE 2022; 13:982683. [PMID: 36119632 PMCID: PMC9478336 DOI: 10.3389/fpls.2022.982683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
To identify key traits brought about by citrus domestication, we have analyzed the transcriptomes of the pulp of developing fruitlets of inedible wild Ichang papeda (Citrus ichangensis), acidic Sun Chu Sha Kat mandarin (C. reticulata) and three palatable segregants of a cross between commercial Clementine (C. x clementina) and W. Murcott (C. x reticulata) mandarins, two pummelo/mandarin admixtures of worldwide distribution. RNA-seq comparison between the wild citrus and the ancestral sour mandarin identified 7267 differentially expressed genes, out of which 2342 were mapped to 117 KEGG pathways. From the remaining genes, a set of 2832 genes was functionally annotated and grouped into 45 user-defined categories. The data suggest that domestication promoted fundamental growth processes to the detriment of the production of chemical defenses, namely, alkaloids, terpenoids, phenylpropanoids, flavonoids, glucosinolates and cyanogenic glucosides. In the papeda, the generation of energy to support a more active secondary metabolism appears to be dependent upon upregulation of glycolysis, fatty acid degradation, Calvin cycle, oxidative phosphorylation, and ATP-citrate lyase and GABA pathways. In the acidic mandarin, downregulation of cytosolic citrate degradation was concomitant with vacuolar citrate accumulation. These changes affected nitrogen and carbon allocation in both species leading to major differences in organoleptic properties since the reduction of unpleasant secondary metabolites increases palatability while acidity reduces acceptability. The comparison between the segregants and the acidic mandarin identified 357 transcripts characterized by the occurrence in the three segregants of additional downregulation of secondary metabolites and basic structural cell wall components. The segregants also showed upregulation of genes involved in the synthesis of methyl anthranilate and furaneol, key substances of pleasant fruity aroma and flavor, and of sugar transporters relevant for sugar accumulation. Transcriptome and qPCR analysis in developing and ripe fruit of a set of genes previously associated with citric acid accumulation, demonstrated that lower acidity is linked to downregulation of these regulatory genes in the segregants. The results suggest that the transition of inedible papeda to sour mandarin implicated drastic gene expression reprograming of pivotal pathways of the primary and secondary metabolism, while palatable mandarins evolved through progressive refining of palatability properties, especially acidity.
Collapse
|
13
|
Mitalo OW, Asiche WO, Kang SW, Ezura H, Akagi T, Kubo Y, Ushijima K. Examining the Role of Low Temperature in Satsuma Mandarin Fruit Peel Degreening via Comparative Physiological and Transcriptomic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:918226. [PMID: 35909736 PMCID: PMC9328020 DOI: 10.3389/fpls.2022.918226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Peel degreening is the most conspicuous aspect of fruit ripening in many citrus fruits because of its importance for marketability. In this study, peel degreening in response to propylene (an ethylene analog) and at varying storage temperatures was characterized in Satsuma mandarin (Citrus unshiu Marc.) fruit. Propylene treatment triggered rapid peel degreening (within 4-6 days), indicated by an increase in the citrus color index (CCI) and chlorophyll loss. Peel degreening was also observed in fruit at 10°C and 15°C after 28-42 days, with gradual CCI increase and chlorophyll reduction. However, fruit at 5°C, 20°C, and 25°C remained green, and no substantial changes in peel CCI and chlorophyll content were recorded during the 42-day storage duration. The transcriptomes of peels of fruit treated with propylene for 4 days and those stored at varying temperatures for 28 days were then analyzed by RNA-Seq. We identified three categories of differentially expressed genes that were regulated by (i) propylene (and by analogy, ethylene) alone, (ii) low temperature (5°C, 10°C, or 15°C vs. 25°C) alone, and (iii) either propylene or low temperature. Gene-encoding proteins associated with chlorophyll degradation (such as CuSGR1, CuNOL, CuACD2, CuCAB2, and CuLHCB2) and a transcription factor (CuERF114) were differentially expressed by propylene or low temperature. To further examine temperature-induced pathways, we also monitored gene expression during on-tree fruit maturation vs. postharvest. The onset of on-tree peel degreening coincided with autumnal drops in field temperatures, and it was accompanied by differential expression of low temperature-regulated genes. On the contrary, genes that were exclusively regulated by propylene (such as CuCOPT1 and CuPOX-A2) displayed insignificant expression changes during on-tree peel degreening. These findings indicate that low temperatures could be involved in the fruit ripening-related peel degreening independently of ethylene.
Collapse
Affiliation(s)
- Oscar W. Mitalo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - William O. Asiche
- Department of Research and Development, Del Monte Kenya Ltd, Thika, Kenya
| | - Seung W. Kang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
14
|
Moreira RR, Machado FJ, Lanza FE, Trombin VG, Bassanezi RB, de Miranda MP, Barbosa JC, da Silva Junior GJ, Behlau F. Impact of diseases and pests on premature fruit drop in sweet orange orchards in São Paulo state citrus belt, Brazil. PEST MANAGEMENT SCIENCE 2022; 78:2643-2656. [PMID: 35355409 DOI: 10.1002/ps.6894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Despite technical improvements in the citrus chain and leadership in orange production achieved in the past decades, premature fruit drop remains a major component of crop loss in São Paulo state citrus belt, the largest sweet orange production area in the world. The present study aimed to determine, during five consecutive seasons, the impact of the diseases and pests on premature fruit drop in the orange belt. RESULTS Fruit drop due to the main diseases and pests averaged approximately 11.0%, which corresponded to approximately 63% of the annual fruit drop. The average fruit drop rate due to fruit borer and fruit flies combined was 4.0%, Huanglongbing (HLB) 3.3%, black spot 2.6%, leprosis 1.0% and citrus canker 0.3%. The average amount of fruit drop (million 40.8 kg boxes) and value of crop losses (million US$ dollars), in five seasons, were 12.7 and 66.2 for fruit borer/fruit flies, 11.0 and 57.9 for HLB, 8.1 and 42.2 for black spot, 3.1 and 15.6 for leprosis, and 0.9 and 4.9 for citrus canker, respectively. CONCLUSION Fruit borer and fruit flies (combined), HLB, black spot, leprosis and citrus canker are, in this order, the main diseases and pests in the orange belt of São Paulo state. All of these causes significantly increased the overall fruit drop rate in the evaluated seasons. The results will contribute to the development of the Brazilian citrus industry, while showing to other citrus-growing regions the potential that diseases and pests have to jeopardize production. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Franklin Jackson Machado
- Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | | | - José Carlos Barbosa
- Departamento de Estatística, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, Brazil
| | | | - Franklin Behlau
- Fundo de Defesa da Citricultura - Fundecitrus, Araraquara, Brazil
| |
Collapse
|
15
|
Saini MK, Capalash N, Varghese E, Kaur C, Singh SP. A Targeted Metabolomics Approach to Study Secondary Metabolites and Antioxidant Activity in 'Kinnow Mandarin' during Advanced Fruit Maturity. Foods 2022; 11:1410. [PMID: 35626980 PMCID: PMC9141733 DOI: 10.3390/foods11101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigated the impact of harvest maturity stages and contrasting growing climates on secondary metabolites in Kinnow mandarin. Fruit samples were harvested at six harvest maturity stages (M1−M6) from two distinct growing locations falling under subtropical−arid (STA) and subtropical−humid (STH) climates. A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) technique was employed to identify and quantify secondary metabolites in the fruit juice. A total of 31 polyphenolics and 4 limonoids, with significant differences (p < 0.05) in their concentration, were determined. With advancing maturity, phenolic acids and antioxidant activity were found to increase, whereas flavonoids and limonoids decreased in concentration. There was a transient increase in the concentration of some polyphenolics such as hesperidin, naringin, narirutin, naringenin, neoeriocitrin, rutin, nobiletin and tangeretin, and limonoid aglycones such as limonin and nomilin at mid-maturity stage (M3) which coincided with prevailing low temperature and frost events at growing locations. A higher concentration of limonin and polyphenolics was observed for fruit grown under STH climates in comparison to those grown under STA climates. The data indicate that fruit metabolism during advanced stages of maturation under distinct climatic conditions is fundamental to the flavor, nutrition and processing quality of Kinnow mandarin. This information can help in understanding the optimum maturity stage and preferable climate to source fruits with maximum functional compounds, less bitterness and high consumer acceptability.
Collapse
Affiliation(s)
- Manpreet Kaur Saini
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India;
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India;
| | - Charanjit Kaur
- Division of Food Science and Post–Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sukhvinder Pal Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 160071, India;
- New South Wales Department of Primary Industries, Ourimbah, NSW 2258, Australia
| |
Collapse
|
16
|
Lebedev AT, Detenchuk EA, Latkin TB, Bavcon Kralj M, Trebše P. Aqueous Chlorination of D-Limonene. Molecules 2022; 27:2988. [PMID: 35566337 PMCID: PMC9099452 DOI: 10.3390/molecules27092988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Limonene (1-methyl-4-(1-methylethenyl)-cyclohexene) is one of the most widespread monocyclic terpenes, being both a natural and industrial compound. It is widely present in the environment, including in water supplies. Therefore, it may be subjected to aqueous chlorination at water treatment stations during drinking water preparation. Besides, being a component of numerous body care and cosmetic products, it may present at high levels in swimming pool waters and could also be subjected to aqueous chlorination. Laboratory experiments with aqueous chlorination of D-limonene demonstrated the prevalence of the conjugated electrophilic addition of HOCl molecule to the double bonds of the parent molecule as the primary reaction. The reaction obeys the Markovnikov rule, as the levels of the corresponding products were higher than those of the alternative ones. Fragmentation pattern in conditions of electron ionization enabled the assigning of the structures for four primary products. The major products of the chlorination are formed by the addition of two HOCl molecules to limonene. The reactions of electrophilic addition are usually accompanied by the reactions of elimination. Thus, the loss of water molecules from the products of various generations results in the reproduction of the double bond, which immediately reacts further. Thus, a cascade of addition-elimination reactions brings the most various isomeric polychlorinated species. At a ratio of limonene/active chlorine higher than 1:10, the final products of aqueous chlorination (haloforms) start forming, while brominated haloforms represent a notable portion of these products due to the presence of bromine impurities in the used NaOCl. It is worth mentioning that the bulk products of aqueous chlorination are less toxic in the bioluminescence test on V. fischeri than the parent limonene.
Collapse
Affiliation(s)
- Albert T. Lebedev
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
- MASSECO d.o.o., 6230 Postojna, Slovenia
| | - Elena A. Detenchuk
- Organic Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia;
| | - Tomas B. Latkin
- Core Facility Arktika, Northern Arctic Federal University, 163002 Arkhangelsk, Russia;
| | - Mojca Bavcon Kralj
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.B.K.); (P.T.)
| |
Collapse
|
17
|
Changes of Fruit Abscission and Carbohydrates, Hormones, Related Gene Expression in the Fruit and Pedicel of Macadamia under Starvation Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order toexplore the regulation mechanism of macadamia fruitlet abscission induced by ‘starvation stress’, a treatment of girdling and defoliation was applied to the bearing shoots of macadamia cultivar ‘H2’ at the early stage of fruit development, simulating the starvation stress induced by interrupting carbon supply to fruit. The levels of carbohydrates, hormones, and related gene expression in the different tissues (husk, seed, and pedicel) were investigated after treatment. The results showed that a severe fruit drop occurred 3~5 d after starvation stress treatment. The contents of glucose, fructose, and sucrose in both the husk and the seed were significantly decreased, as well as the fructose and sucrose in the pedicel; this large reduction occurred prior to the massive fruit shedding. Starvation stress significantly reduced the GA3 and ZR contents and enhanced the ABA level in the pedicel and the seed, whereas it did not obviously change these hormones in the husk. After treatment, IAA content decreased considerably in both the husk and seed but increased remarkably in the pedicel. In the husk, the expression of genes related to sugar metabolism and signaling (NI, HXK2, TPS, and TPP), as well as the biosynthesis of ethylene (ACO2 and ACS) and ABA (NCED1.1 and AAO3), was significantly upregulated by starvation stress, as well as the stress-responsive transcription factors (AP2/ERF, HD-ZIP12, bZIP124, and ABI5), whereas the BG gene associated with ABA accumulation and the early auxin-responsive genes (Aux/IAA22 and GH3.9) were considerably suppressed during the period of massive fruit abscission. Similar changes in the expression of all genes occurred in the pedicel, except for NI and AP2/ERF, the expression of which was significantly upregulated during the early stage of fruit shedding and downregulated during the period of severe fruit drop. These results suggest that complicated crosstalk among the sugar, IAA, and ABA signaling may be related to macadamia fruitlet abscission induced by carbohydrate starvation.
Collapse
|
18
|
Physiological and Biochemical Adaptive Traits in Leaves of Four Citrus Species Grown in an Italian Charterhouse. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Citrus trees are a very important crops that are cultivated worldwide, but not much knowledge is known about the ecophysiological responses to climatic changes in trees under natural conditions. The aim of this study was to investigate their adaptive capacity in response to seasonal phenological and environmental changes. The trial included Citrus trees (sweet orange, bitter orange, lemon, mandarin) growing under non-regular cropping conditions in a Monumental Charterhouse in Tuscany, in a subtropical Mediterranean climate with hot summer conditions. During a 1-year field trial, we determined the variations in chlorophyll fluorescence parameters and leaf biochemical traits (content of chlorophylls and carotenoids, total phenolic content (TPC), total antioxidant capacity (TAC), and total non-structural carbohydrates). In all Citrus spp., interspecific mean values of photochemical efficiency peaked during the summer, while a marked photoinhibition occurred in the winter in concomitance with higher interspecific mean values of leaf TPC, TAC, and non-structural carbohydrates. The trees showed the pivotal role played by photosynthetic acclimation as a survival strategy to tolerate abiotic stress in the climate change hotspot of Mediterranean environment. This study is included in a wider project aimed at a new valorization of Citrus trees as genetic resource and its by-products with added-value applications for innovative functional foods.
Collapse
|
19
|
Perez-Roman E, Borredá C, López-García Usach A, Talon M. Single-nucleotide mosaicism in citrus: Estimations of somatic mutation rates and total number of variants. THE PLANT GENOME 2022; 15:e20162. [PMID: 34796688 DOI: 10.1002/tpg2.20162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Most of the hundreds of citrus varieties are derived from spontaneous mutations. We characterized the dynamics of single-nucleotide mosaicism in a 36-yr-old clementine (Citrus ×clementina hort. ex Tanaka) tree, a commercial citrus whose vegetative behavior is known in detail. Whole-genome sequencing identified 73 reliable somatic mutations, 48% of which were transitions from G/C to A/T, suggesting ultraviolet (UV) exposure as mutagen. The mutations accumulated in sectorized areas of the tree in a nested hierarchy determined by the branching pattern, although some variants detected in the basal parts were also found in the new growth and were fixed in some branches and leaves of much younger age. The estimate of mutation rates in our tree was 4.4 × 10-10 bp-1 yr-1 , a rate in the range reported in other perennials. Assuming a perfect configuration and taking advantage of previous counts on the number of total leaves of typical clementine trees, these mutation determinations allowed to estimate for the first time the total number of variants present in a standard adult tree (1,500-5,000) and the somatic mutations generated in a typical leaf flush (0.92-1.19). From an evolutionary standpoint, the sectoral distribution of somatic mutations and the habit of periodic foliar renewal of long-lived plants appear to increase genetic heterogeneity and, therefore, the adaptive role of somatic mutations reducing the mutational load and providing fitness benefits.
Collapse
Affiliation(s)
- Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, 46113, Spain
| | - Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, 46113, Spain
| | - Antoni López-García Usach
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, 46113, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, 46113, Spain
| |
Collapse
|
20
|
Data fusion for fruit quality authentication: combining non-destructive sensing techniques to predict quality parameters of citrus cultivars. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Scanlan JL, Battlay P, Robin C. Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100030. [PMID: 36003262 PMCID: PMC9387500 DOI: 10.1016/j.cris.2022.100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/29/2022]
|
22
|
Use of near-infrared spectroscopy combined with chemometrics for authentication and traceability of intact lemon fruits. Food Chem 2021; 375:131822. [PMID: 34959136 DOI: 10.1016/j.foodchem.2021.131822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 01/12/2023]
Abstract
The reflectance NIR spectroscopy and chemometric data treatment on mature intact lemons, Limone di Sorrento PGI (cv Ovale di Sorrento) and Limone Costa D'Amalfi PGI (cv Sfusato Amalfitano) from Campania region, collected in 2018 and 2019, were used to predict properties, and discriminate cultivar and geographical provenance. By PCA, lemon NIR spectra grouped for production years due to the year variation of lemon properties attributable to annual climatic differences, homogeneous in all sites. This agrees with lemon chemical and physical differences by production year. Consequently, the relationship of NIR spectra with lemon quality properties by MLR and the cultivar and provenances discrimination by LDA were affected by year climatic difference; therefore, better model reliability was for single production year. NIR detectability of lemon properties did not appear beyond lemon thick peels, therefore the measured properties of lemon juices could derive from measurable properties of peel correlating with pulp properties.
Collapse
|
23
|
Park YS, Kim ID, Dhungana SK, Park EJ, Park JJ, Kim JH, Shin DH. Quality Characteristics and Antioxidant Potential of Lemon ( Citrus limon Burm. f.) Seed Oil Extracted by Different Methods. Front Nutr 2021; 8:644406. [PMID: 34568400 PMCID: PMC8458774 DOI: 10.3389/fnut.2021.644406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Lemon (Citrus limon Burm. f.) is one of the most widely produced and consumed fruits in the world. The seeds of lemon are generally discarded as waste. The purpose of this study was to investigate the quality characteristics and antioxidant potential of lemon seed oil obtained by four extraction methods (roasted-pressing at 170°C, RP-170; roasted-pressing at 100°C, RP-100; cold-pressing, CP; and supercritical fluid, SF). No significant differences in the viscosity, density, and refractive index were observed in the oil obtained from different methods. In the case of Hunter's value, L (lightness) and b (yellowness) values of SF were higher than those of the others. The oil obtained by the CP method exhibited higher levels of Ca (252.17 mg/kg), Cu (2.38 mg/kg), K (225.98 mg/kg), and Mo (0.47 mg/kg) than that of other methods. The highest contents of total phenols (165.90 mg/mL) and flavonoids (21.69 mg/mL) were significantly high in oil obtained by the SF method. Oleic and linoleic acids consisted of principal fatty acids, which were significantly higher in oil obtained by RP-170. Higher amounts of volatile flavor compounds, such as γ-terpinene, sabinene, and limonene, were observed in CP compared to those observed for the other methods. This study elucidates the effects of different methods of oil extraction on the composition of lemon seed oil and highlights potential applications of these benefits in the food, cosmetic, pharmaceutical, and/or fragrance industries.
Collapse
Affiliation(s)
- Yong-Sung Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Il-Doo Kim
- Department of International Studies, International Institute of Agricultural Research and Development, Kyungpook National University, Daegu, South Korea
| | - Sanjeev Kumar Dhungana
- National Institute of Crop Science, Rural Development Administration, Miryang, South Korea
| | - Eun-Jung Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Jung Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jeong-Ho Kim
- Department of Green Technology Convergence, Konkuk University, Chungju-si, South Korea
| | - Dong-Hyun Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
24
|
Nawaz R, Khan MA, Hafiz IA, Khan MF, Khalid A. Climate variables effect on fruiting pattern of Kinnow mandarin (Citrus nobilis Lour × C. deliciosa Tenora) grown at different agro-climatic regions. Sci Rep 2021; 11:18177. [PMID: 34518610 PMCID: PMC8438049 DOI: 10.1038/s41598-021-97653-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Kinnow orchards grown in different agro-ecological regions of Punjab, Pakistan, namely Sargodha, Toba Tek Singh (TTS) and Vehari districts, were selected to assess the effect of climate variables on fruit-bearing patterns. Experiment was laid out in RCBD while selecting identical features Kinnow plants and labeled twigs at analogous canopy positions in all three sites. Temperature was reported higher in TTS and Vehari areas, while relative humidity in Sargodha accounted for different levels of agrometeorological indices by computing more variations in warm districts. Climate variables influenced fruit-bearing habits and vegetative growth trend in all three flushes while recording heavy fruit-bearing plants during on-year and light fruit-bearing in off-year at Vehari. Similarly, three vegetative flushes were recorded unevenly in all three sites due to different fruit-bearing patterns induced by climate variables. Harvesting pattern of orchards began earlier in Sargodha, where maximum orchards were harvested before new flowering to add evenness to fruiting habits during on & off-years. In warm conditions, fruit ripening arrived in the peak of winter and mostly domestic market-driven harvesting resulted in late start of fruit picking with more erratic fruit-bearing habits. Both physiological and pathological fruit drops have been significantly affected by climate variables with a higher degree of physiological drop in warm regions and pathological effects in the humid conditions of Sargodha on heavy fruit-bearing plants. Fruit yield and grading quality were also affected in both seasons by showing more asymmetrical trend in yield and fruit grading in warm areas of TTS and Vehari due to an irregular fruiting pattern compared to Sargodha. From now on, the climate variables of the three sites directly influenced the fruiting patterns, vegetative flushes, fruit drops, yields and grades of Kinnow mandarin.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Horticulture, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan.
| | - Muhammad Azam Khan
- Department of Horticulture, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| | - Ishfaq Ahmad Hafiz
- Department of Horticulture, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Azeem Khalid
- Department of Environmental Sciences, Pir Mehr Ali Shah- Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
25
|
Romero P, Lafuente MT, Alferez F. Differential Transcriptomic Regulation in Sweet Orange Fruit ( Citrus sinensis L. Osbeck) Following Dehydration and Rehydration Conditions Leading to Peel Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:732821. [PMID: 34531889 PMCID: PMC8438417 DOI: 10.3389/fpls.2021.732821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Water stress is the most important environmental agent that contributes to the crop productivity and quality losses globally. In citrus, water stress is the main driver of the fruit peel disorders that impact the quality and market ability. An increasingly present post-harvest peel disorder is non-chilling peel pitting (NCPP). Non-chilling peel pitting is manifested as collapsed areas of flavedo randomly scattered on the fruit and its incidence increases due to abrupt increases in the environmental relative humidity (RH) during post-harvest fruit manipulation. In this study, we have used a custom-made cDNA microarray containing 44k unigenes from Citrus sinensis (L. Osbeck), covering for the first time the whole genome from this species, to study transcriptomic responses of mature citrus fruit to water stress. In the study, the global gene expression profiles of flavedo from Navelate oranges subjected to severe water stress are compared with those fruits subjected to rehydration stress provoked by changes in the RH during post-harvest, which enhances the development of NCPP. The study results show that NCPP is a complex physiological process that shares molecular responses with those from prolonged dehydration in fruit, but the damage associated with NCPP may be explained by unique features of rehydration stress at the molecular level, such as membrane disorganization, cell wall modification, and proteolysis.
Collapse
Affiliation(s)
- Paco Romero
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-Consejo Superior de Investigaciones Cientificas (IATA-CSIC), Valencia, Spain
| | - Maria Teresa Lafuente
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-Consejo Superior de Investigaciones Cientificas (IATA-CSIC), Valencia, Spain
| | - Fernando Alferez
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-Consejo Superior de Investigaciones Cientificas (IATA-CSIC), Valencia, Spain
- Horticultural Sciences Department, Southwest Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Immokalee, FL, United States
| |
Collapse
|
26
|
R SR, M E A, M M. Influence of post-harvest physiology on sensory perception, physical properties, and chemical compositions of Moris pineapples (Ananas comosus L.). J Food Sci 2021; 86:4159-4171. [PMID: 34383295 DOI: 10.1111/1750-3841.15877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022]
Abstract
This study was conducted to evaluate consumer profiling of pineapple at five maturity stages using check-all-that-apply (CATA) method and to determine the influence of post-harvest physiological changes on the physical and chemical properties of the pineapple. Nineteen CATA terms describing sensory attributes of pineapples at five maturity stages were generated. Seventy-five consumers were involved in describing the changes in the organoleptic properties of pineapple using CATA questions. The relationship between physicochemical properties and sensory description of pineapples was analyzed using correspondence analysis (CA). The total variance of 97.7% and 92.2% obtained in the CA plot of the physical and chemical properties with the consumer profiling data suggests that consumers have effectively described the pineapple harvested at five maturity stages. Changes in physical and chemical compositions in pineapple upon maturation result in the development of pineapple's desirable organoleptic characteristics, characterized as fresh, attractive, and bright yellowish, with a soft, fibrous, and juicy texture, a sweet odor and pineapple aroma as well as sweet taste. Index 3 pineapple has been described as pale, hard, and crunchy in texture at the early stage of maturity and has a sour taste. The characteristic was transformed to bright yellow, soft, fibrous, and juicy texture after maturation, (25% ripeness onwards), as well as the production of sweet taste and aroma of pineapple. Instrument analysis of yellowness (b value) and carotenoid has strongly influenced the sensory attributes of brightness, freshness, and attractiveness of the pineapple. Changes in total soluble solids (TSS) and a ratio of TSS to total acids (TA) contributes to the development of aromatic compound which increases the appealing quality of the pineapple. Pineapple sensory characteristics, physical properties, and chemical compositions were significantly affected by post-harvest physiology. PRACTICAL APPLICATION: Sensory and instrumental methods were used to construct the properties of pineapple at different stages of post-harvest physiology. This article demonstrates that the Check-all-that-apply (CATA) analysis provides adequate sensory profiling information based on customer perceptions in relation to instrumental details, and it can be extended to other pineapple varieties and citrus fruits.
Collapse
Affiliation(s)
- Siti Rashima R
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Azhar M E
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Maizura M
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| |
Collapse
|
27
|
Coelho EM, da Silva Haas IC, de Azevedo LC, Bastos DC, Fedrigo IMT, dos Santos Lima M, de Mello Castanho Amboni RD. Multivariate chemometric analysis for the evaluation of 22 Citrus fruits growing in Brazil’s semi-arid region. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Eddin LB, Jha NK, Meeran MFN, Kesari KK, Beiram R, Ojha S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021; 26:4535. [PMID: 34361686 PMCID: PMC8348102 DOI: 10.3390/molecules26154535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Limonene is a monoterpene confined to the family of Rutaceae, showing several biological properties such as antioxidant, anti-inflammatory, anticancer, antinociceptive and gastroprotective characteristics. Recently, there is notable interest in investigating the pharmacological effects of limonene in various chronic diseases due to its mitigating effect on oxidative stress and inflammation and regulating apoptotic cell death. There are several available studies demonstrating the neuroprotective role of limonene in neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, epilepsy, anxiety, and stroke. The high abundance of limonene in nature, its safety profile, and various mechanisms of action make this monoterpene a favorable molecule to be developed as a nutraceutical for preventive purposes and as an alternative agent or adjuvant to modern therapeutic drugs in curbing the onset and progression of neurodegenerative diseases. This manuscript presents a comprehensive review of the available scientific literature discussing the pharmacological activities of limonene or plant products containing limonene which attribute to the protective and therapeutic ability in neurodegenerative disorders. This review has been compiled based on the existing published articles confined to limonene or limonene-containing natural products investigated for their neurotherapeutic or neuroprotective potential. All the articles available in English or the abstract in English were extracted from different databases that offer an access to diverse journals. These databases are PubMed, Scopus, Google Scholar, and Science Direct. Collectively, this review emphasizes the neuroprotective potential of limonene against neurodegenerative and other neuroinflammatory diseases. The available data are indicative of the nutritional use of products containing limonene and the pharmacological actions and mechanisms of limonene and may direct future preclinical and clinical studies for the development of limonene as an alternative or complementary phytomedicine. The pharmacophore can also provide a blueprint for further drug discovery using numerous drug discovery tools.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India;
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| |
Collapse
|
29
|
Zhang X, Wei X, Ali MM, Rizwan HM, Li B, Li H, Jia K, Yang X, Ma S, Li S, Chen F. Changes in the Content of Organic Acids and Expression Analysis of Citric Acid Accumulation-Related Genes during Fruit Development of Yellow ( Passiflora edulis f. flavicarpa) and Purple ( Passiflora edulis f. edulis) Passion Fruits. Int J Mol Sci 2021; 22:ijms22115765. [PMID: 34071242 PMCID: PMC8198880 DOI: 10.3390/ijms22115765] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Organic acids are key components that determine the taste and flavor of fruits and play a vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and mature stage) from an orchard located in subtropical region of Fujian Province, China. The contents of six organic acids were quantified using ultra-performance liquid chromatography (UPLC), activities of citric acid related enzymes were determined, and expression levels of genes involved in citric acid metabolism were measured by quantitative real-time PCR (qRT-PCR). The results revealed that citric acid was the predominant organic acid in both cultivars during fruit development. The highest citric acid contents were observed in both cultivars at green stage, which were reduced with fruit maturity. Correlation analysis showed that citrate synthase (CS), cytosolic aconitase (Cyt-ACO) and cytosolic isocitrate dehydrogenase (Cyt-IDH) may be involved in regulating citric acid biosynthesis. Meanwhile, the PeCS2, PeACO4, PeACO5 and PeIDH1 genes may play an important role in regulating the accumulation of citric acid. This study provides new insights for future elucidation of key mechanisms regulating organic acid biosynthesis in passion fruit.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Xiaoxia Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Binqi Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Han Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Kaijie Jia
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Xuelian Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Songfeng Ma
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
| | - Shaojia Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (S.L.); (F.C.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.M.A.); (H.M.R.); (B.L.); (H.L.); (K.J.); (X.Y.); (S.M.)
- Correspondence: (S.L.); (F.C.)
| |
Collapse
|
30
|
Assessment and Feasibility Study of Lemon Ripening Using X-ray Image of Information Visualization. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Digital radiography (DR) is a mature technology and has been broadly used in medical diagnosis. Currently, it’s also used for fruit quality inspection in the market. This purpose of the study is to conduct non-destructive experiments for visual comparisons of digital radiography images, further construct visualized grayscale image analysis technology, and analyze the changes in lemon quality and ripening using quantitative statistical methods. The materials used for the experiments were three lemons of different ripening. A general medical X-ray DR system for was used in this study for 2D digital radiography. The medical X-ray DR images were created based on the Digital Imaging and Communications in Medicine (DICOM) standard. Photometric interpretation of monochrome was applied to create multi-layered grayscale images. Then quantitative analyses and comparisons were performed with image matrix structures and grayscale pixel values in the tissues using visualization techniques and statistical methods. After layer segmentation on the radiological images, the correlations between the lemon structures and tissue changes were assessed by using the Kruskal–Wallis test. The results showed that the p values for lemon, fiber, and pulp were all under 0.05, while the peel layer did not exhibit significant change. The pulp layer is the best region for statistical analyses to determine the lemon ripening. In conclusion, this study can provide a solid reference for future quality classification in the agricultural market. The research findings can be referenced for developing computing techniques applied to agricultural inspection, expanding the scope of application of the medical DR technology.
Collapse
|
31
|
Peixoto MA, Evangelista JSPC, Coelho IF, Alves RS, Laviola BG, Fonseca e Silva F, de Resende MDV, Bhering LL. Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy. PLoS One 2021; 16:e0247775. [PMID: 33661980 PMCID: PMC7932130 DOI: 10.1371/journal.pone.0247775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/13/2021] [Indexed: 11/23/2022] Open
Abstract
Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Silva Alves
- Instituto Nacional de Ciência e Tecnologia do Café, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
32
|
Huang X, Wang H, Qu S, Luo W, Gao Z. Using artificial neural network in predicting the key fruit quality of loquat. Food Sci Nutr 2021; 9:1780-1791. [PMID: 33747488 PMCID: PMC7958548 DOI: 10.1002/fsn3.2166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The formation and regulation of loquat fruit quality have always been an important research field to improve fruit quality, commodities, and market value. Fruit size, soluble solids content, and titratable acid content represent the most important quality factors in loquat. Mineral nutrients in abundance or deficiency are among the most important key factor that affect fruit quality. In the present study, we use artificial neural network (ANN) to explore the effects of mineral nutrients in soil and leaves on the key fruit quality of loquat. The results show that the ANN model with the structure of 12-12-1 can predict the single fruit weight with the highest accuracy (R 2 = .91), the ANN model with the structure of 10-11-1 can predict the soluble solid content with the highest accuracy (R 2 = .91), and the ANN model with the structure of 9-10-1 can predict the titratable acid content with the highest accuracy (R 2 = .95). Meanwhile, we also conduct sensitivity analysis to analyze the relative contribution of mineral nutrients in soils and leaves to determine of the key fruit quality. In terms of relative contribution, Ca, Fe, and Mg content in soils and Zn, K, and Ca content in leaves contribute relatively largely to a single fruit weight, Mn, Fe, and Mg content in soils and the N content in leaves contribute relatively largely to the soluble solid content, and the P, Ca, N, Mg, and Fe in leaves contribute relatively largely to the titratable acid content of loquat. The established artificial neural network prediction models can improve the quality of loquat fruit by optimizing the content of mineral elements in soils and leaves.
Collapse
Affiliation(s)
- Xiao Huang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Huakun Wang
- Technical Extension Center of Evergreen Fruit Trees in Taihu of Jiangsu ProvinceSuzhouChina
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural GermplasmSuzhouChina
| | - Shenchun Qu
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Wenjie Luo
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zhihong Gao
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
33
|
Gubser G, Vollenweider S, Eibl D, Eibl R. Food ingredients and food made with plant cell and tissue cultures: State-of-the art and future trends. Eng Life Sci 2021; 21:87-98. [PMID: 33716608 PMCID: PMC7923591 DOI: 10.1002/elsc.202000077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 11/11/2022] Open
Abstract
Climate change and an increasing world population means traditional farming methods may not be able to meet the anticipated growth in food demands. Therefore, alternative agricultural strategies should be considered. Here, plant cell and tissue cultures (PCTCs) may present a possible solution, as they allow for controlled, closed and sustainable manufacturing of extracts which have been or are still being used as colorants or health food ingredients today. In this review we would like to highlight developments and the latest trends concerning commercial PCTC extracts and their use as food ingredients or even as food. The commercialization of PCTC-derived products, however, requires not only regulatory approval, but also outstanding product properties or/and a high product titer. If these challenges can be met, PCTCs will become increasingly important for the food sector in coming years.
Collapse
Affiliation(s)
- Geraldine Gubser
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| | | | - Dieter Eibl
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| | - Regine Eibl
- Institute of Chemistry and BiotechnologyZurich University of Applied Sciences (ZHAW)WadenswilSwitzerland
| |
Collapse
|
34
|
Cass BN, Kahl HM, Mueller TG, Xi X, Grafton-Cardwell EE, Rosenheim JA. Profile of Fork-Tailed Bush Katydid (Orthoptera: Tettigoniidae) Feeding on Fruit of Clementine Mandarins. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:215-224. [PMID: 33210704 DOI: 10.1093/jee/toaa258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Sweet oranges (Citrus sinensis (L.) Osbeck Sapindales: Rutaceae) dominated commercial citrus production in California until recently when there has been a shift to mandarins, mostly Citrus reticulata (Blanco) mandarins and Citrus clementina (hort. ex Tanaka) clementines. Past analyses of commercial field scouting and harvest data indicated that fork-tailed bush katydids (Scudderia furcata Brunner von Wattenwyl), a major pest in oranges, are present in clementine groves, but that fruit scarring attributed to katydids is rare. Conversely, jagged or web-like scarring attributed to caterpillars was more prevalent than expected. We used two field experiments in four representative cultivars of clementines to test four explanatory hypotheses for this observation: 1) katydids do not feed on clementine fruit, 2) damaged clementine fruit recover, 3) damaged clementine fruit preferentially abscise, and 4) katydid scars on clementine fruit have a different, undocumented morphology, not recognized as katydid damage. We find support for the latter two hypotheses. Katydids fed readily on the clementine fruit of all cultivars tested, chewing irregular holes that developed into jagged or web-like scars of a range of shapes and often led to splitting and abscission of maturing fruit. The katydid scars often more closely resembled chewing caterpillar damage than the round katydid scars in oranges, suggesting that katydid damage is being misclassified in clementines. The resistance documented in some other mandarins was not observed. Katydids are clearly a frugivorous pest causing previously unrecognized scarring in clementines.
Collapse
Affiliation(s)
- Bodil N Cass
- Department of Entomology and Nematology, University of California, Davis, CA
| | - Hanna M Kahl
- Department of Entomology and Nematology, University of California, Davis, CA
| | - Tobias G Mueller
- Department of Entomology and Nematology, University of California, Davis, CA
| | - Xinqiang Xi
- Department of Ecology, Nanjing University, Nanjing, China
| | | | - Jay A Rosenheim
- Department of Entomology and Nematology, University of California, Davis, CA
| |
Collapse
|
35
|
Ma G, Zhang L, Kudaka R, Inaba H, Furuya T, Kitamura M, Kitaya Y, Yamamoto R, Yahata M, Matsumoto H, Kato M. Exogenous Application of ABA and NAA Alleviates the Delayed Coloring Caused by Puffing Inhibitor in Citrus Fruit. Cells 2021; 10:cells10020308. [PMID: 33546256 PMCID: PMC7913354 DOI: 10.3390/cells10020308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/14/2023] Open
Abstract
Combined spraying of gibberellin (GA) and prohydrojasmon (PDJ) was an effective method to reduce peel puffing in Satsuma mandarins. However, in the GA-and-PDJ combined treatment, fruit color development was delayed during the ripening process. In the present study, to improve the coloration of the GA and PDJ-treated fruit, the effects of exogenous application of 1-naphthaleneacetic acid (NAA) and abscisic acid (ABA) on chlorophyll and carotenoid accumulation were investigated. The results showed that both ABA and NAA treatments accelerated the color changes from green to orange in the GA and PDJ-treated fruit during the ripening process. With the NAA and ABA treatments, chlorophylls contents were decreased rapidly, and the contents of β,β-xanthophylls were significantly enhanced in the GA and PDJ-treated fruit. In addition, gene expression results showed that the changes of the chlorophyll and carotenoid metabolisms in the NAA and ABA treatments were highly regulated at the transcriptional level. The results presented in this study suggested that the application of NAA and ABA could potentially be used for improving the coloration of the GA and PDJ-treated fruit.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
| | - Rin Kudaka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Hayato Inaba
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Takuma Furuya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Minami Kitamura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Yurika Kitaya
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Risa Yamamoto
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
| | - Hikaru Matsumoto
- National Institute of Fruit Tree Science (NIFTS), National Agriculture and Bio-Oriented Research Organization (NARO), Shizuoka 424-0292, Japan;
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (G.M.); (L.Z.); (M.Y.)
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan; (R.K.); (H.I.); (T.F.); (M.K.); (Y.K.); (R.Y.)
- Correspondence: ; Tel.: +81-54-238-4830
| |
Collapse
|
36
|
Alferez F, de Carvalho DU, Boakye D. Interplay between Abscisic Acid and Gibberellins, as Related to Ethylene and Sugars, in Regulating Maturation of Non-Climacteric Fruit. Int J Mol Sci 2021; 22:ijms22020669. [PMID: 33445409 PMCID: PMC7826998 DOI: 10.3390/ijms22020669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
In this review, we address the interaction between abscisic acid (ABA) and gibberellins (GAs) in regulating non-climacteric fruit development and maturation at the molecular level. We review the interplay of both plant growth regulators in regulating these processes in several fruit of economic importance such as grape berries, strawberry, and citrus, and show how understanding this interaction has resulted in useful agronomic management techniques. We then relate the interplay of both hormones with ethylene and other endogenous factors, such as sugar signaling. We finally review the growing knowledge related to abscisic acid, gibberellins, and the genus Citrus. We illustrate why this woody genus can be considered as an emerging model plant for understanding hormonal circuits in regulating different processes, as most of the finest work on this matter in recent years has been performed by using different Citrus species.
Collapse
Affiliation(s)
- Fernando Alferez
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
- Correspondence: ; Tel.: +239-658-3426; Fax: +239-658-3403
| | - Deived Uilian de Carvalho
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
- AC Jardim Bandeirante, Centro de Ciências Agrárias, Universidade Estadual de Londrina, Jardim Portal de Versalhes 1 86057970, Londrina/PR 10011, Brazil
| | - Daniel Boakye
- Southwest Florida Research and Education Center, Department of Horticulture, University of Florida–Institute of Food and Agricultural Sciences (UF–IFAS), Immokalee, FL 34142, USA; (D.U.d.C.); (D.B.)
| |
Collapse
|
37
|
de Carvalho DU, Boakye DA, Gast T, Leite Junior RP, Alferez F. Determining Seed Viability During Fruit Maturation to Improve Seed Production and Availability of New Citrus Rootstocks. FRONTIERS IN PLANT SCIENCE 2021; 12:777078. [PMID: 34868177 PMCID: PMC8641648 DOI: 10.3389/fpls.2021.777078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
In recent years, the pressure for replanting and resetting huanglongbing (HLB or citrus greening) affected citrus groves has led to an inadequate seed supply for the most popular rootstock cultivars in the State of Florida, United States. Early fruit harvesting of citrus rootstock source trees might reduce fruit losses and enhance seed availability, especially in HLB-endemic and hurricane susceptible areas, if the physiological quality of the seeds is adequate. The effects of fruit maturity on seed quality and seedling performance of US-802, US-897, and US-942 citrus rootstocks were investigated for two consecutive growing seasons. The study included the evaluation of seed germination and nursery performance of the citrus rootstock seedlings. The germination test was performed in vitro, where seeds were hand-peeled, surface-sterilized and placed in culture tubes containing basal Murashige and Skoog medium. For the emergence test, seeds were sown in seedling trays containing sterilized growing substrate in a greenhouse with controlled-environment conditions. Rootstock fruits from all three varieties harvested in August and September had seeds with higher germination potential, as more than 90% of the seeds generated seedlings. US-942 had more % of emergence than US-802 and US-897, resulting in faster seed germination; in contrast, US-802 had the faster shoot growth rate. Assays on fruit abscission response showed that by August, fruit from all three varieties were responsive to ethylene and abscised, although response varied and was higher in US-942, suggesting the seeds were mature enough. Taken together, our findings indicate that fruits these three rootstocks can be harvested as early as August in contrast to the current procedures without losing germination potential. This will result in an increase in available seeds for nurseries in Florida.
Collapse
Affiliation(s)
- Deived Uilian de Carvalho
- Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
- Department of Crop Protection, Instituto de Desenvolvimento Rural do Paraná, Londrina, Brazil
| | - Daniel A. Boakye
- Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
| | - Tim Gast
- Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
| | | | - Fernando Alferez
- Southwest Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Immokalee, FL, United States
- *Correspondence: Fernando Alferez,
| |
Collapse
|
38
|
Fruit Ripening Development of ‘Valencia’ Orange Trees Grafted on Different ‘Trifoliata’ Hybrid Rootstocks. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae7010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of fruit ripening of ‘Valencia’ orange trees [Citrus sinensis (L.) Osb.] grafted on the following ‘Trifoliata’ hybrid rootstocks: ‘US-852’, IPEACS-256 and IPEACS-264 citrandarins, and F.80-3, ‘W-2’ citrumelo, and ‘Swingle’ citrumelo (control), was assessed in three different subtropical locations: Rancho Alegre (RA); São Sebastião da Amoreira (SSA); and São Jerônimo da Serra (SJS), Parana state, Brazil. The climate of the RA and SSA locations was classified as Cfa with hot summers, whereas that of the SJS location was Cfb with temperate summers, which are located at 380, 650, and 835 m a.s.l., respectively. A completely randomized block design with four replications and four trees per plot was used as a statistical model for each location. The soluble solids (SS) content, titratable acidity (TA), and the maturation index (MI) or ratio (SS/TA) of the juice, as well as the citrus color index (CCI) of fruit skin, were assessed monthly, beginning 200 days after flowering until harvest, totaling seven sampling dates. The data sets of each location were analyzed independently through a two-way analysis of variance (ANOVA) involving rootstocks in a split plot array in time (days) to allow for the assessment of the significance of the main effects, complemented by regression analysis. In general, the ripening of ‘Valencia’ orange fruits was influenced by the different ‘Trifoliata’ hybrid rootstocks. At the RA location, trees on IPEACS-256 and’ US-852’ citrandarins had the highest SS, and on ‘US-852’ citrandarin had the highest MI, reaching the MIim earlier than the other rootstocks. The highest CCI was achieved when trees were on IPEACS-256 citrandarin. At the SSA location, trees on ‘US-852’, IPEACS-256, and IPEACS-264 citrandarins had the highest SS, but on ‘US–852’ had the highest MI, reaching the earliest MIim among the rootstocks. The highest CCI was achieved when trees were on ‘US-852’ and IPEACS-256 citrandarins. In the SSJ location, there was no significant effect of the rootstocks on and of the variables of ‘Valencia’ orange fruit. This assessment can be useful in the planning of new orchards producing high-quality fruit with desirable features for the orange juice industry.
Collapse
|
39
|
Peixoto MA, Alves RS, Coelho IF, Evangelista JSPC, de Resende MDV, Rocha JRDASDC, e Silva FF, Laviola BG, Bhering LL. Random regression for modeling yield genetic trajectories in Jatropha curcas breeding. PLoS One 2020; 15:e0244021. [PMID: 33362265 PMCID: PMC7757908 DOI: 10.1371/journal.pone.0244021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Random regression models (RRM) are a powerful tool to evaluate genotypic plasticity over time. However, to date, RRM remains unexplored for the analysis of repeated measures in Jatropha curcas breeding. Thus, the present work aimed to apply the random regression technique and study its possibilities for the analysis of repeated measures in Jatropha curcas breeding. To this end, the grain yield (GY) trait of 730 individuals of 73 half-sib families was evaluated over six years. Variance components were estimated by restricted maximum likelihood, genetic values were predicted by best linear unbiased prediction and RRM were fitted through Legendre polynomials. The best RRM was selected by Bayesian information criterion. According to the likelihood ratio test, there was genetic variability among the Jatropha curcas progenies; also, the plot and permanent environmental effects were statistically significant. The variance components and heritability estimates increased over time. Non-uniform trajectories were estimated for each progeny throughout the measures, and the area under the trajectories distinguished the progenies with higher performance. High accuracies were found for GY in all harvests, which indicates the high reliability of the results. Moderate to strong genetic correlation was observed across pairs of harvests. The genetic trajectories indicated the existence of genotype × measurement interaction, once the trajectories crossed, which implies a different ranking in each year. Our results suggest that RRM can be efficiently applied for genetic selection in Jatropha curcas breeding programs.
Collapse
|
40
|
Musara C, Aladejana EB, Mudyiwa SM. Review of the nutritional composition, medicinal, phytochemical and pharmacological properties of Citrus reticulata Blanco (Rutaceae). F1000Res 2020. [DOI: 10.12688/f1000research.27208.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Citrus reticulata Blanco is a moderately-sized fruit tree widely used as herbal medicine worldwide. The nutritional composition, medicinal uses, phytochemistry and pharmacological properties of C. reticulata were critically reviewed in the current study. The literature linked to C. reticulata properties was obtained from multiple internet sources including Elsevier, Google Scholar, SciFinder, Web of Science, Pubmed, BMC, Science Direct, and Scopus. Ethnopharmacological research identified antioxidants such as vitamin C, carotenoids and phenolic compounds, also a source of sugars, organic acids, amino acids, pectins, minerals and volatile organic compounds as components of C. reticulata. As a medicinal plant, C. reticulata is used for the treatment of dyspepsia, gastro-intestinal distension, cough with profuse phlegm, hiccup and vomiting. The crude extracts of C. reticulata fruits have depicted anti-inflammatory, anticholesterolemic, analgesic, antiasthmatic, antiscorbutic, antiseptic, antitussive, carminative, expectorant, stomachic. With more people becoming nutrition-conscious, there has been an increase in the demand for the use of citrus fruits and their by-products as traditional medicines for conventional healthcare in developing countries.
Collapse
|
41
|
Nehela Y, Killiny N. Revisiting the Complex Pathosystem of Huanglongbing: Deciphering the Role of Citrus Metabolites in Symptom Development. Metabolites 2020; 10:E409. [PMID: 33066072 PMCID: PMC7600524 DOI: 10.3390/metabo10100409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Huanglongbing (HLB), formerly known as citrus greening disease, is one of the most devastating bacterial diseases in citrus worldwide. HLB is caused by 'Candidatus Liberibacter asiaticus' bacterium and transmitted by Diaphorina citri. Both 'Ca. L. asiaticus' and its vector manipulate the host metabolism to fulfill their nutritional needs and/or to neutralize the host defense responses. Herein, we discuss the history of HLB and the complexity of its pathosystem as well as the geographical distribution of its pathogens and vectors. Recently, our recognition of physiological events associated with 'Ca. L. asiaticus' infection and/or D. citri-infestation has greatly improved. However, the roles of citrus metabolites in the development of HLB symptoms are still unclear. We believe that symptom development of HLB disease is a complicated process and relies on a multilayered metabolic network which is mainly regulated by phytohormones. Citrus metabolites play vital roles in the development of HLB symptoms through the modulation of carbohydrate metabolism, phytohormone homeostasis, antioxidant pathways, or via the interaction with other metabolic pathways, particularly involving amino acids, leaf pigments, and polyamines. Understanding how 'Ca. L. asiaticus' and its vector, D. citri, affect the metabolic pathways of their host is critical for developing novel, sustainable strategies for HLB management.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
42
|
Morales J, Salvador A, Besada C, Navarro P, Bermejo A. Physico-chemical, sensorial and nutritional quality during the harvest season of 'Tango' mandarins grafted onto Carrizo Citrange and Forner-Alcaide no. 5. Food Chem 2020; 339:127781. [PMID: 32861931 DOI: 10.1016/j.foodchem.2020.127781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Abstract
'Tango' mandarin is becoming one of the most demanded varieties in the Mediterranean Region. However, no information on the quality of 'Tango' fruit in this citrus area has been reported. In this study, the physico-chemical, nutritional and sensorial quality of 'Tango' mandarins grafted onto Carrizo Citrange and FA5 rootstocks from two locations (Sevilla and Huelva) was evaluated by harvest season. The fruit from Sevilla exhibited lower levels of acids and sugars than those from Huelva, which was associated with a higher sandy soil percentage in the Huelva orchard. In both orchards, the FA5-produced fruit had higher sugars and acids. Flavonoids were affected mainly by location, and the Huelva fruit exhibited the highest levels. The highest vitamin C was for the FA5 fruit. The decreased antioxidant capacity observed throughout the harvest season was related to reduced vitamin C. The sensorial evaluation corroborated changes in the quality parameters.
Collapse
Affiliation(s)
- Julia Morales
- InstitutoValenciano de InvestigacionesAgrarias, Postharvest Department, 46113 Valencia, Spain
| | - Alejandra Salvador
- InstitutoValenciano de InvestigacionesAgrarias, Postharvest Department, 46113 Valencia, Spain.
| | - Cristina Besada
- InstitutoValenciano de InvestigacionesAgrarias, Postharvest Department, 46113 Valencia, Spain
| | - Pilar Navarro
- InstitutoValenciano de InvestigacionesAgrarias, Postharvest Department, 46113 Valencia, Spain
| | - Almudena Bermejo
- InstitutoValenciano de InvestigacionesAgrarias, Postharvest Department, 46113 Valencia, Spain
| |
Collapse
|
43
|
Ho KKHY, Ferruzzi MG, Wightman JD. Potential health benefits of (poly)phenols derived from fruit and 100% fruit juice. Nutr Rev 2020; 78:145-174. [PMID: 31532485 DOI: 10.1093/nutrit/nuz041] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
(Poly)phenol-rich diets have been associated with reduced risk of various diseases. Coffee and tea are typically identified as dietary sources of chlorogenic acid and flavan-3-ols; however, 100% fruit juice greatly contributes to anthocyanin, flavonol, flavan-3-ols, and flavanone intake, making them complementary sources of dietary (poly)phenols. Thus, the aim of this narrative review was to provide an overview of fruit (poly)phenols and their potential health benefits. Fruit (poly)phenols have been associated with several health benefits (eg, reduced risk of cardiovascular disease and neurocognitive benefits). Although perspectives on 100% fruit juice consumption are controversial due to the perception of sugar content, growing evidence supports the role of fruit in whole and 100% juice forms to provide consumer benefits in alignment with dietary guidance. However, differences in (poly)phenol profiles and bioavailability likely exist between whole fruit and 100% fruit juice due to processing and the presence/absence of fiber. Ongoing studies are better defining similarities and differences between whole fruit and 100% fruit juice to elucidate protective mechanisms and align with processing and consumer products.
Collapse
Affiliation(s)
- Kacie K H Y Ho
- Kacie K.H.Y. Ho is with the Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Mario G Ferruzzi
- Mario G. Ferruzzi is with the Department of Food Bioprocessing and Nutrition Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - JoLynne D Wightman
- JoLynne D. Wightman is with Welch Foods Inc, Concord, Massachusetts, USA
| |
Collapse
|
44
|
Mitalo OW, Otsuki T, Okada R, Obitsu S, Masuda K, Hojo Y, Matsuura T, Mori IC, Abe D, Asiche WO, Akagi T, Kubo Y, Ushijima K. Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4778-4796. [PMID: 32374848 PMCID: PMC7410192 DOI: 10.1093/jxb/eraa206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/01/2020] [Indexed: 05/02/2023]
Abstract
Peel degreening is an important aspect of fruit ripening in many citrus fruit, and previous studies have shown that it can be advanced by ethylene treatment or by low-temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To determine how natural peel degreening is regulated in lemon fruit (Citrus limon), we studied transcriptome and physiochemical changes in the flavedo in response to ethylene treatment and low temperatures. Treatment with ethylene induced rapid peel degreening, which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25 ºC, moderately low storage temperatures of 5-20 °C also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. Peel degreening of fruit on trees occurred in association with drops in ambient temperature, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit.
Collapse
Affiliation(s)
- Oscar W Mitalo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takumi Otsuki
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Rui Okada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Saeka Obitsu
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Daigo Abe
- National Agriculture and Food Research Organization, Shikoku Research Station, Zentsuji, Japan
| | - William O Asiche
- Department of Research and Development, Del Monte Kenya Ltd, Thika, Kenya
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Correspondence: or
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Correspondence: or
| |
Collapse
|
45
|
Antioxidant and antimicrobial activities of citrus essential oils from Argentina and the United States. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Khalid KA, Ahmed AMA, El-Gohary AE. Effect of growing seasons on the leaf essential oil composition of Citrus species that are cultivated in Egypt. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1749947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Khalid A. Khalid
- Medicinal and Aromatic Plants Department, National Research Centre , Cairo, Egypt
| | | | - Ahmed E. El-Gohary
- Medicinal and Aromatic Plants Department, National Research Centre , Cairo, Egypt
| |
Collapse
|
47
|
Nawaz R, Abbasi NA, Hafiz IA, Khalid A. Impact of varying agrometeorological indices on peel color and composition of Kinnow fruit (Citrus nobilis Lour x Citrus deliciosa Tenora) grown at different ecological zones. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2688-2704. [PMID: 32002999 DOI: 10.1002/jsfa.10300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kinnow orchards were selected in different ecological zones in districts Sargodha, Toba Tek Singh (TTS) and Vehari of the Punjab province, Pakistan. Three biological replicates in block form were applied by using analysis of variance techniques to assess varying agrometeorological indices impact on fruit color-development and peel composition. RESULTS Fruit samples were randomly collected on each month's end starting from August up to February. Chromameter was used for measuring coloring parameters and its values a*, b*, C* and L* were increased from August till February with a rapid elevation started at color-break stage, while hue angle (h*) rotated from 120° to 60° of portraying green to yellow shade. An increasing level of chlorophyll contents were noted in August till color-break at the end of October and then diminished afterwards. Whereas, carotenoids increased rapidly upon yellow tinting peel of Kinnow fruits till fully attained deep orange color at the end of February. Ascorbic acid content and total phenolic content (TPC) showed a decreasing trend whereas anthocyanins and antioxidant activity were increased from August to February, with unchanged flavonoids and flavonols level. Fruit firmness was gradually reduced till color-break with rapid reduction noted subsequently. Maturity index represented internal ripening directly increased with color-development. CONCLUSION Color development has directly influenced on maturity index and both were increased rapidly after color-break to afterwards. More color development with rapid reduction in chlorophyll, ascorbic acid and TPC level were seen in warm districts namely TTS and Vehari after color-break stage due to accumulating more agrometeorological indices. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rab Nawaz
- Department of Horticulture, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| | - Nadeem A Abbasi
- Department of Horticulture, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ishfaq A Hafiz
- Department of Horticulture, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| | - Azeem Khalid
- Department of Environmental Sciences, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
48
|
Killiny N, Nehela Y. Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions. PLANTS 2020; 9:plants9040426. [PMID: 32244406 PMCID: PMC7238152 DOI: 10.3390/plants9040426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Correspondence: ; Tel.: +1-863-956-8833
| | - Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
49
|
Evaluating the efficacy of chitosan and CMC incorporated with moringa leaf extracts on reducing peteca spot incidence on 'Eureka' lemon. Journal of Food Science and Technology 2019; 56:5074-5086. [PMID: 31741532 DOI: 10.1007/s13197-019-03980-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Lemon (Citrus limon L.) is one of the most cultivated citrus fruit in South Africa. In citrus packhouses, fruit are coated with commercial synthetic waxes to enhance shelflife. However, the use of waxes has been linked to peteca spot (PS) incidence in lemons. This study evaluated the efficacy of chitosan (CH) and carboxymethyl cellulose (CMC) incorporated with moringa leaf extracts (M) on reducing peteca spot incidence on 'Eureka' lemon. A total of 500 'Eureka' lemons were harvested from outside and inside canopy positions from a commercial orchard in KwaZulu-Natal, South Africa. Fruit were assigned to five coating treatments, namely; control, 1% M + CMC, 1% CMC, 1% CH and 1% M + CH. After coating, fruit were transferred into a cold room with delivery air temperature set at 3 °C for 12 weeks to induce the disorder. At each sampling week, peteca spot incidence, fruit physicochemical and phytochemical properties including color, mass, vitamin C, carotenoids, TSS, TA and phenolics were measured. The results showed that coating treatments and canopy position significantly affected PS incidence. Fruit coated with M + CMC, CMC, CH were less susceptible to PS development in both inside and outside canopy compared to the control and M + CH coated fruit. Coating treatments significantly affected phenolic and flavonoid concentration. Moreover, coating treatments significantly reduced mass loss, ascorbic acid loss and delayed color change of fruit. The results found in this study demonstrated the ability of either M + CMC, CMC, or CH as coating treatments for reducing PS in 'Eureka' lemon.
Collapse
|
50
|
Bouvet JPR, Urbaneja A, Monzó C. Effects of Citrus Overwintering Predators, Host Plant Phenology and Environmental Variables on Aphid Infestation Dynamics in Clementine Citrus. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1587-1597. [PMID: 31038668 DOI: 10.1093/jee/toz101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The Spirea citrus aphid, Aphis spiraecola Patch, and the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), are key pests of clementine mandarines in the Mediterranean basin. Severity of aphid infestations is determined by environmental variables, host plant phenology patterns, and the biological control exerted by their associated natural enemies. However, there is no information about the role these limiting and regulating factors play. Aphid densities, citrus phenology, and associated predators that overwinter in the crop were monitored weekly throughout two flush growth periods (February to July) in four clementine mandarin groves; relationships between these parameters and environmental variables (temperature and precipitation) were studied. Our results show exponential increase in aphid infestation levels to coincide with citrus phenological stages B3 and B4; shoots offer more space and nutritional resources for colony growth at these stages. Duration of these phenological stages, which was mediated by mean temperature, seems to importantly determine the severity of aphid infestations in the groves. Among those studied, the micro-coccinellids, mostly Scymnus species, were the only group of predators with the ability to efficiently regulate aphid populations. These natural enemies had the highest temporal and spatial demographic stability. Aphid regulation success was only achieved through early presence of natural enemies in the grove, at the aphid colonization phase. Our results suggest that conservation strategies aimed at preserving and enhancing Scymnus sp. populations may make an important contribution to the future success of the biological control of these key citrus pests.
Collapse
Affiliation(s)
- Juan Pedro Raul Bouvet
- Estación Experimental Agropecuaria (EEA) Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Yuquerí, Entre Ríos, Argentina
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - Alberto Urbaneja
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | - César Monzó
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| |
Collapse
|