1
|
Jašinskienė E, Sniečkutė I, Galminas I, Žemaitis L, Simutis M, Čaplinskienė M. Evaluation of Risk Factors and a Gene Panel as a Tool for Unexplained Infertility Diagnosis by Next-Generation Sequencing. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:271. [PMID: 40005388 PMCID: PMC11857236 DOI: 10.3390/medicina61020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Background and Objective: Unexplained infertility is a major challenge in reproductive medicine and requires advanced diagnostic approaches to identify the underlying factors accurately. This study aims to evaluate the utility of risk factor analysis and a gene panel in diagnosing unexplained infertility using the next-generation sequencing (NGS) technology. Our study aimed to characterize and identify risk and genetic factors associated with unexplained infertility. Materials and methods: A cohort of patients with unexplained infertility was comprehensively screened for risk factors and genetic variations using a targeted gene panel (10 couples with unexplained infertility (UI) and 36 fertile couples). 108 articles were selected (58 on female infertility and 50 on male infertility) presenting genes that may be associated with unexplained infertility. A gene panel for unexplained infertility was compiled based on the literature data. A customized virtual panel was created from the exome sequencing data. Results: In the female group, controls had a higher mean age, while in the male patients, both groups were similar in terms of age. Both gender groups had comparable BMI values. No significant associations (p > 0.05) between risk factors and unexplained infertility were found when evaluating anthropometric parameters and other sociodemographic characteristics. In two male patients (20%), a molecular defect was detected in NGS variants classified aspossible benign and probably benign In particular, missense variants were identified in the UGT2B7 and CATSPER2 genes, A molecular defect classified as probably damaging was found in five female patients (50%). In particular, missense variants were identified in the CAPN10, MLH3, HABP2, IRS1, GDF9, and SLC19A1 genes. Conclusions: The study emphasizes that unexplained infertility is often related to mechanisms beyond causative mutations and highlights the need for integrative genomic research involving broader gene panels and multi-faceted approaches, including transcriptomics and epigenetics, to uncover latent genetic predispositions.
Collapse
Affiliation(s)
- Eglė Jašinskienė
- Department of Biochemistry, Vytautas Magnus University, K. Donelaicio St. 58, 44248 Kaunas, Lithuania;
| | - Ieva Sniečkutė
- UAB Genomika, K. Barsausko St. 59, 51423 Kaunas, Lithuania; (I.S.); (I.G.); (L.Ž.); (M.S.)
| | - Ignas Galminas
- UAB Genomika, K. Barsausko St. 59, 51423 Kaunas, Lithuania; (I.S.); (I.G.); (L.Ž.); (M.S.)
| | - Lukas Žemaitis
- UAB Genomika, K. Barsausko St. 59, 51423 Kaunas, Lithuania; (I.S.); (I.G.); (L.Ž.); (M.S.)
| | - Mantas Simutis
- UAB Genomika, K. Barsausko St. 59, 51423 Kaunas, Lithuania; (I.S.); (I.G.); (L.Ž.); (M.S.)
| | - Marija Čaplinskienė
- Department of Biochemistry, Vytautas Magnus University, K. Donelaicio St. 58, 44248 Kaunas, Lithuania;
| |
Collapse
|
2
|
Esteves SC. From Double Helix to Double Trouble: Sperm DNA Fragmentation Unveiled - A Reproductive Urologist Perspective (AUA Bruce Stewart Memorial Lecture - ASRM 2024). Int Braz J Urol 2025; 51:e20249924. [PMID: 39556852 PMCID: PMC11869925 DOI: 10.1590/s1677-5538.ibju.2024.9924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Sandro C. Esteves
- ANDROFERTClínica de Andrologia e Reprodução HumanaCampinasBrasilANDROFERT, Clínica de Andrologia e Reprodução Humana, Campinas, Brasil
- Universidade Estadual de CampinasDepartamento de CirurgiaCampinasBrasilDepartamento de Cirurgia (Disciplina de Urologia), Universidade Estadual de Campinas (UNICAMP), Campinas, Brasil
- Aarhus UniversityFaculty of HealthDepartment of Clinical MedicineAarhusDenmarkFaculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Qamar H, Bibi S, Qadeer Z, Muzammil F, Batool M, Aslam S, Akram A, Arshad A, Irfan M. Association of ESR1 Xba1 (rs9340799) With Male Infertility: A Systematic Review and Meta-Analysis. Am J Mens Health 2025; 19:15579883251319134. [PMID: 39989275 PMCID: PMC11848868 DOI: 10.1177/15579883251319134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Variations in the estrogen receptor genes, particularly the Xba1 (rs9340799) SNP in the ESR1 gene, may influence the effects of estrogen on male fertility. Results from previous studies on this SNP for male infertility have been inconclusive. This review aimed to determine the association of ESR1 Xba1 (rs9340799) with male infertility. Relevant case-control studies published in English were searched from Google Scholar, Embase, Scopus, Web of Science, Cochrane Library, and PubMed using keywords of ESR, polymorphism, and male infertility. Studies on animals, reviews, and abstracts were excluded. Pooled odds ratios (ORs) were calculated for four genetic models, with heterogeneity assessed by I2. A fixed or random effect model was applied based on I2, and trial sequential analysis (TSA) was conducted with 5% significance for type I error and 95% power. ESR1 expression levels were examined in testes, hypothalamus, prostate, and pituitary using GTEx Analysis. Nine studies (four Asian, four Caucasian, one African) met the criteria. The G allele was protective against infertility overall (OR: 0.80; 95% confidence interval [CI] = [0.70, 0.92]) and in Caucasian men (OR: 0.71; 95% CI = [0.54, 0.92]). Lower infertility risk was observed in Asian (AA vs. GG OR: 0.65; 95% CI = [0.43, 0.98]) and Caucasian men (OR: 0.49; 95% CI = [0.28, 0.83]). TSA indicated no further studies are likely to change these results. No significant change in expression of ESR1 was observed due to this SNP. The present meta-analysis suggests that the SNP Xba1 (rs9340799) in ESR1 is protective against male infertility, with current data sufficient to confirm these findings.
Collapse
Affiliation(s)
- Hania Qamar
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Sadia Bibi
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Zeeshan Qadeer
- Department of Urology, Rawalpindi Medical University & Allied Hospitals, Rawalpindi, Pakistan
| | - Faiza Muzammil
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Masooma Batool
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ayesha Akram
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Adina Arshad
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Irfan
- Department of Zoology, Wildlife, and Fisheries, Pir Mehr Ali Shah, Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
4
|
Feng J, Rubbi L, Kianian R, Mills JN, Osadchiy V, Sigalos JT, Eleswarapu SV, Pellegrini M. Epigenetic aging of semen is associated with inflammation. Epigenetics 2024; 19:2436304. [PMID: 39637179 PMCID: PMC11622584 DOI: 10.1080/15592294.2024.2436304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Male infertility has been a primary cause of global infertility, affecting 8-12% of couples worldwide. Previous studies have shown that semen quality decreases with advanced aging with an increased presence of inflammatory cells. In this study, we examined changes in the epigenome across a diverse cohort that includes both fertile and infertile men. We also compare the age-associated changes in semen to those observed in buccal swabs in order to characterize differences in epigenetic aging across diverse tissues. We found that variations in the semen methylome associated with aging are linked to inflammatory genes. Many age-associated sites are demethylated with advanced aging and are associated with the activation of inflammatory pathways. By contrast, we do not observe age-associated changes in inflammatory genes in buccal swab methylomes, which instead are characterized by changes to bivalent promoters. Our findings highlight the potential of epigenetic markers as indicators of male reproductive health.
Collapse
Affiliation(s)
- Junxi Feng
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA
| | - Reza Kianian
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jesse Nelson Mills
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vadim Osadchiy
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John Tucker Sigalos
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sriram Venkata Eleswarapu
- Division of Andrology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA ,USA
| |
Collapse
|
5
|
Havel SL, Griswold MD. The action of retinoic acid on spermatogonia in the testis. Curr Top Dev Biol 2024; 161:143-166. [PMID: 39870432 DOI: 10.1016/bs.ctdb.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (Aundiff), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the Aundiff population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the Aundiff population is the determining factor that induces this change. Sertoli cells, omnipresent, nurse cells within the mammalian testis are responsible for synthesizing the atRA that prompts this change in the neonatal testicular environment. The mechanism of atRA synthesis and signaling has been robustly explored and, in this review, we have summarized what is currently known about the action of testicular atRA at the onset of spermatogenesis. We have combined this with evidence gained from prominent genetic studies that have further elucidated the function of genes critical to atRA synthesis. We have additionally described the effects of the first pulse of atRA delivered to the germ cells of the testis, which has been investigated using WIN 18,446 treatment which prevents atRA synthesis and induces spermatogenic synchrony. This method provides unparalleled resolution into cell and stage specific testicular changes, and combined with transgenic animal models, has allowed researchers to elucidate much regarding the onset of spermatogenesis.
Collapse
Affiliation(s)
- Shelby L Havel
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States.
| |
Collapse
|
6
|
Nam HJ, Park MJ, Joo BS, Koo YK, Kim S, Lee SD, Park HJ. Effects of Perilla frutescens Var. Acuta in Busulfan-Induced Spermatogenesis Dysfunction Mouse Model. World J Mens Health 2024; 42:810-820. [PMID: 38449453 PMCID: PMC11439800 DOI: 10.5534/wjmh.230254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 03/08/2024] Open
Abstract
PURPOSE The leaves of Perilla frutescens var. acuta (PFA) are generally reported to have antioxidant, anti-allergic, anti-inflammatory, and antitumor effects and commonly used as a traditional medicine in East Asia. This study aimed to investigate the protective effect and antioxidant activity of PFA on busulfan-induced testicular dysfunction, histological damage, oxidative stress (OS), sperm quality, and hormone levels using a mouse model. MATERIALS AND METHODS C57BL/6 male mice were divided into four groups: control, busulfan-only treated, and varying concentrations of PFA (100 and 200 mg/kg) with busulfan. In the busulfan group, 40 mg/kg of busulfan was intraperitoneally injected to induce azoospermia. Mice were orally administered PFA for 35 consecutive days after busulfan administration. Samples were collected and assessed for testis/body weight, testicular histopathology, sperm quality, serum hormone levels, and OS to evaluate the effects of PFA treatment on spermatogenesis dysfunction induced by busulfan. RESULTS The busulfan-induced testicular dysfunction model showed reduced testis weight, adverse histological changes, significantly decreased sex hormones and sperm quality, and attenuated OS. These results indicate that PFA treatment significantly increased testis weight, testis/body weight, epididymal sperm count, motility, and testosterone level compared with busulfan alone. PFA treatment also attenuated the busulfan-induced histological changes. Furthermore, compared with mice treated with busulfan alone, PFA supplementation upregulated the testicular mRNA expression of the antioxidant enzymes superoxide dismutase 1 (Sod1) and glutathione peroxidase 1 (Gpx1), with a decrease in malondialdehyde (MDA) production and an increase in SOD and GPx activities. CONCLUSIONS This study shows that PFA exerts a protective effect against testicular damage by attenuating OS induced by busulfan. Our results suggest that PFA is a potentially relevant drug used to decrease the side effects induced by busulfan on testicular function and sperm during cancer chemotherapy.
Collapse
Affiliation(s)
- Hyung Jong Nam
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Min Jung Park
- Department of Technical Research, Genoheal, Seoul, Korea
- Department of R&D Center, The Korea Institute for Public Sperm Bank, Busan, Korea
| | - Bo Sun Joo
- Department of Technical Research, Genoheal, Seoul, Korea
- Department of R&D Center, The Korea Institute for Public Sperm Bank, Busan, Korea
- Infertility Institute, Pohang Women's Hospital, Pohang, Korea
| | | | - SukJin Kim
- Department of R&I Center, COSMAXBIO, Seongnam, Korea
| | - Sang Don Lee
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Department of Urology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea.
| |
Collapse
|
7
|
Yessirkepov M, Kocyigit BF, Zhakipbekov K, Adilbekov E, Sultanbekov K, Akaltun MS. Uncovering the link between inflammatory rheumatic diseases and male reproductive health: a perspective on male infertility and sexual dysfunction. Rheumatol Int 2024; 44:1621-1636. [PMID: 38693253 PMCID: PMC11344082 DOI: 10.1007/s00296-024-05602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Inflammatory rheumatic diseases (IRDs) refer to a range of persistent disorders that have a major influence on several physiological systems. Although there is much evidence connecting IRDs to sexual dysfunction and fertility problems, research specifically focusing on male infertility in relation to these diseases is sparse. This review addresses the complicated connection between IRDs and male infertility, emphasising the physiological, psychological, and pharmacological aspects that influence reproductive health outcomes in men with rheumatic conditions. We explore the effects of IRDs and their treatments on many facets of male reproductive well-being, encompassing sexual functionality, semen characteristics, and hormonal balance. Additionally, we present a comprehensive analysis of the present knowledge on the impact of several categories of anti-rheumatic drugs on male reproductive function. Although there is an increasing awareness of the need of addressing reproductive concerns in individuals IRDs, there is a noticeable lack of research especially dedicated to male infertility. Moving forward, more comprehensive research is needed to determine the prevalence, risk factors, and mechanisms driving reproductive difficulties in males with IRDs. We can better assist the reproductive health requirements of male IRD patients by expanding our understanding of male infertility in the setting of rheumatic disorders and implementing holistic methods to care.
Collapse
Affiliation(s)
- Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Burhan Fatih Kocyigit
- Department of Physical Medicine and Rehabilitation, University of Health Sciences, Adana City Research and Training Hospital, Adana, Türkiye, Turkey
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Kassymkhan Sultanbekov
- Department Social Health Insurance and Public Health, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Mazlum Serdar Akaltun
- Faculty of Medicine, Department of Physical Medicine and Rehabilitaton, Gaziantep University, Gaziantep, Türkiye, Turkey.
| |
Collapse
|
8
|
Chen Y, Hasegawa A, Wakimoto Y, Shibahara H. Update on the research on the antigens of anti-sperm antibodies over the last decade. J Reprod Immunol 2024; 164:104292. [PMID: 38964133 DOI: 10.1016/j.jri.2024.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
This review summarizes the advancements over a decade of research on antigens of anti-sperm antibodies (ASAs), which are key to male immune infertility. Despite the progress in assisted reproductive technologies, understanding the roles and mechanisms of ASAs and their antigens remains vital for immune infertility management. We conducted a comprehensive literature search on PubMed from January 2013 to December 2023 using the following keywords: "anti-sperm antibody," "sperm antigen," and "immune infertility." In this review, we focus on the discoveries in sperm antigen identification and characterization through proteomics, gene disruption technology, and immunoinformatics, along with the development of fertility biomarkers. Here, we discuss the clinical applications of improved ASA detection methods and the progress in the development of immunocontraceptive vaccines. The intersection of advanced diagnostic techniques and vaccine development represents a promising frontier in reproductive health. The findings also highlight the need for standardized ASA detection methods and a comprehensive molecular-level approach to understanding ASA-related infertility. These insights underscore the significance of ongoing reproductive immunology research in enhancing clinical fertility outcomes and contraceptive vaccine development.
Collapse
Affiliation(s)
- Yuekun Chen
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Akiko Hasegawa
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Yu Wakimoto
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|
9
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Omidvar-Mehrabadi A, Ebrahimi F, Shahbazi M, Mohammadnia-Afrouzi M. Cytokine and chemokine profiles in women with endometriosis, polycystic ovary syndrome, and unexplained infertility. Cytokine 2024; 178:156588. [PMID: 38555853 DOI: 10.1016/j.cyto.2024.156588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Numerous factors (including immunological, congenital, hormonal, and morphological disorders) can lead to infertility. In this regard, 3 specific diseases associated with infertility are discussed in this review study (i.e., polycystic ovary syndrome [PCOS], endometriosis [EMS], and unexplained infertility [UI]). PCOS is a common endocrine disorder characterized by chronic low-grade inflammation, and EMS is a benign disease characterized by the presence of ectopic endometrial tissue. UI refers to couples who are unable to conceive for no known reason. Conception and pregnancy are significantly affected by the immune system; in this regard, chemokines and cytokines play important roles in the regulation of immune responses. Patients with PCOS, EMS, and UI have altered cytokine and chemokine profiles, suggesting that dysregulation of these molecules may contribute to infertility in these conditions. Accordingly, the issue of infertility is addressed in this review study, a condition that affects approximately 16% of couples worldwide.
Collapse
Affiliation(s)
| | - Fateme Ebrahimi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | |
Collapse
|
11
|
Özden Z, Öz Bağcı F, Çiçek G, Aktan TM, Duman S. Investigation of the Effect of Hafnium Chloride on Sperm Viability and Motility in Normospermic Cases: An In Vitro Study. Cureus 2024; 16:e62084. [PMID: 38989327 PMCID: PMC11236213 DOI: 10.7759/cureus.62084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
INTRODUCTION Hafnium alloys are employed in medical applications due to their biocompatibility and high corrosion resistance. These alloys have demonstrated osteogenic and antimicrobial activities in surgical implants and have been utilized in the treatment of sarcoma. Additionally, a sensor based on hafnium nanoparticles has been reported for the detection of coronavirus disease 2019. Despite the increasing usage of hafnium, a literature review reveals no studies examining its effects on sperm in both human and animal species. METHODS Semen samples were analyzed according to the 2010 World Health Organization (WHO) criteria, and 20 normospermic specimens were included in the study. Three groups were formed: control, hafnium chloride 2 mg/mL, and 4 mg/mL. Motility and viability were assessed in all groups at the 20th and 40th minutes. RESULTS The decrease in viable sperm count was found to be significant in the 2 mg/ml HfCl4 group (difference: 12.73 ± 0.8, p<0.001) and the 4 mg/ml HfCl4 group (difference: 41.72 ± 1.34, p<0.001) compared to the control group. A time-dependent decrease in sperm viability was significant across all groups (difference: 8.93 ± 0.59, p<0.001). The decrease in viable sperm count in the 4 mg/ml HfCl4 group was significant when compared to the 2 mg/ml HfCl4 group (difference: 29 ± 1.27, p<0.001). The decrease in total motile sperm count was observed in both the 2 mg/ml HfCl4 group (difference: 12.80 ± 1.30, p<0.001) and the 4 mg/ml HfCl4 group (difference: 35.63 ± 1.12, p<0.001) compared to the control group. Additionally, the decrease in total motile sperm count in the 4 mg/ml HfCl4 group was significant compared to the 2 mg/ml HfCl4 group (difference: 22.80 ± 1.60, p<0.001). A time-dependent decrease in total motile sperm count was also significant (difference: 6.03 ± 0.49, p<0.001). CONCLUSION The study determined that hafnium chloride negatively affects sperm motility and viability in vitro. These effects may be due to the presence of an acidic environment. It has been demonstrated that instruments containing this element may pose a potential risk.
Collapse
Affiliation(s)
- Zülkar Özden
- Histology and Embryology, Rize Training and Research Hospital, Rize, TUR
| | - Fatma Öz Bağcı
- Histology and Embryology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, TUR
| | - Gülsemin Çiçek
- Histology and Embryology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, TUR
| | - Tahsin Murad Aktan
- Histology and Embryology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, TUR
| | - Selçuk Duman
- Histology and Embryology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, TUR
| |
Collapse
|
12
|
Bdeir R, Al-Keilani MS, Khamaiseh K. Effects of the Neuropeptides Pituitary Adenylate Cyclase Activating Polypeptide and Vasoactive Intestinal Peptide in Male Fertility. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:652. [PMID: 38674298 PMCID: PMC11052015 DOI: 10.3390/medicina60040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males.
Collapse
Affiliation(s)
- Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan
| | - Maha S. Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan;
| | - Khaldoun Khamaiseh
- Department of Obstetrics & Gynecology, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan;
- Faculty of Medicine, Al-Balqa University, P.O. Box 206, Al-Salt 19117, Jordan
| |
Collapse
|
13
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
14
|
Bahmyari S, Khatami SH, Taghvimi S, Rezaei Arablouydareh S, Taheri-Anganeh M, Ghasemnejad-Berenji H, Farazmand T, Soltani Fard E, Solati A, Movahedpour A, Ghasemi H. MicroRNAs in Male Fertility. DNA Cell Biol 2024; 43:108-124. [PMID: 38394131 DOI: 10.1089/dna.2023.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Farazmand
- Departmant of Gynecology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
15
|
Chen Y, Meng F, Liu Y, Zhu C, Ling Y, Liu C, Li L, Liu Y, He X, Cao J, Zhang Y. Effects of resveratrol on DLD and NDUFB9 decrease in frozen semen of Mongolian sheep. Cryobiology 2024; 114:104791. [PMID: 37956782 DOI: 10.1016/j.cryobiol.2023.104791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Mongolian sheep are a breed of sheep in China known for their excellent cold and drought resistance. Sperm from Mongolian sheep are often cryopreserved to improve breeding outcomes. However, cryopreservation of sperm often results in issues such as reduced vitality and altered morphology. Therefore, the objective of this study was to investigate the impact of the cryoprotectant resveratrol on frozen sperm from Mongolian sheep, specifically examining its effects on key proteins during cryopreservation. In this study, sperm samples were obtained from three adult Mongolian rams and processed through semen centrifugation. The sperm motility parameters of Fresh Sperm Group (FR), Resveratrol added before freezing group (FF-Res), Resveratrol-free frozen sperm group (FT), and Resveratrol added after freeze-thawing group (FA-Res) were determined. The tandem mass tags (TMT) peptide labeling combined with LC-MS/MS was used for proteomic analysis of the total proteins in FR and FT groups. A total of 2651 proteins were identified, among which 41 proteins were upregulated and 48 proteins were downregulated after freezing. In-depth bioinformatics analysis of differentially abundant proteins (DAPs) revealed their close association with the tricarboxylic acid cycle (TCA) and oxidative phosphorylation pathway. The energy-related protein dihydrolipoamide dehydrogenase (DLD) and the reactive oxygen species (ROS)-related protein NADH dehydrogenase 1 beta subcomplex subunit 9 (NDUFB9) exhibited significant decreases, indicating their potential role as key proteins contributing to reduced sperm vitality. The study demonstrated that the addition of resveratrol (RES) to semen could elevate the expression levels of DLD and NDUFB9 proteins. This study represents the pioneering proteomic analysis of Mongolian ram sperm before and after cryopreservation, establishing the significance of DLD and NDUFB9 as key proteins influencing the decline in vitality following cryopreservation of Mongolian ram sperm. These findings clarify that resveratrol can enhance the levels of DLD and NDUFB9 proteins in cryopreserved Mongolian ram sperm, consequently enhancing their vitality.
Collapse
Affiliation(s)
- Yuting Chen
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China
| | - Fanhua Meng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China.
| | - Yang Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China
| | - Chunxiao Zhu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China
| | - Chunxia Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China
| | - Lu Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China
| | - Yongbin Liu
- Inner Mongolia University, Hohhot, 010021, China
| | - Xiaolong He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China.
| | - Yanru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot, 010018, China; Inner Mongolia Endemic Livestock Biotechnology Innovation Team, China.
| |
Collapse
|
16
|
Neto FTL, Viana MC, Cariati F, Conforti A, Alviggi C, Esteves SC. Effect of environmental factors on seminal microbiome and impact on sperm quality. Front Endocrinol (Lausanne) 2024; 15:1348186. [PMID: 38455659 PMCID: PMC10918436 DOI: 10.3389/fendo.2024.1348186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Objective This review provides a comprehensive overview of the existing research on the seminal microbiome and its association with male infertility, while also highlighting areas that warrant further investigation. Methods A narrative review was conducted, encompassing all relevant studies published between 1980-2023 on the male reproductive tract microbiome in humans. This review considered studies utilizing culture-based, polymerase chain reaction (PCR)-based, and next-generation sequencing (NGS)-based methodologies to analyze the microbiome. Data extraction encompassed sample types (semen or testicular tissue), study designs, participant characteristics, employed techniques, and critical findings. Results We included 37 studies comprising 9,310 participants. Among these, 16 studies used culture-based methods, 16 utilized NGS, and five employed a combination of methods for microorganism identification. Notably, none of the studies assessed fungi or viruses. All NGS-based studies identified the presence of bacteria in all semen samples. Two notable characteristics of the seminal microbiome were observed: substantial variability in species composition among individuals and the formation of microbial communities with a dominant species. Studies examining the testicular microbiome revealed that the testicular compartment is not sterile. Interestingly, sexually active couples shared 56% of predominant genera, and among couples with positive cultures in both partners, 61% of them shared at least one genital pathogen. In couples with infertility of known causes, there was an overlap in bacterial composition between the seminal and vaginal microbiomes, featuring an increased prevalence of Staphylococcus and Streptococcus genera. Furthermore, the seminal microbiome had discernible effects on reproductive outcomes. However, bacteria in IVF culture media did not seem to impact pregnancy rates. Conclusion Existing literature underscores that various genera of bacteria colonize the male reproductive tract. These organisms do not exist independently; instead, they play a pivotal role in regulating functions and maintaining hemostasis. Future research should prioritize longitudinal and prospective studies and investigations into the influence of infertility causes and commonly prescribed medication to enhance our understanding of the seminal microbiota's role in reproductive health.
Collapse
Affiliation(s)
| | - Marina C. Viana
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
| | - Federica Cariati
- Department of Public Health, University of Naples Federico II, Napoli, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples, Federico II, Naples, Italy
| | - Carlo Alviggi
- Department of Public Health, University of Naples Federico II, Napoli, Italy
| | - Sandro C. Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
van den Berg JS, Molina NM, Altmäe S, Arends B, Steba GS. A systematic review identifying seminal plasma biomarkers and their predictive ability on IVF and ICSI outcomes. Reprod Biomed Online 2024; 48:103622. [PMID: 38128376 DOI: 10.1016/j.rbmo.2023.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/23/2023]
Abstract
The diverse nature and high molecule concentration of seminal plasma (SP) makes this fluid a good potential source for a potential biomarker that could predict assisted reproductive technology (ART) outcomes. Currently, semen quality parameters cannot accurately predict ART outcomes. A systematic literature search was conducted to identify human SP biomarkers with potential predictive ability for the outcomes of IVF and intracytoplasmic sperm injection. Observational cohort and case-control studies describing the association between biomarkers in human SP and the outcome of infertile men attending for ART were included. Forty-three studies were selected, reporting on 89 potential SP biomarkers (grouped as oxidative stress, proteins glycoproteins, metabolites, immune system components, metals and trace elements and nucleic acids). The present review supports 32 molecules in SP as potentially relevant biomarkers for predicting ART outcomes; 23 molecules were reported once and nine molecules were reported in more than one study; IL-18 and TGF-β1-IL-18 ratio were confirmed in distinct studies. This review presents the most comprehensive overview of relevant SP biomarkers to predict ART outcomes to date, which is of clinical interest for infertility investigations and assisted reproduction; nevertheless, its potential is under-exploited. This review could serve as starting point for designing an all-encompassing study for biomarkers in SP and their predictive ability for ART outcomes, and for developing a non-invasive diagnostic tool.
Collapse
Affiliation(s)
- Jonna S van den Berg
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Brigitte Arends
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Gaby Sarina Steba
- Department of Reproductive Medicine and Gynaecology, Division Female and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Akbari R, Panahi Z, Ghaemi M, Hantoushzadeh S. The knowledge domain and emerging trends in the infertility field: A 67-year retrospective study. Health Care Women Int 2024:1-31. [PMID: 38231619 DOI: 10.1080/07399332.2024.2304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Infertility is a significant problem influencing many couples. Our purpose was to assess the field of infertility in Obstetrics and Gynecology from 1955 to 2022 reviewing 3575 documents found in the Web of Science database. Most articles were in the areas of Reproductive Biology, Fertility, Endometriosis & Hysterectomy, and Chromosome Disorders. We found publication has increased dramatically since 1989. Agarwal, Thomas, and Sharma; United States, England, and Canada; Fertility and Sterility, Human Reproduction, and AJOG were the most-cited authors, countries, and journals, respectively. We discovered five substantive clusters: male infertility factors, female infertility factors, causes and treatment of infertility, the consequence of infertility, and assisted reproductive techniques. Using bibliometric review (Co-citation analysis) six research areas were found: semen analysis and sperm morphology, regional differences in the psychological effects of infertility, unexplained infertility, endometriosis, diagnosis and treatment of infertility, and polycystic ovary syndrome. Despite advances in understanding infertility, further research is needed.
Collapse
Affiliation(s)
- Razieh Akbari
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Panahi
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Marjan Ghaemi
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sedigheh Hantoushzadeh
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
20
|
Corda PO, Moreira J, Howl J, Oliveira PF, Fardilha M, Silva JV. Differential Proteomic Analysis of Human Sperm: A Systematic Review to Identify Candidate Targets to Monitor Sperm Quality. World J Mens Health 2024; 42:71-91. [PMID: 37118964 PMCID: PMC10782124 DOI: 10.5534/wjmh.220262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE The advent of proteomics provides new opportunities to investigate the molecular mechanisms underlying male infertility. The selection of relevant targets based on a single analysis is not always feasible, due to the growing number of proteomic studies with conflicting results. Thus, this study aimed to systematically review investigations comparing the sperm proteome of normozoospermic and infertile men to define a panel of proteins with the potential to be used to evaluate sperm quality. MATERIALS AND METHODS A literature search was conducted on PubMed, Web of Science, and Scopus databases following the PRISMA guidelines. To identify proteins systematically reported, first the studies were divided by condition into four groups (asthenozoospermia, low motility, unexplained infertility, and infertility related to risk factors) and then, all studies were analysed simultaneously (poor sperm quality). To gain molecular insights regarding identified proteins, additional searches were performed within the Human Protein Atlas, Mouse Genome Informatics, UniProt, and PubMed databases. RESULTS Thirty-two studies were included and divided into 4 sub-analysis groups. A total of 2752 proteins were collected, of which 38, 1, 3 and 2 were indicated as potential markers for asthenozoospermia, low motility, unexplained infertility and infertility related to risk factors, respectively, and 58 for poor sperm quality. Among the identified proteins, ACR, ACRBP, ACRV1, ACTL9, AKAP4, ATG3, CCT2, CFAP276, CFAP52, FAM209A, GGH, HPRT1, LYZL4, PRDX6, PRSS37, REEP6, ROPN1B, SPACA3, SOD1, SPEM1, SPESP1, SPINK2, TEKT5, and ZPBP were highlighted due to their roles in male reproductive tissues, association with infertility phenotypes or participation in specific biological functions in spermatozoa. CONCLUSIONS Sperm proteomics allows the identification of protein markers with the potential to overcome limitations in male infertility diagnosis and to understand changes in sperm function at the molecular level. This study provides a reliable list of systematically reported proteins that could be potential targets for further basic and clinical studies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jéssica Moreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Pedro F Oliveira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Joana Vieira Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Bashiri Z, Gholipourmalekabadi M, Khadivi F, Salem M, Afzali A, Cham TC, Koruji M. In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell Tissue Res 2023; 394:393-421. [PMID: 37721632 DOI: 10.1007/s00441-023-03824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Afzali
- Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| |
Collapse
|
22
|
Lukkani LK, Naorem LD, Muthaiyan M, Venkatesan A. Identification of potential key genes related to idiopathic male infertility using RNA-sequencing data: an in-silico approach. HUM FERTIL 2023; 26:1149-1163. [PMID: 36369953 DOI: 10.1080/14647273.2022.2144771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/23/2022] [Indexed: 11/14/2022]
Abstract
Among reproductive health problems, idiopathic infertility affects married couples. The current diagnosis of male infertility focuses on the concentration, motility, and morphology of sperm in the ejaculate. Since the molecular mechanism of idiopathic infertility is unknown, identification of Differentially Expressed Genes (DEGs) among the control and idiopathic infertile male can shed light on diagnosis and treatment. Here, we analyzed the dataset GSE65683 to identify DEGs in idiopathic human sperm in three groups of patients: (i) Timed Intercourse (TIC); (ii) Intrauterine Insemination (IUI); and (iii) Assisted Reproductive Technology (ART). The enrichment analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and GeneCodis for the DEGs. Protein-Protein Interaction (PPI) network of these DEGs were constructed using the STRING database. The network parameters such as degree and betweenness were calculated to select the important hubs. In total, 118 DEGs in TIC, 446 in IUI, and 188 in ART were identified. PPI network was constructed and identified critical top hub genes such as ACTB, BTBD6, EIF2S3, EIF3A, EIF4E, POLR2L, RPL4, RPL7, RPS11, RPL13, RPS15, RPL23, RPL27, RPL9, RPLP0 and UBA52 that may play an essential role in idiopathic male infertility. Thus, the identified hub genes may provide an insight into the molecular mechanism and contribute to discovering novel therapeutic targets and developing new strategies for idiopathic male infertility.
Collapse
Affiliation(s)
- Laxman Kumar Lukkani
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Leimarembi Devi Naorem
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mathavan Muthaiyan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amouda Venkatesan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
23
|
Hervás I, Rivera-Egea R, Pacheco A, Gil Julia M, Navarro-Gomezlechon A, Mossetti L, Garrido N. Elevated Sperm DNA Damage in IVF-ICSI Treatments Is Not Related to Pregnancy Complications and Adverse Neonatal Outcomes. J Clin Med 2023; 12:6802. [PMID: 37959265 PMCID: PMC10649005 DOI: 10.3390/jcm12216802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
This multicenter retrospective cohort study assesses the effect of high paternal DNA fragmentation on the well-being of the woman during pregnancy and the health of the newborn delivered. It was performed with clinical data from 488 couples who had a delivery of at least one newborn between January 2000 and March 2019 (243 used autologous oocytes and 245 utilized donated oocytes). Couples were categorized according to sperm DNA fragmentation (SDF) level as ≤15% or >15%, measured by TUNEL assay. Pregnancy, delivery, and neonatal outcomes were assessed. In singleton pregnancies from autologous cycles, a higher but non-significant incidence of pre-eclampsia, threatened preterm labor, and premature rupture of membranes was found in pregnant women from the >15%SDF group. Additionally, a higher proportion of children were born with low birth weight, although the difference was not statistically significant. After adjusting for potential confounders, these couples had lower odds of having a female neonate (AOR = 0.35 (0.1-0.9), p = 0.04). Regarding couples using donor's oocytes, pregnancy and neonatal outcomes were comparable between groups, although the incidence of induced vaginal labor was significantly higher in the >15% SDF group (OR = 7.4 (1.2-46.7), p = 0.02). Adjusted analysis revealed no significant association of elevated SDF with adverse events. In multiple deliveries from cycles using both types of oocytes, the obstetric and neonatal outcomes were found to be similar between groups. In conclusion, the presence of an elevated SDF does not contribute to the occurrence of clinically relevant adverse maternal events during pregnancies, nor does it increase the risk of worse neonatal outcomes in newborns. Nevertheless, a higher SDF seems to be related to a higher ratio of male livebirths.
Collapse
Affiliation(s)
- Irene Hervás
- IVIRMA Global Research Alliance, IVIRMA Rome, Via Federico Calabresi, 11, 00169 Rome, Italy; (I.H.); (L.M.)
| | - Rocio Rivera-Egea
- IVIRMA Global Research Alliance, IVIRMA Valencia, Andrology Laboratory and Sperm Bank, Plaza de la Policía Local 3, 46015 Valencia, Spain;
| | - Alberto Pacheco
- IVIRMA Global Research Alliance, IVIRMA Madrid, Andrology Laboratory and Sperm Bank, Av. del Talgo 68-70, 28023 Madrid, Spain;
- Faculty of Health Sciences, Alfonso X el Sabio University, Avda. de la Universidad, 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Maria Gil Julia
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106—Torre A, Planta 1ª, 46026 Valencia, Spain; (M.G.J.); (A.N.-G.)
| | - Ana Navarro-Gomezlechon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106—Torre A, Planta 1ª, 46026 Valencia, Spain; (M.G.J.); (A.N.-G.)
| | - Laura Mossetti
- IVIRMA Global Research Alliance, IVIRMA Rome, Via Federico Calabresi, 11, 00169 Rome, Italy; (I.H.); (L.M.)
| | - Nicolás Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106—Torre A, Planta 1ª, 46026 Valencia, Spain; (M.G.J.); (A.N.-G.)
| |
Collapse
|
24
|
Kaltsas A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1769. [PMID: 37893487 PMCID: PMC10608597 DOI: 10.3390/medicina59101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Oxidative stress is a significant factor in male infertility, compromising sperm function and overall reproductive health. As male infertility garners increasing attention, effective therapeutic interventions become paramount. This review investigates the therapeutic role of antioxidants in addressing male infertility. A detailed examination was conducted on antioxidants such as vitamin C, E, B12, D, coenzyme Q10, zinc, folic acid, selenium, l-carnitine, l-arginine, inositols, and alpha-lipoic acid. This analysis examines the methodologies, outcomes, and constraints of current clinical studies. Antioxidants show notable potential in counteracting the negative effects of oxidative stress on sperm. Based on the evidence, these antioxidants, individually or synergistically, can enhance sperm health and reproductive outcomes. However, certain limitations in the studies call for careful interpretation. Antioxidants are integral in tackling male infertility attributed to oxidative stress. The current findings underscore their therapeutic value, yet there's a pressing need for deeper, comprehensive research. Future studies should focus on refining dosage guidelines, identifying potential side effects, and discerning the most efficacious antioxidant combinations for male infertility solutions.
Collapse
Affiliation(s)
- Aris Kaltsas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
25
|
Pacheco RI, Cristo MI, Anjo SI, Silva AF, Sousa MI, Tavares RS, Sousa AP, Almeida Santos T, Moura-Ramos M, Caramelo F, Manadas B, Ramalho-Santos J, Amaral SG. New Insights on Sperm Function in Male Infertility of Unknown Origin: A Multimodal Approach. Biomolecules 2023; 13:1462. [PMID: 37892144 PMCID: PMC10605211 DOI: 10.3390/biom13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it was our aim to obtain new insight on UOMI, specifically on idiopathic (ID) and Unexplained male infertility (UMI), relying on a detailed evaluation of the male gamete, including functional, metabolic and proteomic aspects. For this purpose, 1114 semen samples, from males in couples seeking infertility treatment, were collected at the Reproductive Medicine Unit from the Centro Hospitalar e Universitário de Coimbra (CHUC), from July 2018-July 2022. Based on the couples' clinical data, seminal/hormonal analysis, and strict eligibility criteria, samples were categorized in 3 groups, control (CTRL), ID and UMI. Lifestyle factors and anxiety/depression symptoms were assessed via survey. Sperm samples were evaluated functionally, mitochondrially and using proteomics. The results of Assisted Reproduction Techniques were assessed whenever available. According to our results, ID patients presented the worst sperm functional profile, while UMI patients were similar to controls. The proteomic analysis revealed 145 differentially expressed proteins, 8 of which were specifically altered in ID and UMI samples. Acrosin (ACRO) and sperm acrosome membrane-associated protein 4 (SACA4) were downregulated in ID patients while laminin subunit beta-2 (LAMB2), mannose 6-phosphate isomerase (MPI), ATP-dependent 6-phosphofructokinase liver type (PFKAL), STAR domain-containing protein 10 (STA10), serotransferrin (TRFE) and exportin-2 (XPO2) were downregulated in UMI patients. Using random forest analysis, SACA4 and LAMB2 were identified as the sperm proteins with a higher chance of distinguishing ID and UMI patients, and their function and expression variation were in accordance with the functional results. No alterations were observed in terms of lifestyle and psychological factors among the 3 groups. These findings obtained in an experimental setting based on 3 well-defined groups of subjects, might help to validate new biomarkers for unknown origin male infertility (ID and UMI) that, in the future, can be used to improve diagnostics and treatments.
Collapse
Affiliation(s)
- Rita I. Pacheco
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria I. Cristo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Andreia F. Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria Inês Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Renata S. Tavares
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Paula Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
| | - Teresa Almeida Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Moura-Ramos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal
- Clinical Psychology Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | | | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Ramalho-Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Gomes Amaral
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
26
|
Alfaro Gómez M, Fernández-Santos MDR, Jurado-Campos A, Soria-Meneses PJ, Montoro Angulo V, Soler AJ, Garde JJ, Rodríguez-Robledo V. On Males, Antioxidants and Infertility (MOXI): Certitudes, Uncertainties and Trends. Antioxidants (Basel) 2023; 12:1626. [PMID: 37627621 PMCID: PMC10451353 DOI: 10.3390/antiox12081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Male infertility (MI) involves various endogenous and exogenous facts. These include oxidative stress (OS), which is known to alter several physiological pathways and it is estimated to be present at high levels in up to 80% of infertile men. That is why since the late 20th century, the relationship between OS and MI has been widely studied. New terms have emerged, such as Male Oxidative Stress Infertility (MOSI), which is proposed as a new category to define infertile men with high OS levels. Another important term is MOXI: Male, Antioxidants, and Infertility. This term refers to the hypothesis that antioxidants could improve male fertility without the use of assisted reproductive technology. However, there are no evidence-based antioxidant treatments that directly improve seminal parameters or birth ratio. In this regard, there is controversy about their use. While certain scientists argue against their use due to the lack of results, others support this use because of their safety profile and low price. Some uncertainties related to the use of antioxidants for treating MI are their questionable efficacy or the difficulties in knowing their correct dosage. In addition, the lack of quality methods for OS detection can lead to excessive antioxidant supplementation, resulting in "reductive stress". Another important problem is that, although the inflammatory process is interdependent and closely linked to OS, it is usually ignored. To solve these uncertainties, new trends have recently emerged. These include the use of molecules with anti-inflammatory and antioxidant potential, which are also able to specifically target the reproductive tissue; as well as the use of new methods that allow for reliable quantification of OS and a quality diagnosis. This review aims to elucidate the main uncertainties about MOXI and to outline the latest trends in research to develop effective therapies with clinically relevant outcomes.
Collapse
Affiliation(s)
- Manuel Alfaro Gómez
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
| | - María del Rocío Fernández-Santos
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Alejandro Jurado-Campos
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Pedro Javier Soria-Meneses
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Vidal Montoro Angulo
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - José Julián Garde
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Virginia Rodríguez-Robledo
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| |
Collapse
|
27
|
Balló A, Czétány P, Busznyákné KS, Márk L, Mike N, Török A, Szántó Á, Máté G. Oxido-Reduction Potential as a Method to Determine Oxidative Stress in Semen Samples. Int J Mol Sci 2023; 24:11981. [PMID: 37569357 PMCID: PMC10418886 DOI: 10.3390/ijms241511981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
There are different estimates for the incidence of infertility. Its occurrence may vary from area to area, but on average, it affects 15% of couples and 10-12% of men worldwide. Many aspects of infertility can be linked to reactive oxygen species (ROS) and the process of oxidative stress (OS). The association between poor semen quality and OS is well known. Unfortunately, there is no accepted protocol for the diagnosis and treatment of OS in andrology. Oxido-reduction potential (ORP) measurement is a new method for determining the ratio between oxidant and antioxidant molecules. Currently, ORP measurement is one of the fastest and most user-friendly methods of andrological OS determination and our goals were to confirm published correlations between ORP values and sperm parameters, examine how sperm concentration influences these results, and investigate whether intracellular ROS formations are also manifested in the ORP values or not after artificial ROS induction. Intracellular ROS formations were induced by menadione (superoxide anion inducer), hydrogen peroxide, and tert-butyl hydroperoxide (lipid peroxidation inducer) treatments; sperm parameters like motility and viability were determined with an SCA Scope system, and ORP changes were recorded by the Mioxsys system. Significant correlations were noticed among the ORP, spermatozoa concentration, motility, progressive motility, and viability. Nevertheless, only the ORP value after normalization with the sperm count correlated with these parameters. Due to normalization, very low and very high sperm concentrations can give misleading results. The means of the non-normalized ORP values were almost the same. All of the applied treatments resulted in decreases in the viability, motility, and progressive motility, and interestingly, altered ORP levels were detected. In addition, it was determined that seminal plasma had a significant protective effect on spermatozoa. The elimination of seminal plasma caused higher sensitivity of spermatozoa against used OS inducers, and higher ORP levels and decreased viabilities and motilities were measured. The ORP level could be a good indicator of male OS; however, in cases of low and high sperm counts, its result can be misleading. Overall, the conclusion can be drawn that ORP determination is a suitable method for detecting intracellular ROS accumulation, but it has limitations that still need to be clarified.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | | | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Nóra Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
28
|
Agarwal A, Farkouh A, Saleh R, Abdel-Meguid Hamoda TAA, Harraz AM, Kavoussi P, Arafa M, Salvio G, Rambhatla A, Toprak T, Gül M, Phuoc NHV, Boitrelle F, Birowo P, Ghayda RA, Cannarella R, Kuroda S, Durairajanayagam D, Zini A, Wyns C, Sarikaya S, Tremellen K, Mostafa T, Sokolakis I, Evenson DP, Henkel R, Zohdy W, Chung E, Ziouziou I, Falcone M, Russo GI, Al-Hashimi M, Calogero AE, Ko E, Colpi G, Lewis S, Serefoglu EC, Bahar F, Martinez M, Nguyen Q, Ambar RF, Bakircioglu ME, Kandil H, Mogharabian N, Sabbaghian M, Taniguchi H, Tsujimura A, Sajadi H, Ibrahim W, Atmoko W, Vogiatzi P, Gunes S, Gilani MAS, Roychoudhury S, Güngör ND, Hakim L, Adriansjah R, Kothari P, Jindal S, Amar E, Park HJ, Long TQT, Homa S, Karthikeyan VS, Zilaitiene B, Rosas IM, Marino A, Pescatori E, Ozer C, Akhavizadegan H, Garrido N, Busetto GM, Adamyan A, Al-Marhoon M, Elbardisi H, Dolati P, Darbandi M, Darbandi S, Balercia G, Pinggera GM, Micic S, Ho CCK, Moussa M, Preto M, Zenoaga-Barbăroşie C, Smith RP, Kosgi R, de la Rosette J, El-Sakka AI, Abumelha SM, Mierzwa TC, Ong TA, Banihani SA, Bowa K, Fukuhara S, Boeri L, Danacıoğlu YO, Gokalp F, Selim OM, Cho CL, Tadros NN, Ugur MR, Ozkent MS, Chiu P, Kalkanli A, Khalafalla K, Vishwakarma RB, Finocchi F, Andreadakis S, Giulioni C, Çeker G, Ceyhan E, Malhotra V, Yilmaz M, Timpano M, Barrett TL, Kim SHK, Ahn ST, Giacone F, Palani A, Duarsa GWK, Kadioglu A, Gadda F, Zylbersztejn DS, Aydos K, Kulaksız D, Gupte D, Calik G, Karna KK, Drakopoulos P, Baser A, Kumar V, Molina JMC, Rajmil O, Ferreira RH, Leonardi S, Avoyan A, Sogutdelen E, Franco G, Ramsay J, Ramirez L, Shah R. Controversy and Consensus on Indications for Sperm DNA Fragmentation Testing in Male Infertility: A Global Survey, Current Guidelines, and Expert Recommendations. World J Mens Health 2023; 41:575-602. [PMID: 37118960 PMCID: PMC10307662 DOI: 10.5534/wjmh.220282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE Sperm DNA fragmentation (SDF) testing was recently added to the sixth edition of the World Health Organization laboratory manual for the examination and processing of human semen. Many conditions and risk factors have been associated with elevated SDF; therefore, it is important to identify the population of infertile men who might benefit from this test. The purpose of this study was to investigate global practices related to indications for SDF testing, compare the relevant professional society guideline recommendations, and provide expert recommendations. MATERIALS AND METHODS Clinicians managing male infertility were invited to take part in a global online survey on SDF clinical practices. This was conducted following the CHERRIES checklist criteria. The responses were compared to professional society guideline recommendations related to SDF and the appropriate available evidence. Expert recommendations on indications for SDF testing were then formulated, and the Delphi method was used to reach consensus. RESULTS The survey was completed by 436 experts from 55 countries. Almost 75% of respondents test for SDF in all or some men with unexplained or idiopathic infertility, 39% order it routinely in the work-up of recurrent pregnancy loss (RPL), and 62.2% investigate SDF in smokers. While 47% of reproductive urologists test SDF to support the decision for varicocele repair surgery when conventional semen parameters are normal, significantly fewer general urologists (23%; p=0.008) do the same. Nearly 70% would assess SDF before assisted reproductive technologies (ART), either always or for certain conditions. Recurrent ART failure is a common indication for SDF testing. Very few society recommendations were found regarding SDF testing. CONCLUSIONS This article presents the largest global survey on the indications for SDF testing in infertile men, and demonstrates diverse practices. Furthermore, it highlights the paucity of professional society guideline recommendations. Expert recommendations are proposed to help guide clinicians.
Collapse
Affiliation(s)
- Ashok Agarwal
- Global Andrology Forum, American Center for Reproductive Medicine, Moreland Hills, OH, USA
- Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ala’a Farkouh
- Global Andrology Forum, American Center for Reproductive Medicine, Moreland Hills, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ahmed M. Harraz
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Amarnath Rambhatla
- Department of Urology, Henry Ford Health System, Vattikuti Urology Institute, Detroit, MI, USA
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Murat Gül
- Department of Urology, Selçuk University School of Medicine, Konya, Turkey
| | - Nguyen Ho Vinh Phuoc
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
- Department of Urology and Andrology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment and Development, Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ponco Birowo
- Department of Urology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Armand Zini
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Christine Wyns
- Department of Gynaecology-Andrology, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Selcuk Sarikaya
- Department of Urology, Gülhane Research and Training Hospital, University of Health Sciences, Ankara, Turkey
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, Australia
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ioannis Sokolakis
- Department of Urology, Martha-Maria Hospital Nuremberg, Nuremberg, Germany
| | | | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | - Wael Zohdy
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Imad Ziouziou
- Department of Urology, College of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Marco Falcone
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Manaf Al-Hashimi
- Department of Urology, Burjeel Hospital, Abu Dhabi, UAE
- Department of Urology, Clinical Urology, Khalifa University, College of Medicine and Health Sciences, Abu Dhabi, UAE
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Giovanni Colpi
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | | | - Ege Can Serefoglu
- Department of Urology, Biruni University School of Medicine, Istanbul, Turkey
| | - Fahmi Bahar
- Andrology Section, Siloam Sriwijaya Hospital, Palembang, Indonesia
| | - Marlon Martinez
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
| | - Quang Nguyen
- Center for Andrology and Sexual Medicine, Viet Duc University Hospital, Hanoi, Vietnam
- Department of Urology, Andrology and Sexual Medicine, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Rafael F. Ambar
- Department of Urology, Centro Universitario em Saude do ABC, Santo André, Brazil
- Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo André, Brazil
| | | | | | - Nasser Mogharabian
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hisanori Taniguchi
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Hesamoddin Sajadi
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Wael Ibrahim
- Department of Obstetrics Gynaecology and Reproductive Medicine, Fertility Care Center in Cairo, Cairo, Egypt
| | - Widi Atmoko
- Department of Urology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Paraskevi Vogiatzi
- Andromed Health & Reproduction, Fertility & Reproductive Health Diagnostic Center, Athens, Greece
| | - Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Nur Dokuzeylül Güngör
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and IVF Unit, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Lukman Hakim
- Department of Urology, Faculty of Medicine Universitas Airlangga, Universitas Airlangga Teaching Hospital, Surabaya, Indonesia
| | - Ricky Adriansjah
- Department of Urology, Faculty of Medicine Universitas Padjajaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Priyank Kothari
- Department of Urology, Topiwala National Medical College, B.Y.L Nair Ch Hospital, Mumbai, India
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Edouard Amar
- Department of Urology, American Hospital of Paris, Paris, France
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Tran Quang Tien Long
- Department of Obstetrics and Gynecology, Hanoi Obstetric and Gynecology Hospital, Hanoi, Vietnam
| | - Sheryl Homa
- Department of Biosciences, University of Kent, Canterbury, UK
| | | | - Birute Zilaitiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Angelo Marino
- Reproductive Medicine Unit, ANDROS Day Surgery Clinic, Palermo, Italy
| | - Edoardo Pescatori
- Andrology and Reproductive Medicine Unit, Gynepro Medical, Bologna, Italy
| | - Cevahir Ozer
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Hamed Akhavizadegan
- Department of Urology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nicolas Garrido
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, Policlinico Riuniti, Foggia, Italy
| | - Aram Adamyan
- IVF Department, Astghik Medical Center, Yerevan, Armenia
| | - Mohamed Al-Marhoon
- Division of Urology, Department of Surgery, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Haitham Elbardisi
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Parisa Dolati
- Department of Animal Science, Faculty of Agriculture, University of Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Giancarlo Balercia
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | | | - Sava Micic
- Department of Andrology, Uromedica Polyclinic, Belgrade, Serbia
| | | | - Mohamad Moussa
- Department of Urology, Lebanese University, Beirut, Lebanon
- Department of Urology, Al Zahraa Hospital, UMC, Lebanon
| | - Mirko Preto
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Ryan P. Smith
- Department of Urology, University of Virginia School of Medicine, Virginia, USA
| | - Raghavender Kosgi
- Department of Urology, Andrology and Renal Transplant, AIG Hospitals, Hyderabad, India
| | - Jean de la Rosette
- Department of Urology, Istanbul Medipol Mega University Hospital, Istanbul, Turkey
| | | | - Saad Mohammed Abumelha
- Division of Urology, Department of Surgery, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - Teng Aik Ong
- Department of Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - Saleem A. Banihani
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Kasonde Bowa
- Department of Urology, University of Lusaka, Lusaka, Zambia
| | - Shinichiro Fukuhara
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Luca Boeri
- Department of Urology, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Yavuz Onur Danacıoğlu
- Department of Urology, University of Health Science Istanbul Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Fatih Gokalp
- Department of Urology, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Osama Mohamed Selim
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Chak-Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | - Peter Chiu
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Arif Kalkanli
- Department of Urology, Taksim Education and Research Hospital, Istanbul, Turkey
| | - Kareim Khalafalla
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, University of Illinois, Chicago, IL, USA
| | | | - Federica Finocchi
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
- Unit of Andrology and Reproductive Medicine, University of Padua, Padua, Italy
| | | | - Carlo Giulioni
- Department of Urology, Polytechnic University of Marche Region, Ancona, Italy
| | - Gökhan Çeker
- Department of Urology, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
- Department of Embryology and Histology, Zonguldak Bülent Ecevit University Institute of Health Sciences, Zonguldak, Turkey
| | - Erman Ceyhan
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Vineet Malhotra
- Department of Urology, SCM Clinic and Hospital, New Delhi, India
| | - Mehmet Yilmaz
- Department of Urology, Faculty of Medicine, University of Freiburg-Medical Centre, Freiburg, Germany
| | - Massimiliano Timpano
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | | | - Shannon Hee Kyung Kim
- IVF Australia, Sydney, Australia
- Macquarie School of Medicine, Macquaire University, Sydney, Australia
| | - Sun-Tae Ahn
- Department of Urology, Korea University College of Medicine, Seoul, Korea
| | - Filippo Giacone
- Centro HERA, Unità di Medicina della Riproduzione, Sant'Agata Li Battiati, Catania, Italy
| | - Ayad Palani
- Research Centre, University of Garmian, Kalar, Iraq
| | | | - Ates Kadioglu
- Section of Andrology, Department of Urology, Istanbul University, Istanbul, Turkey
| | - Franco Gadda
- Department of Urology, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Kaan Aydos
- Department of Urology, Ankara University, Ankara, Turkey
| | - Deniz Kulaksız
- Department of Obstetrics and Gynecology, University of Health Sciences Kanuni Training and Research Hospital, Trabzon, Turkey
| | - Deepak Gupte
- Department of Urology, Bombay Hospital and Medical Research Center, Mumbai, India
| | - Gokhan Calik
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | - Keshab Kumar Karna
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Panagiotis Drakopoulos
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- IVF Athens, Athens, Greece
| | - Aykut Baser
- Department of Urology, Bandirma Onyedi Eylül University, Balikesir, Turkey
| | - Vijay Kumar
- Department of Microbiology, Kurukshetra University, Kurukshetra, India
| | | | - Osvaldo Rajmil
- Department of Andrology, Fundacio Puigvert, Barcelona, Spain
| | | | - Sofia Leonardi
- Central Laboratory, Hospital Publico Materno Infantil de Salta, Salta, Argentina
| | - Armen Avoyan
- Urology Department, Astghik Medical Center, Yerevan, Armenia
| | | | - Giorgio Franco
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | - Liliana Ramirez
- IVF Laboratory, CITMER Reproductive Medicine, Mexico City, Mexico
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | | |
Collapse
|
29
|
Chua SC, Yovich SJ, Hinchliffe PM, Yovich JL. The Sperm DNA Fragmentation Assay with SDF Level Less Than 15% Provides a Useful Prediction for Clinical Pregnancy and Live Birth for Women Aged under 40 Years. J Pers Med 2023; 13:1079. [PMID: 37511693 PMCID: PMC10381567 DOI: 10.3390/jpm13071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
This retrospective cohort study was conducted on 1148 males who presented along with their partners for infertility management at the PIVET Medical Centre between 2013 and 2022 and had a sperm DNA fragmentation (SDF) assay performed by Halosperm, thereafter participating in 1600 assisted reproductive technology (ART) cycles utilising one of three modalities, namely, IVF-Only, ICSI-Only or IVF-ICSI Split cycles. The outcomes from the ART cycles were then analysed as two groups based on SDF levels <15% and ≥15%. The study showed the unadjusted fertilization rates were not different between the groups, neither across the four female age ranges. However, when the fertilization rates were adjusted for the mature oocytes (metaphase-II oocytes), there was a highly significant difference in fertilization rates in favour of the group with SDF levels < 15% where the women were in the younger age grouping of <35 years (78.4% vs. 73.0%; p < 0.0001). Overall, there was no difference in the rates of blastocyst development nor clinical pregnancy rates between the two SDF groups, but there was a significantly higher pregnancy rate for the younger women (<35 years) with the group of SDF level < 15% (44.1% vs. 37.4%; p = 0.04). Similarly, there was no difference in the miscarriage rates overall with respect to SDF groups, and no clear picture could be deciphered among the women's age groups. With respect to cumulative live births, this reflected the pregnancy rates with no overall difference between the two SDF groups, but there was a significantly higher cumulative live birth rate for women <35 years where the SDF level was <15% (38.6% vs. 28.6%; p < 0.01). Among the three modalities, the highest cumulative live birth rate occurred within the group with SDF level < 15%, being highest with the IVF mode, particularly for women aged <40 years (43.0% vs. 37.7% for IVF-ICSI Split and 27.9% for ICSI; p = 0.0002), noting that the IVF case numbers were disproportionately low.
Collapse
Affiliation(s)
- Shiao Chuan Chua
- PIVET Medical Centre, Perth, WA 6007, Australia
- Hospital Shah Alam, Shah Alam 40000, Malaysia
| | | | | | - John Lui Yovich
- PIVET Medical Centre, Perth, WA 6007, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
30
|
Corsini C, Boeri L, Candela L, Pozzi E, Belladelli F, Capogrosso P, Fallara G, Schifano N, Cignoli D, Ventimiglia E, D'Arma A, Alfano M, Montorsi F, Salonia A. Is There a Relevant Clinical Impact in Differentiating Idiopathic versus Unexplained Male Infertility? World J Mens Health 2023; 41:354-362. [PMID: 36102103 PMCID: PMC10042653 DOI: 10.5534/wjmh.220069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Overall, male factor infertility (MFI) accounts for up to 50% of etiologies of couple's infertility, with almost 30% of MFI cases being idiopathic in nature. Idiopathic MFI does not support a tailored treatment work-up in clinical practice. To investigate rates of and characteristics of men presenting for idiopathic versus unexplained primary infertility as compared with same-ethnicity, age-comparable fertile men. MATERIALS AND METHODS Demographic, clinical and laboratory data from 3,098 primary infertile men consecutively evaluated were analyzed and compared with those of 103 fertile controls. Idiopathic male infertility (IMI) was defined for abnormality at semen analysis with no previous history of diseases affecting fertility and normal findings on physical examination and genetic and laboratory testing. Unexplained male infertility (UMI) was defined as infertility of unknown origin with completely normal findings at semen analysis. Descriptive statistics and logistic regression models tested the association between clinical variables and idiopathic infertility status. RESULTS Overall, 570 (18.5%) and 154 (5.0%) patients depicted criteria suggestive for either IMI or UMI, respectively. Groups were similar in terms of age, BMI, CCI, recreational habits, hormonal milieu, and sperm DNA fragmentation indexes. Conversely, testicular volume was lower in IMI (p<0.001). Vitamin D3 levels were lower in IMI vs. UMI vs. fertile controls (p=0.01). At multivariable logistic regression analysis only vitamin D3 deficiency (OR, 9.67; p=0.03) was associated with IMI. Characteristics suggestive for IMI versus UMI were observed in almost 20% and 5% of men, respectively. Overall, clinical differences between groups were slightly significant and certainly not supportive of a tailored management work-up. CONCLUSIONS Current findings further support the urgent need of a more detailed and comprehensive assessment of infertile men to better tailoring their management work-up in the everyday clinical setting.
Collapse
Affiliation(s)
- Christian Corsini
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Luca Boeri
- Department of Urology, Foundation IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Luigi Candela
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Paolo Capogrosso
- Department of Urology and Andrology, Ospedale di Circolo and Macchi Foundation, Varese, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Nicolò Schifano
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Daniele Cignoli
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Eugenio Ventimiglia
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Alessia D'Arma
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute (URI), IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
31
|
Preianò M, Correnti S, Butt TA, Viglietto G, Savino R, Terracciano R. Mass Spectrometry-Based Untargeted Approaches to Reveal Diagnostic Signatures of Male Infertility in Seminal Plasma: A New Laboratory Perspective for the Clinical Management of Infertility? Int J Mol Sci 2023; 24:4429. [PMID: 36901856 PMCID: PMC10002484 DOI: 10.3390/ijms24054429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Male infertility has been recognized as a global health problem. Semen analysis, although considered the golden standard, may not provide a confident male infertility diagnosis alone. Hence, there is the urgent request for an innovative and reliable platform to detect biomarkers of infertility. The rapid expansion of mass spectrometry (MS) technology in the field of the 'omics' disciplines, has incredibly proved the great potential of MS-based diagnostic tests to revolutionize the future of pathology, microbiology and laboratory medicine. Despite the increasing success in the microbiology area, MS-biomarkers of male infertility currently remain a proteomic challenge. In order to address this issue, this review encompasses proteomics investigations by untargeted approaches with a special focus on experimental designs and strategies (bottom-up and top-down) for seminal fluid proteome profiling. The studies reported here witness the efforts of the scientific community to address these investigations aimed at the discovery of MS-biomarkers of male infertility. Proteomics untargeted approaches, depending on the study design, might provide a great plethora of biomarkers not only for a male infertility diagnosis, but also to address a new MS-biomarkers classification of infertility subtypes. From the early detection to the evaluation of infertility grade, new MS-derived biomarkers might also predict long-term outcomes and clinical management of infertility.
Collapse
Affiliation(s)
| | - Serena Correnti
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Tahreem Arshad Butt
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
32
|
Boeri L, Pozzi E, Capogrosso P, Fallara G, Belladelli F, Candela L, Schifano N, Corsini C, Cazzaniga W, Cignoli D, Ventimiglia E, Pontillo M, Alfano M, Montorsi F, Salonia A. Infertile men with semen parameters above WHO reference limits at first assessment may deserve a second semen analysis: Challenging the guidelines in the real-life scenario. PLoS One 2023; 18:e0280519. [PMID: 36656872 PMCID: PMC9851544 DOI: 10.1371/journal.pone.0280519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To investigate which infertile men with semen parameters above WHO reference limits at first semen analysis deserve a second semen test. MATERIALS AND METHODS Data from 1358 consecutive infertile men were analysed. Patients underwent two consecutive semen analyses at the same laboratory. Descriptive statistics and logistic regression models tested the association between clinical variables and semen parameters. A new predicting model was identified through logistic regression analysis exploring potential predictors of semen parameters below WHO reference limits after a previously normal one. Diagnostic accuracy of the new model was compared with AUA/ASRM and EAU guidelines. Decision curve analyses (DCA) tested their clinical benefit. RESULTS Of 1358, 212 (15.6%) infertile men had semen parameters above WHO reference limits at first analysis. Of 212, 87 (41.0%) had a second semen analysis with results above WHO reference limits. Men with sperm parameters below reference limits at second analysis had higher FSH values, but lower testicular volume (TV) (all p<0.01) compared to men with a second semen analysis above WHO limits. At multivariable logistic regression analysis, lower TV (OR 0.9, p = 0.03), higher FSH (OR 1.2, p<0.01), and lower total sperm count (OR 0.9, p<0.01) were associated with second semen analyses below WHO limits. DCA showed the superior net benefit of using the new model, compared to both AUA/ASRM and EAU guidelines to identify those men with a second semen sample below WHO limits after a previously normal one. CONCLUSIONS Approximately 60% of infertile men with a first semen analysis above WHO limits have a second analysis with results below limits. The newly identified risk model might be useful to select infertile men with initial semen results above WHO limits who deserve a second semen analysis.
Collapse
Affiliation(s)
- Luca Boeri
- Department of Urology, Foundation IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Capogrosso
- Department of Urology and Andrology, Ospedale di Circolo and Macchi Foundation, Varese, Italy
| | - Giuseppe Fallara
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Candela
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Nicolò Schifano
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Christian Corsini
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Walter Cazzaniga
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Cignoli
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Eugenio Ventimiglia
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marina Pontillo
- Laboratory Medicine Service, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology; URI; IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Adler A, Roth B, Lundy SD, Takeshima T, Yumura Y, Kuroda S. Sperm DNA fragmentation testing in clinical management of reproductive medicine. Reprod Med Biol 2023; 22:e12547. [PMID: 37915974 PMCID: PMC10616814 DOI: 10.1002/rmb2.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Background Approximately 8%-12% of couples worldwide face infertility, with infertility of individuals assigned male at birth (AMAB) contributing to at least 50% of cases. Conventional semen analysis commonly used to detect sperm abnormalities is insufficient, as 30% of AMAB patients experiencing infertility show normal results in this test. From a genetic perspective, the assessment of sperm DNA fragmentation (SDF) is important as a parameter of sperm quality. Methods In this narrative study, we review and discuss pathophysiological causes, DNA repair mechanisms, and management of high SDF. We then summarize literature exploring the association between SDF and reproductive outcomes. Main Findings Recent systematic reviews and meta-analyses have revealed a significant association between high SDF in AMAB individuals and adverse reproductive outcomes including embryo development, natural conception, intrauterine insemination, and in vitro fertilization. However, the association with live birth rates and pregnancy rates following intracytoplasmic injection remains inconclusive. The disparities among quantitative assays, inconsistent reference range values, absent high-quality prospective clinical trials, and clinical heterogeneity in AMAB patients with elevated SDF represent the main limitations affecting SDF testing. Conclusion The evaluation and management of SDF plays an important role in a subset of AMAB infertility, but widespread integration into clinical guidelines will require future high-quality clinical trials and assay standardization.
Collapse
Affiliation(s)
- Ava Adler
- Glickman Urological & Kidney InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Bradley Roth
- Glickman Urological & Kidney InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Scott D. Lundy
- Glickman Urological & Kidney InstituteCleveland Clinic FoundationClevelandOhioUSA
| | - Teppei Takeshima
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohamaJapan
| | - Yasushi Yumura
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohamaJapan
| | - Shinnosuke Kuroda
- Glickman Urological & Kidney InstituteCleveland Clinic FoundationClevelandOhioUSA
- Department of Urology, Reproduction CenterYokohama City University Medical CenterYokohamaJapan
| |
Collapse
|
34
|
Mancuso F, Arato I, Bellucci C, Lilli C, Eugeni E, Aglietti MC, Stabile AM, Pistilli A, Brancorsini S, Gaggia F, Calvitti M, Baroni T, Luca G. Zinc restores functionality in porcine prepubertal Sertoli cells exposed to subtoxic cadmium concentration via regulating the Nrf2 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:962519. [PMID: 36843583 PMCID: PMC9950629 DOI: 10.3389/fendo.2023.962519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl2 could counteract the toxic effects induced by Cd in an in vitro model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 μM) and toxic (10 μM) concentrations of CdCl2 for 48 h. MATERIALS AND METHODS Apoptosis, cell cycle, and cell functionality were assessed. The gene expression of Nrf2 and its downstream antioxidant enzymes, ERK1/2, and AKT kinase signaling pathways were evaluated. MATERIALS AND RESULTS We found that Zn, in co-treatment with subtoxic and toxic Cd concentration, increased the number of metabolically active SCs compared to Cd exposure alone but restored SC functionality only in co-treatment with subtoxic Cd concentration with respect to subtoxic Cd alone. Exposure of Cd disrupted cell cycle in SCs, and Zn co-treatment was not able to counteract this effect. Cd alone induced SC death through apoptosis and necrosis in a dose-dependent manner, and co-treatment with Zn increased the pro-apoptotic effect of Cd. Subtoxic and toxic Cd exposures activated the Nrf2 signaling pathway by increasing gene expression of Nrf2 and its downstream genes (SOD, HO-1, and GSHPx). Zn co-treatment with subtoxic Cd attenuated upregulation on the Nrf2 system, while with toxic Cd, the effect was more erratic. Studying ERK1/2 and AKT pathways as a target, we found that the phosphorylation ratio of p-ERK1/2 and p-AKT was upregulated by both subtoxic and toxic Cd exposure alone and in co-treatment with Zn. DISCUSSION Our results suggest that Zn could counteract Cd effects by increasing the number of metabolically active SCs, fully or partially restoring their functionality by modulating Nrf2, ERK1/2, and AKT pathways. Our SC model could be useful to study the effects of early Cd exposure on immature testis, evaluating the possible protective effects of Zn.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| | | | - Anna Maria Stabile
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Gaggia
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Tiziano Baroni,
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
35
|
Tomaiuolo G, Fellico F, Preziosi V, Guido S. Semen rheology and its relation to male infertility. Interface Focus 2022; 12:20220048. [PMID: 36330323 PMCID: PMC9560795 DOI: 10.1098/rsfs.2022.0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 08/01/2023] Open
Abstract
Infertility affects 15% of couples of reproductive age worldwide. In spite of many advances in understanding and treating male infertility, there is still a number of issues that need further investigation and translation to the clinic. Here, we review the current knowledge and practice concerning semen rheology and its relation with pathological states affecting male infertility. Although it is well recognized that altered rheological properties of semen can impair normal sperm movement in the female reproductive tract, routine semen analysis is mostly focused on number, motility and morphology of spermatozoa, and includes only an approximate, operator-dependent measure of semen viscosity. The latter is based on the possible formation of a liquid thread from a pipette where a semen sample has been aspirated, a method that is sensitive not only to viscosity but also to elongational properties and surface tension of semen. The formation of a liquid thread is usually associated with a gel-like consistency of the sample and changes in spermatozoa motility in such a complex medium are still to be fully elucidated. The aim of this review is to point out that a more quantitative and reliable characterization of semen rheology is in order to improve the current methods of semen analysis and to develop additional tools for the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Giovanna Tomaiuolo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Fiammetta Fellico
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Valentina Preziosi
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
36
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
37
|
Bashiri Z, Gholipourmalekabadi M, Falak R, Amiri I, Asgari H, Chauhan NPS, Koruji M. In vitro production of mouse morphological sperm in artificial testis bioengineered by 3D printing of extracellular matrix. Int J Biol Macromol 2022; 217:824-841. [PMID: 35905760 DOI: 10.1016/j.ijbiomac.2022.07.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Since autologous stem cell transplantation is prone to cancer recurrence, in vitro sperm production is regarded a safer approach to fertility preservation. In this study, the spermatogenesis process on testicular tissue extracellular matrix (T-ECM)-derived printing structure was evaluated. Ram testicular tissue was decellularized using a hypertonic solution containing triton and the extracted ECM was used as a bio-ink to print an artificial testis. Following cell adhesion and viability examination, pre-meiotic and post-meiotic cells in the study groups (as testicular suspension and co-culture with Sertoli cells) were confirmed by real-time PCR, flow-cytometry and immunocytochemistry methods. Morphology of differentiated cells was evaluated using transmission electron microscopy (TEM), toluidine blue, Giemsa, and hematoxylin and eosin (H&E) staining. The functionality of Leydig and Sertoli cells was determined by their ability for hormone secretion. The decellularization of testicular tissue fragments was successful and had efficiently removed the cellular debris and preserved the ECM compounds. High cell viability, colonization, and increased expression of pre-meiotic markers in cultured testicular cells on T-ECM-enriched scaffolds confirmed their proliferation. Furthermore, the inoculation of neonatal mouse testicular cells onto T-ECM-enriched scaffolds resulted in the generation of sperm. Morphology evaluation showed that the structure of these cells was quite similar to mature sperm with a specialized tail structure. The hormonal analysis also confirmed production and secretion of testosterone and inhibin B by Leydig and Sertoli cells. T-ECM printed artificial testis is a future milestone that promises for enhancing germ cell maintenance and differentiation, toxicology studies, and fertility restoration to pave the way for new human infertility treatments in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Amiri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Endometrium and Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Blaseg E, Von Wald T, Hansen KA. Vitamin D levels and human sperm DNA fragmentation: a prospective, cohort study. Basic Clin Androl 2022; 32:14. [PMID: 36096748 PMCID: PMC9469602 DOI: 10.1186/s12610-022-00166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
Background Intracytoplasmic sperm injection (ICSI) has revolutionized the treatment of couples with male factor infertility but results remain suboptimal and suggest the need for further investigation into the molecular biology of spermatozoa. Vitamin D has been implicated in spermatogenesis and sperm function. Hypovitaminosis D has been associated with abnormal testicular function, including elevated sperm DNA fragmentation in a murine model. This study’s objective was to evaluate if there is a correlation between Vitamin D sufficiency and human spermatozoa DNA fragmentation index % (DFI%) in infertile couples. Results A prospective cohort study using a consecutive, convenience sample of subjects with infertility. The primary endpoint was the effect of Vitamin D sufficiency on human spermatozoa DFI%, and secondary outcomes included Vitamin D’s effect on moderate DFI%, high DFI%, High DNA stainability % (HDS%), sperm density (million/mL), sperm total motility (% total) and sperm strict morphology (% total). Of the 111 participating, 9 were excluded, leaving 102subjects. The subjects were stratified by vitamin D levels: deficient (< 20 ng/mL; n = 24), insufficient (20–30 ng/mL; n = 43),, and sufficient (> 30 ng/mL; n = 35). There were no statistical difference between the categories of serum vitamin D levels and sperm DFI% as well as the secondary outcomes. An increased BMI was associated with low serum vitamin D levels (p = 0.0012). Conclusion Vitamin D deficiency was not associated with sperm DFI% or routine sperm parameters. Previous animal and human studies have demonstrated conflicting results between sperm parameters and Vitamin D levels. Redundant pathways in Vitamin D and calcium homeostasis in the human male reproductive tract may maintain essential reproductive processes during Vitamin D insufficiency or deficiency. Trial registration Trial Registration Number: MOD00002311 (ClinicalTrials.gov).
Collapse
|
39
|
Lewis SEM, Esteves SC. Is the term 'Non-Male Factor' evidence-based? Andrology 2022; 10:1237-1239. [PMID: 35849603 DOI: 10.1111/andr.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sheena E M Lewis
- Honorary Professor, Queens University Belfast and CEO Examenlab Ltd, Unit 18A, Block K, Weavers Court Business Park, Linfield Road, Belfast, BT12 5GH
| | - Sandro C Esteves
- Medical Director, ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil.,Professor of Urology, Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, SP, Brazil.,Honorary Professor of Reproductive Endocrinology, Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Schubert M, Pérez Lanuza L, Wöste M, Dugas M, Carmona FD, Palomino-Morales RJ, Rassam Y, Heilmann-Heimbach S, Tüttelmann F, Kliesch S, Gromoll J. A GWAS in Idiopathic/Unexplained Infertile Men Detects a Genomic Region Determining Follicle-Stimulating Hormone Levels. J Clin Endocrinol Metab 2022; 107:2350-2361. [PMID: 35305013 PMCID: PMC9282256 DOI: 10.1210/clinem/dgac165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Approximately 70% of infertile men are diagnosed with idiopathic (abnormal semen parameters) or unexplained (normozoospermia) infertility, with the common feature of lacking etiologic factors. Follicle-stimulating hormone (FSH) is essential for initiation and maintenance of spermatogenesis. Certain single-nucleotide variations (SNVs; formerly single-nucleotide polymorphisms [SNPs]) (ie, FSHB c.-211G > T, FSHR c.2039A > G) are associated with FSH, testicular volume, and spermatogenesis. It is unknown to what extent other variants are associated with FSH levels and therewith resemble causative factors for infertility. OBJECTIVE We aimed to identify further genetic determinants modulating FSH levels in a cohort of men presenting with idiopathic or unexplained infertility. METHODS We retrospectively (2010-2018) selected 1900 men with idiopathic/unexplained infertility. In the discovery study (n = 760), a genome-wide association study (GWAS) was performed (Infinium PsychArrays) in association with FSH values (Illumina GenomeStudio, v2.0). Minor allele frequencies (MAFs) were analyzed for the discovery and an independent normozoospermic cohort. In the validation study (n = 1140), TaqMan SNV polymerase chain reaction was conducted for rs11031005 and rs10835638 in association with andrological parameters. RESULTS Imputation revealed 9 SNVs in high linkage disequilibrium, with genome-wide significance (P < 4.28e-07) at the FSHB locus 11p.14.1 being associated with FSH. The 9 SNVs accounted for up to a 4.65% variance in FSH level. In the oligozoospermic subgroup, this was increased up to 6.95% and the MAF was enhanced compared to an independent cohort of normozoospermic men. By validation, a significant association for rs11031005/rs10835638 with FSH (P = 4.71e-06/5.55e-07) and FSH/luteinizing hormone ratio (P = 2.08e-12/6.4e-12) was evident. CONCLUSIONS This GWAS delineates the polymorphic FSHB genomic region as the main determinant of FSH levels in men with unexplained or idiopathic infertility. Given the essential role of FSH, molecular detection of one of the identified SNVs that causes lowered FSH and therewith decreases spermatogenesis could resolve the idiopathic/unexplained origin by this etiologic factor.
Collapse
Affiliation(s)
| | | | - Marius Wöste
- Institute of Medical Informatics, University of Münster, Münster, North Rhine-Westphalia 48149, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, North Rhine-Westphalia 48149, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - F David Carmona
- Department of Genetics and Institute of Biotechnology, University of Granada, Granada, Andalusia 18016, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Andalusia 18012, Spain
| | - Rogelio J Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Andalusia 18012, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Andalusia 18071, Spain
| | - Yousif Rassam
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, North Rhine-Westphalia 48149, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital, Bonn, North Rhine-Westphalia 53127, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, North Rhine-Westphalia 48149, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, North Rhine-Westphalia 48149, Germany
| | - Jörg Gromoll
- Correspondence: Jörg Gromoll, Dr. rer. nat., Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Albert-Schweitzer-Campus 1, Geb. D11, 48149 Münster, Germany.
| |
Collapse
|
41
|
Calvert JK, Fendereski K, Ghaed M, Bearelly P, Patel DP, Hotaling JM. The male infertility evaluation still matters in the era of high efficacy assisted reproductive technology. Fertil Steril 2022; 118:34-46. [PMID: 35725120 DOI: 10.1016/j.fertnstert.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
Abstract
Today's reproductive endocrinology and infertility providers have many tools at their disposal when it comes to achieving pregnancy. In the setting of highly efficacious assisted reproductive technology, it is natural to assume that male factor infertility can be overcome by acquiring sperm and then bypassing the male evaluation. In this review, we go through guideline statements and a stepwise male factor infertility evaluation to propose that a thorough male evaluation remains important to optimize pregnancy and live birth. The foundation of this parallel evaluation is referral to a reproductive urologist for the optimization of the male partner, for advanced diagnostics and interventions, and for the detection of other underlying male pathology. We also discuss what future developments might have an impact on the workup of the infertile male.
Collapse
Affiliation(s)
- Joshua K Calvert
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Mohammadali Ghaed
- Urology Department, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Priyanka Bearelly
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Darshan P Patel
- Department of Urology, University of California San Diego Health, San Diego, California
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah.
| |
Collapse
|
42
|
Evolution of the World Health Organization semen analysis manual: where are we? Nat Rev Urol 2022; 19:439-446. [PMID: 35523961 DOI: 10.1038/s41585-022-00593-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/13/2022]
Abstract
The WHO (World Health Organization) manuals provide state-of-the-art guidance on how a semen analysis should be carried out. The much anticipated sixth edition of the WHO semen analysis manual has been released 10 years after its previous version and includes essential updates, such as new reference standards for semen volume and microscopic sperm characteristics of recent fathers. A well-conducted semen analysis remains an essential foundation of the infertility evaluation process and affects patient referral, diagnosis and treatment. However, a male infertility work-up primarily based on routine semen analysis does not provide men with an optimal fertility pathway; the primary reasons for routine semen analysis inadequacy in this context include its low predictive value for natural and assisted conception success, its inability to detect sperm DNA and epigenetic deficiencies that might negatively affect embryo development, implantation and offspring well-being, and the substantial overlap between semen parameters of fertile and subfertile individuals. Ideally, a full andrological assessment should be carried out by reproductive urologists in all men dealing with couple infertility and should include a detailed history analysis, physical examination, semen analysis, endocrine assessment and other tests as needed. Only through a complete male infertility work-up will relevant underlying medical and infertility conditions be revealed and potentially treated or alleviated. The ultimate goals of a comprehensive andrological assessment are to positively influence overall male health, pregnancy prospects and offspring well-being.
Collapse
|
43
|
Shum W, Zhang BL, Cao AS, Zhou X, Shi SM, Zhang ZY, Gu LY, Shi S. Calcium Homeostasis in the Epididymal Microenvironment: Is Extracellular Calcium a Cofactor for Matrix Gla Protein-Dependent Scavenging Regulated by Vitamins. Front Cell Dev Biol 2022; 10:827940. [PMID: 35252193 PMCID: PMC8893953 DOI: 10.3389/fcell.2022.827940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.
Collapse
Affiliation(s)
- Winnie Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Reproduction and Development Institution, Fudan University, Shanghai, China
| | - Albert Shang Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Su Meng Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ze Yang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Yi Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
44
|
Sperm DNA fragmentation measured by TUNEL assay is not related to reduced cumulative live birth rates per consumed oocyte after IVF/ICSI from unselected males. Reprod Biomed Online 2022; 44:1079-1089. [DOI: 10.1016/j.rbmo.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022]
|
45
|
Panner Selvam MK, Durairajanayagam D, Sikka SC. Molecular Interactions Associated with Oxidative Stress-Mediated Male Infertility: Sperm and Seminal Plasma Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:63-76. [DOI: 10.1007/978-3-030-89340-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Oxidative Stress-Induced Male Infertility: Role of Antioxidants in Cellular Defense Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:275-309. [PMID: 36472828 DOI: 10.1007/978-3-031-12966-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Male infertility is linked to several environmental and mutagenic factors. Most of these factors, i.e., lifestyle, radiations, and chemical contaminations, work on the fundamental principles of physics, chemistry, and biology. Principally, it may induce oxidative stress (OS) and produce free radicals within the cells. The negative effect of OS may enhance the reactive oxygen species (ROS) levels in male reproductive organs and impair basic functions in a couple's fertility. Evidence suggests that infertile men have significantly increased ROS levels and a reduced antioxidant capacity compared with fertile men. Although, basic spermatic function and fertilizing capacity depend on a delicate balance between physiological activity of ROS and antioxidants to protect from cellular oxidative injury in sperm, that is essential to achieve pregnancy. The ideal oxidation-reduction (REDOX) equilibrium requires a maintenance of a range of ROS concentrations and modulation of antioxidants. For this reason, the chapter focuses on the effects of ROS in sperm functions and the current concepts regarding the benefits of medical management in men with diminished fertility and amelioration of the effect to improve sperm function. Also, this evidence-based study suggests an increasing rate of infertility that poses a global challenge for human health, urging the need of health care professionals to offer a correct diagnosis, comprehension of the process, and an individualized management of the patients.
Collapse
|
47
|
Alahmar A, Singh R, Palani A. Sperm DNA fragmentation in reproductive medicine: A review. J Hum Reprod Sci 2022; 15:206-218. [PMID: 36341018 PMCID: PMC9635374 DOI: 10.4103/jhrs.jhrs_82_22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 15% of the world's couples suffer from infertility during their reproductive period of which the male factor is responsible for 50% of cases. Male factor infertility is multifactorial in origin, and sperm DNA fragmentation (SDF) has also been linked to male infertility including idiopathic male infertility. Some degree of controlled DNA nicking is essential for adequate DNA compaction, but excessive SDF is usually associated with reduced male fertility potential, reduced fertilisation, poor embryo quality, recurrent pregnancy loss and poor assisted reproductive techniques (ARTs) outcomes. Although semen analysis remains the gold standard for diagnosis of male factor infertility worldwide, its limitations motivated the search and the development of complementary tests of sperm function and integrity. SDF assay is an emerging diagnostic tool in infertile men, and several indications for SDF testing in infertile couples have also been proposed. The use of SDF in routine male infertility assessment is, however, still controversial. Furthermore, both direct and indirect SDF tests are now available. Hence, the present review was conducted to summarise the recent evidence of SDF, underlying mechanisms, clinical indications, diagnostic tests, as well as the role of SDF in male factor infertility, pregnancy and ART outcomes.
Collapse
|
48
|
Krenz H, Sansone A, Kliesch S, Gromoll J, Schubert M. FSHB Genotype Identified as a Relevant Diagnostic Parameter Revealed by Cluster Analysis of Men With Idiopathic Infertility. Front Endocrinol (Lausanne) 2021; 12:780403. [PMID: 34992580 PMCID: PMC8725293 DOI: 10.3389/fendo.2021.780403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 02/03/2023] Open
Abstract
Introduction and Objectives About 30-75% of infertile men are diagnosed with idiopathic infertility, thereby lacking major causative factors to explain their impaired fertility status. In this study, we used a large cohort of idiopathic infertile men to determine whether subgroups could be identified by an unbiased clustering approach and whether underlying etiologic factors could be delineated. Patients and Methods From our in-house database Androbase®, we retrospectively selected patients (from 2008 to 2018) with idiopathic male infertility (azoo- to normozoospermia) who fit the following selection criteria: FSH ≥ 1 IU/l, testosterone ≥ 8 nmol/l, ejaculate volume ≥ 1.5 ml. Patients with genetic abnormalities or partners with female factors were excluded.For the identified study population (n=2742), we used common andrologic features (somatic, semen and hormonal parameters, including the FSHB c.-211G>T (rs10835638) single nucleotide polymorphism) for subsequent analyses. Cluster analyses were performed for the entire study population and for two sub-cohorts, which were separated by total sperm count (TSC) thresholds: Cohort A (TSC ≥ 1 mill/ejac; n=2422) and Cohort B (TSC < 1 mill/ejac; n=320). For clustering, the partitioning around medoids method was employed, and the quality was evaluated by average silhouette width. Results The applied cluster approach for the whole study population yielded two separate clusters, which showed significantly different distributions in bi-testicular volume, FSH and FSHB genotype. Cluster 1 contained all men homozygous for G (wildtype) in FSHB c.-211G>T (100%), while Cluster 2 contained most patients carrying a T allele (>96.6%). In the analyses of sub-cohorts A/B, two clusters each were formed too. Again, the strongest segregation markers between the respective clusters were bi-testicular volume, FSH and FSHB c.-211G>T. Conclusion With this first unbiased approach for revealing putative subgroups within a heterogenous group of idiopathic infertile men, we did indeed identify distinct patient clusters. Surprisingly, across all diverse phenotypes of infertility, the strongest segregation markers were FSHB c.-211G>T, FSH, and bi-testicular volume. Further, Cohorts A and B were significantly separated by FSHB genotype (wildtype vs. T-allele carriers), which supports the notion of a contributing genetic factor. Consequently, FSHB genotyping should be implemented as diagnostic routine in patients with idiopathic infertility.
Collapse
Affiliation(s)
- Henrike Krenz
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Andrea Sansone
- Department of Systems Medicine, Chair of Endocrinology and Medical Sexology, University of Rome Tor Vergata, Rome, Italy
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology (CeRA), University of Münster, Münster, Germany
| | - Joerg Gromoll
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology (CeRA), University of Münster, Münster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology (CeRA), University of Münster, Münster, Germany
| |
Collapse
|
49
|
Khodamoradi K, Golan R, Dullea A, Ramasamy R. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021; 10:311-322. [PMID: 34838504 DOI: 10.1016/j.sxmr.2021.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Optimal male reproductive health is dependent upon critical mediators of cell-cell communication: exosomes or extracellular vesicles. These vesicles are nano-sized particles released into a variety of bodily fluids, such as blood and semen. Exosomes are highly stable and can carry genetic and other molecules, including DNA, RNA, and proteins, which provide information about their origin cells. OBJECTIVE To identify exosomes as potential biomarkers or therapeutic mediators in male sexual and reproductive disorders like erectile dysfunction (ED), varicocele, and testicular injury. METHODS A PubMed search was performed to highlight all articles available relating to exosomes and extracellular vesicles in the pathogenesis of different male sexual and reproductive disorders, and their importance in clinical use as both diagnostic markers and potential therapeutic mediators. RESULTS Various male reproductive system disorders, such as ED, varicocele, and testicular injury, are linked to increased or decreased levels of exosomes. Exosomes have a higher number of molecules such as DNA, RNA, and proteins, which can give a more precise and comprehensive result when compared to other biomarkers. Exosomes can be considered as plausible diagnostic biomarkers for male sexual and reproductive diseases, with considerable advantages over other diagnostic procedures such as invasive tissue biopsy. Exosomes can carry cargo such certain drugs and therapeutic molecules making them a promising therapeutic approach. Several studies have begun to test treating various male sexual reproductive disorders with exosomes. CONCLUSION Exosomes deliver many components that can regulate gene expression and target signaling pathways. Understanding how extracellular vesicles can be utilized as biomarkers in diagnosing men, particularly those with idiopathic erectile dysfunction, will not only aid in diagnosis but also help with making therapeutic targets. Khodamoradi K, Golan R, Dullea A, et al. Exosomes as Potential Biomarkers for Erectile Dysfunction, Varicocele, and Testicular Injury. Sex Med Rev 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
- Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roei Golan
- Departement of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Alexandra Dullea
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
50
|
Slowikowska-Hilczer J, Walczak-Jedrzejowska R, Dobronski P. The influence of a combination of lifestyle modification and a new formula supplement with antioxidative and antioestrogenic activity on mild idiopathic abnormalities of semen parameters-A pilot study. Andrologia 2021; 54:e14279. [PMID: 34664304 DOI: 10.1111/and.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
Unhealthy lifestyle and environmental factors may influence semen parameters via oxidative stress, functional hypogonadism and xenobiotics. The aim of the study was to evaluate the influence of a diet supplement containing glutathione and herbs with antioxidative and antioestrogenic activity, in combination with lifestyle improvement, on semen parameters. Data from the medical records of 50 men aged 24-52 (median 35.0) with idiopathic abnormalities in semen parameters were retrospectively analysed. The inclusion criteria comprised sperm concentration >5 mln/ml, disorders in sperm motility and/or vitality and/or morphology, good general health, no present nor previous diseases or treatment which may influence fertility, and normal testicular volume. Patients were advised to change their lifestyle and take the supplement for three months. Basic semen analysis and serum FSH, LH and testosterone levels were performed before and after the prescribed therapy. After three months of treatment, median serum concentrations of FSH significantly increased by 70%, LH by 67% and testosterone by 79%, and all mean semen parameters were significantly increased (total sperm count by 68%). It seems that lifestyle changes supported by consumption of herbs with antioxidative and antioestrogenic activity may be suitable for the first-line therapy for patients with mild idiopathic abnormalities in semen parameters or serum concentrations of reproductive hormones.
Collapse
Affiliation(s)
| | | | - Piotr Dobronski
- Department of General, Oncological and Functional Urology, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|