1
|
Brimmer S, Ji P, Birla RK, Heinle JS, Grande-Allen JK, Keswani SG. Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. Cardiovasc Eng Technol 2024; 15:704-715. [PMID: 39495395 DOI: 10.1007/s13239-024-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/07/2024] [Indexed: 11/05/2024]
Abstract
In this study, we propose a new method for bioprinting 3D Spheroids to study complex congenital heart disease known as discrete subaortic stenosis (DSS). The bioprinter allows us to manipulate the extrusion pressure to change the size of the spheroids, and the alginate porosity increases in size over time. The spheroids are composed of human umbilical vein endothelial cells (HUVECs), and we demonstrated that pressure and time during the bioprinting process can modulate the diameter of the spheroids. In addition, we used Pluronic acid to maintain the shape and position of the spheroids. Characterization of HUVECs in the spheroids confirmed their uniform distribution and we demonstrated cell viability as a function of time. Compared to traditional 2D cell cultures, the 3D spheroids model provides more relevant physiological environments, making it valuable for drug testing and therapeutic applications.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey S Heinle
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | | | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA.
- Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA.
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
- Feigin Center C.450.06, Texas Children's Hospital, 1102 Bates Ave, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Shang L, Wang S, Mao Y. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: A review. Int J Biol Macromol 2024; 277:133830. [PMID: 39002914 DOI: 10.1016/j.ijbiomac.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.
Collapse
Affiliation(s)
- Lijun Shang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Shan Wang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
3
|
Vuorenpää H, Valtonen J, Penttinen K, Koskimäki S, Hovinen E, Ahola A, Gering C, Parraga J, Kelloniemi M, Hyttinen J, Kellomäki M, Aalto-Setälä K, Miettinen S, Pekkanen-Mattila M. Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes. Cytotechnology 2024; 76:483-502. [PMID: 38933872 PMCID: PMC11196475 DOI: 10.1007/s10616-024-00630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00630-5.
Collapse
Affiliation(s)
- Hanna Vuorenpää
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Joona Valtonen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi Penttinen
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Koskimäki
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Hovinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti Ahola
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christine Gering
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenny Parraga
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kelloniemi
- Department of Plastic and Reconstructive Surgery, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Seow KS, Ling APK. Mesenchymal stem cells as future treatment for cardiovascular regeneration and its challenges. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:73. [PMID: 39118948 PMCID: PMC11304428 DOI: 10.21037/atm-23-1936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/04/2023] [Indexed: 08/10/2024]
Abstract
Cardiovascular diseases (CVDs), particularly stroke and myocardial infarction (MI) contributed to the leading cause of death annually among the chronic diseases globally. Despite the advancement of technology, the current available treatments mainly served as palliative care but not treating the diseases. However, the discovery of mesenchymal stem cells (MSCs) had gained a consideration to serve as promising strategy in treating CVDs. Recent evidence also showed that MSCs are the strong candidate to be used as stem cell therapy involving cardiovascular regeneration due to its cardiomyogenesis, anti-inflammatory and immunomodulatory properties, antifibrotic effects and neovascularization capacity. Besides, MSCs could be used for cellular cardiomyoplasty with its transdifferentiation of MSCs into cardiomyocytes, paracrine effects, microvesicles and exosomes as well as mitochondrial transfer. The safety and efficacy of utilizing MSCs have been described in well-established preclinical and clinical studies in which the accomplishment of MSCs transplantation resulted in further improvement of the cardiac function. Tissue engineering could enhance the desired properties and therapeutic effects of MSCs in cardiovascular regeneration by genome-editing, facilitating the cell delivery and retention, biomaterials-based scaffold, and three-dimensional (3D)-bioprinting. However, there are still obstacles in the use of MSCs due to the complexity and versatility of MSCs, low retention rate, route of administration and the ethical and safety issues of the use of MSCs. The aim of this review is to highlight the details of therapeutic properties of MSCs in treating CVDs, strategies to facilitate the therapeutic effects of MSCs through tissue engineering and the challenges faced using MSCs. A comprehensive review has been done through PubMed and National Center for Biotechnology Information (NCBI) from the year of 2010 to 2021 based on some specific key terms such as 'mesenchymal stem cells in cardiovascular disease', 'mesenchymal stem cells in cardiac regeneration', 'mesenchymal stem cells facilitate cardiac repairs', 'tissue engineering of MSCs' to include relevant literature in this review.
Collapse
Affiliation(s)
- Ke Sin Seow
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Bravo-Olín J, Martínez-Carreón SA, Francisco-Solano E, Lara AR, Beltran-Vargas NE. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering. Bioprocess Biosyst Eng 2024; 47:767-839. [PMID: 38643271 DOI: 10.1007/s00449-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
Since cardiovascular diseases (CVDs) are globally one of the leading causes of death, of which myocardial infarction (MI) can cause irreversible damage and decrease survivors' quality of life, novel therapeutics are needed. Current approaches such as organ transplantation do not fully restore cardiac function or are limited. As a valuable strategy, tissue engineering seeks to obtain constructs that resemble myocardial tissue, vessels, and heart valves using cells, biomaterials as scaffolds, biochemical and physical stimuli. The latter can be induced using a bioreactor mimicking the heart's physiological environment. An extensive review of bioreactors providing perfusion, mechanical and electrical stimulation, as well as the combination of them is provided. An analysis of the stimulations' mechanisms and modes that best suit cardiac construct culture is developed. Finally, we provide insights into bioreactor configuration and culture assessment properties that need to be elucidated for its clinical translation.
Collapse
Affiliation(s)
- Jorge Bravo-Olín
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Sabina A Martínez-Carreón
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Emmanuel Francisco-Solano
- Natural Science and Engineering Graduate Program, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Nohra E Beltran-Vargas
- Process and Technology Department, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México.
| |
Collapse
|
6
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
7
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
8
|
Stougiannou TM, Christodoulou KC, Georgakarakos E, Mikroulis D, Karangelis D. Promising Novel Therapies in the Treatment of Aortic and Visceral Aneurysms. J Clin Med 2023; 12:5878. [PMID: 37762818 PMCID: PMC10531975 DOI: 10.3390/jcm12185878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aortic and visceral aneurysms affect large arterial vessels, including the thoracic and abdominal aorta, as well as visceral arterial branches, such as the splenic, hepatic, and mesenteric arteries, respectively. Although these clinical entities have not been equally researched, it seems that they might share certain common pathophysiological changes and molecular mechanisms. The yet limited published data, with regard to newly designed, novel therapies, could serve as a nidus for the evaluation and potential implementation of such treatments in large artery aneurysms. In both animal models and clinical trials, various novel treatments have been employed in an attempt to not only reduce the complications of the already implemented modalities, through manufacturing of more durable materials, but also to regenerate or replace affected tissues themselves. Cellular populations like stem and differentiated vascular cell types, large diameter tissue-engineered vascular grafts (TEVGs), and various molecules and biological factors that might target aspects of the pathophysiological process, including cell-adhesion stabilizers, metalloproteinase inhibitors, and miRNAs, could potentially contribute significantly to the treatment of these types of aneurysms. In this narrative review, we sought to collect and present relevant evidence in the literature, in an effort to unveil promising biological therapies, possibly applicable to the treatment of aortic aneurysms, both thoracic and abdominal, as well as visceral aneurysms.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital of Alexandroupolis, Dragana, 68100 Alexandroupolis, Greece; (K.C.C.); (E.G.); (D.M.); (D.K.)
| | | | | | | | | |
Collapse
|
9
|
Amiryaghoubi N, Fathi M. Bioscaffolds of graphene based-polymeric hybrid materials for myocardial tissue engineering. BIOIMPACTS : BI 2023; 14:27684. [PMID: 38327630 PMCID: PMC10844587 DOI: 10.34172/bi.2023.27684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 02/09/2024]
Abstract
Introduction Biomaterials currently utilized for the regeneration of myocardial tissue seem to associate with certain restrictions, including deficiency of electrical conductivity and sufficient mechanical strength. These two factors play an important role in cardiac tissue engineering and regeneration. The contractile property of cardiomyocytes depends on directed signal transmission over the electroconductive systems that happen inside the innate myocardium. Because of their distinctive electrical behavior, electroactive materials such as graphene might be used for the regeneration of cardiac tissue. Methods In this review, we aim to provide deep insight into the applications of graphene and graphene derivative-based hybrid polymeric scaffolds in cardiomyogenic differentiation and cardiac tissue regeneration. Results Synthetic biodegradable polymers are considered as a platform because their degradation can be controlled over time and easily functionalized. Therefore, graphene-polymeric hybrid scaffolds with anisotropic electrical behavior can be utilized to produce organizational and efficient constructs for macroscopic cardiac tissue engineering. In cardiac tissue regeneration, natural polymer based-scaffolds such as chitosan, gelatin, and cellulose can provide a permissive setting significantly supporting the differentiation and growth of the human induced pluripotent stem cells -derived cardiomyocytes, in large part due to their negligible immunogenicity and suitable biodegradability. Conclusion Cardiac tissue regeneration characteristically utilizes an extracellular matrix (scaffold), cells, and growth factors that enhance cell adhesion, growth, and cardiogenic differentiation. From the various evaluated electroactive polymeric scaffolds for cardiac tissue regeneration in the past decade, graphene and its derivatives-based materials can be utilized efficiently for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
11
|
Chen J, Zhang D, Wu LP, Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers (Basel) 2023; 15:polym15092015. [PMID: 37177162 PMCID: PMC10181238 DOI: 10.3390/polym15092015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Blood vessels not only transport oxygen and nutrients to each organ, but also play an important role in the regulation of tissue regeneration. Impaired or occluded vessels can result in ischemia, tissue necrosis, or even life-threatening events. Bioengineered vascular grafts have become a promising alternative treatment for damaged or occlusive vessels. Large-scale tubular grafts, which can match arteries, arterioles, and venules, as well as meso- and microscale vasculature to alleviate ischemia or prevascularized engineered tissues, have been developed. In this review, materials and techniques for engineering tubular scaffolds and vasculature at all levels are discussed. Examples of vascularized tissue engineering in bone, peripheral nerves, and the heart are also provided. Finally, the current challenges are discussed and the perspectives on future developments in biofunctional engineered vessels are delineated.
Collapse
Affiliation(s)
- Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
12
|
Aziz R, Falanga M, Purenovic J, Mancini S, Lamberti P, Guida M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1374. [PMID: 37110959 PMCID: PMC10145986 DOI: 10.3390/nano13081374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
As cardiac diseases, which mostly result in heart failure, are increasing rapidly worldwide, heart transplantation seems the only solution for saving lives. However, this practice is not always possible due to several reasons, such as scarcity of donors, rejection of organs from recipient bodies, or costly medical procedures. In the framework of nanotechnology, nanomaterials greatly contribute to the development of these cardiovascular scaffolds as they provide an easy regeneration of the tissues. Currently, functional nanofibers can be used in the production of stem cells and in the regeneration of cells and tissues. The small size of nanomaterials, however, leads to changes in their chemical and physical characteristics that could alter their interaction and exposure to stem cells with cells and tissues. This article aims to review the naturally occurring biodegradable nanomaterials that are used in cardiovascular tissue engineering for the development of cardiac patches, vessels, and tissues. Moreover, this article also provides an overview of cell sources used for cardiac tissue engineering, explains the anatomy and physiology of the human heart, and explores the regeneration of cardiac cells and the nanofabrication approaches used in cardiac tissue engineering as well as scaffolds.
Collapse
Affiliation(s)
- Rabia Aziz
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Consiglio Nazionale Delle Ricerche (CNR)-Istituto Officina dei Materiali (IOM), Area Science Park Basovizza S.S. 14-Km. 163, 5-34149 Trieste, Italy
| | - Mariarosaria Falanga
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Jelena Purenovic
- Department of Physics and Materials, Faculty of Sciences at Cacak, University of Kragujevac, 32000 Cacak, Serbia;
| | - Simona Mancini
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
| | - Patrizia Lamberti
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
- Interdepartmental Research Centre for Nanomaterials and Nanotechnology at the University of Salerno (NanoMates), Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Michele Guida
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, 84084 Fisciano, Italy; (M.F.); (S.M.); (P.L.); (M.G.)
- Italian Interuniversity Research Center on Interaction between Electromagnetic Fields and Biosystems (ICEmB), Università Degli Studi di Genova, DITEN, Via all’Opera Pia 11/a, 16145 Genova, Italy
| |
Collapse
|
13
|
Abdolahzadeh H, Rad NK, Shpichka A, Golroo R, Rahi K, Timashev P, Hassan M, Vosough M. Progress and promise of cell sheet assisted cardiac tissue engineering in regenerative medicine. Biomed Mater 2023; 18. [PMID: 36758240 DOI: 10.1088/1748-605x/acbad4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Cardiovascular diseases (CVDs) are the most common leading causes of premature deaths in all countries. To control the harmful side effects of CVDs on public health, it is necessary to understand the current and prospective strategies in prevention, management, and monitoring CVDs.In vitro,recapitulating of cardiac complex structure with its various cell types is a challenging topic in tissue engineering. Cardiac tissue engineering (CTE) is a multi-disciplinary strategy that has been considered as a novel alternative approach for cardiac regenerative medicine and replacement therapies. In this review, we overview various cell types and approaches in cardiac regenerative medicine. Then, the applications of cell-sheet-assisted CTE in cardiac diseases were discussed. Finally, we described how this technology can improve cardiac regeneration and function in preclinical and clinical models.
Collapse
Affiliation(s)
- Hadis Abdolahzadeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anastasia Shpichka
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kosar Rahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- World-Class Research Center 'Digital Biodesign and Personalized Healthcare', Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Tavelli L, Barootchi S, Rasperini G, Giannobile WV. Clinical and patient-reported outcomes of tissue engineering strategies for periodontal and peri-implant reconstruction. Periodontol 2000 2023; 91:217-269. [PMID: 36166659 PMCID: PMC10040478 DOI: 10.1111/prd.12446] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
Scientific advancements in biomaterials, cellular therapies, and growth factors have brought new therapeutic options for periodontal and peri-implant reconstructive procedures. These tissue engineering strategies involve the enrichment of scaffolds with living cells or signaling molecules and aim at mimicking the cascades of wound healing events and the clinical outcomes of conventional autogenous grafts, without the need for donor tissue. Several tissue engineering strategies have been explored over the years for a variety of clinical scenarios, including periodontal regeneration, treatment of gingival recessions/mucogingival conditions, alveolar ridge preservation, bone augmentation procedures, sinus floor elevation, and peri-implant bone regeneration therapies. The goal of this article was to review the tissue engineering strategies that have been performed for periodontal and peri-implant reconstruction and implant site development, and to evaluate their safety, invasiveness, efficacy, and patient-reported outcomes. A detailed systematic search was conducted to identify eligible randomized controlled trials reporting the outcomes of tissue engineering strategies utilized for the aforementioned indications. A total of 128 trials were ultimately included in this review for a detailed qualitative analysis. Commonly performed tissue engineering strategies involved scaffolds enriched with mesenchymal or somatic cells (cell-based tissue engineering strategies), or more often scaffolds loaded with signaling molecules/growth factors (signaling molecule-based tissue engineering strategies). These approaches were found to be safe when utilized for periodontal and peri-implant reconstruction therapies and implant site development. Tissue engineering strategies demonstrated either similar or superior clinical outcomes than conventional approaches for the treatment of infrabony and furcation defects, alveolar ridge preservation, and sinus floor augmentation. Tissue engineering strategies can promote higher root coverage, keratinized tissue width, and gingival thickness gain than scaffolds alone can, and they can often obtain similar mean root coverage compared with autogenous grafts. There is some evidence suggesting that tissue engineering strategies can have a positive effect on patient morbidity, their preference, esthetics, and quality of life when utilized for the treatment of mucogingival deformities. Similarly, tissue engineering strategies can reduce the invasiveness and complications of autogenous graft-based staged bone augmentation. More studies incorporating patient-reported outcomes are needed to understand the cost-benefits of tissue engineering strategies compared with traditional treatments.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Division of Periodontology, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Shayan Barootchi
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- IRCCS Foundation Polyclinic Ca’ Granda, University of Milan, Milan, Italy
| | | |
Collapse
|
15
|
Brimmer S, Ji P, Birla AK, Keswani SG, Caldarone CA, Birla RK. Recent advances in biological pumps as a building block for bioartificial hearts. Front Bioeng Biotechnol 2023; 11:1061622. [PMID: 36741765 PMCID: PMC9895798 DOI: 10.3389/fbioe.2023.1061622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and in vivo bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex in vivo environment during controlled in vitro culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States,*Correspondence: Ravi K. Birla,
| |
Collapse
|
16
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
17
|
Suku M, Forrester L, Biggs M, Monaghan MG. Resident Macrophages and Their Potential in Cardiac Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:579-591. [PMID: 34088222 PMCID: PMC9242717 DOI: 10.1089/ten.teb.2021.0036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023]
Abstract
Many facets of tissue engineered models aim at understanding cellular mechanisms to recapitulate in vivo behavior, to study and mimic diseases for drug interventions, and to provide a better understanding toward improving regenerative medicine. Recent and rapid advances in stem cell biology, material science and engineering, have made the generation of complex engineered tissues much more attainable. One such tissue, human myocardium, is extremely intricate, with a number of different cell types. Recent studies have unraveled cardiac resident macrophages as a critical mediator for normal cardiac function. Macrophages within the heart exert phagocytosis and efferocytosis, facilitate electrical conduction, promote regeneration, and remove cardiac exophers to maintain homeostasis. These findings underpin the rationale of introducing macrophages to engineered heart tissue (EHT), to more aptly capitulate in vivo physiology. Despite the lack of studies using cardiac macrophages in vitro, there is enough evidence to accept that they will be key to making EHTs more physiologically relevant. In this review, we explore the rationale and feasibility of using macrophages as an additional cell source in engineered cardiac tissues. Impact statement Macrophages play a critical role in cardiac homeostasis and in disease. Over the past decade, we have come to understand the many vital roles played by cardiac resident macrophages in the heart, including immunosurveillance, regeneration, electrical conduction, and elimination of exophers. There is a need to improve our understanding of the resident macrophage population in the heart in vitro, to better recapitulate the myocardium through tissue engineered models. However, obtaining them in vitro remains a challenge. Here, we discuss the importance of cardiac resident macrophages and potential ways to obtain cardiac resident macrophages in vitro. Finally, we critically discuss their potential in realizing impactful in vitro models of cardiac tissue and their impact in the field.
Collapse
Affiliation(s)
- Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Lesley Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Manus Biggs
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Michael G. Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Advanced Materials for Bioengineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Cox-Pridmore DM, Castro FA, Silva SRP, Camelliti P, Zhao Y. Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105281. [PMID: 35119208 DOI: 10.1002/smll.202105281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Heart diseases are currently the leading cause of death worldwide. The ability to create cardiovascular tissue has numerous applications in understanding tissue development, disease progression, pharmacological testing, bio-actuators, and transplantation; yet current cardiovascular tissue engineering (CTE) methods are limited. However, there have been emerging developments in the bioelectronics field, with the creation of biomimetic devices that can intimately interact with cardiac cells, provide monitoring capabilities, and regulate tissue formation. Combining bioelectronics with cardiac tissue engineering can overcome current limitations and produce physiologically relevant tissue that can be used in various areas of cardiovascular research and medicine. This review highlights the recent advances in cardiovascular-based bioelectronics. First, cardiac tissue engineering and the potential of bioelectronic therapies for cardiovascular diseases are discussed. Second, advantageous bioelectronic materials for CTE and implantation and their properties are reviewed. Third, several representative cardiovascular tissue-bioelectronic interface models and the beneficial functions that bioelectronics can demonstrate in in vitro and in vivo applications are explored. Finally, the prospects and remaining challenges for clinical application are discussed.
Collapse
Affiliation(s)
- Dannielle M Cox-Pridmore
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Fernando A Castro
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - S Ravi P Silva
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yunlong Zhao
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
19
|
Akter F, Araf Y, Naser IB, Promon SK. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regen Ther 2021; 18:447-456. [PMID: 34608441 PMCID: PMC8481096 DOI: 10.1016/j.reth.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.
Collapse
Affiliation(s)
- Fariya Akter
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
20
|
Yu D, Wang X, Ye L. Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. J Cardiovasc Dev Dis 2021; 8:jcdd8110153. [PMID: 34821706 PMCID: PMC8617685 DOI: 10.3390/jcdd8110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Poor cell engraftment rate is one of the primary factors limiting the effectiveness of cell transfer therapy for cardiac repair. Recent studies have shown that the combination of cell-based therapy and tissue engineering technology can improve stem cell engraftment and promote the therapeutic effects of the treatment for myocardial infarction. This mini-review summarizes the recent progress in cardiac tissue engineering of cardiovascular cells from differentiated human pluripotent stem cells (PSCs), highlights their therapeutic applications for the treatment of myocardial infarction, and discusses the present challenges of cardiac tissue engineering and possible future directions from a clinical perspective.
Collapse
Affiliation(s)
- Dongmin Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
- Correspondence: (X.W.); (L.Y.); Tel.: +86-02568303105 (X.W.); +65-67042193 2 (L.Y.)
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
- Correspondence: (X.W.); (L.Y.); Tel.: +86-02568303105 (X.W.); +65-67042193 2 (L.Y.)
| |
Collapse
|
21
|
Elkhoury K, Morsink M, Sanchez-Gonzalez L, Kahn C, Tamayol A, Arab-Tehrany E. Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioact Mater 2021; 6:3904-3923. [PMID: 33997485 PMCID: PMC8080408 DOI: 10.1016/j.bioactmat.2021.03.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Natural hydrogels are one of the most promising biomaterials for tissue engineering applications, due to their biocompatibility, biodegradability, and extracellular matrix mimicking ability. To surpass the limitations of conventional fabrication techniques and to recapitulate the complex architecture of native tissue structure, natural hydrogels are being constructed using novel biofabrication strategies, such as textile techniques and three-dimensional bioprinting. These innovative techniques play an enormous role in the development of advanced scaffolds for various tissue engineering applications. The progress, advantages, and shortcomings of the emerging biofabrication techniques are highlighted in this review. Additionally, the novel applications of biofabricated natural hydrogels in cardiac, neural, and bone tissue engineering are discussed as well.
Collapse
Affiliation(s)
| | - Margaretha Morsink
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7500AE, the Netherlands
| | | | - Cyril Kahn
- LIBio, Université de Lorraine, Nancy, F-54000, France
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | |
Collapse
|
22
|
Lock R, Al Asafen H, Fleischer S, Tamargo M, Zhao Y, Radisic M, Vunjak-Novakovic G. A framework for developing sex-specific engineered heart models. NATURE REVIEWS. MATERIALS 2021; 7:295-313. [PMID: 34691764 PMCID: PMC8527305 DOI: 10.1038/s41578-021-00381-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 05/02/2023]
Abstract
The convergence of tissue engineering and patient-specific stem cell biology has enabled the engineering of in vitro tissue models that allow the study of patient-tailored treatment modalities. However, sex-related disparities in health and disease, from systemic hormonal influences to cellular-level differences, are often overlooked in stem cell biology, tissue engineering and preclinical screening. The cardiovascular system, in particular, shows considerable sex-related differences, which need to be considered in cardiac tissue engineering. In this Review, we analyse sex-related properties of the heart muscle in the context of health and disease, and discuss a framework for including sex-based differences in human cardiac tissue engineering. We highlight how sex-based features can be implemented at the cellular and tissue levels, and how sex-specific cardiac models could advance the study of cardiovascular diseases. Finally, we define design criteria for sex-specific cardiac tissue engineering and provide an outlook to future research possibilities beyond the cardiovascular system.
Collapse
Affiliation(s)
- Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Hadel Al Asafen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario Canada
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Medicine, Columbia University, New York, NY USA
| |
Collapse
|
23
|
Sandora N, Putra MA, Busro PW, Ardiansyah, Muttaqin C, Makdinata W, Fitria NA, Kusuma TR. Preparation of Cell-Seeded Heart Patch In Vitro; Co-Culture of Adipose-Derived Mesenchymal Stem Cell and Cardiomyocytes in Amnion Bilayer Patch. Cardiovasc Eng Technol 2021; 13:193-206. [PMID: 34322787 DOI: 10.1007/s13239-021-00565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Cardiovascular disease is the second killer across the globe, while coronary disease is the major cause. Cell therapy is one alternative to regenerate the infarcted heart wall. MATERIALS AND METHODS In this study, the cardiomyogenesis capacity of human adipose stem cells (hAdSC) and human cardiomyocytes (hCardio) cultured in a 3-D biological scaffold (decellularised amnion bilayer) for nine days in a static condition was investigated. The cardiomyogenesis capacity of hAdSC were identified using immunohistochemistry and RT-PCR. The population of the cells isolated from the heart tissue expressed cTnT-1 (13.38 ± 11.38%), cKit (7.85 ± 4.2%), ICAM (85.53 ± 8.69%), PECAM (61.63 ± 7.18%) and VCAM (35.9 ± 9.11%), while from the fat tissue expressed the mesenchymal phenotypes (CD73, CD90, CD105, but not CD45, CD34, CD11b, CD19 and HLA-DR). Two age groups of hAdSC donors were compared, the youngsters (30-40yo) and the elderly (60-70 yo). RESULTS The co-culture showed that after 5-day incubation, the seeded graft in the hAdSC-30 group had a tube-like appearance while the hAdSC-60 group demonstrated a disorganised pattern, despite of the MSC expressions of the hAdSC-60 were significantly higher. Initial co-culture showed no difference of ATP counts among all groups, however the hAdSC-30 group had the highest ATP count after 9 days culture (p = 0.004). After normalising to the normal myocardium, only the hAdSC-60 group expressed cTnT and MHC, very low, seen during the initial cultivation, but then disappeared. Meanwhile, the hAdSC-30 group expressed α-actinin, MHC and cTnT in the Day-5. The PPAR also was higher in the Day-5 compared to the Day-9 (p < 0.005). CONCLUSION Cardiomyogenesis capacity of hAdSC co-cultured with hCardio in a 3-D scaffold taken from the 30-40yo donor showed better morphology and viability than the 60-70yo group, but maintained less than 5 days in this system.
Collapse
Affiliation(s)
- Normalina Sandora
- Institute of Medical Education and Research Indonesia, Jakarta, 10430, Indonesia.
| | - Muhammad Arza Putra
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Pribadi Wiranda Busro
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ardiansyah
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Chaidar Muttaqin
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - William Makdinata
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nur Amalina Fitria
- Institute of Medical Education and Research Indonesia, Jakarta, 10430, Indonesia
| | - Tyas Rahmah Kusuma
- Institute of Medical Education and Research Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
24
|
Ramalho IC, Maranduba CMDC, Resende LMD, Lourenço PDS. The importance of plant-derived biomaterials for cardiac tissue engineering. EINSTEIN-SAO PAULO 2021; 19:eCE6678. [PMID: 34231826 PMCID: PMC8244926 DOI: 10.31744/einstein_journal/2021ce6678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/05/2022] Open
|
25
|
Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D Bioprinting of Vascularized Tissues for in vitro and in vivo Applications. Front Bioeng Biotechnol 2021; 9:664188. [PMID: 34055761 PMCID: PMC8158943 DOI: 10.3389/fbioe.2021.664188] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited supply of organ donors and available organs for transplantation, the aim of tissue engineering with three-dimensional (3D) bioprinting technology is to construct fully functional and viable tissue and organ replacements for various clinical applications. 3D bioprinting allows for the customization of complex tissue architecture with numerous combinations of materials and printing methods to build different tissue types, and eventually fully functional replacement organs. The main challenge of maintaining 3D printed tissue viability is the inclusion of complex vascular networks for nutrient transport and waste disposal. Rapid development and discoveries in recent years have taken huge strides toward perfecting the incorporation of vascular networks in 3D printed tissue and organs. In this review, we will discuss the latest advancements in fabricating vascularized tissue and organs including novel strategies and materials, and their applications. Our discussion will begin with the exploration of printing vasculature, progress through the current statuses of bioprinting tissue/organoids from bone to muscles to organs, and conclude with relevant applications for in vitro models and drug testing. We will also explore and discuss the current limitations of vascularized tissue engineering and some of the promising future directions this technology may bring.
Collapse
Affiliation(s)
- Earnest P Chen
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Yale College, Yale University, New Haven, CT, United States
| | - Zeren Toksoy
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Yale College, Yale University, New Haven, CT, United States
| | - Bruce A Davis
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States
| | - John P Geibel
- Department of Surgery, School of Medicine, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
Vogt L, Ruther F, Salehi S, Boccaccini AR. Poly(Glycerol Sebacate) in Biomedical Applications-A Review of the Recent Literature. Adv Healthc Mater 2021; 10:e2002026. [PMID: 33733604 PMCID: PMC11468981 DOI: 10.1002/adhm.202002026] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Poly(glycerol sebacate) (PGS) continues to attract attention for biomedical applications owing to its favorable combination of properties. Conventionally polymerized by a two-step polycondensation of glycerol and sebacic acid, variations of synthesis parameters, reactant concentrations or by specific chemical modifications, PGS materials can be obtained exhibiting a wide range of physicochemical, mechanical, and morphological properties for a variety of applications. PGS has been extensively used in tissue engineering (TE) of cardiovascular, nerve, cartilage, bone and corneal tissues. Applications of PGS based materials in drug delivery systems and wound healing are also well documented. Research and development in the field of PGS continue to progress, involving mainly the synthesis of modified structures using copolymers, hybrid, and composite materials. Moreover, the production of self-healing and electroactive materials has been introduced recently. After almost 20 years of research on PGS, previous publications have outlined its synthesis, modification, properties, and biomedical applications, however, a review paper covering the most recent developments in the field is lacking. The present review thus covers comprehensively literature of the last five years on PGS-based biomaterials and devices focusing on advanced modifications of PGS for applications in medicine and highlighting notable advances of PGS based systems in TE and drug delivery.
Collapse
Affiliation(s)
- Lena Vogt
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Florian Ruther
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Sahar Salehi
- Chair of Biomaterials, University of Bayreuth, Bayreuth, 95447, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
27
|
Hoang P, Kowalczewski A, Sun S, Winston TS, Archilla AM, Lemus SM, Ercan-Sencicek AG, Gupta AR, Liu W, Kontaridis MI, Amack JD, Ma Z. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports 2021; 16:1228-1244. [PMID: 33891865 PMCID: PMC8185451 DOI: 10.1016/j.stemcr.2021.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging technologies in stem cell engineering have produced sophisticated organoid platforms by controlling stem cell fate via biomaterial instructive cues. By micropatterning and differentiating human induced pluripotent stem cells (hiPSCs), we have engineered spatially organized cardiac organoids with contracting cardiomyocytes in the center surrounded by stromal cells distributed along the pattern perimeter. We investigated how geometric confinement directed the structural morphology and contractile functions of the cardiac organoids and tailored the pattern geometry to optimize organoid production. Using modern data-mining techniques, we found that pattern sizes significantly affected contraction functions, particularly in the parameters related to contraction duration and diastolic functions. We applied cardiac organoids generated from 600 μm diameter circles as a developmental toxicity screening assay and quantified the embryotoxic potential of nine pharmaceutical compounds. These cardiac organoids have potential use as an in vitro platform for studying organoid structure-function relationships, developmental processes, and drug-induced cardiac developmental toxicity. Micropattern-based geometric confinement directs cardiac organoid development Cardiac organoid structure-function relationships are guided by organoid size Cardiac organoids can be used as an in vitro embryotoxicity assessment tool
Collapse
Affiliation(s)
- Plansky Hoang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Andrew Kowalczewski
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Tackla S Winston
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Adriana M Archilla
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | - Stephanie M Lemus
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA
| | | | - Abha R Gupta
- Department of Pediatrics, Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Wenzhong Liu
- Department of Pediatrics, Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - Jeffrey D Amack
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA; Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse Institute for Material and Living Systems, Syracuse, NY, USA.
| |
Collapse
|
28
|
The triad of nanotechnology, cell signalling, and scaffold implantation for the successful repair of damaged organs: An overview on soft-tissue engineering. J Control Release 2021; 332:460-492. [DOI: 10.1016/j.jconrel.2021.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
|
29
|
Liu G, Liu Z, Cao N. Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflugers Arch 2021; 473:1087-1097. [DOI: 10.1007/s00424-021-02542-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
|
30
|
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of mortality worldwide and a number one killer in the USA. Cell-based approaches to treat CVDs have only shown modest improvement due to poor survival, retention, and engraftment of the transplanted cells in the ischemic myocardium. Recently, tissue engineering and the use of 3D scaffolds for culturing and delivering stem cells for ischemic heart disease are gaining rapid potential. Here, we describe a protocol for the fabrication of aligned coaxial nanofibrous scaffold comprising of a polycaprolactone (PCL) core and gelatin shell. Furthermore, we describe a detailed protocol for the efficient seeding and maintenance of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on these nanofibrous scaffolds, which could have a potential application in the generation of functional "cardiac patch" for myocardial repair applications as well as an in vitro 3D cardiac tissue model to evaluate the efficacy of cardiovascular drugs and cardiac toxicities.
Collapse
|
31
|
Khan S, Hasan A, Attar F, Sharifi M, Siddique R, Mraiche F, Falahati M. Gold Nanoparticle-Based Platforms for Diagnosis and Treatment of Myocardial Infarction. ACS Biomater Sci Eng 2020; 6:6460-6477. [PMID: 33320615 DOI: 10.1021/acsbiomaterials.0c00955] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, an increasing rate of mortality due to myocardial infarction (MI) has led to the development of nanobased platforms, especially gold nanoparticles (AuNPs), as promising nanomaterials for diagnosis and treatment of MI. These promising NPs have been used to develop different nanobiosensors, mainly optical sensors for early detection of biomarkers as well as biomimetic/bioinspired platforms for cardiac tissue engineering (CTE). Therefore, in this Review, we presented an overview on the potential application of AuNPs as optical (surface plasmon resonance, colorimetric, fluorescence, and chemiluminescence) nanobiosensors for early diagnosis and prognosis of MI. On the other hand, we discussed the potential application of AuNPs either alone or with other NPs/polymers as promising three-dimensional (3D) scaffolds to regulate the microenvironment and mimic the morphological and electrical features of cardiac cells for potential application in CTE. Furthermore, we presented the challenges and ongoing efforts associated with the application of AuNPs in the diagnosis and treatment of MI. In conclusion, this Review may provide outstanding information regarding the development of AuNP-based technology as a promising platform for current MI treatment approaches.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.,Biomedical Research Centre (BRC), Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj 14155-6139, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rabeea Siddique
- Department of Cerebrovascular Diseases, the Second Affiliated Hospital of Zhengzhou University, Jingba Road, NO.2, 450014 Zhengzhou, China
| | | | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Williams SK, Birla RK. Tissue engineering solutions to replace contractile function during pediatric heart surgery. Tissue Cell 2020; 67:101452. [PMID: 33137707 DOI: 10.1016/j.tice.2020.101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Pediatric heart surgery remains challenging due to the small size of the pediatric heart, the severity of congenital abnormalities and the unique characteristics of each case. New tools and technologies are needed to tackle this enormous challenge. Tissue engineering strategies are focused on fabricating contractile heart muscle, ventricles, Fontan pumps and whole hearts, and a transplantable tissue equivalent has tremendous implications in pediatric heart surgery to provide functional cardiac tissue. This technology will prove to be a game-changer in the field of pediatric heart surgery and provide a novel toolkit for pediatric heart surgeons. This review will provide insight into the potential applications of tissue engineering technologies to replace lost contractile function in pediatric patients with heart abnormalities.
Collapse
Affiliation(s)
- Stuart K Williams
- Bioficial Organs Program, University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
33
|
A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8111376] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering (TE) is one of the most challenging fields of research since it provides current alternative protocols and materials for the regeneration of damaged tissue. The success of TE has been mainly related to the right selection of nano-sized biocompatible materials for the development of matrixes, which can display excellent anatomical structure, functionality, mechanical properties, and histocompatibility. Today, the research community has paid particular attention to zein as a potential biomaterial for TE applications and nanotechnological approaches. Considering the properties of zein and the advances in the field, there is a need to reviewing the current state of the art of using this natural origin material for TE and nanotechnological applications. Therefore, the goal of this review paper is to elucidate the latest (over the last five years) applications and development works in the field, including TE, encapsulations of drugs, food, pesticides and bandaging for external wounds. In particular, attention has been focused on studies proving new breakthroughs and findings. Also, a complete background of zein’s properties and features are addressed.
Collapse
|
34
|
Nguyen-Truong M, Li YV, Wang Z. Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering (Basel) 2020; 7:E122. [PMID: 33022929 PMCID: PMC7711753 DOI: 10.3390/bioengineering7040122] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials to facilitate the restoration of cardiac tissue is of emerging importance. While there are many aspects to consider in the design of biomaterials, mechanical properties can be of particular importance in this dynamically remodeling tissue. This review focuses on one specific processing method, electrospinning, that is employed to generate materials with a fibrous microstructure that can be combined with material properties to achieve the desired mechanical behavior. Current methods used to fabricate mechanically relevant micro-/nanofibrous scaffolds, in vivo studies using these scaffolds as therapeutics, and common techniques to characterize the mechanical properties of the scaffolds are covered. We also discuss the discrepancies in the reported elastic modulus for physiological and pathological myocardium in the literature, as well as the emerging area of in vitro mechanobiology studies to investigate the mechanical regulation in cardiac tissue engineering. Lastly, future perspectives and recommendations are offered in order to enhance the understanding of cardiac mechanobiology and foster therapeutic development in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
| | - Yan Vivian Li
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
35
|
Kiaie N, Gorabi AM, Ahmadi Tafti SH, Rabbani S. Pre-vascularization Approaches for Heart Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00172-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
37
|
Tracy EP, Gettler BC, Zakhari JS, Schwartz RJ, Williams SK, Birla RK. 3D Bioprinting the Cardiac Purkinje System Using Human Adipogenic Mesenchymal Stem Cell Derived Purkinje Cells. Cardiovasc Eng Technol 2020; 11:587-604. [PMID: 32710379 DOI: 10.1007/s13239-020-00478-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE The objective of this study was to reprogram human adipogenic mesenchymal stem cells (hADMSCs) to form Purkinje cells and to use the reprogrammed Purkinje cells to bioprint Purkinje networks. METHODS hADMSCs were reprogrammed to form Purkinje cells using a multi-step process using transcription factors ETS2 and MESP1 to first form cardiac progenitor stem cells followed by SHOX2 and TBX3 to form Purkinje cells. A novel bioprinting method was developed based on Pluronic acid as the sacrificial material and type I collagen as the structural material. The reprogrammed Purkinje cells were used in conjunction with the novel bioprinting method to bioprint Purkinje networks. Printed constructs were evaluated for retention of functional protein connexin 40 (Cx40) and ability to undergo membrane potential changes in response to physiologic stimulus. RESULTS hADMSCs were successfully reprogrammed to form Purkinje cells based on the expression pattern of IRX3, IRX5, SEMA and SCN10. Reprogrammed purkinje cells were incorporated into a collagen type-1 bioink and the left ventricular Purkinje network was printed using anatomical images of the bovine Purkinje system as reference. Optimization studies demonstrated that 1.8 mg/mL type-I collagen at a seeding density of 300,000 cells per 200 µL resulted in the most functional bioprinted Purkinje networks. Furthermore, bioprinted Purkinje networks formed continuous syncytium, retained expression of vital functional gap junction protein Cx40 post-print, and exhibited membrane potential changes in response to electric stimulation and acetylcholine evaluated by DiBAC4(5), an electrically responsive dye. CONCLUSION Based on the results of this study, hADMSCs were successfully reprogrammed to form Purkinje cells and bioprinted to form Purkinje networks.
Collapse
Affiliation(s)
- Evan P Tracy
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Brian C Gettler
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Joseph S Zakhari
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Robert J Schwartz
- Stem Cell Engineering, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77225-0345, USA.,Department of Biology and Biochemistry, Science and Engineering Research Center, (SERC-Building 445), 3605 Cullen Blvd, Room 5004, Houston, TX, 77204-5060, USA
| | - Stuart K Williams
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, 302 E. Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Ravi K Birla
- Department of Biomedical Engineering, Science and Engineering Research Center, (SERC-Building 445), 3605 Cullen Blvd, Room 2005, Houston, TX, 77204, USA.
| |
Collapse
|
38
|
Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int J Nanomedicine 2020; 15:4205-4224. [PMID: 32606673 PMCID: PMC7314574 DOI: 10.2147/ijn.s245936] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and renewability but have some significant drawbacks such as rapid degradation, insufficient electrical conductivity, immunological reaction, and poor mechanical properties for cardiac tissue engineering. Synthetic biodegradable polymers have some advantages such as strong mechanical properties, controlled structure, great processing flexibility, and usually no immunological concerns; however, they have some drawbacks such as a lack of cell attachment and possible low biocompatibility. Some applications have combined the best of both and exciting new natural/synthetic composites have been utilized. Recently, the use of nanostructured polymers and polymer nanocomposites has revolutionized the field of cardiac tissue engineering due to their enhanced mechanical, electrical, and surface properties promoting tissue growth. In this review, recent research on the use of biodegradable natural/synthetic nanocomposite polymers in cardiac tissue engineering is presented with forward looking thoughts provided for what is needed for the field to mature.
Collapse
Affiliation(s)
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sakineh Hajebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoumehossadat Hosseini
- Department of Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
- Soroush Mana Pharmed, Pharmaceutical Holding, Golrang Industrial Group, Tehran, Iran
| | | | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, United States
| |
Collapse
|
39
|
Mehrotra S, de Melo BAG, Hirano M, Keung W, Li RA, Mandal BB, Shin SR. Nonmulberry Silk Based Ink for Fabricating Mechanically Robust Cardiac Patches and Endothelialized Myocardium-on-a-Chip Application. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907436. [PMID: 33071707 PMCID: PMC7566555 DOI: 10.1002/adfm.201907436] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/20/2023]
Abstract
Bioprinting holds great promise towards engineering functional cardiac tissue constructs for regenerative medicine and as drug test models. However, it is highly limited by the choice of inks that require maintaining a balance between the structure and functional properties associated with the cardiac tissue. In this regard, we have developed a novel and mechanically robust biomaterial-ink based on non-mulberry silk fibroin protein. The silk-based ink demonstrated suitable mechanical properties required in terms of elasticity and stiffness (~40 kPa) for developing clinically relevant cardiac tissue constructs. The ink allowed the fabrication of stable anisotropic scaffolds using a dual crosslinking method, which were able to support formation of aligned sarcomeres, high expression of gap junction proteins as connexin-43, and maintain synchronously beating of cardiomyocytes. The printed constructs were found to be non-immunogenic in vitro and in vivo. Furthermore, delving into an innovative method for fabricating a vascularized myocardial tissue-on-a-chip, the silk-based ink was used as supporting hydrogel for encapsulating human induced pluripotent stem cell derived cardiac spheroids (hiPSC-CSs) and creating perfusable vascularized channels via an embedded bioprinting technique. We confirmed the ability of silk-based supporting hydrogel towards maturation and viability of hiPSC-CSs and endothelial cells, and for applications in evaluating drug toxicity.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Bruna A. G. de Melo
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Department of Engineering of Materials and Bioprocesses, School of Chemical Engineering, University of Campinas, Campinas, SP 13083-852, Brazil
| | - Minoru Hirano
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
- Future Vehicle Research Department, Toyota Research Institute North America, Toyota Motor North America Inc., 1555 Woodridge Ave Ann Arbor, MI 48105, USA
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| | - Biman B. Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Roberts EG, Kleptsyn VF, Roberts GD, Mossburg KJ, Feng B, Domian IJ, Emani SM, Wong JY. Development of a bio-MEMS device for electrical and mechanical conditioning and characterization of cell sheets for myocardial repair. Biotechnol Bioeng 2019; 116:3098-3111. [PMID: 31317531 DOI: 10.1002/bit.27123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022]
Abstract
Here we propose a bio-MEMS device designed to evaluate contractile force and conduction velocity of cell sheets in response to mechanical and electrical stimulation of the cell source as it grows to form a cellular sheet. Moreover, the design allows for the incorporation of patient-specific data and cell sources. An optimized device would allow cell sheets to be cultured, characterized, and conditioned to be compatible with a specific patient's cardiac environment in vitro, before implantation. This design draws upon existing methods in the literature but makes an important advance by combining the mechanical and electrical stimulation into a single system for optimized cell sheet growth. The device has been designed to achieve cellular alignment, electrical stimulation, mechanical stimulation, conduction velocity readout, contraction force readout, and eventually cell sheet release. The platform is a set of comb electrical contacts consisting of three-dimensional walls made of polydimethylsiloxane and coated with electrically conductive metals on the tops of the walls. Not only do the walls serve as a method for stimulating cells that are attached to the top, but their geometry is tailored such that they are flexible enough to be bent by the cells and used to measure force. The platform can be stretched via a linear actuator setup, allowing for simultaneous electrical and mechanical stimulation that can be derived from patient-specific clinical data.
Collapse
Affiliation(s)
- Erin G Roberts
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts.,Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Vladimir F Kleptsyn
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts
| | - Gregory D Roberts
- Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California
| | | | - Bei Feng
- Harvard Medical School, Massachusetts General Hospital, Cardiovascular Research Center, Boston, Massachusetts
| | - Ibrahim J Domian
- Harvard Medical School, Massachusetts General Hospital, Cardiovascular Research Center, Boston, Massachusetts
| | - Sitaram M Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Joyce Y Wong
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|