1
|
Salazar PB, Dupuy FG, Fiori MC, Stanfield SM, McCord J, Altenberg GA, Minahk CJ. Nanodisc-associated acetylcholinesterase as a novel model system of physiological relevant membrane-bound cholinesterases. Inhibition by phenolic compounds. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184389. [PMID: 39378913 DOI: 10.1016/j.bbamem.2024.184389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Acetylcholinesterase (AChE) plays a pivotal role in the cholinergic system, and its inhibition is sought after in a wide range of applications, from insect control to Alzheimer's disease treatment. While the primary physiological isoforms of AChE are membrane-bound proteins, most assays for discovering new, safer, and potent inhibitors are conducted using commercially available soluble isoforms, such as the electric eel AChE (eeAChE). In this study, we conducted a comparative analysis of the activity and selectivity to phenolic inhibitors of recombinant human AChE, eeAChE and a mutant variant of human AChE known as dAChE4. Despite numerous mutations, dAChE4 closely resembles its parental protein and serves as a suitable model for monomeric human AChE. We also established an in vitro system of membrane-bound AChE to create a model that closely mimics the physiological isoforms. This system ensures the proper work of the enzyme and allowed us to control the exact concentration of enzyme and lipids per assay.
Collapse
Affiliation(s)
- Paula Belén Salazar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Fernando Gabriel Dupuy
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Samantha M Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jon McCord
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Carlos Javier Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.
| |
Collapse
|
2
|
Kamath AP, Nayak PG, John J, Mutalik S, Balaraman AK, Krishnadas N. Revolutionizing neurotherapeutics: Nanocarriers unveiling the potential of phytochemicals in Alzheimer's disease. Neuropharmacology 2024; 259:110096. [PMID: 39084596 DOI: 10.1016/j.neuropharm.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Neurological disorders pose a huge worldwide challenge to the healthcare system, necessitating innovative strategies for targeted drug delivery to the central nervous system. Alzheimer's disease (AD) is an untreatable neurodegenerative condition characterized by dementia and alterations in a patient's physiological and mental states. Since ancient times, medicinal plants have been an important source of bioactive phytochemicals with immense therapeutic potential. This review investigates new and safer alternatives for prevention and treatment of disease related to inevitable side effects associated with synthetic compounds. This review examines how nanotechnology can help in enhancing the delivery of neuroprotective phytochemicals in AD. Nevertheless, despite their remarkable neuroprotective properties, these natural products often have poor therapeutic efficacy due to low bioavailability, limited solubility and imperfect blood brain barrier (BBB) penetration. Nanotechnology produces personalized drug delivery systems which are necessary for solving such problems. In overcoming these challenges, nanotechnology might be employed as a way forward whereby customized medication delivery systems would be established as a result. The use of nanocarriers in the design and application of important phytochemicals is highlighted by this review, which indicate potential for revolutionizing neuroprotective drug delivery. We also explore the complications and possibilities of using nanocarriers to supply nutraceuticals and improve patients' standard of living, and preclinical as well as clinical investigations displaying that these techniques are effective in mitigating neurodegenerative diseases. In order to fight brain diseases and improve patient's health, scientists and doctors can employ nanotechnology with its possible therapeutic interventions.
Collapse
Affiliation(s)
- Akshatha P Kamath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jeena John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashok Kumar Balaraman
- Centre for Research and Innovation, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Leuci R, Simic S, Carrieri A, Chaves S, La Spada G, Brunetti L, Tortorella P, Loiodice F, Laghezza A, Catto M, Santos MA, Tufarelli V, Wackerlig J, Piemontese L. Rivastigmine structure-based hybrids as potential multi-target anti-Alzheimer's drug candidates. Bioorg Chem 2024; 153:107895. [PMID: 39454499 DOI: 10.1016/j.bioorg.2024.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
In recent years, an increasing amount of work has been carried out regarding the study of the etiopathology of Alzheimer's Disease (AD). This neurodegenerative disease is characterized by several organic and molecular correlates, which paint a complex picture that also reflects the historic challenge faced by the worldwide scientific community in finding an effective cure for it. In this paper, we describe the synthesis of novel rivastigmine derivatives and their characterization as wide-spectrum enzyme (AChE, BChE, FAAH, MAO-A and MAO-B) inhibitors with potential application in the therapy of AD following the paradigm of multi-target design. 5 (ROS151) and 23 show similar inhibitory profile compared to donepezil on cholinesterases, and ca. two hundred twenty-three and eighty-seven times more active than rivastigmine on AChE. Moreover, ROS151 was found to be a potential metal chelator. Compounds 6 and 8 are very interesting and original multi-functional promising hybrids, with comparable potency on distinct panels of enzymes. All these promising rivastigmine-like hybrids were assayed for their pharmacokinetic properties by using different bio-analytical techniques, showing interesting applicability profiles. Moreover, cytotoxicity assays displayed a safety profile on three different cell lines.
Collapse
Affiliation(s)
- Rosalba Leuci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Stefan Simic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Leonardo Brunetti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Antonio Laghezza
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy
| | - M Amélia Santos
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa 1049-001, Portugal
| | - Vincenzo Tufarelli
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari Aldo Moro, Valenzano, 70010, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Luca Piemontese
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
4
|
Reddy CN, Nuthakki VK, Sharma A, Malik S, Tabassum M, Kumar R, Choudhary S, Iqbal F, Tufail Z, Mondhe DM, Kumar A, Bharate SB. Synthesis and Biological Evaluation of Colchicine─Aryl/Alkyl Amine Hybrids as Potential Noncytotoxic Cholinesterase Inhibitors: Identification of SBN-284 as a Dual Inhibitor of Cholinesterases and NLRP3 Inflammasome. ACS Chem Neurosci 2024; 15:2779-2794. [PMID: 39056181 DOI: 10.1021/acschemneuro.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Colchicine, one of the oldest anti-inflammatory natural products still used clinically, inhibits NF-κB signaling and NLRP3 inflammasome activation. Despite its cytotoxicity and narrow therapeutic range, colchicine continues to intrigue medicinal chemists exploring its anti-inflammatory potential. This study aimed to investigate the colchicine scaffold for its role in Alzheimer's disease by targeting neuroinflammation and cholinesterases. Molecular docking revealed that colchicine's hydrophobic trimethoxyphenyl framework can potentially bind to the peripheral anionic site of cholinesterases. Hybrid structures combining colchicine with aryl/alkyl amines were designed to bind both peripheral and catalytic sites of cholinesterases. We describe here the design, synthesis, and in vitro cytotoxicity evaluation of these colchicine-aryl/alkyl amine hybrids, along with their in silico interactions with the cholinesterase active site gorge. Nontoxic analogs demonstrating strong cholinesterase binding affinity were further evaluated for their anticholinesterase and antineuroinflammatory activities. The colchicine-donepezil hybrid, SBN-284 (3x), inhibited both acetylcholinesterase and butyrylcholinesterase as well as the NLRP3 inflammasome complex at low micromolar concentrations. It achieved this through noncompetitive inhibition, occupying the active site gorge and interacting with both peripheral and catalytic anionic sites of cholinesterases. Analog 3x was shown to cross the blood-brain barrier and exhibited no toxicity to neuronal cells, primary macrophages, or epithelial fR2 cells. These findings highlight the potential of this lead compound for further preclinical investigation as a promising anti-Alzheimer agent.
Collapse
Affiliation(s)
- Chilakala Nagarjuna Reddy
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay K Nuthakki
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumera Malik
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Misbah Tabassum
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rajesh Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sushil Choudhary
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Fiza Iqbal
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ziya Tufail
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Dilip M Mondhe
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ajay Kumar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
5
|
Anh Phan DT, Tran HT, Le HP, Khuong TH, Ha HT, Nguyen DT, Nguyen GT, Le MV, Ly TH. Exploring the Therapeutic Potential of Camellia longii Orel & Luu Leaf Extracts for Memory Loss in Alzheimer's Disease: Novel Findings and Functional Food Applications. ACS OMEGA 2024; 9:29651-29665. [PMID: 39005831 PMCID: PMC11238292 DOI: 10.1021/acsomega.4c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
Novel research on the chemical compositions and biochemical activities of Camellia longii Orel and Luu leaf extracts revealed valuable resources with potential applications in Alzheimer's disease treatment. Qualitative phytochemicals detected various compound groups, including polyphenols, saponins, tannins, flavonoids, alkaloids, amino acids, coumarins, and polysaccharides. HPLC-MS identified 23 compounds in C. longii leaves with compounds found at significant levels, including epicatechin gallate (17.12%), tryptophan (13.73%), isovitexin (12.91%), gallic acid (3.06%), and quercetin (3.06%). Interestingly, the ethanol extract (CLL-Ew) exhibited the highest extraction yield (26.6%) and potent antioxidant and acetylcholinesterase (AChE) inhibitory effects in vitro. In the Drosophila melanogaster model, CLL-Ew improved longevity, movement, and memory by reducing malondialdehyde and increasing glutathione levels. Docking simulations suggested that the above compounds bind tightly to AChE's active site, potentially contributing to memory enhancement. Interestingly, observations of male and female mice after administration of a dose of 5000 mg/kg C. longii leaf extract were recorded normally throughout the 14 day experiment. These findings highlight the potential of C. longii leaf extracts in functional foods and therapeutic interventions for memory impairment prevention and treatment.
Collapse
Affiliation(s)
- Dao Thi Anh Phan
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam
| | - Huy Thanh Tran
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam
| | - Hien Phung Le
- College of Science and Engineering, Flinders University, Sturt Rd, Bedford Park, South Australia, 5042, Australia
| | | | - Hue Thi Ha
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam
| | - Dzung Tan Nguyen
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam
| | - Giang Tien Nguyen
- Faculty of Chemical and Food Technology, HCMC University of Technology and Education, Ho Chi Minh City 700000, Vietnam
| | - Minh Van Le
- Research Center of Ginseng and Medicinal Materials, National Institute of Medicinal Materials, Ho Chi Minh City 700000, Vietnam
| | - Trieu Hai Ly
- Research Center of Ginseng and Medicinal Materials, National Institute of Medicinal Materials, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
6
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Jiao LL, Dong HL, Liu MM, Wu PL, Cao Y, Zhang Y, Gao FG, Zhu HY. The potential roles of salivary biomarkers in neurodegenerative diseases. Neurobiol Dis 2024; 193:106442. [PMID: 38382884 DOI: 10.1016/j.nbd.2024.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
Current research efforts on neurodegenerative diseases are focused on identifying novel and reliable biomarkers for early diagnosis and insight into disease progression. Salivary analysis is gaining increasing interest as a promising source of biomarkers and matrices for measuring neurodegenerative diseases. Saliva collection offers multiple advantages over the currently detected biofluids as it is easily accessible, non-invasive, and repeatable, allowing early diagnosis and timely treatment of the diseases. Here, we review the existing findings on salivary biomarkers and address the potential value in diagnosing neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Based on the available research, β-amyloid, tau protein, α-synuclein, DJ-1, Huntington protein in saliva profiles display reliability and validity as the biomarkers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling-Ling Jiao
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Lin Dong
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Meng-Meng Liu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Peng-Lin Wu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Yi Cao
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Yuan Zhang
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China
| | - Fu-Gao Gao
- Xuzhou Cigarette Factory, China Tobacco Jiangsu Industrial Co Ltd, Xuzhou 221005, China.
| | - Huai-Yuan Zhu
- China Tobacco Jiangsu Industrial Co Ltd, Nanjing 210019, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
8
|
Varadharajan A, Davis AD, Ghosh A, Jagtap T, Xavier A, Menon AJ, Roy D, Gandhi S, Gregor T. Guidelines for pharmacotherapy in Alzheimer's disease - A primer on FDA-approved drugs. J Neurosci Rural Pract 2023; 14:566-573. [PMID: 38059250 PMCID: PMC10696336 DOI: 10.25259/jnrp_356_2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 12/08/2023] Open
Abstract
The growing prevalence of dementia makes it important for us to better understand its pathophysiology and treatment modalities, to improve the quality of life of patients and caregivers. Alzheimer's disease (AD), a neurodegenerative disease, is the most common form of amnestic dementia in the geriatric population. Pathophysiology of AD is widely attributed to aggregation of amyloid-beta (Aβ) plaques and hyperphosphorylation of tau proteins. Initial treatment modalities aimed to increase brain perfusion in a non-specific manner. Subsequent therapy focused on rectifying neurotransmitter imbalance in the brain. Newer drugs modify the progression of the disease by acting against aggregated Aβ plaques. However, not all drugs used in therapy of AD have been granted approval by the United States Food and Drug Administration (FDA). This review categorizes and summarizes the FDA-approved drugs in the treatment of AD in a manner that would make it a convenient reference for researchers and practicing physicians alike. Drugs that mitigate symptoms of dementia may be categorized into mitigators of Behavioral and Psychological Symptoms of Dementia (BPSD), and mitigators of cognitive decline. BPSD mitigators include brexpiprazole, an atypical antipsychotic with a once-daily dosage suited to treat agitation in dementia patients, and suvorexant, an orexin receptor antagonist used to treat sleep disturbances. Cognitive decline mitigators include cholinesterase inhibitors such as donepezil, rivastigmine, and galantamine and glutamate inhibitors such as memantine. Donepezil is the most commonly prescribed drug. It is cheap, well-tolerated, and may be prescribed orally once daily, or as a transdermal patch once weekly. It increases ACh levels, enhances oligodendrocyte differentiation and also protects against Aβ toxicity. However, regular cardiac monitoring is required due to reports of cardiac conduction side effects. Rivastigmine requires a twice-daily oral dosage or once-daily replacement of transdermal patch. It has fewer cardiac side effects than donepezil, but local application-site reactions have been noted. Galantamine, in addition to improving cognitive symptoms in a short span of time, also delays the development of BPSDs and has minimal drug-drug interactions by virtue of having multiple metabolic pathways. However, cardiac conduction disturbances must be closely monitored for. Memantine, a glutamate regulator, acts as an anti-Parkinsonian agent and an antidepressant, in addition to improving cognition and neuroprotection, and requires a once-daily dosage in the form of immediate-release or sustained-release oral tablets. Disease-modifying drugs such as aducanumab and lecanemab reduce the Aβ burden. Both act by binding with fibrillary conformations of Aβ plaques in the brain. These drugs have a risk of causing amyloid-related imaging abnormalities, especially in persons with ApoE4 gene. Aducanumab is administered once every 4 weeks and lecanemab once every 2 weeks. The decision on the choice of the drug must be made after considering the availability of drug, compliance of patient (once-daily vs. multiple doses daily), cost, specific comorbidities, and the risk-benefit ratio for the particular patient. Other non-pharmacological treatment modalities must also be adopted to have a holistic approach toward the treatment of AD.
Collapse
Affiliation(s)
- Ashvin Varadharajan
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Aarjith Damian Davis
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Aishwarya Ghosh
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Tejaswini Jagtap
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anjo Xavier
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Dwaiti Roy
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandhya Gandhi
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Thomas Gregor
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Mehri K, Oskuye ZZ, Nassireslami E, Karami E, Parvizi MR. Rivastigmine ameliorates botulinum-induced hippocampal damage and spatial memory impairment in male rats. Neurotoxicology 2023; 98:29-38. [PMID: 37507053 DOI: 10.1016/j.neuro.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Botulinum toxin (Botox) is widely used in beauty industry and its long-term consequences can be a matter of concern. The hippocampal cholinergic system plays a significant role in memory and learning that could be affected by Botulinum toxin. However, to date, the effect of Botox on memory system has been controversial. This survey aimed to examine the effects of Botox on spatial memory, and biochemical and histological parameters of the hippocampus in male rats by using Rivastigmine (R) as a cholinesterase inhibitor that is more selective for the central nervous system (CNS). Thirty-five male Wistar rats (200-250 g) were distributed into seven groups: Sham, Botox A (3, 6, and 15 IU intramascularly) and Botox A (3, 6, and 15 IU) plus Rivastigmine (1 mg/kg intraperitoneally). Spatial memory was assessed in the Morris Water Maze (MWM) 4 weeks later. Moreover, the hippocampal tissue was removed for histopathological and biochemical analyses. Botox significantly impaired memory performance in MWM by increasing escape latency and swim distance and decreasing the time spent in the target zone. Furthermore, in the Botox groups, the level of acetylcholine decreased, while the level of the acetylcholinesterase enzyme increased significantly in the hippocampus. Also, local lesions were observed in the form of degeneration and loss of pyramidal neurons, as well as a decrease in the volume and shrinkage of the cell body and an increase in microglia in the damaged area. Rivastigmine administration alleviated biochemical and histological parameters and partially ameliorated Botox-induced impairments. In summary, rivastigmine could be a suitable protective approach for side effects of Botox in the hippocampus.
Collapse
Affiliation(s)
- Keyvan Mehri
- Student Research Committee,Tabriz University of Medical sciences, Tabriz, Iran
| | | | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Esmail Karami
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parvizi
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Angelova VT, Georgiev B, Pencheva T, Pajeva I, Rangelov M, Todorova N, Zheleva-Dimitrova D, Kalcheva-Yovkova E, Valkova IV, Vassilev N, Mihaylova R, Stefanova D, Petrov B, Voynikov Y, Tzankova V. Design, Synthesis, In Silico Studies and In Vitro Evaluation of New Indole- and/or Donepezil-like Hybrids as Multitarget-Directed Agents for Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1194. [PMID: 37765003 PMCID: PMC10534827 DOI: 10.3390/ph16091194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone (3a-r) or sulfonyl hydrazone (5a-l) fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds (3c and 3d) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system. Compound 3n, possessing two indole scaffolds, showed the highest activity against butyrylcholinesterase (BChE) and a high selectivity index (SI = 47.34), as well as a pronounced protective effect in H2O2-induced oxidative stress in SH-SY5Y cells. Moreover, compounds 3c, 3d, and 3n showed low neurotoxicity against malignant neuroblastoma cell lines of human (SH-SY5Y) and murine (Neuro-2a) origin, as well as normal murine fibroblast cells (CCL-1) that indicate the in vitro biocompatibility of the experimental compounds. Furthermore, compounds 3c, 3d, and 3n were capable of penetrating the blood-brain barrier (BBB) in the experimental PAMPA-BBB study. The molecular docking showed that compound 3c could act as a ligand to both MT1 and MT2 receptors, as well as to AchE and BchE enzymes. Taken together, those results outline compounds 3c, 3d, and 3n as promising prototypes in the search of innovative compounds for the treatment of AD-associated neurodegeneration with oxidative stress. This study demonstrates that hydrazone derivatives with melatonin and donepezil are appropriate for further development of new AChE/BChE inhibitory agents.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Borislav Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (N.T.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.P.); (I.P.)
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.P.); (I.P.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.R.); (N.V.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (N.T.)
| | | | - Elena Kalcheva-Yovkova
- Faculty of Computer Systems and Techologies, Technical University–Sofia, 1000 Sofia, Bulgaria;
| | - Iva V. Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.R.); (N.V.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Boris Petrov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| |
Collapse
|
11
|
Fan Z, Li Z, Zhao S, Chen Y, Su Y, Peng G, Luo B. Salivary Aβ 1-42 may be a quick-tested biomarker for clinical use in Alzheimer's disease: a meta-analysis. J Neurol 2023; 270:1945-1954. [PMID: 36562850 DOI: 10.1007/s00415-022-11509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent form of dementia among the aging population. Cumulative studies aim to find non-invasive biomarkers in the early stages of AD. Saliva can be obtained easily, and salivary biomarkers have been proven effective in detecting neurodegenerative diseases. To find effective biomarkers in saliva and to help the diagnosis of AD, we performed a meta-analysis focusing on the salivary biomarkers (β-amyloid 1-42 (Aβ1-42), total tau (t-tau), phosphorylated tau (p-tau) and acetylcholinesterase (AChE)) in AD. METHODS We conducted a systematic online search for eligible studies reporting data on salivary biomarkers reflecting Aβ1-42, t-tau, p-tau, and AChE in AD cohorts versus controls. Biomarkers' performance was assessed in a random-effects meta-analysis with the ratio of mean (RoM). RESULTS A total of thirteen studies were included in the meta-analysis, of them seven involved salivary Aβ1-42 (271 AD and 489 controls), five involved salivary t-tau (324 AD and 252 controls), four involved salivary p-tau (130 AD and 161 controls), and three involved salivary AChE (81 AD and 54 controls). AD showed significantly higher salivary Aβ1-42 levels than control (ROM = 1.90 (95% CI 1.28-2.81, P = 0.001), while AD and control did not differ significantly on salivary t-tau, p-tau and AChE (ROM = 0.94, 95% CI 0.67-1.31, P = 0.72; ROM = 0.91, 95% CI 0.56-1.45, P = 0.68; ROM = 0.83, 95% CI 0.24-2.88, P = 0.77; respectively). CONCLUSION The pooled results provide evidence that salivary Aβ1-42 may serve as a sensitive biomarker for AD; nevertheless, larger AD cohorts are required to further confirm the sensitivity and specificity of salivary Aβ1-42 for AD diagnosis.
Collapse
Affiliation(s)
- Ziqi Fan
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shuai Zhao
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yujie Su
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
12
|
Gong X, Zhang H, Liu X, Liu Y, Liu J, Fapohunda FO, Lü P, Wang K, Tang M. Is liquid biopsy mature enough for the diagnosis of Alzheimer's disease? Front Aging Neurosci 2022; 14:977999. [PMID: 35992602 PMCID: PMC9389010 DOI: 10.3389/fnagi.2022.977999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
The preclinical diagnosis and clinical practice for Alzheimer's disease (AD) based on liquid biopsy have made great progress in recent years. As liquid biopsy is a fast, low-cost, and easy way to get the phase of AD, continual efforts from intense multidisciplinary studies have been made to move the research tools to routine clinical diagnostics. On one hand, technological breakthroughs have brought new detection methods to the outputs of liquid biopsy to stratify AD cases, resulting in higher accuracy and efficiency of diagnosis. On the other hand, diversiform biofluid biomarkers derived from cerebrospinal fluid (CSF), blood, urine, Saliva, and exosome were screened out and biologically verified. As a result, more detailed knowledge about the molecular pathogenesis of AD was discovered and elucidated. However, to date, how to weigh the reports derived from liquid biopsy for preclinical AD diagnosis is an ongoing question. In this review, we briefly introduce liquid biopsy and the role it plays in research and clinical practice. Then, we summarize the established fluid-based assays of the current state for AD diagnostic such as ELISA, single-molecule array (Simoa), Immunoprecipitation-Mass Spectrometry (IP-MS), liquid chromatography-MS, immunomagnetic reduction (IMR), multimer detection system (MDS). In addition, we give an updated list of fluid biomarkers in the AD research field. Lastly, the current outstanding challenges and the feasibility to use a stand-alone biomarker in the joint diagnostic strategy are discussed.
Collapse
Affiliation(s)
- Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Kun Wang
- Children’s Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Kochetkov KA, Bystrova NA, Pavlov PA, Oshchepkov MS, Oshchepkov AS. Microfluidic Asymmetrical Synthesis and Chiral Analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081532. [PMID: 35893788 PMCID: PMC9330777 DOI: 10.3390/pharmaceutics14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients’ bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
Collapse
|
15
|
Ghinato S, De Nardi F, Bolzoni P, Antenucci A, Blangetti M, Prandi C. Chemo‐ and Regioselective Anionic Fries Rearrangement Promoted by Lithium Amides under Aerobic Conditions in Sustainable Reaction Media. Chemistry 2022; 28:e202201154. [DOI: 10.1002/chem.202201154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Simone Ghinato
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Federica De Nardi
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Paola Bolzoni
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Achille Antenucci
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Marco Blangetti
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| | - Cristina Prandi
- Dipartimento di Chimica Università degli Studi di Torino Via Pietro Giuria 7 I-10125 Torino Italy
| |
Collapse
|
16
|
Schurad B, Koch C, Schug B, Morte A, Vaqué A, De la Torre R, Iniesta M. Comparative Bioavailability Study of a Novel Multi-Day Patch Formulation of Rivastigmine (Twice Weekly) with Exelon® Transdermal Patch (Daily)- A Randomized Clinical Trial. Curr Alzheimer Res 2022; 19:541-553. [PMID: 36017827 DOI: 10.2174/1567205019666220823105059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Rivastigmine, a reversible AChEI for symptomatic treatment of mild to moderately severe Alzheimer's dementia, is administered once daily transdermal patches, enabling an easier and continuous drug delivery. A novel multi-day (twice week) patch formulation was developed with greater convenience for patients' therapeutic management. OBJECTIVE To assess the bioequivalence under SS conditions of the multiple-day rivastigmine transdermal patch (Test Product, RID-TDS) in comparison to the once-daily Exelon® transdermal patch (Reference Product), both at a release rate of 9.5 mg/24 h. DESIGN Single-center, open-label, randomized, multiple-dose study in healthy male adults in a 2- period, 2-sequence-crossover design with multiple applications. METHODS Patches were applied on 11 consecutive days for Exelon® and a 4-3-4-day regimen for the multiday test patch (RID-TDS), separated by a 14-day wash-out period. The safety, local tolerability and inhibitory effect of rivastigmine on plasma BuChE activity were also evaluated. RESULTS 57 subjects completed the study according to the protocol. Calculated point estimates and 90% CI for all primary parameters (AUC96-264, Cmax96-264 and Cmin96-264) were within the predefined acceptance interval of 80.00-125.00%. They were 113.64% (107.33-120.33), 105.14% (98.38- 112.38) and 107.82% (97.78-118.89) respectively. Satisfactory adhesion (CI of mean adhesion above 90%) was demonstrated for RID-TDS but not for Exelon®. CONCLUSION Bioequivalence was demonstrated between RID-TDS mg twice a week and Exelon® once daily in SS. Patch adhesion favored RID-TDS despite the longer dosing interval. Both products were well tolerated.
Collapse
Affiliation(s)
| | - Cornelius Koch
- Luye Pharma AG, Miesbach, Germany.,SocraTec R&D GmbH, Erfurt, Germany
| | | | | | - Anna Vaqué
- ESTEVE Pharmaceuticals SA, Barcelona, Spain
| | - Rafael De la Torre
- Research Group in Integrated Pharmacology and Systems Neuroscience, Hospital del Mar Research Institute Doctors (IMIM), Barcelona, Spain
| | | |
Collapse
|
17
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. The Influence of Selected Antipsychotic Drugs on Biochemical Aspects of Alzheimer's Disease. Int J Mol Sci 2022; 23:4621. [PMID: 35563011 PMCID: PMC9102502 DOI: 10.3390/ijms23094621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to assess the potency of selected antipsychotic drugs (haloperidol (HAL), bromperidol (BRMP), benperidol (BNP), penfluridol (PNF), pimozide (PIM), quetiapine (QUET) and promazine (PROM)) on the main pathological hallmarks of Alzheimer's disease (AD). Binary mixtures of donepezil and antipsychotics produce an anti-BuChE effect, which was greater than either compound alone. The combination of rivastigmine and antipsychotic drugs (apart from PNF) enhanced AChE inhibition. The tested antipsychotics (excluding HAL and PNF) significantly reduce the early stage of Aβ aggregation. BRMP, PIM, QUET and PROM were found to substantially inhibit Aβ aggregation after a longer incubation time. A test of human erythrocytes hemolysis showed that short-term incubation of red blood cells (RBCs) with QUET resulted in decreased hemolysis. The antioxidative properties of antipsychotics were also proved in human umbilical vein endothelial cells (HUVEC); all tested drugs were found to significantly increase cell viability. In the case of astrocytes, BNP, PNF, PIM and PROM showed antioxidant potential.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
18
|
Danish SM, Gupta A, Khan UA, Hasan N, Ahmad FJ, Warsi MH, Ali AMA, Zafar A, Jain GK. Intranasal Cerium Oxide Nanoparticles Ameliorate Cognitive Function in Rats with Alzheimer's via Anti-Oxidative Pathway. Pharmaceutics 2022; 14:756. [PMID: 35456590 PMCID: PMC9032241 DOI: 10.3390/pharmaceutics14040756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cerium oxide nanoparticles (CNPs), owing to their antioxidant property, have recently emerged as therapeutic candidate for Alzheimer's disease (AD). However, intravenous CNPs are limited due to their poor physicochemical properties, rapid blood clearance and poor blood-brain penetration. Thus, we developed intranasal CNPs and evaluated its potential in experimental AD. CNPs were synthesized using homogenous precipitation method and optimized through Box-Behnken Design. The formation of CNPs was confirmed by UV spectroscopy and FTIR. The optimized CNP were spherical, small (134.0 ± 3.35 nm), uniform (PDI, 0.158 ± 0.0019) and stable (ZP, -21.8 ± 4.94 mV). The presence of Ce in CNPs was confirmed by energy-dispersive X-ray analysis. Further, the X-ray diffraction spectra revealed that the CNPs were nano-crystalline. The DPPH assay showed that at concentration of 50 µg/mL, the percentage radical scavenging was 95.40 ± 0.006%. Results of the in vivo behavioral studies in the scopolamine-induced Alzheimer rat model showed that intranasal CNPs dose dependently reversed cognitive ability. At dose of 6 mg/kg the morris water maze results (escape latency, path length and dwell time) and passive avoidance results (retention latency) were significantly different from untreated group but not significantly different from positive control group (rivastigmine patch, 13.3 mg/24 h). Further, biochemical estimation showed that intranasal CNP upregulated the levels of SOD and GSH in brain. In conclusion, intranasal CNPs, through its antioxidant effect, could be a prospective therapeutics for the treatment of cognitive impairment in AD.
Collapse
Affiliation(s)
- Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.M.D.); (N.H.); (F.J.A.)
| | - Anshul Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Urooj Ahmad Khan
- Department of Pharmaceutics, School of Medical and Allied Sciences, KR Mangalam University, Gurgaon 122103, India;
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.M.D.); (N.H.); (F.J.A.)
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.M.D.); (N.H.); (F.J.A.)
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia;
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
- Center for Advanced Formulation Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| |
Collapse
|
19
|
Péczka N, Orgován Z, Ábrányi-Balogh P, Keserű GM. Electrophilic warheads in covalent drug discovery: an overview. Expert Opin Drug Discov 2022; 17:413-422. [PMID: 35129005 DOI: 10.1080/17460441.2022.2034783] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Covalent drugs have been used for more than hundred years, but gathered larger interest in the last two decades. There are currently over a 100 different electrophilic warheads used in covalent ligands, and there are several considerations tailoring their reactivity against the target of interest, which is still a challenging task. AREAS COVERED This review aims to give an overview of electrophilic warheads used for protein labeling in chemical biology and medicinal chemistry. The warheads are discussed by targeted residues, mechanism and selectivity, and analyzed through three different datasets including our collection of warheads, the CovPDB database, and the FDA approved covalent drugs. Moreover, the authors summarize general practices that facilitate the selection of the appropriate warhead for the target of interest. EXPERT OPINION In spite of the numerous electrophilic warheads, only a fraction of them is used in current drug discovery projects. Recent studies identified new tractable residues by applying a wider array of warhead chemistries. However, versatile, selective warheads are not available for all targetable amino acids, hence discovery of new warheads for these residues is needed. Broadening the toolbox of the warheads could result in novel inhibitors even for challenging targets developing with significant therapeutic potential.
Collapse
Affiliation(s)
- Nikolett Péczka
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Florentino SA, Bawany MH, Ma HM. Acetylcholinesterase inhibitors to enhance recovery from traumatic brain injury: a comprehensive review and case series. Brain Inj 2022; 36:441-454. [PMID: 35113764 DOI: 10.1080/02699052.2022.2034962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Acetylcholinesterase inhibitors (AChEIs) are used off-label, in both adult and pediatric patients, to help further neuro-recovery after traumatic brain injury (TBI). Evidence is limited and piecemeal. This review describes how TBI affects the cholinergic system and consolidates evidence supporting or refuting the use of AChEIs following TBI. METHODS NCBI MEDLINE search included all articles published through March 2021 on AChEI use in acute and post-acute adult TBI rehabilitation (treatment began <90 days or ≥90 days since injury, respectively), and in pediatric TBI rehabilitation. Further, we checked ClinicalTrials.gov for ongoing trials using AChEIs for TBI rehabilitation in the United States. RESULTS 27 original articles from NCBI Medline, published through March 2021, were included. The use of AChEIs following TBI in acute and post-acute rehabilitation settings, in both adult and pediatric patients, along with medication side effects, is discussed. CONCLUSIONS Most studies showed benefits with only moderate effect sizes because of small sample sizes. Reported side effects are minimal and stop soon after AChEIs is discontinued. Conclusions are limited by paucity of research; but fortunately, a large randomized controlled trial is ongoing, and more are needed to truly determine the efficacy of AChEIs in helping with recovery from TBI.
Collapse
Affiliation(s)
- Samuel A Florentino
- School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Mohammad H Bawany
- Department of Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Heather M Ma
- Physical Medicine and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
21
|
Liu J, Ha W, Zhang HX, Shi YP. Hollow urchin-shaped manganese dioxide microspheres immobilized acetylcholinesterase for rapid screening inhibitors from traditional herbal medicines. J Chromatogr A 2022; 1665:462824. [DOI: 10.1016/j.chroma.2022.462824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
|
22
|
Zalewska A, Klimiuk A, Zięba S, Wnorowska O, Rusak M, Waszkiewicz N, Szarmach I, Dzierżanowski K, Maciejczyk M. Salivary gland dysfunction and salivary redox imbalance in patients with Alzheimer's disease. Sci Rep 2021; 11:23904. [PMID: 34903846 PMCID: PMC8668975 DOI: 10.1038/s41598-021-03456-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023] Open
Abstract
Alzheimer’s disease (AD) is associated with the deposition of β-amyloid in the brain. AD accounts for over 50% of cases of dementia which results from disturbances in redox homeostasis. Indeed, increased intensity of protein oxidation and nitration as well as lipid peroxidation is observed in brain areas with considerable amounts of amyloid plaques and neurofibrillary tangles. However, little is known about the oxidoreductive balance of salivary glands in AD patients. Therefore, the aim of this study was to evaluate the antioxidant barrier and oxidative/nitrosative stress biomarkers in stimulated saliva and blood of AD patients. The study was participated by 25 AD patients and 25 non-demented controls without neurological diseases or cognitive impairment, matched by age and gender to the study group. The number of patients was determined based on a previous pilot study (test power = 0.9). We found a significant decrease in the activity of erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx), increased activity of catalase (CAT) and reduced concentration of plasma non-enzymatic antioxidants (uric acid, UA and reduced glutathione, GSH). In contrast, in the stimulated saliva of AD patients we observed significantly decreased activity of all antioxidant enzymes (SOD, CAT and GPx) as well as concentration of GSH compared to the control group. The content of lipid (malondialdehyde, MDA) and protein (advanced oxidation protein products, AOPP; advanced glycation end-products, AGE) oxidation products as well as biomarkers of nitrosative stress (peroxynitrite, nitrotyrosine) was significantly higher in both saliva and plasma of AD patients compared to the controls. In AD patients, we also observed a considerable decrease in stimulated saliva secretion and salivary total protein content, and an increase in salivary β-amyloid concentration. In conclusion, AD results in redox imbalance towards oxidative reactions, both at the level of the oral cavity and the entire body. General redox balance disturbances do not coincide with salivary redox balance disturbances. Reduction in stimulated saliva secretion in AD patients reflects secretory dysfunction of the parotid glands.
Collapse
Affiliation(s)
- Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Sklodowskiej St. 24A, 15-276, Bialystok, Poland. .,Independent Dentistry Laboratory, Medical University of Bialystok, Sklodowskiej St. 24A, 15-276, Bialystok, Poland.
| | - Anna Klimiuk
- Independent Dentistry Laboratory, Medical University of Bialystok, Sklodowskiej St. 24A, 15-276, Bialystok, Poland
| | - Sara Zięba
- Doctoral Studies, Medical University of Bialystok, Sklodowskiej St. 24A, 15-276, Bialystok, Poland
| | - Olga Wnorowska
- Psychogeriatric Ward of SPP ZOZ (Independent, Public Mental Health Care Centre) in Choroszcz, Brodowicza St. 1, 16-070, Choroszcz, Poland
| | - Małgorzata Rusak
- Department of Hematological Diagnostics, Medical University of Bialystok, Waszyngtona St. 15 a, 15-276, Bialystok, Poland
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Brodowicza St. 1, 16-070, Choroszcz, Poland
| | - Izabela Szarmach
- Department of Orthodontics, Medical University of Bialystok, Waszyngtona St. 15 a, 15-276, Bialystok, Poland
| | - Krzysztof Dzierżanowski
- Psychogeriatric Ward of SPP ZOZ (Independent, Public Mental Health Care Centre) in Choroszcz, Brodowicza St. 1, 16-070, Choroszcz, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza St. 2c, 15-022, Bialystok, Poland.
| |
Collapse
|
23
|
Ruangritchankul S, Chantharit P, Srisuma S, Gray LC. Adverse Drug Reactions of Acetylcholinesterase Inhibitors in Older People Living with Dementia: A Comprehensive Literature Review. Ther Clin Risk Manag 2021; 17:927-949. [PMID: 34511919 PMCID: PMC8427072 DOI: 10.2147/tcrm.s323387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
The rising of global geriatric population has contributed to increased prevalence of dementia. Dementia is a neurodegenerative disease, which is characterized by progressive deterioration of cognitive functions, such as judgment, language, memory, attention and visuospatial ability. Dementia not only has profoundly devastating physical and psychological health outcomes, but it also poses a considerable healthcare expenditure and burdens. Acetylcholinesterase inhibitors (AChEIs), or so-called anti-dementia medications, have been developed to delay the progression of neurocognitive disorders and to decrease healthcare needs. AChEIs have been widely prescribed in clinical practice for the treatment of Alzheimer's disease, which account for 70% of dementia. The rising use of AChEIs results in increased adverse drug reactions (ADRs) such as cardiovascular and gastrointestinal adverse effects, resulting from overstimulation of peripheral cholinergic activity and muscarinic receptor activation. Changes in pharmacokinetics (PK), pharmacodynamics (PD) and pharmacogenetics (PGx), and occurrence of drug interactions are said to be major risk factors of ADRs of AChEIs in this population. To date, comprehensive reviews in ADRs of AChEIs have so far been scarcely studied. Therefore, we aimed to recapitulate and update the diverse aspects of AChEIs, including the mechanisms of action, characteristics and risk factors of ADRs, and preventive strategies of their ADRs. The collation of this knowledge is essential to facilitate efforts to reduce ADRs of AChEIs.
Collapse
Affiliation(s)
- Sirasa Ruangritchankul
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prawat Chantharit
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sahaphume Srisuma
- Ramathibodi Poison Center and Division of Clinical Pharmacology and Toxicology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Leonard C Gray
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
25
|
Liu DM, Xu B, Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Ötvös SB, Kappe CO. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6117-6138. [PMID: 34671222 PMCID: PMC8447942 DOI: 10.1039/d1gc01615f] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Catalytic enantioselective transformations provide well-established and direct access to stereogenic synthons that are broadly distributed among active pharmaceutical ingredients (APIs). These reactions have been demonstrated to benefit considerably from the merits of continuous processing and microreactor technology. Over the past few years, continuous flow enantioselective catalysis has grown into a mature field and has found diverse applications in asymmetric synthesis of pharmaceutically active substances. The present review therefore surveys flow chemistry-based approaches for the synthesis of chiral APIs and their advanced stereogenic intermediates, covering the utilization of biocatalysis, organometallic catalysis and metal-free organocatalysis to introduce asymmetry in continuously operated systems. Single-step processes, interrupted multistep flow syntheses, combined batch/flow processes and uninterrupted one-flow syntheses are discussed herein.
Collapse
Affiliation(s)
- Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz Heinrichstrasse 28 A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) Inffeldgasse 13 A-8010 Graz Austria
| |
Collapse
|
27
|
Rompicherla SKL, Arumugam K, Bojja SL, Kumar N, Rao CM. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1737-1755. [PMID: 34086100 PMCID: PMC8298375 DOI: 10.1007/s00210-021-02096-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
With the increasing aging population and progressive nature of the disease, Alzheimer's disease (AD) poses to be an oncoming epidemic with limited therapeutic strategies. It is characterized by memory loss, behavioral instability, impaired cognitive function, predominantly, cognitive inability manifested due to the accumulation of β-amyloid, with malfunctioned cholinergic system. Rivastigmine, a reversible dual cholinesterase inhibitor, is a more tolerable and widely used choice of drug for AD. However, rivastigmine being hydrophilic and undergoing the first-pass metabolism exhibits low CNS bioavailability. Nanoformulations including liposomes and PLGA nanoparticles can encapsulate hydrophilic drugs and deliver them efficiently to the brain. Besides, the nasal route is receiving considerable attention recently, due to its direct access to the brain. Therefore, the present study attempts to evaluate the pharmacokinetic and pharmacodynamic properties of nasal liposomal and PLGA nanoparticle formulations of rivastigmine in acute scopolamine-induced amnesia and chronic colchicine induced cognitive dysfunction animal models, and validate the best formulation by employing pharmacokinetic and pharmacodynamic (PK-PD) modeling. Nasal liposomal rivastigmine formulation showed the best pharmacokinetic features with rapid onset of action (Tmax = 5 min), higher Cmax (1489.5 ± 620.71), enhanced systemic bioavailability (F = 118.65 ± 23.54; AUC = 35,921.75 ± 9559.46), increased half-life (30.92 ± 8.38 min), and reduced clearance rate (Kel (1/min) = 0.0224 ± 0.006) compared to oral rivastigmine (Tmax = 15 min; Cmax = 56.29 ± 27.05; F = 4.39 ± 1.82; AUC = 1663.79 ± 813.54; t1/2 = 13.48 ± 5.79; Kel (1/min) = 0.0514 ± 0.023). Further, the liposomal formulation significantly rescued the memory deficit induced by scopolamine as well as colchicine superior to other formulations as assessed in Morris water maze and passive avoidance tasks. PK-PD modeling demonstrated a strong correlation between the pharmacokinetic parameters and acetylcholinesterase inhibition of liposomal formulation.
Collapse
Affiliation(s)
- Sampath Kumar L Rompicherla
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik Arumugam
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
28
|
Synthesis and characterization of new secondary benzylamines derivatives of aryl-himachalene. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Wang K, Na L, Duan M. The Pathogenesis Mechanism, Structure Properties, Potential Drugs and Therapeutic Nanoparticles against the Small Oligomers of Amyloid-β. Curr Top Med Chem 2021; 21:151-167. [PMID: 32938351 DOI: 10.2174/1568026620666200916123000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disease that affects millions of people in the world. The abnormal aggregation of amyloid β protein (Aβ) is regarded as the key event in AD onset. Meanwhile, the Aβ oligomers are believed to be the most toxic species of Aβ. Recent studies show that the Aβ dimers, which are the smallest form of Aβ oligomers, also have the neurotoxicity in the absence of other oligomers in physiological conditions. In this review, we focus on the pathogenesis, structure and potential therapeutic molecules against small Aβ oligomers, as well as the nanoparticles (NPs) in the treatment of AD. In this review, we firstly focus on the pathogenic mechanism of Aβ oligomers, especially the Aβ dimers. The toxicity of Aβ dimer or oligomers, which attributes to the interactions with various receptors and the disruption of membrane or intracellular environments, were introduced. Then the structure properties of Aβ dimers and oligomers are summarized. Although some structural information such as the secondary structure content is characterized by experimental technologies, detailed structures are still absent. Following that, the small molecules targeting Aβ dimers or oligomers are collected; nevertheless, all of these ligands have failed to come into the market due to the rising controversy of the Aβ-related "amyloid cascade hypothesis". At last, the recent progress about the nanoparticles as the potential drugs or the drug delivery for the Aβ oligomers are present.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liu Na
- School of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mojie Duan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
30
|
Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, Ho ASH, Mah SH. New 3- O-substituted xanthone derivatives as promising acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2021; 36:627-639. [PMID: 33557647 PMCID: PMC8759733 DOI: 10.1080/14756366.2021.1882452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π–π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π–π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
Collapse
Affiliation(s)
- Zi Han Loh
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia
| | - Huey Chong Kwong
- School of Chemical Sciences, Universiti Sains Malaysia, George Town, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| | | | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, George Town, Malaysia
| | | | - Siau Hui Mah
- School of Biosciences, Taylor's University, Lakeside Campus, Subang Jaya, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus
| |
Collapse
|
31
|
Waseem R, Shamsi A, Mohammad T, Alhumaydhi FA, Kazim SN, Hassan MI, Ahmad F, Islam A. Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer's Disease. ACS OMEGA 2021; 6:7910-7921. [PMID: 33778302 PMCID: PMC7992156 DOI: 10.1021/acsomega.1c00517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to study the interaction between purified irisin and rivastigmine tartrate (RT), a cholinesterase inhibitor used in Alzheimer's therapy. Irisin mainly promotes brown fat-like features in white adipose tissues; however, it has some important role in the nervous system also, i.e., capable of opposing synapse and memory failure in Alzheimer's disease (AD). The recombinant protein was purified by Ni-NTA chromatography and characterized using spectroscopic and in silico techniques. Further, the mechanism of interaction between irisin and RT was investigated using various biophysical techniques. Fluorescence quenching studies suggested that there exists a moderate binding between irisin and RT with a binding constant (K) of 104 M-1 and the irisin-RT complex is guided by a combination of both static and dynamic modes of quenching. Thermodynamic parameters suggested the reaction to be driven by hydrogen bonding, making it specific. FTIR and CD spectroscopy suggested no secondary structural alterations in irisin in the presence of RT. Molecular docking investigation provided an insight into the important residues that play a key role in irisin-RT interactions. This study delineates an important finding in AD therapy and can provide a platform further to explore the potential of irisin in AD treatment.
Collapse
Affiliation(s)
- Rashid Waseem
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Taj Mohammad
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Fahad A. Alhumaydhi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Syed Naqui Kazim
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
32
|
Karasova JZ, Hrabinova M, Krejciova M, Jun D, Kuca K. Donepezil and Rivastigmine: Pharmacokinetic Profile and Brain-targeting After Intramuscular Administration in Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:95-102. [PMID: 33680013 PMCID: PMC7758017 DOI: 10.22037/ijpr.2019.1100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current palliative pharmacotherapy of Alzheimer's disease based on the cholinergic hypothesis led to the development of four cholinesterase inhibitors. These compounds can bring prolongation of the symptom-free period in some patients. This is the first report directly comparing donepezil and rivastigmine plasma and brain levels in in-vivo study. Donepezil and rivastigmine were applied i.m. to rats; the dose was calculated from clinical recommendations. The samples were analysed on an Agilent 1260 Series LC with UV/VIS detector. An analytical column (Waters Spherisorb S5 W (250 mm × 4.6 i.d.; 5 μm particle size)) with guard column (Waters Spherisorb S5 W (30 mm × 4.6 mm i.d.)) was used. The mobile phase contained acetonitrile and 50 mM sodium dihydrogen phosphate (17:83; v/v); pH 3.1. The LLOQ in rat plasma was 0.5 ng/mL for donepezil and 0.8 ng/mL for rivastigmine, and the LLOQ in rat brain was 1.0 ng/mL for donepezil and 1.1 ng/mL for rivastigmine. Both compounds showed ability to target the central nervous system, with brain concentrations exceeding those in plasma. Maximum brain concentration after i.m. administration was reached in the 36 (8.34 ± 0.34 ng/mL) and 17 minute (6.18 ± 0.40 ng/mL), respectively for donepezil and rivastigmine. The differences in brain profile can be most easily expressed by plasma/brain AUCtotal ratios: donepezil ratio in the brain was nine-times higher than in plasma and rivastigmine ratio was less than two-times higher than in plasma.
Collapse
Affiliation(s)
- Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Martina Hrabinova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Marketa Krejciova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer's Disease and Parkinson's Disease. Diagnostics (Basel) 2021; 11:diagnostics11020371. [PMID: 33671562 PMCID: PMC7926361 DOI: 10.3390/diagnostics11020371] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative diseases present with progressive neuronal degeneration, which can lead to cognitive and motor impairment. Early screening and diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are necessary to begin treatment before the onset of clinical symptoms and slow down the progression of the disease. Biomarkers have shown great potential as a diagnostic tool in the early diagnosis of many diseases, including AD and PD. However, screening for these biomarkers usually includes invasive, complex and expensive methods such as cerebrospinal fluid (CSF) sampling through a lumbar puncture. Researchers are continuously seeking to find a simpler and more reliable diagnostic tool that would be less invasive than CSF sampling. Saliva has been studied as a potential biological fluid that could be used in the diagnosis and early screening of neurodegenerative diseases. This review aims to provide an insight into the current literature concerning salivary biomarkers used in the diagnosis of AD and PD. The most commonly studied salivary biomarkers in AD are β-amyloid1-42/1-40 and TAU protein, as well as α-synuclein and protein deglycase (DJ-1) in PD. Studies continue to be conducted on this subject and researchers are attempting to find correlations between specific biomarkers and early clinical symptoms, which could be key in creating new treatments for patients before the onset of symptoms.
Collapse
|
34
|
Oh J, Park J, Park KC, Hwang JH, Park JH. Phosphonamidate Compounds for Butyrylcholinesterase Selective Inhibitors. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jintaek Oh
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| | - Jung‐Youl Park
- Department of Applied Chemistry Daejeon University Daejeon 34520 South Korea
| | - Kyoung Chan Park
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| | - Ji Hyun Hwang
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| | - Jeong Ho Park
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| |
Collapse
|
35
|
Tripathi S, Kumari U, Mitra Mazumder P. Ameliorative effects of apple cider vinegar on neurological complications via regulation of oxidative stress markers. J Food Biochem 2020; 44:e13504. [PMID: 33084094 DOI: 10.1111/jfbc.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Dementia linked with cognitive impairments is the most prominent indication of Alzheimer's disease (AD). In the current investigation, we have examined the streptozotocin- (STZ) induced cellular toxicity in mouse neuroblastoma (N2A) cells, and Zn with the high-fat diet- (HFD) induced neurotoxicity in mouse brain. These cells and animals were pretreated with apple cider vinegar (ACV), Chrysin, and Rivastigmine to examine their protection against cellular toxicity and neurotoxicity. Experiments have affirmed that pretreatment of ACV, Chrysin, and Rivastigmine has displayed protective outcomes in MTT reduction, tau phosphorylation, amyloid aggregation, attenuated memory impairment as well as oxidative stress, and protected cholinergic hippocampal neurons from degeneration. ACV showed better antioxidant and neuroprotection potential as compared with Chrysin and Rivastigmine. So the existence of excitatory/inhibitory enzymatic activity and higher antioxidant potential indicate that ACV, as a food beverage in a regular diet, could be promising and effective against neurological complications such as AD. PRACTICAL APPLICATIONS: In the Urban lifestyle, HFD and stress are the critical factors of various chronic and prevalent diseases, including diabetes, obesity, cardiovascular, and neurodegenerative disorders like AD. We are already familiar with the multiple benefits of ACV, such as weight loss, antimicrobial activity, diabetes, skin disorders. So in the current research work, we have gauged the effectiveness of ACV against neurological complications in comparison with a synthetic flavonoid (Chrysin) and an anti-Alzheimer's drug (Rivastigmine). To enhance the pragmatic orientation of our results, we have used the ACV in our study, which is readily available in the market for domestic consumption. All the cellular, biochemical, behavioral, and histopathological data revealed that ACV had high antioxidant potential. Our findings suggest that the addition of ACV as a food additive in the daily diet may reduce the threat of multiple neurodegenerative diseases. Therefore, our study could be the precursor of a new pharmacological therapeutic approach via ACV toward cognitive impairments associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Smriti Tripathi
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Uma Kumari
- Department of Pharmaceutical Sciences, Jharkhand Rai University, Ranchi, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
36
|
Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology 2020; 190:108352. [PMID: 33035532 DOI: 10.1016/j.neuropharm.2020.108352] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), the most common cause of adult-onset dementia is characterized by a progressive decline of cognitive functions accompanied by behavioral manifestations. The main class of drugs currently used for the treatment of AD are acetylcholinesterase/cholinesterase inhibitors (ChE-Is). The first ChE-I licensed for symptomatic treatment of AD was tacrine. The ChE-Is currently available in the market are donepezil, rivastigmine and galantamine as tacrine is no longer in use, due to its hepatotoxicity. According to mechanism of action the ChE-Is are classified as short-acting or reversible agents such as tacrine, donepezil, and galantamine, as intermediate-acting or pseudo-irreversible agent such as rivastigmine. Overall, the efficacy of the three ChE-Is available in the market is similar and the benefit of administration of these compounds is mild and may not be clinically significant. Due to gastrointestinal side effects of these drugs, medicinal chemistry and pharmaceutical delivery studies have investigated solutions to improve the pharmacological activity of these compounds. In spite of the limited activity of ChE-Is, waiting for more effective approaches, these drugs still represent a pharmacotherapeutic resource for the treatment of AD. Other approaches in which ChE-Is were investigated is in their use in combination with other classes of drugs such as cholinergic precursors, N-methyl-d-aspartate (NMDA) receptor antagonists and antioxidant agents. After many years from the introduction in therapy of ChE-Is, the combination with other classes of drugs may represent the chance for a renewed interest of ChE-Is in the treatment of adult-onset dementia disorders.
Collapse
Affiliation(s)
- Gabriella Marucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Michela Buccioni
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Diego Dal Ben
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Catia Lambertucci
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Rosaria Volpini
- School of Medicinal Sciences and Health Products, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, Telemedicine and Telepharmacy Center University of Camerino via Madonna delle Carceri 9, 62032, Camerino, Italy.
| |
Collapse
|
37
|
Huang Y, Alsabbagh MW. Comparative risk of cardiac arrhythmias associated with acetylcholinesterase inhibitors used in treatment of dementias - A narrative review. Pharmacol Res Perspect 2020; 8:e00622. [PMID: 32691984 PMCID: PMC7372915 DOI: 10.1002/prp2.622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Donepezil, galantamine, and rivastigmine are the three acetylcholinesterase inhibitors (AChEIs), out of a total of only four medications prescribed in the treatment of Alzheimer's Disease (AD) and related dementias. These medications are known to be associated with bradycardia given their mechanism of action of increasing acetylcholine (ACh). However, in March 2015, donepezil was added to the CredibleMeds "known-risk" category, a list where medications have a documented risk for acquired long-QT syndrome (ALQTS) and torsades de pointes (TdP) - a malignant ventricular arrhythmia that is a different adverse event than bradycardia (and is not necessarily associated with ACh action). The purpose of this article is to review the three AChEIs, especially with regards to mechanistic differences that may explain why only donepezil poses this risk; several pharmacological mechanisms may explain why. However, from an empirical point-of-view, aside from some case-reports, only a limited number of studies have generated relevant information regarding AChEIs' and electrocardiogram findings; none have specifically compared donepezil against galantamine or rivastigmine for malignant arrhythmias such as TdP. Currently, the choice of one of the three AChEIs for treatment of AD symptoms is primarily dependent upon clinician and patient preference. However, clinicians should be aware of the potential increased risk associated with donepezil. There is a need to examine the comparative risk of malignant arrhythmias among AChEIs users in real-world practice; this may have important implications with regards to changes in AChEI prescribing patterns.
Collapse
Affiliation(s)
- Yichang Huang
- School of PharmacyFaculty of ScienceUniversity of WaterlooKitchenerCanada
| | | |
Collapse
|
38
|
Fleet JL, McArthur E, Patel A, Weir MA, Montero-Odasso M, Garg AX. Risk of rhabdomyolysis with donepezil compared with rivastigmine or galantamine: a population-based cohort study. CMAJ 2020; 191:E1018-E1024. [PMID: 31527187 DOI: 10.1503/cmaj.190337] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Donepezil, rivastigmine and galantamine are popular cholinesterase inhibitors used to manage the symptoms of Alzheimer disease and other dementias; regulatory agencies in several countries warn about a possible risk of rhabdomyolysis with donepezil, based on information from case reports. Our goal was to investigate the 30-day risk of admission to hospital with rhabdomyolysis associated with initiating donepezil versus other cholinesterase inhibitors. METHODS We conducted a retrospective cohort study in Ontario, Canada, from 2002 to 2017. Participants were adults aged 66 years or older with a newly dispensed prescription for donepezil compared with rivastigmine or galantamine. The primary outcome was hospital admission with rhabdomyolysis (assessed using hospital diagnostic codes) within 30 days of a new prescription of a cholinesterase inhibitor. Odds ratios were estimated using logistic regression, with inverse probability of treatment weights calculated from propensity scores. RESULTS The average age in our 2 groups was 81.1 years, and 61.4% of our population was female. Donepezil was associated with a higher risk of hospital admission with rhabdomyolysis compared with rivastigmine or galantamine (88 events in 152 300 patients [0.06%] v. 16 events in 68 053 patients [0.02%]; weighted odds ratio of 2.21, 95% confidence interval [CI] 1.52-3.22). Most hospital admissions with rhabdomyolysis after donepezil use were not severe, and no patient was treated with acute dialysis or mechanical ventilation. INTERPRETATION Initiating donepezil is associated with a higher 30-day risk of admission to hospital with rhabdomyolysis compared with initiating rivastigmine or galantamine. The proportion of patients who develop severe rhabdomyolysis within 30 days of initiating donepezil is very low.
Collapse
Affiliation(s)
- Jamie L Fleet
- Department of Physical Medicine and Rehabilitation (Fleet), McMaster University, Hamilton, Ont.; ICES (Fleet, McArthur, Weir, Garg); Divisions of Nephrology (Patel, Weir, Garg) and Geriatrics (Montero-Odasso), Departments of Medicine and Epidemiology & Biostatistics (Montero-Odasso, Garg), Western University, London, Ont.
| | - Eric McArthur
- Department of Physical Medicine and Rehabilitation (Fleet), McMaster University, Hamilton, Ont.; ICES (Fleet, McArthur, Weir, Garg); Divisions of Nephrology (Patel, Weir, Garg) and Geriatrics (Montero-Odasso), Departments of Medicine and Epidemiology & Biostatistics (Montero-Odasso, Garg), Western University, London, Ont
| | - Aakil Patel
- Department of Physical Medicine and Rehabilitation (Fleet), McMaster University, Hamilton, Ont.; ICES (Fleet, McArthur, Weir, Garg); Divisions of Nephrology (Patel, Weir, Garg) and Geriatrics (Montero-Odasso), Departments of Medicine and Epidemiology & Biostatistics (Montero-Odasso, Garg), Western University, London, Ont
| | - Matthew A Weir
- Department of Physical Medicine and Rehabilitation (Fleet), McMaster University, Hamilton, Ont.; ICES (Fleet, McArthur, Weir, Garg); Divisions of Nephrology (Patel, Weir, Garg) and Geriatrics (Montero-Odasso), Departments of Medicine and Epidemiology & Biostatistics (Montero-Odasso, Garg), Western University, London, Ont
| | - Manuel Montero-Odasso
- Department of Physical Medicine and Rehabilitation (Fleet), McMaster University, Hamilton, Ont.; ICES (Fleet, McArthur, Weir, Garg); Divisions of Nephrology (Patel, Weir, Garg) and Geriatrics (Montero-Odasso), Departments of Medicine and Epidemiology & Biostatistics (Montero-Odasso, Garg), Western University, London, Ont
| | - Amit X Garg
- Department of Physical Medicine and Rehabilitation (Fleet), McMaster University, Hamilton, Ont.; ICES (Fleet, McArthur, Weir, Garg); Divisions of Nephrology (Patel, Weir, Garg) and Geriatrics (Montero-Odasso), Departments of Medicine and Epidemiology & Biostatistics (Montero-Odasso, Garg), Western University, London, Ont
| |
Collapse
|
39
|
Design, synthesis and biological evaluation of acridone glycosides as selective BChE inhibitors. Carbohydr Res 2020; 491:107977. [DOI: 10.1016/j.carres.2020.107977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
|
40
|
Cavalcante SFDA, Simas ABC, Barcellos MC, de Oliveira VGM, Sousa RB, Cabral PADM, Kuča K, França TCC. Acetylcholinesterase: The "Hub" for Neurodegenerative Diseases and Chemical Weapons Convention. Biomolecules 2020; 10:E414. [PMID: 32155996 PMCID: PMC7175162 DOI: 10.3390/biom10030414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
This article describes acetylcholinesterase (AChE), an enzyme involved in parasympathetic neurotransmission, its activity, and how its inhibition can be pharmacologically useful for treating dementia, caused by Alzheimer's disease, or as a warfare method due to the action of nerve agents. The chemical concepts related to the irreversible inhibition of AChE, its reactivation, and aging are discussed, along with a relationship to the current international legislation on chemical weapons.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, Rio de Janeiro 21941-902, Brazil
| | - Marcos C. Barcellos
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Victor G. M. de Oliveira
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Roberto B. Sousa
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Paulo A. de M. Cabral
- Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN), Brazilian Army Technological Center (CTEx), Avenida das Américas 28705, Rio de Janeiro 23020-470, Brazil; (M.C.B.); (V.G.M.d.O.); (R.B.S.); (P.A.d.M.C.)
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
| | - Tanos C. C. França
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanskeho 62, 50003 Hradec Králové, Czech Republic
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Praça General Tibúrcio 80, Rio de Janeiro 22290-270, Brazil
| |
Collapse
|
41
|
Zhao H, Herbert S, Kinzel T, Zhang W, Shen Q. Two Ligands Transfer from Ag to Pd: En Route to (SIPr)Pd(CF 2H)(X) and Its Application in One-Pot C-H Borylation/Difluoromethylation. J Org Chem 2020; 85:3596-3604. [PMID: 31970986 DOI: 10.1021/acs.joc.9b03296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A process for the concurrent transfer of both the NHC ligand and the difluoromethyl group from [(SIPr)Ag(CF2H)] to PdX2 (X = Cl, OAc, and OPiv) for the preparation of [(SIPr)Pd(CF2H)X] complexes is described. These complexes were air-stable and easily underwent transmetalation with aryl pinacol boronate/reductive elimination to generate ArCF2H in high yields. Based on this discovery, the first one-pot C-H borylation and difluoromethylation process for the preparation of difluoromethylated (hetero)arenes was developed.
Collapse
Affiliation(s)
- Haiwei Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Simon Herbert
- Bayer AG, Research & Development, Pharmaceuticals, 178 Müllerstraße, Berlin 13342, Germany
| | - Tom Kinzel
- Open Innovation Center China, Bayer Center, Bayer Pharmaceuticals, Bei Dong San Han 27, Beijing 100020, P. R. China
| | - Wei Zhang
- Centre for Green Chemistry and Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
42
|
Dembitsky VM, Dzhemileva L, Gloriozova T, D'yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun 2020; 524:772-783. [PMID: 32037088 DOI: 10.1016/j.bbrc.2020.01.123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
This review is devoted to comparative pharmacological analysis of synthetic drugs such as memantine and its isomers, as well as tacrine, velnacrine, rivastigmine, and donepezil, with natural alkaloids, terpenoids, and triterpenoid peroxides, which are used to treat dementia, Alzheimer's and Parkinson's diseases, myasthenia gravis and other neurodegenerative diseases. Recently discovered by French scientists from Marseille triterpenoid hydroperoxides demonstrate high activity as potential therapeutic agents for the treatment of dementia. The information presented in this review is of great interest to pharmacologists, medical chemists, physiologists, neurologists and doctors, as well as for the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| | - Lilya Dzhemileva
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075, Russia.
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia.
| | - Vladimir D'yakonov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075, Russia.
| |
Collapse
|
43
|
An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer's disease. Expert Opin Drug Saf 2020; 19:147-157. [PMID: 31976781 DOI: 10.1080/14740338.2020.1721456] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Alzheimer's disease (AD) is the most common cause of major neurocognitive disorders with a prevalence in the US of about 5.7 million in 2018. With the disease burden projected to increase dramatically in the coming years, it is imperative to review the current available treatment regimens for their safety and utility. The cholinesterase inhibitors (ChEIs) have continued to play a pivotal role in managing the symptoms and possibly slowing the rate of progression of AD since 1993. Owing to their being a mainstay in the treatment of AD, the safety and efficacy of prescribing these drugs needs to be reviewed often, especially with the approval of new formulations and doses.Areas covered: The three ChEIs currently approved by the FDA are donepezil, rivastigmine and galantamine. This article will review the safety and tolerability of these ChEIs and analyze the potential disease modifying properties of these drugs. The authors have reviewed all recent literature including review articles, meta-analyzes, clinical trials and more.Expert opinion: These ChEIs differ subtly in their mechanisms of action, in their tolerability and safety and FDA-approved indications. All are considered first-line, symptomatic treatments of the various phases of AD and may even have potentially disease-modifying effects.
Collapse
|
44
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
45
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
46
|
Ozcelikay G, Kurbanoglu S, Zhang X, Kosak Soz C, Wollenberger U, Ozkan SA, Yarman A, Scheller FW. Electrochemical MIP Sensor for Butyrylcholinesterase. Polymers (Basel) 2019; 11:polym11121970. [PMID: 31801184 PMCID: PMC6960762 DOI: 10.3390/polym11121970] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Tandogan, Ankara 06560, Turkey; (G.O.); (S.K.); (S.A.O.)
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Tandogan, Ankara 06560, Turkey; (G.O.); (S.K.); (S.A.O.)
| | - Xiaorong Zhang
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
| | - Cagla Kosak Soz
- Faculty of Science, Material Science and Technologies, Turkish-German University, Sahinkaya Cad. No. 86, Beykoz, Istanbul 34820, Turkey;
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
| | - Sibel A. Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Tandogan, Ankara 06560, Turkey; (G.O.); (S.K.); (S.A.O.)
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
- Correspondence: (A.Y.); (F.W.S.)
| | - Frieder W. Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany; (X.Z.); (U.W.)
- Correspondence: (A.Y.); (F.W.S.)
| |
Collapse
|
47
|
Wang C, Abegg D, Dwyer BG, Adibekian A. Discovery and Evaluation of New Activity‐Based Probes for Serine Hydrolases. Chembiochem 2019; 20:2212-2216. [DOI: 10.1002/cbic.201900126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Wang
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Brendan G. Dwyer
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| |
Collapse
|
48
|
Eldufani J, Blaise G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:175-183. [PMID: 31194017 PMCID: PMC6551376 DOI: 10.1016/j.trci.2019.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic pain in patients with Alzheimer's disease or dementia is a complex issue in the medical field; these patients suffer from the common causes of chronic pain, especially in geriatric medicine. To ensure the correct type and level of given treatment, medical care should be taken to avoid the contribution of chronic pain and cognitive impairment in the elderly population. Acetylcholinesterase inhibitors (AChE-Is) have been proven as an efficient therapeutic resource for significant improvement in dementia of Alzheimer's disease and chronic pain due to the fact that cholinergic deficit is considered as an early finding in cognitive impairment and persisting pain. Some AChE-Is are investigated here in terms of treatment of dementia and chronic pain management. Neostigmine has been used as an adjunct analgesic in the postoperative period and in combination with other analgesic medications in an intrathecal approach. Rivastigmine has, over the past ten years, become the approved agent for the management of dementia of mild to moderate Alzheimer's disease and has gained approval for treating different types of non-Alzheimer's dementia. In this review, we will focus on the two types of AChE-Is (rivastigmine and neostigmine) in the development of their clinical use and their respective mechanisms of actions on improving cognitive function and managing chronic pain.
Collapse
Affiliation(s)
- Jabril Eldufani
- Department of Medicine, Montreal University, Montreal, Quebec, Canada
- Department of Medicine, Elmergib University, El-khums, Libya
| | - Gilbert Blaise
- Department of Medicine, Montreal University, Montreal, Quebec, Canada
- Department of Anesthesiology and Pain Management, University Hospital of Montreal (CHUM), Montreal, Quebec, Canada
| |
Collapse
|
49
|
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent Inhibition in Drug Discovery. ChemMedChem 2019; 14:889-906. [PMID: 30816012 DOI: 10.1002/cmdc.201900107] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Although covalent inhibitors have been used as therapeutics for more than a century, there has been general resistance in the pharmaceutical industry against their further development due to safety concerns. This inclination has recently been reverted after the development of a wide variety of covalent inhibitors to address human health conditions along with the US Food and Drug Administration (FDA) approval of several covalent therapeutics for use in humans. Along with this exciting resurrection of an old drug discovery concept, this review surveys enzymes that can be targeted by covalent inhibitors for the treatment of human diseases. We focus on protein kinases, RAS proteins, and a few other enzymes that have been studied extensively as targets for covalent inhibition, with the aim to address challenges in designing effective covalent drugs and to provide suggestions in the area that have yet to be explored.
Collapse
Affiliation(s)
- Avick Kumar Ghosh
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Indranil Samanta
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| |
Collapse
|
50
|
Wang T, Liu XH, Guan J, Ge S, Wu MB, Lin JP, Yang LR. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer's disease. Eur J Med Chem 2019; 169:200-223. [PMID: 30884327 DOI: 10.1016/j.ejmech.2019.02.076] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Complex diseases (e.g., Alzheimer's disease) or infectious diseases are usually caused by complicated and varied factors, including environmental and genetic factors. Multi-target (polypharmacology) drugs have been suggested and have emerged as powerful and promising alternative paradigms in modern medicinal chemistry for the development of versatile chemotherapeutic agents to solve these medical challenges. The multifunctional agents capable of modulating multiple biological targets simultaneously display great advantages of higher efficacy, improved safety profile, and simpler administration compared to single-targeted agents. Therefore, multifunctional agents would certainly open novel avenues to rationally design the next generation of more effective but less toxic therapeutic agents. Herein, the authors review the recent progress made in the discovery and design processes of selective multi-targeted agents, especially the successful application of multi-target drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jing Guan
- School of Biological Science, Jining Medical University, Jining, China
| | - Shun Ge
- School of Biological Science, Jining Medical University, Jining, China.
| | - Mian-Bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Antifungal Drugs, Taizhou, 318000, China
| | - Jian-Ping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li-Rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|