1
|
Chen J, Gao Y, Zhong J, Wu X, Leng Z, Liu M, Wang Y, Wang Y, Yang X, Huang N, Xiao F, Zhang M, Liu X, Zhang N. Lnc-H19-derived protein shapes the immunosuppressive microenvironment of glioblastoma. Cell Rep Med 2024:101806. [PMID: 39481387 DOI: 10.1016/j.xcrm.2024.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) is a prominent feature of glioblastoma (GBM), the most lethal primary brain cancer resistant to current immunotherapies. The mechanisms underlying GBM-TME remain to be explored. We report that long non-coding RNA (LncRNA) H19 encodes an immune-related protein called H19-IRP. Functionally separated from H19 RNA, H19-IRP promotes GBM immunosuppression by binding to the CCL2 and Galectin-9 promoters and activating their transcription, thereby recruiting myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), leading to T cell exhaustion and an immunosuppressive GBM-TME. H19-IRP, overexpressed in clinical GBM samples, acts as a tumor-associated antigen (TAA) presented by major histocompatibility complex class I (MHC-I). A circular RNA vaccine targeting H19-IRP (circH19-vac) triggers a potent cytotoxic T cell response against GBM and inhibits GBM growth. Our results highlight the unrevealed function of H19-IRP in creating immunosuppressive GBM-TME by recruiting MDSCs and TAMs, supporting the idea of targeting H19-IRP with cancer vaccine for GBM treatment.
Collapse
Affiliation(s)
- Junju Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Zhaojie Leng
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Ming Liu
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Yesheng Wang
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Yuan Wang
- Guangzhou Geneseed Biotech. Co., Ltd, Guangzhou, Guangdong Province, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| | - Xuesong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol 2024; 15:1387651. [PMID: 39076996 PMCID: PMC11284107 DOI: 10.3389/fimmu.2024.1387651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Osteoarthritis (OA) is characterized by a complex interplay of molecular signals orchestrated by the CCL2/CCR2 axis. The pathogenesis of OA has been revealed to be influenced by a multifaceted effect of CCL2/CCR2 signaling on inflammation, cartilage degradation, and joint homeostasis. The CCL2/CCR2 axis promotes immune cell recruitment and tips the balance toward degeneration by influencing chondrocyte behavior. Insights into these intricate pathways will offer novel therapeutic approaches, paving the way for targeted interventions that may redefine OA management in the future. This review article explores the molecular symphony through the lens of the CCL2/CCR2 axis, providing a harmonious blend of current knowledge and future directions on OA treatment. Furthermore, in this study, through a meticulous review of recent research, the key players and molecular mechanisms that amplify the catabolic cascade within the joint microenvironment are identified, and therapeutic approaches to targeting the CCL2/CCR axis are discussed.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Pant A, Hwa-Lin Bergsneider B, Srivastava S, Kim T, Jain A, Bom S, Shah P, Kannapadi N, Patel K, Choi J, Cho KB, Verma R, Yu-Ju Wu C, Brem H, Tyler B, Pardoll DM, Jackson C, Lim M. CCR2 and CCR5 co-inhibition modulates immunosuppressive myeloid milieu in glioma and synergizes with anti-PD-1 therapy. Oncoimmunology 2024; 13:2338965. [PMID: 38590799 PMCID: PMC11000615 DOI: 10.1080/2162402x.2024.2338965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Siddhartha Srivastava
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sadhana Bom
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Shah
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nivedha Kannapadi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M. Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina Jackson
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
5
|
De Velasco MA, Kura Y, Fujita K, Uemura H. Moving toward improved immune checkpoint immunotherapy for advanced prostate cancer. Int J Urol 2024; 31:307-324. [PMID: 38167824 DOI: 10.1111/iju.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Human prostate cancer is a heterogenous malignancy that responds poorly to immunotherapy targeting immune checkpoints. The immunosuppressive tumor microenvironment that is typical of human prostate cancer has been the main obstacle to these treatments. The effectiveness of these therapies is also hindered by acquired resistance, leading to slow progress in prostate cancer immunotherapy. Results from the highly anticipated late-stage clinical trials of PD-1/PD-L1 immune checkpoint blockade in patients with advanced prostate cancer have highlighted some of the obstacles to immunotherapy. Despite the setbacks, there is much that has been learned about the mechanisms that drive resistance, and new strategies are being developed and tested. Here, we review the status of immune checkpoint blockade and the immunosuppressive tumor microenvironment and discuss factors contributing to innate and adaptive resistance to immune checkpoint blockade within the context of prostate cancer. We then examine current strategies aiming to overcome these challenges as well as prospects.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
6
|
Sha K, Zhang R, Maolake A, Singh S, Chatta G, Eng KH, Nastiuk KL, Krolewski JJ. Androgen deprivation triggers a cytokine signaling switch to induce immune suppression and prostate cancer recurrence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569685. [PMID: 38405929 PMCID: PMC10888871 DOI: 10.1101/2023.12.01.569685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Androgen deprivation therapy (ADT) is an effective but not curative treatment for advanced and recurrent prostate cancer (PC). We investigated the mechanisms controlling the response to androgen-deprivation by surgical castration in genetically-engineered mouse models (GEMM) of PC, using high frequency ultrasound imaging to rigorously measure tumor volume. Castration initially causes almost all tumors to shrink in volume, but many tumors subsequently recur within 5-10 weeks. Blockade of tumor necrosis factor (TNF) signaling a few days in advance of castration surgery, using a TNFR2 ligand trap, prevents regression in a PTEN-deficient GEMM. Following tumor regression, a basal stem cell-like population within the tumor increases along with TNF protein levels. Tumor cell lines in culture recapitulate these in vivo observations, suggesting that basal stem cells are the source of TNF. When TNF signaling blockade is administered immediately prior to castration, tumors regress but recurrence is prevented, implying that a late wave of TNF secretion within the tumor, which coincides with the expression of NFkB regulated genes, drives recurrence. The inhibition of signaling downstream of one NFkB-regulated protein, chemokine C-C motif ligand 2 (CCL2), prevents post-castration tumor recurrence, phenocopying post-castration (late) TNF signaling blockade. CCL2 was originally identified as a macrophage chemoattractant and indeed at late times after castration gene sets related to chemotaxis and migration are up-regulated. Importantly, enhanced CCL2 signaling during the tumor recurrence phase coincides with an increase in pro-tumorigenic macrophages and a decrease in CD8 T cells, suggesting that recurrence is driven at least in part by tumor immunosuppression. In summary, we demonstrate that a therapy-induced switch in TNF signaling, a consequence of the increased stem cell-like character of the residual tumor cells surviving ADT, induces an immunosuppressive tumor microenvironment and concomitant tumor recurrence.
Collapse
|
7
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
8
|
Saha A, Kolonin MG, DiGiovanni J. Obesity and prostate cancer - microenvironmental roles of adipose tissue. Nat Rev Urol 2023; 20:579-596. [PMID: 37198266 DOI: 10.1038/s41585-023-00764-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Obesity is known to have important roles in driving prostate cancer aggressiveness and increased mortality. Multiple mechanisms have been postulated for these clinical observations, including effects of diet and lifestyle, systemic changes in energy balance and hormonal regulation and activation of signalling by growth factors and cytokines and other components of the immune system. Over the past decade, research on obesity has shifted towards investigating the role of peri-prostatic white adipose tissue as an important source of locally produced factors that stimulate prostate cancer progression. Cells that comprise white adipose tissue, the adipocytes and their progenitor adipose stromal cells (ASCs), which proliferate to accommodate white adipose tissue expansion in obesity, have been identified as important drivers of obesity-associated cancer progression. Accumulating evidence suggests that adipocytes are a source of lipids that are used by adjacent prostate cancer cells. However, results of preclinical studies indicate that ASCs promote tumour growth by remodelling extracellular matrix and supporting neovascularization, contributing to the recruitment of immunosuppressive cells, and inducing epithelial-mesenchymal transition through paracrine signalling. Because epithelial-mesenchymal transition is associated with cancer chemotherapy resistance and metastasis, ASCs are considered to be potential targets of therapies that could be developed to suppress cancer aggressiveness in patients with obesity.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas, USA.
| | - John DiGiovanni
- Division of Pharmacology and Toxicology and Dell Paediatric Research Institute, The University of Texas at Austin, Austin, TX, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Fan F, Gao J, Zhao Y, Wang J, Meng L, Ma J, Li T, Han H, Lai J, Gao Z, Li X, Guo R, Cao Z, Zhang Y, Zhang X, Chen H. Elevated Mast Cell Abundance Is Associated with Enrichment of CCR2+ Cytotoxic T Cells and Favorable Prognosis in Lung Adenocarcinoma. Cancer Res 2023; 83:2690-2703. [PMID: 37249584 PMCID: PMC10425735 DOI: 10.1158/0008-5472.can-22-3140] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Mast cells constitute indispensable immunoregulatory sentinel cells in the tumor microenvironment. A better understanding of the regulation and functions of mast cells in lung adenocarcinoma (LUAD) could uncover therapeutic approaches to reprogram the immunosuppressive tumor microenvironment. Here, we performed flow cytometry and single-cell RNA sequencing (scRNA-seq) of patient LUAD samples to comprehensively characterize LUAD-infiltrating mast cells. Mast cells exhibited functional heterogeneity and were enriched in LUAD with ground-glass opacity features (gLUAD). The mast cells in gLUAD exhibited proinflammatory and chemotactic properties while those in radiologically solid LUAD (sLUAD) were associated with tumor angiogenesis. Mast cells were an important source of CCL2 and correlated with the recruitment of CCR2+ CTL, a specific subcluster of preexhausted T cells with tissue-resident memory phenotype and enhanced cytotoxicity. Increased infiltration of mast cells and CCR2+ CTLs and their colocalization showed a strong association with favorable prognosis after surgery but were not associated with improved survival after chemotherapy. Collectively, these findings reveal a key role of mast cells in LUAD and their potential cross-talk with CTLs, suggesting that targeting mast cells may be an immunotherapeutic strategy for LUAD. SIGNIFICANCE Comprehensive characterization of mast cells in lung adenocarcinoma elucidates their heterogeneity and identifies interplay between mast cells and CCR2+ T cells that is associated with a favorable prognosis.
Collapse
Affiliation(s)
- Fanfan Fan
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Gao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- International Human Phenome Institutes, Shanghai, China
| | - Yue Zhao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Meng
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Han Han
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinglei Lai
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhendong Gao
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiongfei Li
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Guo
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiwei Cao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Zhang
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Haiquan Chen
- Departments of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Babar Q, Saeed A, Tabish TA, Sarwar M, Thorat ND. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166746. [PMID: 37160171 DOI: 10.1016/j.bbadis.2023.166746] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Cellular and stromal components including tumor cells, immune cells, mesenchymal cells, cancer-linked fibroblasts, and extracellular matrix, constituent tumor microenvironment (TME). TME plays a crucial role in reprogramming tumor initiation, uncontrolled proliferation, invasion and metastasis as well as response to therapeutic modalities. In recent years targeting the TME has developed as a potential strategy for treatment of cancer because of its life-threatening functions in restricting tumor development and modulating responses to standard-of-care medicines. Cold atmospheric plasma, oncolytic viral therapy, bacterial therapy, nano-vaccine, and repurposed pharmaceuticals with combination therapy, antiangiogenic drugs, and immunotherapies are among the most effective therapies directed by TME that have either been clinically authorized or are currently being studied. This article discusses above-mentioned therapies in light of targeting TME. We also cover problems related to the TME-targeted therapies, as well as future insights and practical uses in this rapidly growing field.
Collapse
Affiliation(s)
- Quratulain Babar
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry Government College University, Faisalabad, Pakistan
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Mohsin Sarwar
- Department of Biochemistry University of Management and Technology, Lahore, Pakistan
| | - Nanasaheb D Thorat
- Department of Physics, Bernal Institute, Castletroy, Limerick V94T9PX, Ireland; Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom; Limerick Digital Cancer Research Centre (LDCRC) University of Limerick, Castletroy, Limerick V94T9PX, Ireland.
| |
Collapse
|
12
|
Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023; 24:ijms24010866. [PMID: 36614308 PMCID: PMC9821648 DOI: 10.3390/ijms24010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. Neoplastic as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to establish an inflammatory tumor microenvironment. The tumor-associated inflammatory tissue is highly plastic, capable of continuously modifying its phenotypic and functional characteristics. Accumulating evidence suggests that chronic inflammation plays a critical role in the development of urological cancers. Here, we review the origins of inflammation in urothelial, prostatic, renal, testicular, and penile cancers, focusing on the mechanisms that drive tumor initiation, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue may be a diagnostic marker of clinically significant tumor progression risk and the target for future anti-cancer therapies.
Collapse
|
13
|
Aghamajidi A, Farhangnia P, Pashangzadeh S, Damavandi AR, Jafari R. Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell Int 2022; 22:327. [PMID: 36303138 PMCID: PMC9608890 DOI: 10.1186/s12935-022-02727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Oncoviruses, known as cancer-causing viruses, are typically involved in cancer progression by inhibiting tumor suppressor pathways and uncontrolled cell division. Myeloid cells are the most frequent populations recruited to the tumor microenvironment (TME) and play a critical role in cancer development and metastasis of malignant tumors. Tumor-infiltrating myeloid cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumor-associated dendritic cells (TADCs), and tumor-associated neutrophils (TANs) exert different states from anti-tumorigenic to pro-tumorigenic phenotypes in TME. Although their role in the anti-tumorigenic state is well introduced, their opposing roles, pro-tumorigenic activities, such as anti-inflammatory cytokine and reactive oxygen species (ROS) production, should not be ignored since they result in inflammation, tumor progression, angiogenesis, and evasion. Since the blockade of these cells had promising results against cancer progression, their inhibition might be helpful in various cancer immunotherapies. This review highlights the promoting role of tumor-associated myeloid cells (TAMCs) in the pathophysiology of human virus tumorigenesis.
Collapse
Affiliation(s)
- Azin Aghamajidi
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Farhangnia
- grid.411746.10000 0004 4911 7066Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- grid.411705.60000 0001 0166 0922Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- grid.411705.60000 0001 0166 0922Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran ,grid.411705.60000 0001 0166 0922School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- grid.412763.50000 0004 0442 8645Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Chen L, Zheng Y, Jiang C, Yang C, Zhang L, Liang C. The established chemokine-related prognostic gene signature in prostate cancer: Implications for anti-androgen and immunotherapies. Front Immunol 2022; 13:1009634. [PMID: 36275733 PMCID: PMC9582844 DOI: 10.3389/fimmu.2022.1009634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundProstate cancer (PCa) was one of the most common malignancies among men, while the prognosis for PCa patients was poor, especially for patients with recurrent and advanced diseases.Materials and methodsFive PCa cohorts were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and the biochemical recurrence (BCR)-related chemokine genes were identified by LASSO-Cox regression. The chemokine-related prognostic gene signature (CRPGS) was established, and its association with PCa patients’ clinical, pathological and immune characteristics was analyzed. The association between CRPGS and PCa patients’ responses to androgen deprivation therapy (ADT) and immunotherapy was analyzed. The CRPGS was compared with other previously published molecular signatures, and the CRPGS was externally validated in our real-world AHMU-PC cohort.ResultsFour recurrence-free survival (RFS)-related chemokine genes (CXCL14, CCL20, CCL24, and CCL26) were identified, and the CRPGS was established based on the four identified chemokine genes, and TCGA-PRAD patients with high riskscores exhibited poorer RFS, which was validated in the GSE70768 cohort. The CRPGS was associated with the clinical, pathological, and immune characteristics of PCa patients. Low-risk PCa patients were predicted to respond better to ADT and immunotherapy. By comparing with other molecular signatures, the CRPGS could classify PCa patients into two risk groups well, and the CRPGS was associated with the m6A level, as well as TP53 and SPOP mutation status of PCa patients. In the AHMU-PC cohort, the CRPGS was associated with the advanced pathology stage and Gleason score.ConclusionsThe identified chemokine genes and CRPGS were associated with the prognosis of PCa, which could predict PCa patients’ responses to anti-androgen and immunotherapies.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Zheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Changqin Jiang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Cheng Yang, ; Li Zhang, ; Chaozhao Liang,
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Cheng Yang, ; Li Zhang, ; Chaozhao Liang,
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Cheng Yang, ; Li Zhang, ; Chaozhao Liang,
| |
Collapse
|
15
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
16
|
de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 2022; 118:3451-3466. [PMID: 36004495 PMCID: PMC9897696 DOI: 10.1093/cvr/cvac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current 'hot-topics' in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
17
|
Wang X, Brea L, Lu X, Gritsina G, Park SH, Xie W, Zhao JC, Yu J. FOXA1 inhibits hypoxia programs through transcriptional repression of HIF1A. Oncogene 2022; 41:4259-4270. [PMID: 35931888 PMCID: PMC9464719 DOI: 10.1038/s41388-022-02423-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Intratumoral hypoxia is associated with castration-resistant prostate cancer (CRPC), a lethal disease. FOXA1 is an epithelial transcription factor that is down-regulated in CRPC. We have previously reported that FOXA1 loss induces epithelial-mesenchymal transition (EMT) and cell motility through elevated TGFβ signaling. However, whether FOXA1 directly regulates hypoxia pathways of CRPC tumors has not been previously studied. Here we report that FOXA1 down-regulation induces hypoxia transcriptional programs, and FOXA1 level is negatively correlated with hypoxia markers in clinical prostate cancer (PCa) samples. Mechanistically, FOXA1 directly binds to an intragenic enhancer of HIF1A to inhibit its expression, and HIF1A, in turn, is critical in mediating FOXA1 loss-induced hypoxia gene expression. Further, we identify CCL2, a chemokine ligand that modulates tumor microenvironment and promotes cancer progression, as a crucial target of the FOXA1-HIF1A axis. We found that FOXA1 loss leads to immunosuppressive macrophage infiltration and increased cell invasion, dependent on HIF1A expression. Critically, therapeutic targeting of HIF1A-CCL2 using pharmacological inhibitors abolishes FOXA1 loss-induced macrophage infiltration and PCa cell invasion. In summary, our study reveals an essential role of FOXA1 in controlling the hypoxic tumor microenvironment and establishes the HIF1A-CCL2 axis as one mechanism of FOXA1 loss-induced CRPC progression.
Collapse
Affiliation(s)
- Xiaohai Wang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA,Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lourdes Brea
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Su H. Park
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wanqing Xie
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan C. Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Sun X, Wang X, Yan C, Zheng S, Gao R, Huang F, Wei Y, Wen Z, Chen Y, Zhou X, Liu X, Chen B, Shen Y, Cai Y, Pan N, Wang L. Tumor cell-released LC3-positive EVs promote lung metastasis of breast cancer through enhancing premetastatic niche formation. Cancer Sci 2022; 113:3405-3416. [PMID: 35879596 PMCID: PMC9530874 DOI: 10.1111/cas.15507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Most breast cancer–related deaths are caused by metastasis in vital organs including the lungs. Development of supportive metastatic microenvironments, referred to as premetastatic niches (PMNs), in certain distant organs before arrival of metastatic cells, is critical in metastasis. However, the mechanisms of PMN formation are not fully clear. Here, we demonstrated that chemoattractant C–C motif chemokine ligand 2 (CCL2) could be stimulated by heat shock protein 60 (HSP60) on the surface of murine 4 T1 breast cancer cell–released LC3+ extracellular vesicles (LC3+ EVs) via the TLR2‐MyD88‐NF‐κB signal cascade in lung fibroblasts, which subsequently promoted lung PMN formation through recruiting monocytes and suppressing T cell function. Consistently, reduction of LC3+ EV release or HSP60 level or neutralization of CCL2 markedly attenuated PMN formation and lung metastasis. Furthermore, the number of circulating LC3+ EVs and HSP60 level on LC3+ EVs in the plasma of breast cancer patients were positively correlated with disease progression and lung metastasis, which might have potential value as biomarkers of lung metastasis in breast cancer patients (AUC = 0.898, 0.694, respectively). These findings illuminate a novel mechanism of PMN formation and might provide therapeutic targets for anti‐metastasis therapy for patients with breast cancer.
Collapse
Affiliation(s)
- Xiaotong Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Xuru Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Chunguang Yan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Rong Gao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Fang Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Yiting Wei
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Zhifa Wen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Yongqiang Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Xiaohe Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Xueming Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Bohao Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Yuqing Shen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Yunlang Cai
- Department of Obstetrics and Gynecology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ning Pan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| | - Lixin Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Immunology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
19
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
20
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|
21
|
Märkl F, Huynh D, Endres S, Kobold S. Utilizing chemokines in cancer immunotherapy. Trends Cancer 2022; 8:670-682. [DOI: 10.1016/j.trecan.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
|
22
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
23
|
GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res 2022; 10:6. [PMID: 35058441 PMCID: PMC8776828 DOI: 10.1038/s41413-021-00178-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
Bone metastases occur in patients with advanced-stage prostate cancer (PCa). The cell-cell interaction between PCa and the bone microenvironment forms a vicious cycle that modulates the bone microenvironment, increases bone deformities, and drives tumor growth in the bone. However, the molecular mechanisms of PCa-mediated modulation of the bone microenvironment are complex and remain poorly defined. Here, we evaluated growth differentiation factor-15 (GDF15) function using in vivo preclinical PCa-bone metastasis mouse models and an in vitro bone cell coculture system. Our results suggest that PCa-secreted GDF15 promotes bone metastases and induces bone microarchitectural alterations in a preclinical xenograft model. Mechanistic studies revealed that GDF15 increases osteoblast function and facilitates the growth of PCa in bone by activating osteoclastogenesis through osteoblastic production of CCL2 and RANKL and recruitment of osteomacs. Altogether, our findings demonstrate the critical role of GDF15 in the modulation of the bone microenvironment and subsequent development of PCa bone metastasis.
Collapse
|
24
|
Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther 2022; 29:10-21. [PMID: 33603130 PMCID: PMC8761573 DOI: 10.1038/s41417-021-00303-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Immune cell infiltration into solid tumors, their movement within the tumor microenvironment (TME), and interaction with other immune cells are controlled by their directed migration towards gradients of chemokines. Dysregulated chemokine signaling in TME favors the growth of tumors, exclusion of effector immune cells, and abundance of immunosuppressive cells. Key chemokines directing the migration of immune cells into tumor tissue have been identified. In this review, we discuss well-studied chemokine receptors that regulate migration of effector and immunosuppressive immune cells in the context of cancer immunology. We discuss preclinical models that have described the role of respective chemokine receptors in immune cell migration into TME and review preclinical and clinical studies that target chemokine signaling as standalone or combination therapies.
Collapse
Affiliation(s)
- Karan Kohli
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| | - Venu G. Pillarisetty
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| | - Teresa S. Kim
- grid.34477.330000000122986657University of Washington, Department of Surgery, Seattle, WA USA
| |
Collapse
|
25
|
Wang L, Lan J, Tang J, Luo N. MCP-1 targeting: Shutting off an engine for tumor development. Oncol Lett 2021; 23:26. [PMID: 34868363 PMCID: PMC8630816 DOI: 10.3892/ol.2021.13144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
A large amount of research has proven that monocyte chemotactic protein-1 (MCP-1) is associated with different types of disease, including autoimmune, metabolic and cardiovascular diseases. In addition, several studies have found that MCP-1 is associated with tumor development. MCP-1 expression level in the tumor microenvironment is associated with tumor development, including in tumor invasion and metastasis, angiogenesis, and immune cell infiltration. However, the precise mechanism involved is currently being investigated. MCP-1 exerts its effects mainly via the MCP-1/C-C motif chemokine receptor 2 axis and leads to the activation of classical signaling pathways, such as PI3K/Akt/mTOR, ERK/GSK-3β/Snail, c-Raf/MEK/ERK and MAPK in different cells. The specific mechanism is still under debate; however, target therapy utilizing MCP-1 as a neutralizing antibody has been found to have a detrimental effect on tumor development. The aim of the present review was to examine the effect of MCP-1 on tumor development from several aspects, including its structure, its involvement in signaling pathways, the participating cells, and the therapeutic agents targeting MCP-1. The improved understanding into the structure of MCP-1 and the mechanism of action may facilitate new and practical therapeutic agents to achieve maximum performance in the treatment of patients with cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinxin Lan
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Jiaping Tang
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
26
|
Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021; 101:107598. [PMID: 34233864 PMCID: PMC8135227 DOI: 10.1016/j.intimp.2021.107598] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
MCP-1 (Monocyte chemoattractant protein-1), also known as Chemokine (CC-motif) ligand 2 (CCL2), is from family of CC chemokines. It has a vital role in the process of inflammation, where it attracts or enhances the expression of other inflammatory factors/cells. It leads to the advancement of many disorders by this main mechanism of migration and infiltration of inflammatory cells like monocytes/macrophages and other cytokines at the site of inflammation. MCP-1 has been inculpated in the pathogenesis of numerous disease conditions either directly or indirectly like novel corona virus, cancers, neuroinflammatory diseases, rheumatoid arthritis, cardiovascular diseases. The elevated MCP-1 level has been observed in COVID-19 patients and proven to be a biomarker associated with the extremity of disease along with IP-10. This review will focus on involvement and role of MCP-1 in various pathological conditions.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| | - D Anshita
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
27
|
Bellinger DL, Dulcich MS, Molinaro C, Gifford P, Lorton D, Gridley DS, Hartman RE. Psychosocial Stress and Age Influence Depression and Anxiety-Related Behavior, Drive Tumor Inflammatory Cytokines and Accelerate Prostate Cancer Growth in Mice. Front Oncol 2021; 11:703848. [PMID: 34604038 PMCID: PMC8481826 DOI: 10.3389/fonc.2021.703848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) prevalence is higher in older men and poorer coping with psychosocial stressors effect prognosis. Yet, interactions between age, stress and PCa progression are underexplored. Therefore, we characterized the effects of age and isolation combined with restraint (2 h/day) for 14 days post-tumor inoculation on behavior, tumor growth and host defense in the immunocompetent, orthotopic RM-9 murine PCa model. All mice were tumor inoculated. Isolation/restraint increased sympathetic and hypothalamic-pituitary-adrenal cortical activation, based on elevated serum 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratios and corticosterone levels, respectively. Elevated zero maze testing revealed age-related differences in naïve C57Bl/6 mice, and increased anxiety-like behavior in tumor-bearing mice. In open field testing, old stressed mice were less active throughout the 30-min test than young non-stressed and stressed, and old non-stressed mice, suggesting greater anxiety in old stressed mice. Old (18 month) mice demonstrated more depression-like behavior than young mice with tail suspension testing, without effects of isolation/restraint stress. Old mice developed larger tumors, despite similar tumor expression of tumor vascular endothelial growth factor or transforming growth factor-beta1 across age. Tumor chemokine/cytokine expression, commonly prognostic for poorer outcomes, were uniquely age- and stress-dependent, underscoring the need for PCa research in old animals. Macrophages predominated in RM-9 tumors. Macrophages, and CD4+ and CD4+FoxP3+ T-cell tumor infiltration were greater in young mice than in old mice. Stress increased macrophage infiltration in old mice. Conversely, stress reduced intratumoral CD4+ and CD4+FoxP3+ T-cell numbers in young mice. CD8+ T-cell infiltration was similar across treatment groups. Our findings support that age- and psychological stress interacts to affect PCa outcomes by interfering with neural-immune mechanisms and affecting behavioral responses.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Melissa S Dulcich
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| | - Christine Molinaro
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Peter Gifford
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Department of Psychology, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH, United States
| | - Daila S Gridley
- Departments of Radiation Medicine and Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Richard E Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
28
|
Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021; 54:e13115. [PMID: 34464477 PMCID: PMC8488570 DOI: 10.1111/cpr.13115] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2-CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2- CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2-CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2-CCR2 targeted therapy, focusing on preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Ramesh A, Brouillard A, Kulkarni A. Supramolecular Nanotherapeutics for Macrophage Immunotherapy. ACS APPLIED BIO MATERIALS 2021; 4:4653-4666. [PMID: 35007018 DOI: 10.1021/acsabm.1c00342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-associated macrophages are recruited in high abundance in the tumor microenvironment and are implicated in the various stages of tumorigenesis, such as tumor proliferation, enhanced angiogenesis, metastasis, and immune escape. However, inherent macrophage plasticity and ability of macrophages to switch their phenotype and function from tumor-promoting (M2 phenotype) to tumor-eliminating capacities (M1 phenotype) make them ideal for therapeutic targeting. This spotlight on applications summarizes our recent efforts in designing supramolecular nanotherapeutics for macrophage immunotherapy, specifically, the strategies that can repolarize the M2 tumor-associated macrophages to M1-phenotype by sustained inhibition of key signaling pathways. With exciting recent developments in the field of macrophage immunotherapy, the ability to harness the innate inflammatory response of these macrophages in aiding tumor regression offers an avenue for cancer immunotherapy.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Depatment of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Anthony Brouillard
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Depatment of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Lee SWL, Seager RJ, Litvak F, Spill F, Sieow JL, Leong PH, Kumar D, Tan ASM, Wong SC, Adriani G, Zaman MH, Kamm ARD. Integrated in silico and 3D in vitro model of macrophage migration in response to physical and chemical factors in the tumor microenvironment. Integr Biol (Camb) 2021; 12:90-108. [PMID: 32248236 DOI: 10.1093/intbio/zyaa007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and β-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - R J Seager
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Felix Litvak
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Fabian Spill
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK
| | - Je Lin Sieow
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Penny Hweixian Leong
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Dillip Kumar
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Siew Cheng Wong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.,Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Muhammad Hamid Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.,Howard Hughes Medical Institute, Boston University, Boston, MA, 02215, USA
| | - And Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
31
|
Yu J, Piazza A, Sparks S, Hind LE, Niles DJ, Ingram PN, Huang W, Ricke WA, Jarrard DF, Huttenlocher A, Basu H, Beebe DJ. A reconfigurable microscale assay enables insights into cancer-associated fibroblast modulation of immune cell recruitment. Integr Biol (Camb) 2021; 13:87-97. [PMID: 33822934 DOI: 10.1093/intbio/zyab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
Innate immune cell infiltration into neoplastic tissue is the first line of defense against cancer and can play a deterministic role in tumor progression. Here, we describe a series of assays, using a reconfigurable microscale assay platform (i.e. Stacks), which allows the study of immune cell infiltration in vitro with spatiotemporal manipulations. We assembled Stacks assays to investigate tumor-monocyte interactions, re-education of activated macrophages, and neutrophil infiltration. For the first time in vitro, the Stacks infiltration assays reveal that primary tumor-associated fibroblasts from specific patients differ from that associated with the benign region of the prostate in their ability to limit neutrophil infiltration as well as facilitate monocyte adhesion and anti-inflammatory monocyte polarization. These results show that fibroblasts play a regulatory role in immune cell infiltration and that Stacks has the potential to predict individual patients' cancer-immune response.
Collapse
Affiliation(s)
- Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.,Koch Institute For Integrative Cancer Research, Massachusetts Institute of Technology, MA 02142, USA
| | - Amber Piazza
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.,University of Minnesota Medical School, Minneapolis, MN 55455, USAUSA
| | - Sidney Sparks
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Laurel E Hind
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA.,Department of Chemical and Biological Engineering, University of Colorado - Boulder, Boulder, CO 80309, USA
| | - David J Niles
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Patrick N Ingram
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI 53706, USA
| | - William A Ricke
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - David F Jarrard
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA.,Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Hirak Basu
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,MD-Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
32
|
Bejarano L, Jordāo MJC, Joyce JA. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov 2021; 11:933-959. [PMID: 33811125 DOI: 10.1158/2159-8290.cd-20-1808] [Citation(s) in RCA: 710] [Impact Index Per Article: 236.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
Strategies to therapeutically target the tumor microenvironment (TME) have emerged as a promising approach for cancer treatment in recent years due to the critical roles of the TME in regulating tumor progression and modulating response to standard-of-care therapies. Here, we summarize the current knowledge regarding the most advanced TME-directed therapies, which have either been clinically approved or are currently being evaluated in trials, including immunotherapies, antiangiogenic drugs, and treatments directed against cancer-associated fibroblasts and the extracellular matrix. We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field. SIGNIFICANCE: This review provides a comprehensive analysis of the current therapies targeting the TME, combining a discussion of the underlying basic biology with clinical evaluation of different therapeutic approaches, and highlighting the challenges and future perspectives.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Marta J C Jordāo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Wang Q, Wang K, Zhao X. Monocytes recruitment blocking synergizes with mesenchymal stem cell transplantation for treating myocardial infarction. Regen Med 2021; 16:9-17. [PMID: 33560157 DOI: 10.2217/rme-2020-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Mesenchymal stem cell (MSC) transplantation is a promising therapeutic approach for acute myocardial infarction (AMI), however, research to date has demonstrated unsatisfactory results. Materials & methods: An AMI mouse model was established via left coronary artery ligation. AMI mice were treated with MSCs, anti-CCR2 or MSCs + anti-CCR2 and the effects of each treatment group were compared. Macrophage infiltration was analyzed by immunofluorescence staining and flow cytometry. Results: Implantation of MSCs + anti-CCR2 yielded a greater improvement in cardiac function and significantly reduced macrophage accumulation in the infarct site of AMI mice compared with the injection of MSCs or anti-CCR2 alone. Moreover, reduced macrophage infiltration was accompanied by reduced pro-inflammatory cytokine secretion in the injury sites and the low inflammatory response favored tissue regeneration. Conclusion: Treatment with MSCs and anti-CCR2 in combination may be a promising therapeutic strategy for AMI.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cardiology, Changhai Hospital, Naval Medical University, No.168 Changhai Road, Shanghai 200433, China
| | - Ke Wang
- Department of Cardiology, Changhai Hospital, Naval Medical University, No.168 Changhai Road, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Naval Medical University, No.168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
34
|
Iwamoto H, Izumi K, Mizokami A. Is the C-C Motif Ligand 2-C-C Chemokine Receptor 2 Axis a Promising Target for Cancer Therapy and Diagnosis? Int J Mol Sci 2020; 21:ijms21239328. [PMID: 33297571 PMCID: PMC7730417 DOI: 10.3390/ijms21239328] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
C-C motif ligand 2 (CCL2) was originally reported as a chemical mediator attracting mononuclear cells to inflammatory tissue. Many studies have reported that CCL2 can directly activate cancer cells through a variety of mechanisms. CCL2 can also promote cancer progression indirectly through increasing the recruitment of tumor-associated macrophages into the tumor microenvironment. The role of CCL2 in cancer progression has gradually been understood, and various preclinical cancer models elucidate that CCL2 and its receptor C-C chemokine receptor 2 (CCR2) are attractive targets for intervention in cancer development. However, clinically available drugs that regulate the CCL2-CCR2 axis as anticancer agents are not available at this time. The complete elucidation of not only the oncological but also the physiological functions of the CCL2-CCR2 axis is required for achieving a satisfactory effect of the CCL2-CCR2 axis-targeted therapy.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
35
|
Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2020; 236:3445-3465. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
36
|
Myers KV, Pienta KJ, Amend SR. Cancer Cells and M2 Macrophages: Cooperative Invasive Ecosystem Engineers. Cancer Control 2020; 27:1073274820911058. [PMID: 32129079 PMCID: PMC7066590 DOI: 10.1177/1073274820911058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many aspects of cancer can be explained utilizing well-defined ecological
principles. Applying these principles to cancer, cancer cells are an invasive
species to a healthy organ ecosystem. In their capacity as ecosystem engineers,
cancer cells release cytokines that recruit monocytes to the tumor and polarize
them to M2-like protumor macrophages. Macrophages, recruited by the cancer
cells, act as a secondary invasive species. The ecosystem engineering functions
of M2-macrophages in turn support and stimulate cancer cell survival and
proliferation. The cooperative ecosystem engineering of both the primary
invasive species of the cancer cell and the secondary invasive species of the
M2-macrophage thus creates a vicious cycle of tumor promotion. Targeting a
specific aspect of this tumor-promoting ecosystem engineering, such as blocking
efferocytosis by M2-like macrophages, may improve the response to
standard-of-care anticancer therapies. This strategy has the potential to
redirect cooperative protumor ecosystem engineering toward an antitumor
ecosystem engineering strategy.
Collapse
Affiliation(s)
- Kayla V Myers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah R Amend
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Amin MN, Siddiqui SA, Ibrahim M, Hakim ML, Ahammed MS, Kabir A, Sultana F. Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE Open Med 2020; 8:2050312120965752. [PMID: 33194199 PMCID: PMC7594225 DOI: 10.1177/2050312120965752] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cytokines are highly inducible small glycoproteins or regulatory proteins of low molecular weight secreted by different cell types. They regulate intercellular communication and mediate a number of physiological functions in the human immune system. Numerous prospective studies report that inflammatory cytokines strongly predict coronary artery disease, myocardial infarction, heart failure and other adverse cardiac events. Inflammatory cascade is believed to be a causative factor in the development of atherosclerotic process. Several aspects of atherogenesis are accelerated by cytokines. This article provides an overall overview of current understanding of cytokines in various cardiovascular events. Besides, inflammatory cytokines trigger cellular events that can induce malignancy and carcinogenesis. Elevated expression of several cytokines such as interleukin-1, interleukin-6, interleukin-10, tumor necrosis factor-α, macrophage migration inhibitory factor and transforming growth factor-β are involved in tumor initiation and progression. Thus, they exert a pivotal role in cancer pathogenesis. This review highlights the role of several cytokines in various events of tumorigenesis. Actually, this article summarizes the contributions of cytokines in the pathogenesis of cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Md Ibrahim
- College of Medicine, University of South
Alabama, Mobile, AL, USA
| | - Md Lukman Hakim
- Department of Pharmaceutical Sciences,
North South University, Dhaka, Bangladesh
| | - Md. Salim Ahammed
- Department of Pharmacy, University of
Information Technology and Sciences, Dhaka, Bangladesh
| | - Asma Kabir
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| | - Farhana Sultana
- Department of Pharmacy, Atish Dipankar
University of Science and Technology, Dhaka, Bangladesh
- Pratyasha Health Biomedical Research
Center, Dhaka, Bangladesh
| |
Collapse
|
38
|
Gwak J, Jeong H, Lee K, Shin JY, Sim T, Na J, Kim J, Ju BG. SFMBT2-Mediated Infiltration of Preadipocytes and TAMs in Prostate Cancer. Cancers (Basel) 2020; 12:E2718. [PMID: 32971847 PMCID: PMC7565541 DOI: 10.3390/cancers12092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
Infiltration of diverse cell types into tumor microenvironment plays a critical role in cancer progression including metastasis. We previously reported that SFMBT2 (Scm-like with four mbt domains 2) regulates the expression of matrix metalloproteinases (MMPs) and migration and invasion of cancer cells in prostate cancer. Here we investigated whether the down-regulation of SFMBT2 regulates the infiltration of preadipocytes and tumor-associated macrophages (TAMs) in prostate cancer. We found that the down-regulation of SFMBT2 promotes the infiltration of preadipocytes and TAMs through up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression in prostate cancer. Expression of CXCL8, CCL2, CXCL10, and CCL20 was also elevated in prostate cancer patients having a higher Gleason score (≥8), which had substantially lower SFMBT2 expression. We also found that the up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression is dependent on NF-κB activation in prostate cancer cells expressing a low level of SFMBT2. Moreover, increased IL-6 from infiltrated preadipocytes and TAMs promoted migration and invasion of prostate cancer cells expressing a low level of SFMBT2. Our study may suggest that SFMBT2 a critical regulator for the infiltration of preadipocytes and TAMs into the prostate tumor microenvironment. Thus, the regulation of SFMBT2 may provide a new therapeutic strategy to inhibit prostate cancer metastasis, and SFMBT2 could be used as a potential biomarker in prostate cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.G.); (H.J.); (K.L.); (J.Y.S.); (T.S.); (J.N.); (J.K.)
| |
Collapse
|
39
|
Application of Anti-Inflammatory Agents in Prostate Cancer. J Clin Med 2020; 9:jcm9082680. [PMID: 32824865 PMCID: PMC7464558 DOI: 10.3390/jcm9082680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a major cause of human cancers. The environmental factors, such as microbiome, dietary components, and obesity, provoke chronic inflammation in the prostate, which promotes cancer development and progression. Crosstalk between immune cells and cancer cells enhances the secretion of intercellular signaling molecules, such as cytokines and chemokines, thereby orchestrating the generation of inflammatory microenvironment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play pivotal roles in inflammation-associated cancer by inhibiting effective anti-tumor immunity. Anti-inflammatory agents, such as aspirin, metformin, and statins, have potential application in chemoprevention of prostate cancer. Furthermore, pro-inflammatory immunity-targeted therapies may provide novel strategies to treat patients with cancer. Thus, anti-inflammatory agents are expected to suppress the “vicious cycle” created by immune and cancer cells and inhibit cancer progression. This review has explored the immune cells that facilitate prostate cancer development and progression, with particular focus on the application of anti-inflammatory agents for both chemoprevention and therapeutic approach in prostate cancer.
Collapse
|
40
|
Kadomoto S, Izumi K, Mizokami A. The CCL20-CCR6 Axis in Cancer Progression. Int J Mol Sci 2020; 21:ijms21155186. [PMID: 32707869 PMCID: PMC7432448 DOI: 10.3390/ijms21155186] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chemokines, which are basic proteins that exert their effects via G protein-coupled receptors and a subset of the cytokine family, are mediators deeply involved in leukocyte migration during an inflammatory reaction. Chemokine (C-C motif) ligand 20 (CCL20), also known as macrophage inflammatory protein (MIP)-3α, liver activation regulated chemokine (LARC), and Exodus-1, is a small protein that is physiologically expressed in the liver, colon, and skin, is involved in tissue inflammation and homeostasis, and has a specific receptor C-C chemokine receptor 6 (CCR6). The CCL20-CCR6 axis has long been known to be involved in inflammatory and infectious diseases, such as rheumatoid arthritis and human immunodeficiency virus infections. Recently, however, reports have shown that the CCL20-CCR6 axis is associated with several cancers, including hepatocellular carcinoma, colorectal cancer, breast cancer, pancreatic cancer, cervical cancer, and kidney cancer. The CCL20-CCR6 axis promotes cancer progression directly by enhancing migration and proliferation of cancer cells and indirectly by remodeling the tumor microenvironment through immune cell control. The present article reviewed the role of the CCL20-CCR6 axis in cancer progression and its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
41
|
Hu P, Gao Y, Huang Y, Zhao Y, Yan H, Zhang J, Zhao L. Gene Expression-Based Immune Cell Infiltration Analyses of Prostate Cancer and Their Associations with Survival Outcome. DNA Cell Biol 2020; 39:1194-1204. [PMID: 32460527 DOI: 10.1089/dna.2020.5371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the second most common cancer and the fifth cause of cancer death in males. Currently, there are no effective therapies for prostate cancer yet, and the status of treatment remains severe. In this study, we analyzed the composition of tumor-infiltrating immune cells (TIICs) in prostate cancer and paracancerous samples based on the gene expression profiles using CIBERSORT. Calculation of the TIIC subset proportions in 52 paired prostate cancer and paracancerous samples showed that their proportions were similar in intergroup and varied in intragroup. Compared with the paracancerous samples, the proportion of M0 macrophages was significantly increased in prostate cancer samples. Cox regression analysis using the TIIC subpopulations as continuous variables revealed that high plasma cell proportion was associated with poor 3-year Disease-Free Survival (DFS) in prostate cancer (hazard ratios = 1.8e-76, p = 0.001). Moreover, three immune clusters, which presented distinct prognosis, were identified using hierarchical clustering analysis based on the proportions of TIIC subpopulations. Among them, cluster 1 had superior 3-year DFS, while cluster 3 showed inferior 3-year DFS (p = 0.025). In summary, our research provided a comprehensive analysis on the TIIC composition in prostate cancer and suggested that both plasma cells and different cluster patterns were associated with the prostate cancer prognosis, which should be helpful for the clinical surveillance and treatment of prostate cancer.
Collapse
Affiliation(s)
- Ping Hu
- The Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China.,The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yuanyuan Gao
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Ying Huang
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Yanjiao Zhao
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Hui Yan
- The Second Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Jiao Zhang
- The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, P.R. China
| | - Lujun Zhao
- The Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Tianjin Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
42
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|
43
|
Kumar S, Ramesh A, Kulkarni A. Targeting macrophages: a novel avenue for cancer drug discovery. Expert Opin Drug Discov 2020; 15:561-574. [PMID: 32141351 DOI: 10.1080/17460441.2020.1733525] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Tumor-associated macrophages (TAMs) make up a significant portion of the tumor microenvironment. Emerging clinical evidence indicate that cytokines present in the tumor microenvironment influence TAMs to play an immunosuppressive role by acquiring a pro-tumoral phenotype. However, TAMs are inherently plastic cells that can be phenotypically reprogrammed to elicit an anti-tumoral response. Therapeutic strategies that focus on targeting TAMs have opened new avenues for drug discoveries.Areas covered: This review discusses recent developments in TAM targeted immunotherapy in both preclinical and clinical settings. This article highlights the potential signaling pathways that can be targeted for macrophage reprogramming and discusses the progress of current clinical trials involved in TAMs targeting. Novel nanoparticle-based drug delivery strategies involved in macrophage-based cancer therapeutics and diagnostics are also discussed.Expert opinion: TAM targeted therapies have limited success in clinics due to reasons such as insufficient inhibition of signaling pathways, lower drug accumulation in the tumor, activation of feedback signaling pathways that induce resistance to monotherapies and systemic dose-related toxicities. Nanoparticle-based delivery platforms could overcome these challenges since they enable encapsulation of multiple drugs that target different signaling pathways and enhance intratumoral delivery and can enable delivery of imaging agents.
Collapse
Affiliation(s)
- Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.,Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.,Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.,Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
44
|
Ramírez-Moreno IG, Ibarra-Sánchez A, Castillo-Arellano JI, Blank U, González-Espinosa C. Mast Cells Localize in Hypoxic Zones of Tumors and Secrete CCL-2 under Hypoxia through Activation of L-Type Calcium Channels. THE JOURNAL OF IMMUNOLOGY 2020; 204:1056-1068. [PMID: 31900336 DOI: 10.4049/jimmunol.1801430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/05/2019] [Indexed: 01/19/2023]
Abstract
Hypoxia is a condition that together with low pH, high amounts of reactive oxygen species (ROS), and increased adenosine levels characterize tumor microenvironment. Mast cells (MCs) are part of tumor microenvironment, but the effect of hypoxia on the production of MC-derived cytokines has not been fully described. Using the hypoxia marker pimonidazole in vivo, we found that MCs were largely located in the low-oxygen areas within B16-F1 mice melanoma tumors. In vitro, hypoxia promoted ROS production, a ROS-dependent increase of intracellular calcium, and the production of MCP 1 (CCL-2) in murine bone marrow-derived MCs. Hypoxia-induced CCL-2 production was sensitive to the antioxidant trolox and to nifedipine, a blocker of L-type voltage-dependent Ca2+ channels (LVDCCs). Simultaneously with CCL-2 production, hypoxia caused the ROS-dependent glutathionylation and membrane translocation of the α1c subunit of Cav1.2 LVDCCs. Relationship between ROS production, calcium rise, and CCL-2 synthesis was also observed when cells were treated with H2O2 In vivo, high CCL-2 production was detected on hypoxic zones of melanoma tumors (where tryptase-positive MCs were also found). Pimonidazole and CCL-2 positive staining diminished when B16-F1 cell-inoculated animals were treated with trolox, nifedipine, or the adenosine receptor 2A antagonist KW6002. Our results show that MCs are located preferentially in hypoxic zones of melanoma tumors, hypoxia-induced CCL-2 production in MCs requires calcium rise mediated by glutathionylation and membrane translocation of LVDCCs, and this mechanism of CCL-2 synthesis seems to operate in other cells inside melanoma tumors, with the participation of the adenosine receptor 2A.
Collapse
Affiliation(s)
- Itzel G Ramírez-Moreno
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Tlalpan, 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Tlalpan, 14330 Mexico City, Mexico
| | - Jorge Ivan Castillo-Arellano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico City, Mexico; and
| | - Ulrich Blank
- Inserm U1149, CNRS ERL 8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site X. bichat, Laboratorie d'excellence INFLAMEX, 75018 Paris, France
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Tlalpan, 14330 Mexico City, Mexico;
| |
Collapse
|
45
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Abstract
Accumulating evidence highlights the importance of interactions between tumour cells and stromal cells for tumour initiation, progression, and metastasis. In tumours that contain adipocyte in their stroma, adipocytes contribute to modification of tumour microenvironment and affect metabolism of tumour and tumour progression by production of cytokines and adipokines from the lipids. The omentum and bone marrow (BM) are highly adipocyte-rich and are also common metastatic and primary tumour developmental sites. Omental adipocytes exhibit metabolic cross-talk, immune modulation, and angiogenesis. BM adipocytes secrete adipokines, and participate in solid tumour metastasis through regulation of the CCL2/CCR2 axis and metabolic interactions. BM adipocytes also contribute to the progression of hematopoietic neoplasms. Here, we here provide an overview of research progress on the cross-talks between omental/BM adipocytes and tumour cells, which may be pivotal modulators of tumour biology, thus highlighting novel therapeutic targets. Abbreviations: MCP-1, monocyte chemoattractant protein 1IL, interleukinSTAT3, signal transducer and activator of transcription 3FABP4, fatty acid binding protein 4PI3K/AKT, phosphoinositide 3-kinase/protein kinase BPPAR, peroxisome proliferator-activated receptorPUFA, polyunsaturated fatty acidTAM, tumour-associated macrophagesVEGF, vascular endothelial growth factorVEGFR, vascular endothelial growth factor receptorBM, bone marrowBMA, bone marrow adipocytesrBMA, regulated BMAcBMA, constitutive BMAUCP-1, uncoupling protein-1TNF-α, tumour necrosis factor-alphaRANKL, receptor activator of nuclear factor kappa-Β ligandVCAM-1, vascular cell adhesion molecule 1JAK2, Janus kinase 2CXCL (C–X–C motif) ligandPGE2, prostaglandin E2COX-2, cyclooxygenase-2CCL2, C-C motif chemokine ligand 2NF-κB, nuclear factor-kappa BMM, multiple myelomaALL, acute lymphoblastic leukemiaAML, acute myeloid leukemiaGDF15, growth differentiation factor 15AMPK, AMP-activated protein kinaseMAPK, mitogen-activated protein kinaseAPL, acute promyelocytic leukemiaCCR2, C-C motif chemokine receptor 2SDF-1α, stromal cell-derived factor-1 alphaFFA, free fatty acidsLPrA, leptin peptide receptor antagonistMCD, malonyl-CoA decarboxylase.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Espinoza-Sánchez NA, Győrffy B, Fuentes-Pananá EM, Götte M. Differential impact of classical and non-canonical NF-κB pathway-related gene expression on the survival of breast cancer patients. J Cancer 2019; 10:5191-5211. [PMID: 31602271 PMCID: PMC6775609 DOI: 10.7150/jca.34302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a well-known driver of carcinogenesis and cancer progression, often attributed to the tumor microenvironment. However, tumor cells themselves are capable of secreting a variety of inflammatory molecules, leading to the activation of specific signaling pathways that promote tumor progression. The NF-κB signaling pathway is one of the most important connections between inflammation and tumorigenesis. NF-κB is a superfamily of transcription factors that plays an important role in several types of hematological and solid tumors, including breast cancer. However, the role of the NF-κB pathway in the survival of breast cancer patients is poorly studied. In this study, we analyzed and related the expression of both canonical and alternative NF-κB pathways and selected target genes with the relapse-free and overall survival of breast cancer patients. We used the public database Kaplan-Meier plotter (KMplot) which includes gene expression data and survival information of 3951 breast cancer patients. We found that the expression of IKKα was associated with poor relapse-free survival in patients with ER-positive tumors. Moreover, the expression of IL-8 and MMP-1 was associated with poor relapse-free and overall survival. In contrast, expression of IKKβ, p50, and p65 from the canonical pathway, and NIK and RELB from the alternative pathway correlated with better relapse-free survival also when the patients were classified by their hormonal and nodal status. Our study suggests that the expression of genes of the canonical and alternative NF-κB pathways is ultimately critical for tumor persistence. Understanding the communication between both pathways would help to find better therapeutic and prophylactic targets to prevent breast cancer progression and relapse.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, and Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
48
|
Pei X, Zheng D, She S, Fang Z, Zhang S, Hu H, Xu K, Wang Y. Elevated Expression Levels of PC3-Secreted Microprotein (PSMP) in Prostate Cancer Associated With Increased Xenograft Growth and Modification of Immune-Related Microenvironment. Front Oncol 2019; 9:724. [PMID: 31555577 PMCID: PMC6723336 DOI: 10.3389/fonc.2019.00724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa), especially metastatic PCa, is one of the main cancer types accounting for male mortality worldwide. Over decades, researchers have tried to search for effective curative methods for PCa, but many attempts have failed. The therapeutic failure of PCa is usually due to off-target or side effects; thus, finding a key molecule that could prevent PCa metastatic progression has become the most important goal for curing aggressive PCa. In this study, we collected hundreds of PCa tissues and serum and urine samples from patients to verify the upregulated expression of PC3-secreted microprotein (PSMP) in PCa tumor tissues with high Gleason scores. According to biopsy results, PSMP expression was found related to extraprostatic extension (EPE), contributing to PCa metastasis. Mechanistically, recombinant PSMP protein could promote the proliferation both in vitro and in vivo, and rhPSMP could promote epithelial–mesenchymal transition (EMT) of PC3 in vitro. Additionally, PSMP could also influence cytokine production in the xenograft model and monocyte migration and macrophage polarization in vitro. Our most important finding was that neutralizing antibodies against PSMP could suppress xenograft PC3 growth and promote the survival of PC3 metastatic mice model, providing an effective option to cure human PCa.
Collapse
Affiliation(s)
- Xiaolei Pei
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Danfeng Zheng
- Department of Laboratory Medicine, Center of Clinical Laboratory, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shaoping She
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiwei Fang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Shiying Zhang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
49
|
Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, Rumandla A, Gurrapu S, Chakraborty G, Su J, Yang G, Liang X, Wang G, Rosen N, Scher HI, Ouerfelli O, Giancotti FG. The Polycomb Repressor Complex 1 Drives Double-Negative Prostate Cancer Metastasis by Coordinating Stemness and Immune Suppression. Cancer Cell 2019; 36:139-155.e10. [PMID: 31327655 PMCID: PMC7210785 DOI: 10.1016/j.ccell.2019.06.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/28/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms that enable immune evasion at metastatic sites are poorly understood. We show that the Polycomb Repressor Complex 1 (PRC1) drives colonization of the bones and visceral organs in double-negative prostate cancer (DNPC). In vivo genetic screening identifies CCL2 as the top prometastatic gene induced by PRC1. CCL2 governs self-renewal and induces the recruitment of M2-like tumor-associated macrophages and regulatory T cells, thus coordinating metastasis initiation with immune suppression and neoangiogenesis. A catalytic inhibitor of PRC1 cooperates with immune checkpoint therapy to reverse these processes and suppress metastasis in genetically engineered mouse transplantation models of DNPC. These results reveal that PRC1 coordinates stemness with immune evasion and neoangiogenesis and point to the potential clinical utility of targeting PRC1 in DNPC.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Movement/drug effects
- Cell Self Renewal/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- Neoplasm Metastasis
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- PC-3 Cells
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Receptors, Androgen/deficiency
- Receptors, Androgen/genetics
- Receptors, CCR4/genetics
- Receptors, CCR4/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Escape/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wenjing Su
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hyun Ho Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA; Department of Urology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Boyu Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Cheng
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Alekya Rumandla
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Sreeharsha Gurrapu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Xin Liang
- Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guocan Wang
- Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, MSKCC, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA; Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
50
|
Laviron M, Boissonnas A. Ontogeny of Tumor-Associated Macrophages. Front Immunol 2019; 10:1799. [PMID: 31417566 PMCID: PMC6684758 DOI: 10.3389/fimmu.2019.01799] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Tumor-associated macrophages (TAM) represent the main immune cell population of the tumor microenvironment in most cancer. For decades, TAM have been the focus of intense investigation to understand how they modulate the tumor microenvironment and their implication in therapy failure. One consensus is that TAM are considered to exclusively originate from circulating monocyte precursors released from the bone marrow, fitting the original dogma of tissue-resident macrophage ontogeny. A second consensus proposed that TAM harbor either a classically activated M1 or alternatively activated M2 polarization profile, with almost opposite anti- and pro-tumoral activity respectively. These fundamental pillars are now revised in face of the latest discoveries on macrophage biology. Embryonic-derived macrophages were recently characterized as major contributors to the pool of tissue-resident macrophages in many tissues. Their turnover with macrophages derived from precursors of adult hematopoiesis seems to follow a regulation at the subtissular level. This has shed light on an ever more complex macrophage diversity in the tumor microenvironment than once thought and raise the question of their respective implication in tumor development compared to classical monocyte-derived macrophages. These recent advances highlight that TAM have actually not fully revealed their usefulness and deserve to be reconsidered. Understanding the link between TAM ontogeny and their various functions in tumor growth and interaction with the immune system represents one of the future challenges for cancer therapy.
Collapse
Affiliation(s)
- Marie Laviron
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses - CIMI, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses - CIMI, Paris, France
| |
Collapse
|