1
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ndlovu H, Lawal IO, Mdanda S, Kgatle MM, Mokoala KMG, Al-Ibraheem A, Sathekge MM. [ 18F]F-Poly(ADP-Ribose) Polymerase Inhibitor Radiotracers for Imaging PARP Expression and Their Potential Clinical Applications in Oncology. J Clin Med 2024; 13:3426. [PMID: 38929955 PMCID: PMC11204862 DOI: 10.3390/jcm13123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Including poly(ADP-ribose) polymerase (PARP) inhibitors in managing patients with inoperable tumors has significantly improved outcomes. The PARP inhibitors hamper single-strand deoxyribonucleic acid (DNA) repair by trapping poly(ADP-ribose)polymerase (PARP) at sites of DNA damage, forming a non-functional "PARP enzyme-inhibitor complex" leading to cell cytotoxicity. The effect is more pronounced in the presence of PARP upregulation and homologous recombination (HR) deficiencies such as breast cancer-associated gene (BRCA1/2). Hence, identifying HR-deficiencies by genomic analysis-for instance, BRCA1/2 used in triple-negative breast cancer-should be a part of the selection process for PARP inhibitor therapy. Published data suggest BRCA1/2 germline mutations do not consistently predict favorable responses to PARP inhibitors, suggesting that other factors beyond tumor mutation status may be at play. A variety of factors, including tumor heterogeneity in PARP expression and intrinsic and/or acquired resistance to PARP inhibitors, may be contributing factors. This justifies the use of an additional tool for appropriate patient selection, which is noninvasive, and capable of assessing whole-body in vivo PARP expression and evaluating PARP inhibitor pharmacokinetics as complementary to the currently available BRCA1/2 analysis. In this review, we discuss [18F]Fluorine PARP inhibitor radiotracers and their potential in the imaging of PARP expression and PARP inhibitor pharmacokinetics. To provide context we also briefly discuss possible causes of PARP inhibitor resistance or ineffectiveness. The discussion focuses on TNBC, which is a tumor type where PARP inhibitors are used as part of the standard-of-care treatment strategy.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Sipho Mdanda
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mankgopo M. Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Al-Jubeiha P.O. Box 1269, Amman 11941, Jordan;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (S.M.); (M.M.K.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
3
|
Marcazzan S, Braz Carvalho MJ, Nguyen NT, Strangmann J, Slotta-Huspenina J, Tenditnaya A, Tschurtschenthaler M, Rieder J, Proaño-Vasco A, Ntziachristos V, Steiger K, Gorpas D, Quante M, Kossatz S. PARP1-targeted fluorescence molecular endoscopy as novel tool for early detection of esophageal dysplasia and adenocarcinoma. J Exp Clin Cancer Res 2024; 43:53. [PMID: 38383387 PMCID: PMC10880256 DOI: 10.1186/s13046-024-02963-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.
Collapse
Affiliation(s)
- Sabrina Marcazzan
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Clinical Radiology, Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Marcos J Braz Carvalho
- II. Medizinische Klinik, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Nghia T Nguyen
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Julia Strangmann
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Anna Tenditnaya
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Markus Tschurtschenthaler
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, TUM School of Medicine and Health, Klinikum rechts der Isar at Technical University of Munich, Munich, 81675, Germany
| | - Jonas Rieder
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Andrea Proaño-Vasco
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Katja Steiger
- Institute of Pathology, TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
- Comparative Experimental Pathology (CEP) and IBioTUM tissue biobank, TUM School of Medicine and Health, Technical University of Munich, München, 81675, Germany
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany and Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany
| | - Michael Quante
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
| | - Susanne Kossatz
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum Rechts der Isar at Technical University of Munich, Munich, 81675, Germany.
- Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Technical University of Munich, Munich, 81675, Germany.
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, 85748, Germany.
| |
Collapse
|
4
|
Zoi V, Giannakopoulou M, Alexiou GA, Bouziotis P, Thalasselis S, Tzakos AG, Fotopoulos A, Papadopoulos AN, Kyritsis AP, Sioka C. Nuclear Medicine and Cancer Theragnostics: Basic Concepts. Diagnostics (Basel) 2023; 13:3064. [PMID: 37835806 PMCID: PMC10572920 DOI: 10.3390/diagnostics13193064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer theragnostics is a novel approach that combines diagnostic imaging and radionuclide therapy. It is based on the use of a pair of radiopharmaceuticals, one optimized for positron emission tomography imaging through linkage to a proper radionuclide, and the other bearing an alpha- or beta-emitter isotope that can induce significant damage to cancer cells. In recent years, the use of theragnostics in nuclear medicine clinical practice has increased considerably, and thus investigation has focused on the identification of novel radionuclides that can bind to molecular targets that are typically dysregulated in different cancers. The major advantages of the theragnostic approach include the elimination of multi-step procedures, reduced adverse effects to normal tissues, early diagnosis, better predictive responses, and personalized patient care. This review aims to discuss emerging theragnostic molecules that have been investigated in a series of human malignancies, including gliomas, thyroid cancer, neuroendocrine tumors, cholangiocarcinoma, and prostate cancer, as well as potent and recently introduced molecular targets, like cell-surface receptors, kinases, and cell adhesion proteins. Furthermore, special reference has been made to copper radionuclides as theragnostic agents and their radiopharmaceutical applications since they present promising alternatives to the well-studied gallium-68 and lutetium-177.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
| | | | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45110 Ioannina, Greece
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Nuclear Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Yap T, Tan I, Ramani RS, Bhatia N, Demetrio de Souza Franca P, Angel C, Moore C, Reiner T, Bussau L, McCullough MJ. Acquisition and annotation in high resolution in vivo digital biopsy by confocal microscopy for diagnosis in oral precancer and cancer. Front Oncol 2023; 13:1209261. [PMID: 37469413 PMCID: PMC10352099 DOI: 10.3389/fonc.2023.1209261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Scanned fibre endomicroscopes are full point-scanning confocal microscopes with submicron lateral resolution with an optical slice thickness thin enough to isolate individual cell layers, allow active positioning of the optical slice in the z-axis and collection of megapixel images. Here we present descriptive findings and a brief atlas of an acquisition and annotation protocol high resolution in vivo capture of oral mucosal pathology including oral squamous cell carcinoma and dysplasia using a fluorescence scanned fibre endomicroscope with 3 topical fluorescent imaging agents: fluorescein, acriflavine and PARPi-FL. Methods Digital biopsy was successfully performed via an acquisition protocol in seventy-one patients presenting for investigation of oral mucosal abnormalities using a miniaturized, handheld scanned fibre endoscope. Multiple imaging agents were utilized and multiple time points sampled. Fifty-nine patients had a matched histopathology correlating in location with imaging. The images were annotated back to macrographic location using a purpose-built software, MouthMap™. Results Acquisition and annotation of cellular level resolved images was demonstrated with all 3 topical agents. Descriptive observations between clinically or histologically normal oral mucosa showed regular intranuclear distance, a regular nuclear profile and fluorescent homogeneity. This was dependent on the intraoral location and type of epithelium being observed. Key features of malignancy were a loss of intranuclear distance, disordered nuclear clustering and irregular nuclear fluorescence intensity and size. Perinuclear fluorescent granules were seen in the absence of irregular nuclear features in lichenoid inflammation. Discussion High resolution oral biopsy allows for painless and rapid capture of multiple mucosal sites, resulting in more data points to increase diagnostic precision. High resolution digital micrographs can be easily compared serially across multiple time points utilizing an annotation software. In the present study we have demonstrated realization of a high-resolution digital biopsy protocol of the oral mucosa for utility in the diagnosis of oral cancer and precancer..
Collapse
Affiliation(s)
- Tami Yap
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| | - Ivy Tan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| | - Rishi S. Ramani
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
| | - Nirav Bhatia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| | - Paula Demetrio de Souza Franca
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Chris Angel
- Department of Pathology, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Caroline Moore
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Michael J. McCullough
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Oral Medicine Unit, Royal Dental Hospital of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
6
|
Filippi L, Urso L, Frantellizzi V, Marzo K, Marzola MC, Schillaci O, Evangelista L. Molecular imaging of PARP in cancer: state-of-the-art. Expert Rev Mol Diagn 2023; 23:1167-1174. [PMID: 38009232 DOI: 10.1080/14737159.2023.2287503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Poly-ADP-ribose-polymerase inhibitors (PARPi), which exploit the processes of so-called 'synthetic lethality,' have been successfully implemented in oncological practice. However, not all patients respond to PARPi, and there is an unmet need for noninvasive biomarkers suitable for patient selection and monitoring during PARPi therapy. AREAS COVERED The first clinical applications of molecular imaging with positron emission tomography/computed tomography (PET/CT) with [18F]-FluorThanatrace ([18F]-FTT) and [18F]-PARPi, highly effective PARP-ligands, in patients with several malignancies (head and neck, ovarian, prostate, and breast cancer) are covered, with a particular focus on its potential for pre-treatment selection and follow-up. EXPERT OPINION By a search made on the most common database, such as PubMed and Google Scholar in a period from January 2010 and 2023, first clinical evidence suggests that PET/CT with [18F]-FTT and [18F]-PARPi might represent a reliable tool for in vivo imaging and quantification of PARP-1 expression in ovarian, prostate, breast, head, and neck cancer, supporting their potential usefulness for patient selection before PARPi-therapies. In addition, a reduction in [18F]-FTT uptake has been registered after therapy initiation and seems to be correlated with patient outcome after PARPi-based regimens. Further studies are needed to better address the value of PARPI-radiolabeled PET imaging in these clinical settings, especially as it concerns technical features such as optimal scan modality (dynamic vs. static) and timing.
Collapse
Affiliation(s)
- Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV Policlinico Tor Vergata University Hospital, Rome, Italy
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, Rome, Italy
| | - Katia Marzo
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano - Milan, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Laura Evangelista
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Rozzano - Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy
| |
Collapse
|
7
|
Wang X, Liu W, Li K, Chen K, He S, Zhang J, Gu B, Xu X, Song S. PET imaging of PARP expression using 68Ga-labelled inhibitors. Eur J Nucl Med Mol Imaging 2023; 50:2606-2620. [PMID: 37145164 PMCID: PMC10317875 DOI: 10.1007/s00259-023-06249-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Imaging the PARP expression using 18F probes has been approved in clinical trials. Nevertheless, hepatobiliary clearance of both 18F probes hindered their application in monitoring abdominal lesions. Our novel 68Ga-labelled probes aim for fewer abdominal signals while ensuring PARP targeting by optimizing the pharmacokinetic properties of radioactive probes. METHODS Three radioactive probes targeted PARP were designed, synthesized, and evaluated based on the PARP inhibitor Olaparib. These 68Ga-labelled radiotracers were assessed in vitro and in vivo. RESULTS Precursors that did not lose binding affinity for PARP were designed, synthesized, and then labelled with 68Ga in high radiochemical purity (> 97%). The 68Ga-labelled radiotracers were stable. Due to the increased expression of PARP-1 in SK-OV-3 cells, the uptake of the three radiotracers by SK-OV-3 cells was significantly greater than that by A549 cells. PET/CT imaging of the SK-OV-3 models indicated that the tumor uptake of 68Ga-DOTA-Olaparib (0.5 h: 2.83 ± 0.55%ID/g; 1 h: 2.37 ± 0.64%ID/g) was significantly higher than that of the other 68Ga-labelled radiotracers. There was a significant difference in the T/M (tumor-to-muscle) ratios between the unblocked and blocked groups as calculated from the PET/CT images (4.07 ± 1.01 vs. 1.79 ± 0.45, P = 0.0238 < 0.05). Tumor autoradiography revealed high accumulation in tumor tissues, further confirming the above data. PARP-1 expression in the tumor was confirmed by immunochemistry. CONCLUSION As the first 68Ga-labelled PARP inhibitor, 68Ga-DOTA-Olaparib displayed high stability and quick PARP imaging in a tumor model. This compound is thus a promising imaging agent that can be used in a personalized PARP inhibitor treatment regimen.
Collapse
Affiliation(s)
- Xiangwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Wei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Ke Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Kaiwen Chen
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032 China
| |
Collapse
|
8
|
Chen B, Ojha DP, Toyonaga T, Tong J, Pracitto R, Thomas MA, Liu M, Kapinos M, Zhang L, Zheng MQ, Holden D, Fowles K, Ropchan J, Nabulsi N, De Feyter H, Carson RE, Huang Y, Cai Z. Preclinical evaluation of a brain penetrant PARP PET imaging probe in rat glioblastoma and nonhuman primates. Eur J Nucl Med Mol Imaging 2023; 50:2081-2099. [PMID: 36849748 DOI: 10.1007/s00259-023-06162-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Currently, there are multiple active clinical trials involving poly(ADP-ribose) polymerase (PARP) inhibitors in the treatment of glioblastoma. The noninvasive quantification of baseline PARP expression using positron emission tomography (PET) may provide prognostic information and lead to more precise treatment. Due to the lack of brain-penetrant PARP imaging agents, the reliable and accurate in vivo quantification of PARP in the brain remains elusive. Herein, we report the synthesis of a brain-penetrant PARP PET tracer, (R)-2-(2-methyl-1-(methyl-11C)pyrrolidin-2-yl)-1H-benzo[d]imidazole-4-carboxamide ([11C]PyBic), and its preclinical evaluations in a syngeneic RG2 rat glioblastoma model and healthy nonhuman primates. METHODS We synthesized [11C]PyBic using veliparib as the labeling precursor, performed dynamic PET scans on RG2 tumor-bearing rats and calculated the distribution volume ratio (DVR) using simplified reference region method 2 (SRTM2) with the contralateral nontumor brain region as the reference region. We performed biodistribution studies, western blot, and immunostaining studies to validate the in vivo PET quantification results. We characterized the brain kinetics and binding specificity of [11C]PyBic in nonhuman primates on FOCUS220 scanner and calculated the volume of distribution (VT), nondisplaceable volume of distribution (VND), and nondisplaceable binding potential (BPND) in selected brain regions. RESULTS [11C]PyBic was synthesized efficiently in one step, with greater than 97% radiochemical and chemical purity and molar activity of 148 ± 85 MBq/nmol (n = 6). [11C]PyBic demonstrated PARP-specific binding in RG2 tumors, with 74% of tracer binding in tumors blocked by preinjected veliparib (i.v., 5 mg/kg). The in vivo PET imaging results were corroborated by ex vivo biodistribution, PARP1 immunohistochemistry and immunoblotting data. Furthermore, brain penetration of [11C]PyBic was confirmed by quantitative monkey brain PET, which showed high specific uptake (BPND > 3) and low nonspecific uptake (VND < 3 mL/cm3) in the monkey brain. CONCLUSION [11C]PyBic is the first brain-penetrant PARP PET tracer validated in a rat glioblastoma model and healthy nonhuman primates. The brain kinetics of [11C]PyBic are suitable for noninvasive quantification of available PARP binding in the brain, which posits [11C]PyBic to have broad applications in oncology and neuroimaging.
Collapse
Affiliation(s)
- Baosheng Chen
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Devi Prasan Ojha
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jie Tong
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard Pracitto
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Monique A Thomas
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Michael Liu
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Michael Kapinos
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Li Zhang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Krista Fowles
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jim Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Henk De Feyter
- Magnetic Resonance Research Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, 801 Howard Avenue, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
9
|
Demétrio de Souza França P, Viray T, Roberts S, Michel A, Abrahão M, Patel SG, Ganly I, Schöder H, Brand C, Reiner T, Pillarsetty NVK. Polyethylene Glycol 3350 (PEG 3350) as a Practical Vehicle for Rapid Reconstitution of PARPi-FL Formulations for Clinical Use. Mol Imaging Biol 2023; 25:294-302. [PMID: 35882728 PMCID: PMC11225571 DOI: 10.1007/s11307-022-01756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023]
Abstract
PARPi-FL is a molecularly specific fluorescent agent that targets poly ADP-ribose polymerase 1, a DNA repair enzyme overexpressed in the nuclei of tumor cells. This imaging agent is being investigated in a clinical trial (NCT03085147) for the detection of oral cancer. The PARPi-FL mouthwash formulation currently being used in the phase I/II clinical trial comprises 1,000 nM of PARPi-FL dissolved first in 4.5 ml of polyethylene glycol (PEG) 300 and then in 9.5 ml of water. This formulation requires a 2-step process that can be cumbersome for routine clinical use. To minimize errors and simplify the formulation process, we have developed a new one-step formulation, which requires only the direct addition of water into a vial containing a mixture of the PARPi-FL and PEG 3350, which is also a powder. In a series of analytical and preclinical studies, we demonstrate that the new formulation of PARPi-FL is stable over 365 days, sustains its characteristics, and performs similar to the previous formulation. Moving forward, the new formulation of the PARPi-FL will be used for patients accrued in the phase II clinical trial.
Collapse
Affiliation(s)
- Paula Demétrio de Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP, Brazil.
| | - Tara Viray
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexa Michel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcio Abrahão
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Snehal G Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Naga Vara Kishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
10
|
Dadgar H, Jokar N, Nemati R, Larvie M, Assadi M. PET tracers in glioblastoma: Toward neurotheranostics as an individualized medicine approach. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1103262. [PMID: 39355049 PMCID: PMC11440984 DOI: 10.3389/fnume.2023.1103262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 10/03/2024]
Abstract
Over the past decade, theragnostic radiopharmaceuticals have been used in nuclear medicine for both diagnosis and treatment of various tumors. In this review, we carried out a literature search to investigate and explain the role of radiotracers in the theragnostic approach to glioblastoma multiform (GBM). We primarily focused on basic and rather common positron emotion tomography (PET) radiotracers in these tumors. Subsequently, we introduced and evaluated the preclinical and clinical results of theranostic-based biomarkers including integrin receptor family, prostate-specific membrane antigen (PSMA), fibroblast activated protein (FAP), somatostatin receptors (SRS), and chemokine receptor-4 (CXCR4) for patients with GBM to confer the benefit of personalized therapy. Moreover, promising research opportunities that could have a profound impact on the treatment of GBM over the next decade are also highlighted. Preliminary results showed the potential feasibility of the theragnostic approach using theses biomarkers in GBM patients.
Collapse
Affiliation(s)
- Habibullah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
11
|
Antibody-Based In Vivo Imaging of Central Nervous System Targets-Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines. Pharmaceuticals (Basel) 2022; 15:ph15121445. [PMID: 36558900 PMCID: PMC9787164 DOI: 10.3390/ph15121445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels-Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb-TCO-Tz was able to pass the blood-brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb-TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb-TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb-TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz.
Collapse
|
12
|
Tong J, Chen B, Tan PW, Kurpiewski S, Cai Z. Poly (ADP-ribose) polymerases as PET imaging targets for central nervous system diseases. Front Med (Lausanne) 2022; 9:1062432. [PMID: 36438061 PMCID: PMC9685622 DOI: 10.3389/fmed.2022.1062432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) constitute of 17 members that are associated with divergent cellular processes and play a crucial role in DNA repair, chromatin organization, genome integrity, apoptosis, and inflammation. Multiple lines of evidence have shown that activated PARP1 is associated with intense DNA damage and irritating inflammatory responses, which are in turn related to etiologies of various neurological disorders. PARP1/2 as plausible therapeutic targets have attracted considerable interests, and multitudes of PARP1/2 inhibitors have emerged for treating cancer, metabolic, inflammatory, and neurological disorders. Furthermore, PARP1/2 as imaging targets have been shown to detect, delineate, and predict therapeutic responses in many diseases by locating and quantifying the expression levels of PARP1/2. PARP1/2-directed noninvasive positron emission tomography (PET) has potential in diagnosing and prognosing neurological diseases. However, quantitative PARP PET imaging in the central nervous system (CNS) has evaded us due to the challenges of developing blood-brain barrier (BBB) penetrable PARP radioligands. Here, we review PARP1/2's relevance in CNS diseases, summarize the recent progress on PARP PET and discuss the possibilities of developing novel PARP radiotracers for CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
Wang Q, Zhang J. Current status and progress in using radiolabelled PARP-1 inhibitors for imaging PARP-1 expression in tumours. Eur J Med Chem 2022; 242:114690. [PMID: 36041258 DOI: 10.1016/j.ejmech.2022.114690] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme in the DNA repair process, and the overexpression of PARP-1 in several tumours makes this enzyme a promising molecular target. Recently, several PARP-1 inhibitors, such as olaparib, rucaparib, niraparib and talazoparib, have been clinically approved as anticancer drugs. Several of these inhibitors have been radiolabelled for noninvasive imaging of PARP-1 expression in several types of tumours. In this review, the background and progress for using various radiolabelled PARP-1 inhibitors for cancer diagnosis are discussed and future development directions are proposed.
Collapse
Affiliation(s)
- Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Nguyen NT, Pacelli A, Nader M, Kossatz S. DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy. Cancers (Basel) 2022; 14:cancers14051129. [PMID: 35267438 PMCID: PMC8909184 DOI: 10.3390/cancers14051129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In parallel to the successful clinical implementation of PARP1/2 inhibitors as anti-cancer drugs, which interfere with the DNA repair machinery, these small molecule agents have also gained attention as vehicles for molecular imaging and radiotherapy. In this review article, we summarize the development and preclinical evaluation of radioactively-labelled PARP inhibitors for positron emission tomography (PET) for many applications, such as selecting patients for PARP inhibitor treatment, response prediction or monitoring, and diagnosis of tumors. We report on early clinical studies that show safety and feasibility of PARP-imaging in humans. In addition, we summarize the latest developments in the field of PARP-targeted radiotherapy, where PARP inhibitors are studied as vehicles to deposit highly cytotoxic radioisotopes in close proximity to the DNA of tumor cells. Lastly, we look at synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation. Abstract Since it was discovered that many tumor types are vulnerable to inhibition of the DNA repair machinery, research towards efficient and selective inhibitors has accelerated. Amongst other enzymes, poly(ADP-ribose)-polymerase 1 (PARP1) was identified as a key player in this process, which resulted in the development of selective PARP inhibitors (PARPi) as anti-cancer drugs. Most small molecule PARPi’s exhibit high affinity for both PARP1 and PARP2. PARPi are under clinical investigation for mono- and combination therapy in several cancer types and five PARPi are now clinically approved. In parallel, radiolabeled PARPi have emerged for non-invasive imaging of PARP1 expression. PARP imaging agents have been suggested as companion diagnostics, patient selection, and treatment monitoring tools to improve the outcome of PARPi therapy, but also as stand-alone diagnostics. We give a comprehensive overview over the preclinical development of PARP imaging agents, which are mostly based on the PARPi olaparib, rucaparib, and recently also talazoparib. We also report on the current status of clinical translation, which involves a growing number of early phase trials. Additionally, this work provides an insight into promising approaches of PARP-targeted radiotherapy based on Auger and α-emitting isotopes. Furthermore, the review covers synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation.
Collapse
Affiliation(s)
- Nghia T. Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
| | - Anna Pacelli
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
- Correspondence:
| |
Collapse
|
15
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
16
|
Sahu A, Cordero J, Wu X, Kossatz S, Harris U, Demetrio Desouza Franca P, Kurtansky NR, Everett N, Dusza S, Monnier J, Kumar P, Alessi-Fox C, Brand C, Roberts S, Kose K, Phillip W, Lee E, Jason Chen CS, Rossi A, Nehal K, Pulitzer M, Longo C, Halpern A, Reiner T, Rajadhyaksha M, Jain M. Combined PARP1-targeted nuclear contrast and reflectance contrast enhances confocal microscopic detection of basal cell carcinoma. J Nucl Med 2021; 63:912-918. [PMID: 34649941 DOI: 10.2967/jnumed.121.262600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Reflectance confocal microscopy (RCM) with endogenous backscattered contrast can noninvasively image basal cell carcinomas (BCCs) in skin. However, BCCs present with high nuclear density and the relatively weak backscattering from nuclei impose a fundamental limit on contrast, detectability, and diagnostic accuracy. We investigated PARPi-FL, an exogenous nuclear poly (ADP-ribose) polymerase (PARP1)-targeted fluorescent contrast agent and fluorescence confocal microscopy (FCM) towards improving BCC diagnosis. Methods: We tested PARP1 expression in 95 BCC tissues using immunohistochemistry, followed by PARPi-FL staining in 32 fresh surgical BCC specimens. Diagnostic accuracy of PARPi-FL contrast was evaluated in 83 surgical specimens. Optimal parameters for trans-epidermal permeability of PARPi-FL through intact skin was tested ex vivo on 5 human skin specimens and in vivo in 3 adult Yorkshire pigs. Results: We found significantly higher PARP1 expression and PARPi-FL binding in BCCs, as compared to normal skin structures. Blinded reading of RCM-and-FCM images by two experts demonstrated a higher diagnostic accuracy for BCCs with combined fluorescence and reflectance contrast, as compared to RCM-alone. Optimal parameters (time and concentration) for PARPi-FL trans-epidermal permeation through intact skin were successfully determined. Conclusion: Combined fluorescence and reflectance contrast may improve noninvasive BCC diagnosis with confocal microscopy.
Collapse
Affiliation(s)
- Aditi Sahu
- Memorial Sloan Kettering Cancer Center, United States
| | - Jose Cordero
- University of Puerto Rico - Medical Sciences Campus
| | | | | | | | | | | | | | - Stephen Dusza
- Memorial Sloan Kettering Cancer Center, United States
| | | | | | | | | | | | - Kivanc Kose
- Memorial Sloan Kettering Cancer Center, United States
| | | | - Erica Lee
- Memorial Sloan Kettering Cancer Center, United States
| | | | - Anthony Rossi
- Memorial Sloan Kettering Cancer Center, United States
| | - Kishwer Nehal
- Memorial Sloan Kettering Cancer Center, United States
| | | | | | - Allan Halpern
- Memorial Sloan Kettering Cancer Center, United States
| | | | | | - Manu Jain
- Memorial Sloan Kettering Cancer Center, United States
| |
Collapse
|
17
|
Stotz S, Kinzler J, Nies AT, Schwab M, Maurer A. Two experts and a newbie: [ 18F]PARPi vs [ 18F]FTT vs [ 18F]FPyPARP-a comparison of PARP imaging agents. Eur J Nucl Med Mol Imaging 2021; 49:834-846. [PMID: 34486071 PMCID: PMC8803746 DOI: 10.1007/s00259-021-05436-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Purpose Imaging of PARP expression has emerged as valuable strategy for prediction of tumor malignancy. While [18F]PARPi and [18F]FTT are already in clinical translation, both suffer from mainly hepatobiliary clearance hampering their use for detection of abdominal lesions, e.g., liver metastases. Our novel radiotracer [18F]FPyPARP aims to bridge this gap with a higher renal clearance and an easily translatable synthesis route for potential clinical application. Methods We developed a less lipophilic variant of [18F]PARPi by exchange of the fluorobenzoyl residue with a fluoronicotinoyl group and automated the radiosyntheses of the three radiotracers. We then conducted a comparative side-by-side study of [18F]PARPi, [18F]FPyPARP, and [18F]FTT in NOD.CB17-Prkdcscid/J mice bearing HCC1937 xenografts to assess xenograft uptake and pharmacokinetics focusing on excretion pathways. Results Together with decent uptake of all three radiotracers in the xenografts (tumor-to-blood ratios 3.41 ± 0.83, 3.99 ± 0.99, and 2.46 ± 0.35, respectively, for [18F]PARPi, [18F]FPyPARP, and [18F]FTT), a partial shift from hepatobiliary to renal clearance of [18F]FPyPARP was observed, whereas [18F]PARPi and [18F]FTT show almost exclusive hepatobiliary clearance. Conclusion These findings imply that [18F]FPyPARP is an alternative to [18F]PARPi and [18F]FTT for PET imaging of PARP enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05436-7.
Collapse
Affiliation(s)
- Sophie Stotz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Kinzler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and Eberhard Karls University Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 15, 72076, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tuebingen, Tuebingen, Germany.
| |
Collapse
|
18
|
de Souza França PD, Guru N, Kostolansky AR, Mauguen A, Pirovano G, Kossatz S, Roberts S, Abrahão M, Patel SG, Park KJ, Reiner T, Jewell E. PARP1: A Potential Molecular Marker to Identify Cancer During Colposcopy Procedures. J Nucl Med 2021; 62:941-948. [PMID: 33188153 PMCID: PMC8882878 DOI: 10.2967/jnumed.120.253575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Despite efforts in prevention, cervical cancer still presents with a high worldwide incidence and remains a great problem in public health, especially in low-income countries. Screening programs, such as colposcopy with Papanicolaou testing, have greatly improved mortality rates. However, the agents currently used to delineate those lesions (topical application of acetic acid or Lugol iodine) lack specificity and sometimes can lead to unnecessary biopsies or even cervical excisions. A tool to enable in vivo histology to quickly and quantitatively distinguish between tumor, dysplastic tissue, and healthy tissue would be of great clinical interest. Methods: Here, we describe the use of PARPi-FL, a fluorescent inhibitor of poly[adenosine diphosphate-ribose]polymerase 1 (PARP1), which is a nuclear enzyme that is overexpressed in cancer when compared with the normal surrounding tissues. We exploit its use as an optical imaging agent to specifically target PARP1 expression, which was demonstrated to be higher in cervical cancer than the normal surrounding tissue. Results: After topical application of PARPi-FL on freshly excised cone biopsy samples, the nuclei of tumor cells emitted a specific fluorescent signal that could be visualized using a handheld fluorescence confocal microscope. Conclusion: This approach has the potential to improve in vivo identification of tumor cells during colposcopy examination, allowing a rapid, noninvasive, and accurate histopathologic assessment.
Collapse
Affiliation(s)
- Paula Demétrio de Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, Brazil
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abigail R Kostolansky
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and TranslaTUM, Technical University Munich, Munich, Germany
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marcio Abrahão
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, Brazil
| | - Snehal G Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kay J Park
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Weill Cornell Medical College, New York, New York; and
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth Jewell
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
19
|
A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer. Eur J Nucl Med Mol Imaging 2021; 48:3618-3630. [PMID: 33954826 DOI: 10.1007/s00259-021-05372-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Visual inspection and biopsy is the current standard of care for oral cancer diagnosis, but is subject to misinterpretation and consequently to misdiagnosis. Topically applied PARPi-FL is a molecularly specific, fluorescent contrast-based approach that may fulfill the unmet need for a simple, in vivo, non-invasive, cost-effective, point-of-care method for the early diagnosis of oral cancer. Here, we present results from a phase I safety and feasibility study on fluorescent, topically applied PARPi-FL. Twelve patients with a histologically proven oral squamous cell carcinoma (OSCC) gargled a PARPi-FL solution for 60 s (15 mL, 100 nM, 250 nM, 500 nM, or 1000 nM), followed by gargling a clearing solution for 60 s. Fluorescence measurements of the lesion and surrounding oral mucosa were taken before PARPi-FL application, after PARPi-FL application, and after clearing. Blood pressure, oxygen levels, clinical chemistry, and CBC were obtained before and after tracer administration. RESULTS PARPi-FL was well-tolerated by all patients without any safety concerns. When analyzing the fluorescence signal, all malignant lesions showed a significant differential in contrast after administration of PARPi-FL, with the highest increase occurring at the highest dose level (1000 nM), where all patients had a tumor-to-margin fluorescence signal ratio of >3. A clearing step was essential to increase signal specificity, as it clears unbound PARPi-FL trapped in normal anatomical structures. PARPi-FL tumor cell specificity was confirmed by ex vivo tabletop confocal microscopy. We have demonstrated that the fluorescence signal arose from the nuclei of tumor cells, endorsing our macroscopic findings. CONCLUSIONS A PARPi-FL swish & spit solution is a rapid and non-invasive diagnostic tool that preferentially localizes fluorescent contrast to OSCC. This technique holds promise for the early detection of OSCC based on in vivo optical evaluation and targeted biopsy of suspicious lesions in the oral cavity. TRIAL REGISTRATION Clinicaltrials.gov -NCT03085147, registered on March 21st, 2017.
Collapse
|
20
|
Chan CY, Tan KV, Cornelissen B. PARP Inhibitors in Cancer Diagnosis and Therapy. Clin Cancer Res 2021; 27:1585-1594. [PMID: 33082213 DOI: 10.1158/1078-0432.ccr-20-2766] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022]
Abstract
Targeting of PARP enzymes has emerged as an effective therapeutic strategy to selectively target cancer cells with deficiencies in homologous recombination signaling. Currently used to treat BRCA-mutated cancers, PARP inhibitors (PARPi) have demonstrated improved outcome in various cancer types as single agents. Ongoing efforts have seen the exploitation of PARPi combination therapies, boosting patient responses as a result of drug synergisms. Despite great successes using PARPi therapy, selecting those patients who will benefit from single agent or combination therapy remains one of the major challenges. Numerous reports have demonstrated that the presence of a BRCA mutation does not always result in synthetic lethality with PARPi therapy in treatment-naïve tumors. Cancer cells can also develop resistance to PARPi therapy. Hence, combination therapy may significantly affect the treatment outcomes. In this review, we discuss the development and utilization of PARPi in different cancer types from preclinical models to clinical trials, provide a current overview of the potential uses of PARP imaging agents in cancer therapy, and discuss the use of radiolabeled PARPi as radionuclide therapies.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kel Vin Tan
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Guibbal F, Hopkins SL, Pacelli A, Isenegger PG, Mosley M, Torres JB, Dias GM, Mahaut D, Hueting R, Gouverneur V, Cornelissen B. [ 18F]AZD2461, an Insight on Difference in PARP Binding Profiles for DNA Damage Response PET Imaging. Mol Imaging Biol 2020; 22:1226-1234. [PMID: 32342268 PMCID: PMC7497465 DOI: 10.1007/s11307-020-01497-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP) inhibitors are extensively studied and used as anti-cancer drugs, as single agents or in combination with other therapies. Most radiotracers developed to date have been chosen on the basis of strong PARP1-3 affinity. Herein, we propose to study AZD2461, a PARP inhibitor with lower affinity towards PARP3, and to investigate its potential for PARP targeting in vivo. METHODS Using the Cu-mediated 18F-fluorodeboronation of a carefully designed radiolabelling precursor, we accessed the 18F-labelled isotopologue of the PARP inhibitor AZD2461. Cell uptake of [18F]AZD2461 in vitro was assessed in a range of pancreatic cell lines (PSN-1, PANC-1, CFPAC-1 and AsPC-1) to assess PARP expression and in vivo in xenograft-bearing mice. Blocking experiments were performed with both olaparib and AZD2461. RESULTS [18F]AZD2461 was efficiently radiolabelled via both manual and automated procedures (9 % ± 3 % and 3 % ± 1 % activity yields non-decay corrected). [18F]AZD2461 was taken up in vivo in PARP1-expressing tumours, and the highest uptake was observed for PSN-1 cells (7.34 ± 1.16 %ID/g). In vitro blocking experiments showed a lesser ability of olaparib to reduce [18F]AZD2461 binding, indicating a difference in selectivity between olaparib and AZD2461. CONCLUSION Taken together, we show the importance of screening the PARP selectivity profile of radiolabelled PARP inhibitors for use as PET imaging agents.
Collapse
Affiliation(s)
- Florian Guibbal
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Samantha L. Hopkins
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Anna Pacelli
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Patrick G. Isenegger
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Michael Mosley
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Julia Baguña Torres
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Gemma M. Dias
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Damien Mahaut
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Rebekka Hueting
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA UK
| | - Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building , Off Roosevelt Drive, Oxford, OX3 7LJ UK
| |
Collapse
|
22
|
Young RJ, Demétrio De Souza França P, Pirovano G, Piotrowski AF, Nicklin PJ, Riedl CC, Schwartz J, Bale TA, Donabedian PL, Kossatz S, Burnazi EM, Roberts S, Lyashchenko SK, Miller AM, Moss NS, Fiasconaro M, Zhang Z, Mauguen A, Reiner T, Dunphy MP. Preclinical and first-in-human-brain-cancer applications of [ 18F]poly (ADP-ribose) polymerase inhibitor PET/MR. Neurooncol Adv 2020; 2:vdaa119. [PMID: 33392502 PMCID: PMC7758909 DOI: 10.1093/noajnl/vdaa119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background We report preclinical and first-in-human-brain-cancer data using a targeted poly (ADP-ribose) polymerase 1 (PARP1) binding PET tracer, [18F]PARPi, as a diagnostic tool to differentiate between brain cancers and treatment-related changes. Methods We applied a glioma model in p53-deficient nestin/tv-a mice, which were injected with [18F]PARPi and then sacrificed 1 h post-injection for brain examination. We also prospectively enrolled patients with brain cancers to undergo dynamic [18F]PARPi acquisition on a dedicated positron emission tomography/magnetic resonance (PET/MR) scanner. Lesion diagnosis was established by pathology when available or by Response Assessment in Neuro-Oncology (RANO) or RANO-BM response criteria. Resected tissue also underwent PARPi-FL staining and PARP1 immunohistochemistry. Results In a preclinical mouse model, we illustrated that [18F]PARPi crossed the blood–brain barrier and specifically bound to PARP1 overexpressed in cancer cell nuclei. In humans, we demonstrated high [18F]PARPi uptake on PET/MR in active brain cancers and low uptake in treatment-related changes independent of blood–brain barrier disruption. Immunohistochemistry results confirmed higher PARP1 expression in cancerous than in noncancerous tissue. Specificity was also corroborated by blocking fluorescent tracer uptake with an excess unlabeled PARP inhibitor in patient cancer biospecimen. Conclusions Although larger studies are necessary to confirm and further explore this tracer, we describe the promising performance of [18F]PARPi as a diagnostic tool to evaluate patients with brain cancers and possible treatment-related changes.
Collapse
Affiliation(s)
- Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paula Demétrio De Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, Brazil
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anna F Piotrowski
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Philip J Nicklin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christopher C Riedl
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eva M Burnazi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Serge K Lyashchenko
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alexandra M Miller
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,The Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nelson S Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Megan Fiasconaro
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhigang Zhang
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Audrey Mauguen
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical College, New York, New York, USA.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark P Dunphy
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
23
|
Demétrio de Souza França P, Guru N, Roberts S, Kossatz S, Mason C, Abrahão M, Ghossein RA, Patel SG, Reiner T. Fluorescence-guided resection of tumors in mouse models of oral cancer. Sci Rep 2020; 10:11175. [PMID: 32636416 PMCID: PMC7341853 DOI: 10.1038/s41598-020-67958-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Complete removal and negative margins are the goal of any surgical resection of primary oral cavity carcinoma. Current approaches to determine tumor boundaries rely heavily on surgeons' expertise, and final histopathological reports are usually only available days after surgery, precluding contemporaneous re-assessment of positive margins. Intraoperative optical imaging could address this unmet clinical need. Using mouse models of oral cavity carcinoma, we demonstrated that PARPi-FL, a fluorescent PARP inhibitor targeting the enzyme PARP1/2, can delineate oral cancer and accurately identify positive margins, both macroscopically and at cellular resolution. PARPi-FL also allowed identification of compromised margins based on fluorescence hotspots, which were not seen in margin-negative resections and control tongues. PARPi-FL was further able to differentiate tumor from low-grade dysplasia. Intravenous injection of PARPi-FL has significant potential for clinical translation and could aid surgeons in assessing oral cancer margins in vivo.
Collapse
Affiliation(s)
- Paula Demétrio de Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Nuclear Medicine, School of Medicine, Technische Universität München, Munich, Germany
| | - Christian Mason
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Marcio Abrahão
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Snehal G Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Otorhinolaryngology, Weill Cornell Medical College, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Otorhinolaryngology, Weill Cornell Medical College, New York, NY, USA.
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Wilson TC, Pillarsetty N, Reiner T. A one-pot radiosynthesis of [ 18 F]PARPi. J Labelled Comp Radiopharm 2020; 63:419-425. [PMID: 32391930 PMCID: PMC7551923 DOI: 10.1002/jlcr.3847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
Abstract
In this paper, we disclose a new strategy for the radiosynthesis of [18 F]PARPi from the corresponding, boc-protected, nitro-precursor. Using a two-step procedure, [18 F]PARPi could be isolated in radiochemical yields up to 9.6%. The reaction proceeds via an efficient one-pot, two-step process, allowing for simplification over previous methods that require complex multi-step, multi-pot strategies to be implemented.
Collapse
Affiliation(s)
- Thomas C Wilson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nagavarakishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
25
|
Pirovano G, Jannetti SA, Carter LM, Sadique A, Kossatz S, Guru N, Demétrio De Souza França P, Maeda M, Zeglis BM, Lewis JS, Humm JL, Reiner T. Targeted Brain Tumor Radiotherapy Using an Auger Emitter. Clin Cancer Res 2020; 26:2871-2881. [PMID: 32066626 PMCID: PMC7299758 DOI: 10.1158/1078-0432.ccr-19-2440] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Glioblastoma multiforme is a highly aggressive form of brain cancer whose location, tendency to infiltrate healthy surrounding tissue, and heterogeneity significantly limit survival, with scant progress having been made in recent decades. EXPERIMENTAL DESIGN 123I-MAPi (Iodine-123 Meitner-Auger PARP1 inhibitor) is a precise therapeutic tool composed of a PARP1 inhibitor radiolabeled with an Auger- and gamma-emitting iodine isotope. Here, the PARP inhibitor, which binds to the DNA repair enzyme PARP1, specifically targets cancer cells, sparing healthy tissue, and carries a radioactive payload within reach of the cancer cells' DNA. RESULTS The high relative biological efficacy of Auger electrons within their short range of action is leveraged to inflict DNA damage and cell death with high precision. The gamma ray emission of 123I-MAPi allows for the imaging of tumor progression and therapy response, and for patient dosimetry calculation. Here we demonstrated the efficacy and specificity of this small-molecule radiotheranostic in a complex preclinical model. In vitro and in vivo studies demonstrate high tumor uptake and a prolonged survival in mice treated with 123I-MAPi when compared with vehicle controls. Different methods of drug delivery were investigated to develop this technology for clinical applications, including convection enhanced delivery and intrathecal injection. CONCLUSIONS Taken together, these results represent the first full characterization of an Auger-emitting PARP inhibitor which demonstrate a survival benefit in mouse models of GBM and confirm the high potential of 123I-MAPi for clinical translation.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen A Jannetti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biochemistry, Hunter College, The City University of New York (CUNY), New York, New York
- PhD Program in Biochemistry, The Graduate Center, The City University of New York (CUNY), New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Masatomo Maeda
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Chemistry, Hunter College, The City University of New York (CUNY), New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- PhD Program in Chemistry, The Graduate Center, The City University of New York (CUNY), New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
26
|
Demétrio de Souza França P, Roberts S, Kossatz S, Guru N, Mason C, Zanoni DK, Abrahão M, Schöder H, Ganly I, Patel SG, Reiner T. Fluorine-18 labeled poly (ADP-ribose) polymerase1 inhibitor as a potential alternative to 2-deoxy-2-[ 18F]fluoro-d-glucose positron emission tomography in oral cancer imaging. Nucl Med Biol 2020; 84-85:80-87. [PMID: 32135475 PMCID: PMC7253343 DOI: 10.1016/j.nucmedbio.2020.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The evaluation of disease extent and post-therapy surveillance of head and neck cancer using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) PET is often complicated by physiological uptake in normal tissues of the head and neck region, especially after surgery or radiotherapy. However, irrespective of low positive predictive values, [18F]FDG PET remains the standard of care to stage the disease and monitor recurrences. Here, we report the preclinical use of a targeted poly (ADP-ribose) polymerase1 (PARP1) binding PET tracer, fluorine-18 labeled poly (ADP-ribose) polymerase1 inhibitor ([18F]PARPi), as a potential alternative with greater specificity. METHODS Using an orthotopic xenograft mouse model injected with either FaDu or Cal 27 (human squamous cell carcinoma cell lines) we performed PET/CT scans with the 2 tracers and compared the results. Gamma counts and autoradiography were also assessed and correlated with histology. RESULTS The average retained activity of [18F]PARPi across cell lines in tumor-bearing tongues was 0.9 ± 0.3%ID/g, 4.1 times higher than in control (0.2 ± 0.04%ID/g). Autoradiography and histology confirmed that the activity arose almost exclusively from the tumor areas, with a signal/normal tissue around a ratio of 42.9 ± 21.4. In vivo, [18F]PARPi-PET allowed delineation of tumor from healthy tissue (p < .005), whereas [18F]FDG failed to do so (p = .209). CONCLUSIONS AND IMPLICATIONS FOR PATIENT CARE We demonstrate that [18F]PARPi is more specific to tongue tumor tissue than [18F]FDG. [18F]PARPi PET allows for the straightforward delineation of oral cancer in mouse models, suggesting that clinical translation could result in improved imaging of head and neck cancer when compared to [18F]FDG.
Collapse
Affiliation(s)
- Paula Demétrio de Souza França
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, SP, Brazil.
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Christian Mason
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - Marcio Abrahão
- Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, SP, Brazil
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Snehal G Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA.
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
27
|
Jannetti SA, Zeglis BM, Zalutsky MR, Reiner T. Poly(ADP-Ribose)Polymerase (PARP) Inhibitors and Radiation Therapy. Front Pharmacol 2020; 11:170. [PMID: 32194409 PMCID: PMC7062869 DOI: 10.3389/fphar.2020.00170] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a DNA repair enzyme highly expressed in the nuclei of mammalian cells, with a structure and function that have attracted interest since its discovery. PARP inhibitors, moreover, can be used to induce synthetic lethality in cells where the homologous recombination (HR) pathway is deficient. Several small molecule PARP inhibitors have been approved by the FDA for multiple cancers bearing this deficiency These PARP inhibitors also act as radiosensitizing agents by delaying single strand break (SSB) repair and causing subsequent double strand break (DSB) generation, a concept that has been leveraged in various preclinical models of combination therapy with PARP inhibitors and ionizing radiation. Researchers have determined the efficacy of various PARP inhibitors at sub-cytotoxic concentrations in radiosensitizing multiple human cancer cell lines to ionizing radiation. Furthermore, several groups have begun evaluating combination therapy strategies in mouse models of cancer, and a fluorescent imaging agent that allows for subcellular imaging in real time has been developed from a PARP inhibitor scaffold. Other PARP inhibitor scaffolds have been radiolabeled to create PET imaging agents, some of which have also entered clinical trials. Most recently, these highly targeted small molecules have been radiolabeled with therapeutic isotopes to create radiotherapeutics and radiotheranostics in cancers whose primary interventions are surgical resection and whole-body radiotherapy. In this review we discuss the utilization of these small molecules in combination therapies and in scaffolds for imaging agents, radiotherapeutics, and radiotheranostics. Development of these radiolabeled PARP inhibitors has presented promising results for new interventions in the fight against some of the most intractable cancers.
Collapse
Affiliation(s)
- Stephen A. Jannetti
- Department of Biochemistry, Hunter College, New York, NY, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brian M. Zeglis
- Department of Biochemistry, Hunter College, New York, NY, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, New York, NY, United States
| | - Michael R. Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
28
|
Morosi L, Matteo C, Ceruti T, Giordano S, Ponzo M, Frapolli R, Zucchetti M, Davoli E, D'Incalci M, Ubezio P. Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging. Int J Biol Sci 2020; 16:1363-1375. [PMID: 32210725 PMCID: PMC7085221 DOI: 10.7150/ijbs.41395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. Methods: Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. Results: A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. Conclusions: The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Cristina Matteo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Tommaso Ceruti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Silvia Giordano
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry
| | - Marianna Ponzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Paolo Ubezio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| |
Collapse
|
29
|
Drake LR, Hillmer AT, Cai Z. Approaches to PET Imaging of Glioblastoma. Molecules 2020; 25:E568. [PMID: 32012954 PMCID: PMC7037643 DOI: 10.3390/molecules25030568] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest type of brain tumor, affecting approximately three in 100,000 adults annually. Positron emission tomography (PET) imaging provides an important non-invasive method of measuring biochemically specific targets at GBM lesions. These powerful data can characterize tumors, predict treatment effectiveness, and monitor treatment. This review will discuss the PET imaging agents that have already been evaluated in GBM patients so far, and new imaging targets with promise for future use. Previously used PET imaging agents include the tracers for markers of proliferation ([11C]methionine; [18F]fluoro-ethyl-L-tyrosine, [18F]Fluorodopa,[18F]fluoro-thymidine, and [18F]clofarabine), hypoxia sensing ([18F]FMISO, [18F]FET-NIM, [18F]EF5, [18F]HX4, and [64Cu]ATSM), and ligands for inflammation. As cancer therapeutics evolve toward personalized medicine and therapies centered on tumor biomarkers, the development of complimentary selective PET agents can dramatically enhance these efforts. Newer biomarkers for GBM PET imaging are discussed, with some already in use for PET imaging other cancers and neurological disorders. These targets include Sigma 1, Sigma 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase. For GBM, these imaging agents come with additional considerations such as blood-brain barrier penetration, quantitative modeling approaches, and nonspecific binding.
Collapse
Affiliation(s)
- Lindsey R. Drake
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ansel T. Hillmer
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06511, USA
| | - Zhengxin Cai
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
30
|
Zhu W, Pirovano G, O’Neal PK, Gong C, Kulkarni N, Nguyen CD, Brand C, Reiner T, Kang D. Smartphone epifluorescence microscopy for cellular imaging of fresh tissue in low-resource settings. BIOMEDICAL OPTICS EXPRESS 2020; 11:89-98. [PMID: 32010502 PMCID: PMC6968742 DOI: 10.1364/boe.11.000089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 05/20/2023]
Abstract
Disease diagnosis in low-resource settings can be challenging due to the lack of equipment and trained personnel required for histologic analysis. In this paper, we have developed a smartphone-based epifluorescence microscope (SeFM) for imaging fresh tissues at sub-cellular resolution. SeFM provides similar resolution and field of view (FOV) as those used during histologic analysis. The SeFM device achieved the lateral resolution of 0.57 µm and provided microscopy images over a sample area larger than 500 µm. The material cost was low, approximately $3,000. Preliminary images of human pancreatic tumor specimens clearly visualized cellular details. Quantitative analysis showed that using an excess dose of a chemotherapy drug significantly reduced the tumor-specific fluorescence signal, confirming the specificity of the drug and the detection potential of SeFM.
Collapse
Affiliation(s)
- Wenbin Zhu
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
- These authors contributed equally to this work
| | - Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- These authors contributed equally to this work
| | - Patrick K. O’Neal
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Cheng Gong
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Nachiket Kulkarni
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York City, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Dongkyun Kang
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
31
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
The beginning of the end for conventional RECIST - novel therapies require novel imaging approaches. Nat Rev Clin Oncol 2019; 16:442-458. [PMID: 30718844 DOI: 10.1038/s41571-019-0169-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to improvements in our understanding of the biological principles of tumour initiation and progression, a wide variety of novel targeted therapies have been developed. Developments in biomedical imaging, however, have not kept pace with these improvements and are still mainly designed to determine lesion size alone, which is reflected in the Response Evaluation Criteria in Solid Tumors (RECIST). Imaging approaches currently used for the evaluation of treatment responses in patients with solid tumours, therefore, often fail to detect successful responses to novel targeted agents and might even falsely suggest disease progression, a scenario known as pseudoprogression. The ability to differentiate between responders and nonresponders early in the course of treatment is essential to allowing the early adjustment of treatment regimens. Various imaging approaches targeting a single dedicated tumour feature, as described in the hallmarks of cancer, have been successful in preclinical investigations, and some have been evaluated in pilot clinical trials. However, these approaches have largely not been implemented in clinical practice. In this Review, we describe current biomedical imaging approaches used to monitor responses to treatment in patients receiving novel targeted therapies, including a summary of the most promising future approaches and how these might improve clinical practice.
Collapse
|
33
|
Laird J, Lok BH, Carney B, Kossatz S, de Stanchina E, Reiner T, Poirier JT, Rudin CM. Positron-Emission Tomographic Imaging of a Fluorine 18-Radiolabeled Poly(ADP-Ribose) Polymerase 1 Inhibitor Monitors the Therapeutic Efficacy of Talazoparib in SCLC Patient-Derived Xenografts. J Thorac Oncol 2019; 14:1743-1752. [PMID: 31195178 DOI: 10.1016/j.jtho.2019.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Inhibitors of poly-(ADP)-ribose polymerase (PARP) are promising therapeutics for SCLC. We tested whether PARP inhibitor (PARPi) target engagement as measured by a fluorine 18-radiolabeled PARPi ([18F]PARPi) has the potential to predict drug efficacy in vivo. METHODS Tumor growth inhibition during daily talazoparib treatment was evaluated in mice engrafted with SCLC patient-derived xenografts to evaluate talazoparib efficacy at multiple doses. Mice were intravenously injected with [18F]PARPi radiotracer at multiple timepoints after single doses of oral talazoparib to quantitatively assess the extent to which talazoparib could reduce tumor radiotracer uptake and positron-emission tomographic (PET)/computer tomographic activity. Tumors were harvested and tumor poly-(ADP) ribose level was measured by enzyme-linked immunosorbent assay. RESULTS A dose range of talazoparib with differential therapeutic efficacy was established, with significant delay in time to reach 1000 mm3 for tumors treated with 0.3 mg/kg (p = 0.02) but not 0.1 mg/kg talazoparib. On PET/computed tomography with [18F]PARPi, reduction in [18F]PARPi uptake after talazoparib dosing was consistent with talazoparib clearance, with reduction in PET activity attenuating over 24 hours. Talazoparib target engagement, measured by maximum tumor PET uptake, increased in a dose-dependent manner (3.9% versus 2.1% injected dose/g for 0.1 and 0.3 mg/kg at 3 hours post-talazoparib, p = 0.003) and correlated with PARP enzymatic activity among individual tumors as measured by total tumor poly-(ADP) ribose (p = 0.04, R = 0.62 at 1 hour post-talazoparib). CONCLUSIONS PET imaging using [18F]PARPi has the potential to be a powerful tool in treatment monitoring by assessing PARPi target engagement in real-time.
Collapse
Affiliation(s)
- James Laird
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; New York University School of Medicine, New York, New York
| | - Benjamin H Lok
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Chemistry, Hunter College and PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Radiology, Weill Cornell Medical College, New York, New York; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M Rudin
- Molecular Pharmacology Program and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
34
|
Wilson TC, Xavier MA, Knight J, Verhoog S, Torres JB, Mosley M, Hopkins SL, Wallington S, Allen PD, Kersemans V, Hueting R, Smart S, Gouverneur V, Cornelissen B. PET Imaging of PARP Expression Using 18F-Olaparib. J Nucl Med 2019; 60:504-510. [PMID: 30389822 PMCID: PMC6448459 DOI: 10.2967/jnumed.118.213223] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/22/2018] [Indexed: 12/24/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors are increasingly being studied as cancer drugs, as single agents, or as a part of combination therapies. Imaging of PARP using a radiolabeled inhibitor has been proposed for patient selection, outcome prediction, dose optimization, genotoxic therapy evaluation, and target engagement imaging of novel PARP-targeting agents. Methods: Here, via the copper-mediated 18F-radiofluorination of aryl boronic esters, we accessed, for the first time (to our knowledge), the 18F-radiolabeled isotopolog of the Food and Drug Administration-approved PARP inhibitor olaparib. The use of the 18F-labeled equivalent of olaparib allows direct prediction of the distribution of olaparib, given its exact structural likeness to the native, nonradiolabeled drug. Results:18F-olaparib was taken up selectively in vitro in PARP-1-expressing cells. Irradiation increased PARP-1 expression and 18F-olaparib uptake in a radiation-dose-dependent fashion. PET imaging in mice showed specific uptake of 18F-olaparib in tumors expressing PARP-1 (3.2% ± 0.36% of the injected dose per gram of tissue in PSN-1 xenografts), correlating linearly with PARP-1 expression. Two hours after irradiation of the tumor (10 Gy), uptake of 18F-olaparib increased by 70% (P = 0.025). Conclusion: Taken together, we show that 18F-olaparib has great potential for noninvasive tumor imaging and monitoring of radiation damage.
Collapse
Affiliation(s)
- Thomas C. Wilson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Mary-Ann Xavier
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Knight
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stefan Verhoog
- Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Julia Baguña Torres
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha L. Hopkins
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sheena Wallington
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Phillip D. Allen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Rebekka Hueting
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Bart Cornelissen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Strome A, Kossatz S, Zanoni DK, Rajadhyaksha M, Patel S, Reiner T. Current Practice and Emerging Molecular Imaging Technologies in Oral Cancer Screening. Mol Imaging 2018; 17:1536012118808644. [PMID: 32852263 PMCID: PMC6287312 DOI: 10.1177/1536012118808644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common cancers globally. Survival rates for patients are directly correlated with stage of diagnosis; despite this knowledge, 60% of individuals are presenting with late-stage disease. Currently, the initial evaluation of a questionable lesion is performed by a conventional visual examination with white light. If a lesion is deemed suspicious, a biopsy is taken for diagnosis. However, not all lesions present suspicious under visual white light examination, and there is limited specificity in differentiating between benign and malignant transformations. Several vital dyes, light-based detection systems, and cytology evaluation methods have been formulated to aid in the visualization process, but their lack of specific biomarkers resulted in high false-positive rates and thus limits their reliability as screening and guidance tools. In this review, we will analyze the current methodologies and demonstrate the need for specific intraoral imaging agents to aid in screening and diagnosis to identify patients earlier. Several novel molecular imaging agents will be presented as, by result of their molecular targeting, they aim to have high specificity for tumor pathways and can support in identifying dysplastic/cancerous lesions and guiding visualization of biopsy sites. Imaging agents that are easy to use, inexpensive, noninvasive, and specific can be utilized to increase the number of patients who are screened and monitored in a variety of different environments, with the ultimate goal of increasing early detection.
Collapse
Affiliation(s)
- Arianna Strome
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Milind Rajadhyaksha
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Snehal Patel
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiology, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
36
|
Gonzales J, Kossatz S, Roberts S, Pirovano G, Brand C, Pérez-Medina C, Donabedian P, de la Cruz MJ, Mulder WJM, Reiner T. Nanoemulsion-Based Delivery of Fluorescent PARP Inhibitors in Mouse Models of Small Cell Lung Cancer. Bioconjug Chem 2018; 29:3776-3782. [PMID: 30354077 DOI: 10.1021/acs.bioconjchem.8b00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The preclinical potential of many diagnostic and therapeutic small molecules is limited by their rapid washout kinetics and consequently modest pharmacological performances. In several cases, these could be improved by loading the small molecules into nanoparticulates, improving blood half-life, in vivo uptake and overall pharmacodynamics. In this study, we report a nanoemulsion (NE) encapsulated form of PARPi-FL. As a proof of concept, we used PARPi-FL, which is a fluorescently labeled sensor for olaparib, a FDA-approved small molecule inhibitor of the nuclear enzyme poly(ADP-ribose)polymerase 1 (PARP1). Encapsulated PARPi-FL showed increased blood half-life, and delineated subcutaneous xenografts of small cell lung cancer (SCLC), a fast-progressing disease where efficient treatment options remain an unmet clinical need. Our study demonstrates an effective method for expanding the circulation time of a fluorescent PARP inhibitor, highlighting the pharmacokinetic benefits of nanoemulsions as nanocarriers and confirming the value of PARPi-FL as an imaging agent targeting PARP1 in small cell lung cancer.
Collapse
Affiliation(s)
- Junior Gonzales
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Susanne Kossatz
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Sheryl Roberts
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Giacomo Pirovano
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Christian Brand
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Patrick Donabedian
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - M Jason de la Cruz
- Structural Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - Thomas Reiner
- Department of Radiology , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.,Department of Radiology , Weill Cornell Medical College , New York , New York 10065 , United States
| |
Collapse
|
37
|
Ahn SH, Boros E. Nuclear and Optical Bimodal Imaging Probes Using Sequential Assembly: A Perspective. Cancer Biother Radiopharm 2018; 33:308-315. [PMID: 30004803 DOI: 10.1089/cbr.2018.2499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
New, targeted imaging tracers enable improved diagnosis, staging, and planning of treatment of disease and represent an important step toward personalized medicine applications. The combination of radioisotopes for nuclear imaging with fluorophores for fluorescence imaging provides the possibility to noninvasively assess disease burden in a patient using positron emission tomography/single-photon emission computed tomography, followed by fluorescence imaging-assisted surgical intervention in close succession. Probes enabling imaging with both modalities pose a design, synthesis, and pharmacokinetics challenge. In this study, the authors strive to summarize recent efforts toward optimized, discrete, bimodal probes as well as a perspective on future directions of this burgeoning subfield of targeted imaging probe development.
Collapse
Affiliation(s)
- Shin Hye Ahn
- Department of Chemistry, Stony Brook University , Stony Brook, New York
| | - Eszter Boros
- Department of Chemistry, Stony Brook University , Stony Brook, New York
| |
Collapse
|
38
|
Kossatz S, Weber W, Reiner T. Detection and Delineation of Oral Cancer With a PARP1-Targeted Optical Imaging Agent. Mol Imaging 2018; 16:1536012117723786. [PMID: 28856922 PMCID: PMC5582799 DOI: 10.1177/1536012117723786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
More sensitive and specific methods for early detection are imperative to improve survival rates in oral cancer. However, oral cancer detection is still largely based on visual examination and histopathology of biopsy material, offering no molecular selectivity or spatial resolution. Intuitively, the addition of optical contrast could improve oral cancer detection and delineation, but so far no molecularly targeted approach has been translated. Our fluorescently labeled small-molecule inhibitor PARPi-FL binds to the DNA repair enzyme poly(ADP-ribose)polymerase 1 (PARP1) and is a potential diagnostic aid for oral cancer delineation. Based on our preclinical work, a clinical phase I/II trial opened in March 2017 to evaluate PARPi-FL as a contrast agent for oral cancer imaging. In this commentary, we discuss why we chose PARP1 as a biomarker for tumor detection and which particular characteristics make PARPi-FL an excellent candidate to image PARP1 in optically guided applications. We also comment on the potential benefits of our molecularly targeted PARPi-FL-guided imaging approach in comparison to existing oral cancer screening adjuncts and mention the adaptability of PARPi-FL imaging to other environments and tumor types.
Collapse
Affiliation(s)
- Susanne Kossatz
- 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wolfgang Weber
- 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,2 Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,3 Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Thomas Reiner
- 1 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,3 Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
39
|
Zmuda F, Blair A, Liuzzi MC, Malviya G, Chalmers AJ, Lewis D, Sutherland A, Pimlott SL. An 18F-Labeled Poly(ADP-ribose) Polymerase Positron Emission Tomography Imaging Agent. J Med Chem 2018; 61:4103-4114. [PMID: 29630818 PMCID: PMC6007963 DOI: 10.1021/acs.jmedchem.8b00138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is involved in repair of DNA breaks and is over-expressed in a wide variety of tumors, making PARP an attractive biomarker for positron emission tomography (PET) and single photon emission computed tomography imaging. Consequently, over the past decade, there has been a drive to develop nuclear imaging agents targeting PARP. Here, we report the discovery of a PET tracer that is based on the potent PARP inhibitor olaparib (1). Our lead PET tracer candidate, [18F]20, was synthesized and evaluated as a potential PARP PET radiotracer in mice bearing subcutaneous glioblastoma xenografts using ex vivo biodistribution and PET-magnetic resonance imaging techniques. Results showed that [18F]20 could be produced in a good radioactivity yield and exhibited specific PARP binding allowing visualization of tumors over-expressing PARP. [18F]20 is therefore a potential candidate radiotracer for in vivo PARP PET imaging.
Collapse
Affiliation(s)
- Filip Zmuda
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
- Wolfson
Whol Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K.
| | - Adele Blair
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
| | - Maria Clara Liuzzi
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
- School of Medicine, College of Medical, Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Gaurav Malviya
- Cancer
Research UK Beatson Institute, Glasgow G61 1BD, U.K.
| | - Anthony J. Chalmers
- Wolfson
Whol Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, U.K.
| | - David Lewis
- Cancer
Research UK Beatson Institute, Glasgow G61 1BD, U.K.
| | - Andrew Sutherland
- WestCHEM,
School of Chemistry, University of Glasgow, The Joseph Black Building, Glasgow G12 8QQ, U.K.
| | - Sally L. Pimlott
- West
of Scotland
PET Centre, Greater Glasgow and Clyde NHS
Trust, Glasgow G12 0YN, U.K.
| |
Collapse
|
40
|
Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor Characteristics and Molecular Pathways With PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1165-1182. [PMID: 29907486 DOI: 10.1016/j.ijrobp.2018.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Improvements in personalized therapy are made possible by the advances in molecular biology that led to developments in molecular imaging, allowing highly specific in vivo imaging of biological processes. Positron emission tomography (PET) is the most specific and sensitive imaging technique for in vivo molecular targets and pathways, offering quantification and evaluation of functional properties of the targeted anatomy. MATERIALS AND METHODS This work is an integrative research review that summarizes and evaluates the accumulated current status of knowledge of recent advances in PET imaging for cancer diagnosis and treatment, concentrating on novel radiotracers and evaluating their advantages and disadvantages in cancer characterization. Medline search was conducted, limited to English publications from 2007 onward. Identified manuscripts were evaluated for most recent developments in PET imaging of cancer hypoxia, angiogenesis, proliferation, and clonogenic cancer stem cells (CSC). RESULTS There is an expansion observed from purely metabolic-based PET imaging toward antibody-based PET to achieve more information on cancer characteristics to identify hypoxia, proangiogenic factors, CSC, and others. 64Cu-ATSM, for example, can be used both as a hypoxia and a CSC marker. CONCLUSIONS Progress in the field of functional imaging will possibly lead to more specific tumor targeting and personalized treatment, increasing tumor control and improving quality of life.
Collapse
Affiliation(s)
- Loredana Gabriela Marcu
- Faculty of Science, University of Oradea, Oradea, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia
| | - Leyla Moghaddasi
- GenesisCare, Tennyson Centre, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA, Australia; Department of Physics, University of Adelaide, Adelaide SA, Australia.
| |
Collapse
|
41
|
Jannetti SA, Carlucci G, Carney B, Kossatz S, Shenker L, Carter LM, Salinas B, Brand C, Sadique A, Donabedian PL, Cunanan KM, Gönen M, Ponomarev V, Zeglis BM, Souweidane MM, Lewis JS, Weber WA, Humm JL, Reiner T. PARP-1-Targeted Radiotherapy in Mouse Models of Glioblastoma. J Nucl Med 2018; 59:1225-1233. [PMID: 29572254 DOI: 10.2967/jnumed.117.205054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. Methods: We synthesized an 131I-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of 131I-PARPi (PARPi is PARP inhibitor). Results:131I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration-approved PARP inhibitor AZD-2281. In vitro studies have shown that 131I-PARPi and AZD-2281 share similar pharmacologic profiles. 131I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, P < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of 131I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Conclusion: Our results demonstrate 131I-PARPi's high potential as a therapeutic and highlight PARP's relevance as a target for radionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.
Collapse
Affiliation(s)
- Stephen A Jannetti
- Department of Biochemistry, Hunter College-The City University of New York, New York, New York.,Department of Biochemistry, The Graduate Center, The City University of New York, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Giuseppe Carlucci
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Langone Medical Center, New York, New York
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Chemistry, The Graduate Center, The City University of New York, New York, New York.,Department of Chemistry, Hunter College-The City University of New York, New York, New York
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Beatriz Salinas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmad Sadique
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen M Cunanan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian M Zeglis
- Department of Biochemistry, Hunter College-The City University of New York, New York, New York.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill-Cornell Medical College, New York, New York.,Department of Radiology, Weill-Cornell Medical College, New York, New York
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill-Cornell Medical College, New York, New York.,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pharmacology, Weill-Cornell Medical College, New York, New York.,Department of Radiology, Weill-Cornell Medical College, New York, New York
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill-Cornell Medical College, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
42
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
43
|
Makvandi M, Sellmyer MA, Mach RH. Inflammation and DNA damage: Probing pathways to cancer and neurodegeneration. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:37-43. [PMID: 29233266 DOI: 10.1016/j.ddtec.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/02/2023]
Abstract
Cancer and neurodegeneration represent two opposite ends of the biological spectrum but contain many common biological mechanisms. Two such mechanisms include the elevated levels of oxidative stress and DNA damage. In this brief review, we describe current approaches for imaging these biological pathways with the molecular imaging technique, Positron Emission Tomography (PET), and the potential of PET imaging studies to measure the efficacy of anticancer drugs and strategies for delaying the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Knight JC, Mosley MJ, Bravo LC, Kersemans V, Allen PD, Mukherjee S, O'Neill E, Cornelissen B. 89Zr-anti-γH2AX-TAT but not 18F-FDG Allows Early Monitoring of Response to Chemotherapy in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2017; 23:6498-6504. [PMID: 28774899 DOI: 10.1158/1078-0432.ccr-17-0664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/14/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Late-stage, unresectable pancreatic ductal adenocarcinoma (PDAC) is largely resistant to chemotherapy and consequently has a very poor 5-year survival rate of <5%. The ability to assess the efficacy of a treatment soon after its initiation would enable rapid switching to potentially more effective therapies if the current treatment is found to be futile. We have evaluated the ability of the PET imaging agent, 89Zr-anti-γH2AX-TAT, to monitor DNA damage in response to fluorouracil (5-FU), gemcitabine, or capecitabine treatment in a mouse model of pancreatic cancer. We have also compared the utility of this approach against the standard clinical PET radiotracer, 18F-FDG.Experimental Design: C57BL/6 mice bearing subcutaneous pancreatic cancer (KPC; B8484) allografts were treated with 5-FU, gemcitabine, or capecitabine. Therapeutic response was monitored by PET and ex vivo biodistribution experiments using either 89Zr-anti-γH2AX-TAT or 18F-FDG as imaging agents. To further examine the effect of therapeutic response upon uptake of these imaging agents, IHC analysis of harvested tumor allograft tissue was also performed.Results: Accumulation of 89Zr-anti-γH2AX-TAT in the tumors of mice that received chemotherapy was higher compared with vehicle-treated mice and was shown to be specifically mediated by γH2AX. In contrast, 18F-FDG did not provide useful indications of therapeutic response.Conclusions:89Zr-anti-γH2AX-TAT has shown a superior ability to monitor early therapeutic responses to chemotherapy by PET imaging compared with 18F-FDG in an allograft model of PDAC in mice. Clin Cancer Res; 23(21); 6498-504. ©2017 AACR.
Collapse
Affiliation(s)
- James C Knight
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael J Mosley
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Luisa Contreras Bravo
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Veerle Kersemans
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - P Danny Allen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Somnath Mukherjee
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Eric O'Neill
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
45
|
Abstract
PURPOSE The current study presents [(18)F]PARPi as imaging agent for PARP1 expression. PROCEDURES [(18)F]PARPi was generated by conjugating a 2H-phthalazin-1-one scaffold to 4-[(18)F]fluorobenzoic acid. Biochemical assays, optical in vivo competition, biodistribution analysis, positron emission tomography (PET)/X-ray computed tomography, and PET/magnetic resonance imaging studies were performed in subcutaneous and orthotopic mouse models of glioblastoma. RESULTS [(18)F]PARPi shows suitable pharmacokinetic properties for brain tumor imaging (IC50 = 2.8 ± 1.1 nM; logPCHI = 2.15 ± 0.41; plasma-free fraction = 63.9 ± 12.6 %) and accumulates selectively in orthotopic brain tumor tissue. Tracer accumulation in subcutaneous brain tumors was 1.82 ± 0.21 %ID/g, whereas in healthy brain, the uptake was only 0.04 ± 0.01 %ID/g. CONCLUSIONS [(18)F]PARPi is a selective PARP1 imaging agent that can be used to visualize glioblastoma in xenograft and orthotopic mouse models with high precision and good signal/noise ratios. It offers new opportunities to non-invasively image tumor growth and monitor interventions.
Collapse
|
46
|
Bartelink IH, Prideaux B, Krings G, Wilmes L, Lee PRE, Bo P, Hann B, Coppé JP, Heditsian D, Swigart-Brown L, Jones EF, Magnitsky S, Keizer RJ, de Vries N, Rosing H, Pawlowska N, Thomas S, Dhawan M, Aggarwal R, Munster PN, Esserman LJ, Ruan W, Wu AHB, Yee D, Dartois V, Savic RM, Wolf DM, van ’t Veer L. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Breast Cancer Res 2017; 19:107. [PMID: 28893315 PMCID: PMC5594551 DOI: 10.1186/s13058-017-0896-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase inhibitors (PARPi), coupled to a DNA damaging agent is a promising approach to treating triple negative breast cancer (TNBC). However, not all patients respond; we hypothesize that non-response in some patients may be due to insufficient drug penetration. As a first step to testing this hypothesis, we quantified and visualized veliparib and carboplatin penetration in mouse xenograft TNBCs and patient blood samples. METHODS MDA-MB-231, HCC70 or MDA-MB-436 human TNBC cells were implanted in 41 beige SCID mice. Low dose (20 mg/kg) or high dose (60 mg/kg) veliparib was given three times daily for three days, with carboplatin (60 mg/kg) administered twice. In addition, blood samples were analyzed from 19 patients from a phase 1 study of carboplatin + PARPi talazoparib. Veliparib and carboplatin was quantified using liquid chromatography-mass spectrometry (LC-MS). Veliparib tissue penetration was visualized using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) and platinum adducts (covalent nuclear DNA-binding) were quantified using inductively coupled plasma-mass spectrometry (ICP-MS). Pharmacokinetic modeling and Pearson's correlation were used to explore associations between concentrations in plasma, tumor cells and peripheral blood mononuclear cells (PBMCs). RESULTS Veliparib penetration in xenograft tumors was highly heterogeneous between and within tumors. Only 35% (CI 95% 26-44%), 74% (40-97%) and 46% (9-37%) of veliparib observed in plasma penetrated into MDA-MB-231, HCC70 and MDA-MB-436 cell-based xenografts, respectively. Within tumors, penetration heterogeneity was larger with the 60 mg/kg compared to the 20 mg/kg dose (RSD 155% versus 255%, P = 0.001). These tumor concentrations were predicted similar to clinical dosing levels, but predicted tumor concentrations were below half maximal concentration values as threshold of response. Xenograft veliparib concentrations correlated positively with platinum adduct formation (R 2 = 0.657), but no PARPi-platinum interaction was observed in patients' PBMCs. Platinum adduct formation was significantly higher in five gBRCA carriers (ratio of platinum in DNA in PBMCs/plasma 0.64% (IQR 0.60-1.16%) compared to nine non-carriers (ratio 0.29% (IQR 0.21-0.66%, P < 0.0001). CONCLUSIONS PARPi/platinum tumor penetration can be measured by MALDI-MSI and ICP-MS in PBMCs and fresh frozen, OCT embedded core needle biopsies. Large variability in platinum adduct formation and spatial heterogeneity in veliparib distribution may lead to insufficient drug exposure in select cell populations.
Collapse
Affiliation(s)
- Imke H. Bartelink
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Brendan Prideaux
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, CA USA
| | - Lisa Wilmes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Pei Rong Evelyn Lee
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Pan Bo
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Byron Hann
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Diane Heditsian
- Patient advocate University of California, San Francisco Breast Science Advocacy Core, San Francisco, CA USA
| | - Lamorna Swigart-Brown
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Sergey Magnitsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA USA
| | - Ron J Keizer
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Niels de Vries
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Clinical Pharmacy, Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, NKI-AVL, Amsterdam, The Netherlands
| | - Nela Pawlowska
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Scott Thomas
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Mallika Dhawan
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Rahul Aggarwal
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Pamela N. Munster
- Department of Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 9411 USA
| | - Laura J. Esserman
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Weiming Ruan
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Alan H. B. Wu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Douglas Yee
- Division of Hematology Oncology, University of Minnesota, Minneapolis, MN USA
| | - Véronique Dartois
- Rutgers New Jersey Medical School, Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Ave, Newark, NJ USA
| | - Radojka M. Savic
- Department of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| | - Laura van ’t Veer
- Department of Laboratory Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA USA
| |
Collapse
|
47
|
Vinegoni C, Fumene Feruglio P, Brand C, Lee S, Nibbs AE, Stapleton S, Shah S, Gryczynski I, Reiner T, Mazitschek R, Weissleder R. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 2017; 12:1472-1497. [PMID: 28686582 PMCID: PMC5928516 DOI: 10.1038/nprot.2017.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sungon Lee
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- School of Electrical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Antoinette E Nibbs
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shawn Stapleton
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil Shah
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ignacy Gryczynski
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Knight JC, Koustoulidou S, Cornelissen B. Imaging the DNA damage response with PET and SPECT. Eur J Nucl Med Mol Imaging 2017; 44:1065-1078. [PMID: 28058462 PMCID: PMC5397662 DOI: 10.1007/s00259-016-3604-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/16/2016] [Indexed: 01/05/2023]
Abstract
DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins.
Collapse
Affiliation(s)
- James C Knight
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK
| | - Sofia Koustoulidou
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK
| | - Bart Cornelissen
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7LJ, UK.
| |
Collapse
|
49
|
Huang T, Hu P, Banizs AB, He J. Initial evaluation of Cu-64 labeled PARPi-DOTA PET imaging in mice with mesothelioma. Bioorg Med Chem Lett 2017; 27:3472-3476. [PMID: 28587822 DOI: 10.1016/j.bmcl.2017.05.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) has emerged as an important molecular target for the treatment of several oncological diseases. A couple of molecular probes based on Olaparib scaffold have been developed by incorporation of F-18 or fluorophore for positron emission tomography (PET) or optical imaging in several types of tumor. PARP has been reported overexpressed in mesothelioma. We hereby synthesized an analogue of Olaparib containing DOTA moiety and radiolabeled it with Cu-64 to evaluate its utility of PET tracer for mesothelioma. The Cu-64 labeling was conveniently achieved at 90% yield with final compound at >99% radiochemistry purity. The biodistribution and PET imaging were performed at 0.5, 1, 2 and 18h to confirm the in vivo tumor targeting. The tumor uptake in study group was significant higher than that in control group (3.45±0.47% ID/g vs 2.26±0.30% ID/g) and tumor were clearly detected by PET imaging. These results suggest the feasibility to develop an Olaparib-based theranostic agent for mesothelioma.
Collapse
Affiliation(s)
- Tao Huang
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States
| | - Pengcheng Hu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anna B Banizs
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
50
|
Carney B, Kossatz S, Reiner T. Molecular Imaging of PARP. J Nucl Med 2017; 58:1025-1030. [PMID: 28473593 DOI: 10.2967/jnumed.117.189936] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022] Open
Abstract
The poly(adenosine diphosphate-ribose)polymerase (PARP) family of enzymes is an important factor in the cellular DNA damage response and has gained much attention for its role in many diseases, particularly cancer. Targeted molecular imaging of PARP using fluorescent or radiolabeled tags has followed on the success of therapeutic inhibitors and gained momentum over the past few years. This review covers PARP imaging from the very first imaging agents up to the current state of the technology, with a focus on the clinical applications made possible by these agents.
Collapse
Affiliation(s)
- Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Chemistry, Hunter College, and PhD Program in Chemistry, Graduate Center of City University of New York, New York, New York; and
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|