1
|
Yuen NKY, Bielefeldt-Ohmann H, Coyle MP, Henning J. Exposure dynamics of Ross River virus in horses - Horses as potential sentinels (a One Health approach). Epidemiol Infect 2024; 152:e67. [PMID: 38606586 PMCID: PMC11062785 DOI: 10.1017/s0950268824000554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024] Open
Abstract
Ross River virus (RRV), the most medically and economically important arbovirus in Australia, has been the most prevalent arbovirus infections in humans for many years. Infected humans and horses often suffer similar clinical symptoms. We conducted a prospective longitudinal study over a 3.5-year period to investigate the exposure dynamics of RRV in three foal cohorts (n = 32) born in a subtropical region of South East Queensland, Australia, between 2020 and 2022. RRV-specific seroconversion was detected in 56% (n = 18) of foals with a median time to seroconversion, after waning of maternal antibodies, of 429 days (95% CI: 294-582). The median age at seroconversion was 69 weeks (95% CI: 53-57). Seroconversion events were only detected between December and March (Southern Hemisphere summer) over the entire study period. Cox proportion hazards regression analyses revealed that seroconversions were significantly (p < 0.05) associated with air temperature in the month of seroconversion. Time-lags in meteorological variables were not significantly (p > 0.05) associated with seroconversion, except for relative humidity (p = 0.036 at 2-month time-lag). This is in contrast to research results of RRV infection in humans, which peaked between March and May (Autumn) and with a 0-3 month time-lag for various meteorological risk factors. Therefore, horses may be suitable sentinels for monitoring active arbovirus circulation and could be used for early arbovirus outbreak detection in human populations.
Collapse
Affiliation(s)
- Nicholas K. Y. Yuen
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Mitchell P. Coyle
- Equine Unit, Office of the Director Gatton Campus, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| | - Joerg Henning
- School of Veterinary Science, Faculty of Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
2
|
Staples K, Richardson S, Neville PJ, Oosthuizen J. A Multi-Species Simulation of Mosquito Disease Vector Development in Temperate Australian Tidal Wetlands Using Publicly Available Data. Trop Med Infect Dis 2023; 8:215. [PMID: 37104341 PMCID: PMC10145111 DOI: 10.3390/tropicalmed8040215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Worldwide, mosquito monitoring and control programs consume large amounts of resources in the effort to minimise mosquito-borne disease incidence. On-site larval monitoring is highly effective but time consuming. A number of mechanistic models of mosquito development have been developed to reduce the reliance on larval monitoring, but none for Ross River virus, the most commonly occurring mosquito-borne disease in Australia. This research modifies existing mechanistic models for malaria vectors and applies it to a wetland field site in Southwest, Western Australia. Environmental monitoring data were applied to an enzyme kinetic model of larval mosquito development to simulate timing of adult emergence and relative population abundance of three mosquito vectors of the Ross River virus for the period of 2018-2020. The model results were compared with field measured adult mosquitoes trapped using carbon dioxide light traps. The model showed different patterns of emergence for the three mosquito species, capturing inter-seasonal and inter-year variation, and correlated well with field adult trapping data. The model provides a useful tool to investigate the effects of different weather and environmental variables on larval and adult mosquito development and can be used to investigate the possible effects of changes to short-term and long-term sea level and climate changes.
Collapse
Affiliation(s)
- Kerry Staples
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Steven Richardson
- School of Science, Edith Cowan University, Joondalup 6027, Australia
| | - Peter J. Neville
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- Biological and Applied Environmental Health, Environmental Health Directorate, Department of Health, Perth 6849, Australia
| | - Jacques Oosthuizen
- Occupational and Environmental Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
3
|
Damtew YT, Tong M, Varghese BM, Hansen A, Liu J, Dear K, Zhang Y, Morgan G, Driscoll T, Capon T, Bi P. Associations between temperature and Ross river virus infection: A systematic review and meta-analysis of epidemiological evidence. Acta Trop 2022; 231:106454. [PMID: 35405101 DOI: 10.1016/j.actatropica.2022.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/01/2022]
Abstract
Ross River virus (RRV) infection is one of the emerging and prevalent arboviral diseases in Australia and the Pacific Islands. Although many studies have been conducted to establish the relationship between temperature and RRV infection, there has been no comprehensive review of the association so far. In this study, we performed a systematic review and meta-analysis to assess the effect of temperature on RRV transmission. We searched PubMed, Scopus, Embase, and Web of Science with additional lateral searches from references. The quality and strength of evidence from the included studies were evaluated following the Navigation Guide framework. We have qualitatively synthesized the evidence and conducted a meta-analysis to pool the relative risks (RRs) of RRV infection per 1 °C increase in temperature. Subgroup analyses were performed by climate zones, temperature metrics, and lag periods. A total of 17 studies met the inclusion criteria, of which six were included in the meta-analysis The meta-analysis revealed that the overall RR for the association between temperature and the risk of RRV infection was 1.09 (95% confidence interval (CI): 1.02, 1.17). Subgroup analyses by climate zones showed an increase in RRV infection per 1 °C increase in temperature in humid subtropical and cold semi-arid climate zones. The overall quality of evidence was "moderate" and we rated the strength of evidence to be "limited", warranting additional evidence to reduce uncertainty. The results showed that the risk of RRV infection is positively associated with temperature. However, the risk varies across different climate zones, temperature metrics and lag periods. These findings indicate that future studies on the association between temperature and RRV infection should consider local and regional climate, socio-demographic, and environmental factors to explore vulnerability at local and regional levels.
Collapse
|
4
|
Jansen CC, Darbro JM, Birrell FA, Shivas MA, van den Hurk AF. Impact of COVID-19 Mitigation Measures on Mosquito-Borne Diseases in 2020 in Queensland, Australia. Viruses 2021; 13:1150. [PMID: 34208620 PMCID: PMC8235246 DOI: 10.3390/v13061150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
We describe the impact of COVID-19 mitigation measures on mosquito-borne diseases in Queensland, Australia, during the first half of 2020. Implementation of restrictions coincided with an atypical late season outbreak of Ross River virus (RRV) characterized by a peak in notifications in April (1173) and May (955) which were greater than 3-fold the mean observed for the previous four years. We propose that limitations on human movement likely resulted in the majority of RRV infections being acquired at or near the place of residence, and that an increase in outdoor activities, such as gardening and bushwalking in the local household vicinity, increased risk of exposure to RRV-infected mosquitoes. In contrast, the precipitous decline in international passenger flights led to a reduction in the number of imported dengue and malaria cases of over 70% and 60%, respectively, compared with the previous five years. This substantial reduction in flights also reduced a risk pathway for importation of exotic mosquitoes, but the risk posed by importation via sea cargo was not affected. Overall, the emergence of COVID-19 has had a varied impact on mosquito-borne disease epidemiology in Queensland, but the need for mosquito surveillance and control, together with encouragement of personal protective measures, remains unchanged.
Collapse
Affiliation(s)
- Cassie C. Jansen
- Communicable Diseases Branch, Department of Health, Queensland Government, Herston, Brisbane, QLD 4006, Australia;
| | - Jonathan M. Darbro
- Metro North Public Health Unit, Queensland Health, Windsor, Brisbane, QLD 4030, Australia;
| | - Frances A. Birrell
- Communicable Diseases Branch, Department of Health, Queensland Government, Herston, Brisbane, QLD 4006, Australia;
| | - Martin A. Shivas
- Field Services, Brisbane City Council, Eagle Farm, Brisbane, QLD 4009, Australia;
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Brisbane, QLD 4108, Australia
| |
Collapse
|
5
|
Ross River Virus Infection: A Cross-Disciplinary Review with a Veterinary Perspective. Pathogens 2021; 10:pathogens10030357. [PMID: 33802851 PMCID: PMC8002670 DOI: 10.3390/pathogens10030357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ross River virus (RRV) has recently been suggested to be a potential emerging infectious disease worldwide. RRV infection remains the most common human arboviral disease in Australia, with a yearly estimated economic cost of $4.3 billion. Infection in humans and horses can cause chronic, long-term debilitating arthritogenic illnesses. However, current knowledge of immunopathogenesis remains to be elucidated and is mainly inferred from a murine model that only partially resembles clinical signs and pathology in human and horses. The epidemiology of RRV transmission is complex and multifactorial and is further complicated by climate change, making predictive models difficult to design. Establishing an equine model for RRV may allow better characterization of RRV disease pathogenesis and immunology in humans and horses, and could potentially be used for other infectious diseases. While there are no approved therapeutics or registered vaccines to treat or prevent RRV infection, clinical trials of various potential drugs and vaccines are currently underway. In the future, the RRV disease dynamic is likely to shift into temperate areas of Australia with longer active months of infection. Here, we (1) review the current knowledge of RRV infection, epidemiology, diagnostics, and therapeutics in both humans and horses; (2) identify and discuss major research gaps that warrant further research.
Collapse
|
6
|
Johnson BJ, Robbins A, Gyawali N, Ong O, Loader J, Murphy AK, Hanger J, Devine GJ. The environmental and ecological determinants of elevated Ross River Virus exposure in koalas residing in urban coastal landscapes. Sci Rep 2021; 11:4419. [PMID: 33627779 PMCID: PMC7904799 DOI: 10.1038/s41598-021-83919-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Koala populations in many areas of Australia have declined sharply in response to habitat loss, disease and the effects of climate change. Koalas may face further morbidity from endemic mosquito-borne viruses, but the impact of such viruses is currently unknown. Few seroprevalence studies in the wild exist and little is known of the determinants of exposure. Here, we exploited a large, spatially and temporally explicit koala survey to define the intensity of Ross River Virus (RRV) exposure in koalas residing in urban coastal environments in southeast Queensland, Australia. We demonstrate that RRV exposure in koalas is much higher (> 80%) than reported in other sero-surveys and that exposure is uniform across the urban coastal landscape. Uniformity in exposure is related to the presence of the major RRV mosquito vector, Culex annulirostris, and similarities in animal movement, tree use, and age-dependent increases in exposure risk. Elevated exposure ultimately appears to result from the confinement of remaining coastal koala habitat to the edges of permanent wetlands unsuitable for urban development and which produce large numbers of competent mosquito vectors. The results further illustrate that koalas and other RRV-susceptible vertebrates may serve as useful sentinels of human urban exposure in endemic areas.
Collapse
Affiliation(s)
- Brian J. Johnson
- grid.1049.c0000 0001 2294 1395Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia
| | - Amy Robbins
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Rd, Toorbul, QLD 4510 Australia
| | - Narayan Gyawali
- grid.1049.c0000 0001 2294 1395Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia
| | - Oselyne Ong
- grid.1049.c0000 0001 2294 1395Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia
| | - Joanne Loader
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Rd, Toorbul, QLD 4510 Australia
| | - Amanda K. Murphy
- grid.1049.c0000 0001 2294 1395Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia ,grid.1024.70000000089150953School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, QLD 4059 Australia
| | - Jon Hanger
- Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Rd, Toorbul, QLD 4510 Australia
| | - Gregor J. Devine
- grid.1049.c0000 0001 2294 1395Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia
| |
Collapse
|
7
|
Ong OTW, Skinner EB, Johnson BJ, Old JM. Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: A Review. Viruses 2021; 13:265. [PMID: 33572234 PMCID: PMC7915788 DOI: 10.3390/v13020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023] Open
Abstract
Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses impacting non-human vertebrates in Australia, including diseases that could be introduced due to local mosquito distribution. Given the unique island biogeography of Australia and the endemism of vertebrate species (including macropods and monotremes), Australia is highly susceptible to foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic alongside novel reservoirs. For each virus, we summarize the known geographic distribution, mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant changes to Australian ecology and economy. The complex nature of mosquito-borne disease, and challenges in assessing the impacts to non-human vertebrate species, makes this an important topic to periodically review.
Collapse
Affiliation(s)
- Oselyne T. W. Ong
- Children’s Medical Research Institute, Westmead, NSW 2145, Australia;
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Eloise B. Skinner
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia;
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Julie M. Old
- School of Science, Western Sydney University, Hawkesbury, Locked bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
8
|
Murphy AK, Clennon JA, Vazquez-Prokopec G, Jansen CC, Frentiu FD, Hafner LM, Hu W, Devine GJ. Spatial and temporal patterns of Ross River virus in south east Queensland, Australia: identification of hot spots at the rural-urban interface. BMC Infect Dis 2020; 20:722. [PMID: 33008314 PMCID: PMC7530966 DOI: 10.1186/s12879-020-05411-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/10/2020] [Indexed: 12/02/2022] Open
Abstract
Background Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV. Methods The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001–2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence. Results The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect. Conclusions Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.
Collapse
Affiliation(s)
- Amanda K Murphy
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,School of Biomedical Sciences, Faculty of Health, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - Julie A Clennon
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, USA
| | | | - Cassie C Jansen
- Communicable Diseases Branch, Queensland Health, Herston, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences, Faculty of Health, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Faculty of Health, and Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
9
|
Desjardins MR, Eastin MD, Paul R, Casas I, Delmelle EM. Space-Time Conditional Autoregressive Modeling to Estimate Neighborhood-Level Risks for Dengue Fever in Cali, Colombia. Am J Trop Med Hyg 2020; 103:2040-2053. [PMID: 32876013 PMCID: PMC7646775 DOI: 10.4269/ajtmh.20-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vector-borne diseases affect more than 1 billion people a year worldwide, causing more than 1 million deaths, and cost hundreds of billions of dollars in societal costs. Mosquitoes are the most common vectors responsible for transmitting a variety of arboviruses. Dengue fever (DENF) has been responsible for nearly 400 million infections annually. Dengue fever is primarily transmitted by female Aedes aegypti and Aedes albopictus mosquitoes. Because both Aedes species are peri-domestic and container-breeding mosquitoes, dengue surveillance should begin at the local level—where a variety of local factors may increase the risk of transmission. Dengue has been endemic in Colombia for decades and is notably hyperendemic in the city of Cali. For this study, we use weekly cases of DENF in Cali, Colombia, from 2015 to 2016 and develop space–time conditional autoregressive models to quantify how DENF risk is influenced by socioeconomic, environmental, and accessibility risk factors, and lagged weather variables. Our models identify high-risk neighborhoods for DENF throughout Cali. Statistical inference is drawn under Bayesian paradigm using Markov chain Monte Carlo techniques. The results provide detailed insight about the spatial heterogeneity of DENF risk and the associated risk factors (such as weather, proximity to Aedes habitats, and socioeconomic classification) at a fine level, informing public health officials to motivate at-risk neighborhoods to take an active role in vector surveillance and control, and improving educational and surveillance resources throughout the city of Cali.
Collapse
Affiliation(s)
- Michael R Desjardins
- Department of Epidemiology, Spatial Science for Public Health Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Matthew D Eastin
- Department of Geography and Earth Sciences, Center for Applied Geographic Information Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Rajib Paul
- Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Irene Casas
- School of History and Social Sciences, Louisiana Tech University, Ruston, Louisiana
| | - Eric M Delmelle
- Department of Geography and Earth Sciences, Center for Applied Geographic Information Science, University of North Carolina at Charlotte, Charlotte, North Carolina
| |
Collapse
|
10
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
11
|
El-Hage CM, Bamford NJ, Gilkerson JR, Lynch SE. Ross River Virus Infection of Horses: Appraisal of Ecological and Clinical Consequences. J Equine Vet Sci 2020; 93:103143. [PMID: 32972681 DOI: 10.1016/j.jevs.2020.103143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/24/2023]
Abstract
Ross River virus (RRV) is a mosquito-borne arbovirus of the genus Alphavirus that causes disease in humans and horses in Australia. A temporal association of RRV infection in horses with clinical signs including pyrexia, malaise, and polyarthralgia has been reported, along with reduced athletic performance, often for extended periods. Despite these reports, disease due to RRV remains somewhat controversial as experimental infection of horses has resulted in obvious viraemia yet minimal signs of clinical disease. The relatively high viraemia demonstrated by horses infected with RRV has led to speculation that they could act as an important reservoir host of the virus, although this remains unclear. This review sought to appraise the existing literature relating to RRV infection of horses and to summarize the ecological and clinical consequences of RRV of relevance to the equine industry and to public health more broadly.
Collapse
Affiliation(s)
- Charles M El-Hage
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Bamford
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - James R Gilkerson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
| |
Collapse
|
12
|
Liu J, Hansen A, Cameron S, Bi P. The geography of Ross River virus infection in South Australia, 2000-2013. Commun Dis Intell (2018) 2020; 44. [PMID: 32418511 DOI: 10.33321/cdi.2020.44.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Introduction Ross River virus (RRV) disease is Australia's most common arthropod-borne disease which has an important impact on population health and productivity. The aim of this study was to identify the spatial and temporal distribution of RRV notifications during 2000-2013 in South Australia (SA). Methods The epidemiologic patterns of RRV notifications in SA from January 2000 to December 2013 were examined at a statistical local area (SLA) level. Spatial-temporal analyses were conducted using patient-reported place of exposure to characterise the recurrence of RRV infection stratified by age and sex. Results During the study period, a total of 3,687 RRV disease notifications were recorded in the state with state-wide mean annual rates of 16.8 cases per 100,000 persons and a 1:1.32 male:female ratio. The SLAs reporting cases of RRV disease exhibited spatial and temporal variation. Notified cases of RRV disease occurred more frequently in summer and autumn. A geographic expansion was observed of the area within which RRV cases occur. The comparison of age- and sex-standardised incidence rates, calculated by place of residence and patient-reported place of exposure, highlights the importance of using the latter to accurately display geospatial disease trends over time. Areas with the largest proportion of visitor cases and having the highest risk were mostly along the River Murray, which provides many vector mosquito habitats. Conclusion Although public health interventions should be considered in all SLAs where RRV occurs, we suggest that priority should be given to the Riverland areas identified as highest risk.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Public Health, University of Adelaide, South Australia
| | - Alana Hansen
- School of Public Health, University of Adelaide, South Australia
| | - Scott Cameron
- School of Public Health, University of Adelaide, South Australia
| | - Peng Bi
- School of Public Health, University of Adelaide, South Australia
| |
Collapse
|
13
|
Jansen CC, Shivas MA, May FJ, Pyke AT, Onn MB, Lodo K, Hall-Mendelin S, McMahon JL, Montgomery BL, Darbro JM, Doggett SL, van den Hurk AF. Epidemiologic, Entomologic, and Virologic Factors of the 2014-15 Ross River Virus Outbreak, Queensland, Australia. Emerg Infect Dis 2020; 25:2243-2252. [PMID: 31742522 PMCID: PMC6874252 DOI: 10.3201/eid2512.181810] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Australia experienced its largest recorded outbreak of Ross River virus (RRV) during the 2014-15 reporting year, comprising >10,000 reported cases. We investigated epidemiologic, entomologic, and virologic factors that potentially contributed to the scale of the outbreak in Queensland, the state with the highest number of notifications (6,371). Spatial analysis of human cases showed that notifications were geographically widespread. In Brisbane, human case notifications and virus detections in mosquitoes occurred across inland and coastal locations. Viral sequence data demonstrated 2 RRV lineages (northeastern genotypes I and II) were circulating, and a new strain containing 3 unique amino acid changes in the envelope 2 protein was identified. Longitudinal mosquito collections demonstrated unusually high relative abundance of Culex annulirostris and Aedes procax mosquitoes, attributable to extensive freshwater larval habitats caused by early and persistent rainfall during the reporting year. Increased prevalence of these mosquitoes probably contributed to the scale of this outbreak.
Collapse
|
14
|
Tall JA, Gatton ML. Flooding and Arboviral Disease: Predicting Ross River Virus Disease Outbreaks Across Inland Regions of South-Eastern Australia. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:241-251. [PMID: 31310648 DOI: 10.1093/jme/tjz120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 06/10/2023]
Abstract
Flood frequency is expected to increase across the globe with climate change. Understanding the relationship between flooding and arboviral disease can reduce disease risk and associated costs. South-eastern Australia is dominated by the flood-prone Murray-Darling River system where the incidence of Australia's most common arboviral disease, Ross River virus (RRV), is high. This study aimed to determine the relationship between riverine flooding and RRV disease outbreaks in inland south-eastern Australia, specifically New South Wales (NSW). Each study month from 1991 to 2013, for each of 37 local government areas (LGAs) was assigned 'outbreak/non-outbreak' status based on long-term trimmed-average age-standardized RRV notification rates and 'flood/non-flood' status based on riverine overflow. LGAs were grouped into eight climate zones with the relationship between flood and RRV outbreak modeled using generalized estimating equations. Modeling adjusted for rainfall in the previous 1-3 mo. Spring-summer flooding increased the odds of summer RRV outbreaks in three climate zones before and after adjusting for rainfall 1, 2, and 3 mo prior to the outbreak. Flooding at any time of the year was not predictive of RRV outbreaks in the remaining five climate zones. Predicting RRV disease outbreaks with flood events can assist with more targeted mosquito spraying programs, thereby reducing disease transmission and mosquito resistance.
Collapse
Affiliation(s)
- Julie A Tall
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, O Block, Kelvin Grove, Queensland, Australia
| | - Michelle L Gatton
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, O Block, Kelvin Grove, Queensland, Australia
| |
Collapse
|
15
|
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses 2019; 11:E1013. [PMID: 31683823 PMCID: PMC6893470 DOI: 10.3390/v11111013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
We reviewed the literature on the role of temperature in transmission of zoonotic arboviruses. Vector competence is affected by both direct and indirect effects of temperature, and generally increases with increasing temperature, but results may vary by vector species, population, and viral strain. Temperature additionally has a significant influence on life history traits of vectors at both immature and adult life stages, and for important behaviors such as blood-feeding and mating. Similar to vector competence, temperature effects on life history traits can vary by species and population. Vector, host, and viral distributions are all affected by temperature, and are generally expected to change with increased temperatures predicted under climate change. Arboviruses are generally expected to shift poleward and to higher elevations under climate change, yet significant variability on fine geographic scales is likely. Temperature effects are generally unimodal, with increases in abundance up to an optimum, and then decreases at high temperatures. Improved vector distribution information could facilitate future distribution modeling. A wide variety of approaches have been used to model viral distributions, although most research has focused on the West Nile virus. Direct temperature effects are frequently observed, as are indirect effects, such as through droughts, where temperature interacts with rainfall. Thermal biology approaches hold much promise for syntheses across viruses, vectors, and hosts, yet future studies must consider the specificity of interactions and the dynamic nature of evolving biological systems.
Collapse
Affiliation(s)
- Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA.
| | - Alexander C Keyel
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
16
|
Walsh MG. Ecological and life history traits are associated with Ross River virus infection among sylvatic mammals in Australia. BMC Ecol 2019; 19:2. [PMID: 30646881 PMCID: PMC6334474 DOI: 10.1186/s12898-019-0220-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Ross River virus (RRV) is Australia’s most important arbovirus given its annual burden of disease and the relatively large number of Australians at risk for infection. This mosquito-borne arbovirus is also a zoonosis, making its epidemiology and infection ecology complex and cryptic. Our grasp of enzootic, epizootic, and zoonotic RRV transmission dynamics is imprecise largely due to a poor understanding of the role of wild mammalian hosts in the RRV system. Methods The current study applied a piecewise structural equation model (PSEM) toward an interspecific comparison of sylvatic Australian mammals to characterize the ecological and life history profile of species with a history of RRV infection relative to those species with no such history among all wild mammalian species surveyed for RRV infection. The effects of species traits were assessed through multiple causal pathways within the PSEM framework. Results Sylvatic mammalian species with a history of RRV infection tended to express dietary specialization and smaller population density. These species were also characterized by a longer gestation length. Conclusions This study provides the first interspecific comparison of wild mammals for RRV infection and identifies some potential targets for future wildlife surveys into the infection ecology of this important arbovirus. An applied RRV macroecology may prove invaluable to the epidemiological modeling of RRV epidemics across diverse sylvatic landscapes, as well as to the development of human and animal health surveillance systems. Electronic supplementary material The online version of this article (10.1186/s12898-019-0220-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael G Walsh
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia. .,Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| |
Collapse
|
17
|
Shocket MS, Ryan SJ, Mordecai EA. Temperature explains broad patterns of Ross River virus transmission. eLife 2018; 7:37762. [PMID: 30152328 PMCID: PMC6112853 DOI: 10.7554/elife.37762] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/12/2018] [Indexed: 01/31/2023] Open
Abstract
Thermal biology predicts that vector-borne disease transmission peaks at intermediate temperatures and declines at high and low temperatures. However, thermal optima and limits remain unknown for most vector-borne pathogens. We built a mechanistic model for the thermal response of Ross River virus, an important mosquito-borne pathogen in Australia, Pacific Islands, and potentially at risk of emerging worldwide. Transmission peaks at moderate temperatures (26.4°C) and declines to zero at thermal limits (17.0 and 31.5°C). The model accurately predicts that transmission is year-round endemic in the tropics but seasonal in temperate areas, resulting in the nationwide seasonal peak in human cases. Climate warming will likely increase transmission in temperate areas (where most Australians live) but decrease transmission in tropical areas where mean temperatures are already near the thermal optimum. These results illustrate the importance of nonlinear models for inferring the role of temperature in disease dynamics and predicting responses to climate change. Mosquitoes cannot control their body temperature, so their survival and performance depend on the temperature where they live. As a result, outside temperatures can also affect the spread of diseases transmitted by mosquitoes. This has left scientists wondering how climate change may affect the spread of mosquito-borne diseases. Predicting the effects of climate change on such diseases is tricky, because many interacting factors, including temperatures and rainfall, affect mosquito populations. Also, rising temperatures do not always have a positive effect on mosquitoes – they may help mosquitoes initially, but it can get too warm even for these animals. Climate change could affect the Ross River virus, the most common mosquito-borne disease in Australia. The virus infects 2,000 to 9,000 people each year and can cause long-term joint pain and disability. Currently, the virus spreads year-round in tropical, northern Australia and seasonally in temperate, southern Australia. Large outbreaks have occurred outside of Australia, and scientists are worried it could spread worldwide. Now, Shocket et al. have built a model that predicts how the spread of Ross River virus changes with temperature. Shocket et al. used data from laboratory experiments that measured mosquito and virus performance across a broad range of temperatures. The experiments showed that ~26°C (80°F) is the optimal temperature for mosquitoes to spread the Ross River virus. Temperatures below 17°C (63°F) and above 32°C (89°F) hamper the spread of the virus. These temperature ranges match the current disease patterns in Australia where human cases peak in March. This is two months after the country’s average temperature reaches the optimal level and about how long it takes mosquito populations to grow, infect people, and for symptoms to develop. Because northern Australia is already near the optimal temperature for mosquitos to spread the Ross River virus, any climate warming should decrease transmission there. But warming temperatures could increase the disease’s transmission in the southern part of the country, where most people live. The model Shocket et al. created may help the Australian government and mosquito control agencies better plan for the future.
Collapse
Affiliation(s)
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, United States.,Emerging Pathogens Institute, University of Florida, Gainesville, United States.,School of Life Sciences, College of Agriculture, Engineering, and Science, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, United States
| |
Collapse
|
18
|
Flies EJ, Lau CL, Carver S, Weinstein P. Another Emerging Mosquito-Borne Disease? Endemic Ross River Virus Transmission in the Absence of Marsupial Reservoirs. Bioscience 2018. [DOI: 10.1093/biosci/biy011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emily J Flies
- University of Adelaide, in Australia
- University of Tasmania, in Australia
| | | | | | | |
Collapse
|
19
|
Smith DW. Endemic Australian arboviruses of human health significance. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Each year many thousands of cases of human arbovirus infection are notified within Australia, acquired either within Australia or when travelling overseas1. These cause diseases varying from fever and aches, to debilitating joint disease, to encephalitis and death. The arboviruses endemic to Australia are all maintained in a cycle between mosquitoes (and rarely midges) and a bird or mammalian host2. As such, the virus activity is dependent on rainfall and temperature conditions that are conducive to mosquito breeding, and to virus replication and amplification (Figure 1). Those conditions being met, there have to be suitable amplifying animal hosts nearby, and their absence is one of the factors that protects most of the larger urban populations in Australia. Then, of course, humans have to be exposed to the infected mosquitoes to get disease.
Collapse
|
20
|
Flies EJ, Weinstein P, Anderson SJ, Koolhof I, Foufopoulos J, Williams CR. Ross River Virus and the Necessity of Multiscale, Eco-epidemiological Analyses. J Infect Dis 2017; 217:807-815. [DOI: 10.1093/infdis/jix615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Lamichhane RS, Neville PJ, Oosthuizen J, Clark K, Mainali S, Fatouros M, Beatty S. The Highs and Lows of Making a Bucket List-Quantifying Potential Mosquito Breeding Habitats in Metropolitan Backyards. Front Public Health 2017; 5:292. [PMID: 29164098 PMCID: PMC5681743 DOI: 10.3389/fpubh.2017.00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022] Open
Abstract
While the development of land for residential housing along the Swan and Canning Rivers in Perth, WA, Australia has reduced natural mosquito breeding sites, the role of backyard container breeding remains a relatively unknown factor. Local Governments responsible for these areas focus management and control efforts on low lying, tidally driven mosquito habitats to control Aedes vigilax (Skuse) and Aedes camptorhynchus (Thomson) mosquitoes in an effort to reduce both the nuisance and disease risk to residents. In spite of their efforts, Local Governments continue to receive complaints regarding mosquito nuisance, even when environmental conditions do not favor hatching and development of the two species in the Swan River tidal flats. In this study, 150 backyard inspections were conducted in the residential suburb of Bassendean, Perth, WA, Australia, situated in close proximity to the Swan River tidal plain. The occurrence and species composition of the mosquito fauna found in residential backyards was documented. Of the backyards inspected, 94% were found to possess containers capable of breeding mosquitoes, although only 3% contained mosquito larvae. Nine species of mosquito were collected from containers ranging in capacity from 0.05 to 50 L across the study area. Additionally, encephalitis virus surveillance trapping was conducted within residential properties and compared to the tidally driven natural habitat at Ashfield Flats and a tidally influenced brackish creekline at Bindaring Park. The species composition of the fauna at the three habitat types differed significantly, with Aedes notoscriptus (Skuse) dominating residential lots and A. vigilax more prevalent at the saltmarsh site. Bindaring Park had an adult composition at the mid-point of these two habitats, reflecting its proximity to both the Swan River and residential lots.
Collapse
Affiliation(s)
- Ram Sharan Lamichhane
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Peter J Neville
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical Entomology, Environmental Health Directorate, Public Health Division, Department of Health, Perth, WA, Australia
| | - Jacques Oosthuizen
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kim Clark
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Samir Mainali
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Maria Fatouros
- Environmental Health Officer, Town of Bassendean, Perth, WA, Australia
| | - Shelley Beatty
- School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
22
|
Fine-temporal forecasting of outbreak probability and severity: Ross River virus in Western Australia. Epidemiol Infect 2017; 145:2949-2960. [DOI: 10.1017/s095026881700190x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYHealth warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991–2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007–2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.
Collapse
|
23
|
Neglected Australian arboviruses: quam gravis? Microbes Infect 2017; 19:388-401. [PMID: 28552411 DOI: 10.1016/j.micinf.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022]
Abstract
At least 75 arboviruses have been identified from Australia. Most have a zoonotic transmission cycle, maintained in the environment by cycling between arthropod vectors and susceptible mammalian or avian hosts. The primary arboviruses that cause human disease in Australia are Ross River, Barmah Forest, Murray Valley encephalitis, Kunjin and dengue. Several other arboviruses are associated with human disease but little is known about their clinical course and diagnostic testing is not routinely available. Given the significant prevalence of undifferentiated febrile illness in Australia, investigation of the potential threat to public health presented by these viruses is required.
Collapse
|
24
|
Alkhaldy I. Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia-A generalised linear model with break-point analysis. Acta Trop 2017; 168:9-15. [PMID: 28069326 DOI: 10.1016/j.actatropica.2016.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to examine the role of environmental factors in the temporal distribution of dengue fever in Jeddah, Saudi Arabia. The relationship between dengue fever cases and climatic factors such as relative humidity and temperature was investigated during 2006-2009 to determine whether there is any relationship between dengue fever cases and climatic parameters in Jeddah City, Saudi Arabia. A generalised linear model (GLM) with a break-point was used to determine how different levels of temperature and relative humidity affected the distribution of the number of cases of dengue fever. Break-point analysis was performed to modelled the effect before and after a break-point (change point) in the explanatory parameters under various scenarios. Akaike information criterion (AIC) and cross validation (CV) were used to assess the performance of the models. The results showed that maximum temperature and mean relative humidity are most probably the better predictors of the number of dengue fever cases in Jeddah. In this study three scenarios were modelled: no time lag, 1-week lag and 2-weeks lag. Among these scenarios, the 1-week lag model using mean relative humidity as an explanatory variable showed better performance. This study showed a clear relationship between the meteorological variables and the number of dengue fever cases in Jeddah. The results also demonstrated that meteorological variables can be successfully used to estimate the number of dengue fever cases for a given period of time. Break-point analysis provides further insight into the association between meteorological parameters and dengue fever cases by dividing the meteorological parameters into certain break-points.
Collapse
|
25
|
Mainali S, Lamichhane RS, Clark K, Beatty S, Fatouros M, Neville P, Oosthuizen J. "Looking over the Backyard Fence": Householders and Mosquito Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030246. [PMID: 28257079 PMCID: PMC5369082 DOI: 10.3390/ijerph14030246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/16/2022]
Abstract
(1) Background: Vector-borne diseases are a significant public health problem in Western Australia. Mosquitoes are responsible for the transmission of a number of pathogens and may pose a serious nuisance problem. Prevention efforts in the State are multi-faceted and include physical, chemical, and cultural control methods for restricting mosquito breeding. This is less complex where breeding areas are located within public open spaces. In Australia's developed urban areas, breeding sites are, however, frequently located within private residential landholdings, where the scope of public health officials to act is constrained by law and practicality. Consequently, mosquito prevention in these locations is predominantly the responsibility of the residents. This research addressed a gap, both in understanding the degree to which "backyard" mosquito breeding has the potential to contribute to local mosquito problems, and in assessing what residents "think and do" about mosquito control within their home environment. (2) Methods: The study was conducted in the Town of Bassendean, a metropolitan Local Government Area of Perth, Western Australia, in close proximity to two natural, productive mosquito breeding sites, namely Ashfield Flats and Bindaring Park. A total of 150 householders were randomly surveyed during the summer of 2015-2016, to gauge residents' knowledge, attitudes, and practices (KAP (knowledge, attitudes, and practices) Survey) in regards to mosquitoes, their breeding and ecology, and avoidance or minimization strategies. The survey comprised nine questions covering residents' knowledge (3 questions), attitudes (3 questions), and practices (3 questions), as well as additional questions regarding the basic demographics of the resident. Larvae were collected from backyard containers and reared to adults for species identification. A series of Encephalitis Vector Surveillance carbon dioxide (EVS CO₂) traps were also deployed, to assess adult mosquito density and species composition. (3) Results: Aedes notoscriptus (Skuse), a known container-inhabiting species, accounted for just over 50% of all mosquitoes identified. Most residents were aware of mosquito-borne disease and its risk in their local area. While the majority (79%) of the sample correctly identified Ross River virus as the most common infection in WA, a significant gap in the general knowledge of residents in regards to mosquito biology and breeding habits, was noted. Furthermore, only 50% of residents reported using personal protective measures to reduce mosquito bites and only one in six residents undertook physical or chemical mosquito control around their home. Additionally, 60% of respondents believed that mosquito control was "a job for the council and the state government", rather than for individual householders. (4) Conclusions: A significant gap in the knowledge of residents in the study area existed in regards to the general knowledge of mosquitoes and their breeding habits; types of treatments that could be employed within the home; and the residents' responsibility for the management of mosquito breeding on their private property. A public education campaign has been deployed to educate the residents.
Collapse
Affiliation(s)
- Samir Mainali
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Ram Sharan Lamichhane
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Kim Clark
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Shelley Beatty
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | | | - Peter Neville
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
- Health Department of Western Australia, Perth, WA 6000, Australia.
| | - Jacques Oosthuizen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| |
Collapse
|
26
|
Zhang Y, Wang T, Liu K, Xia Y, Lu Y, Jing Q, Yang Z, Hu W, Lu J. Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data. PLoS Negl Trop Dis 2016; 10:e0004473. [PMID: 26894570 PMCID: PMC4764515 DOI: 10.1371/journal.pntd.0004473] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/28/2016] [Indexed: 12/02/2022] Open
Abstract
Background Dengue is a re-emerging infectious disease of humans, rapidly growing from endemic areas to dengue-free regions due to favorable conditions. In recent decades, Guangzhou has again suffered from several big outbreaks of dengue; as have its neighboring cities. This study aims to examine the impact of dengue epidemics in Guangzhou, China, and to develop a predictive model for Zhongshan based on local weather conditions and Guangzhou dengue surveillance information. Methods We obtained weekly dengue case data from 1st January, 2005 to 31st December, 2014 for Guangzhou and Zhongshan city from the Chinese National Disease Surveillance Reporting System. Meteorological data was collected from the Zhongshan Weather Bureau and demographic data was collected from the Zhongshan Statistical Bureau. A negative binomial regression model with a log link function was used to analyze the relationship between weekly dengue cases in Guangzhou and Zhongshan, controlling for meteorological factors. Cross-correlation functions were applied to identify the time lags of the effect of each weather factor on weekly dengue cases. Models were validated using receiver operating characteristic (ROC) curves and k-fold cross-validation. Results Our results showed that weekly dengue cases in Zhongshan were significantly associated with dengue cases in Guangzhou after the treatment of a 5 weeks prior moving average (Relative Risk (RR) = 2.016, 95% Confidence Interval (CI): 1.845–2.203), controlling for weather factors including minimum temperature, relative humidity, and rainfall. ROC curve analysis indicated our forecasting model performed well at different prediction thresholds, with 0.969 area under the receiver operating characteristic curve (AUC) for a threshold of 3 cases per week, 0.957 AUC for a threshold of 2 cases per week, and 0.938 AUC for a threshold of 1 case per week. Models established during k-fold cross-validation also had considerable AUC (average 0.938–0.967). The sensitivity and specificity obtained from k-fold cross-validation was 78.83% and 92.48% respectively, with a forecasting threshold of 3 cases per week; 91.17% and 91.39%, with a threshold of 2 cases; and 85.16% and 87.25% with a threshold of 1 case. The out-of-sample prediction for the epidemics in 2014 also showed satisfactory performance. Conclusion Our study findings suggest that the occurrence of dengue outbreaks in Guangzhou could impact dengue outbreaks in Zhongshan under suitable weather conditions. Future studies should focus on developing integrated early warning systems for dengue transmission including local weather and human movement. Emerging and re-emerging infectious diseases in an urban city could expand due to increased urbanization, population density, and travel. Dengue, as a mosquito-borne viral disease, has rapidly spread from endemic areas to dengue-free regions, with social, demographic, entomological, and environmental factors affecting its transmission. In recent decades, Guangzhou has again suffered from several big outbreaks of dengue; as have its neighboring cities. In this study, we demonstrated that the dengue outbreaks in Guangzhou could impact outbreaks in Zhongshan, one of its neighboring cities, if suitable climate conditions are present. Such associations between dengue epidemics in two cities may also suggest the important role human movement has played in the transmission of the disease. Based on the association between dengue epidemics in Guangzhou and Zhongshan, and the association between dengue epidemics and weather conditions, we developed a reliable and robust model that predicts the occurrence of epidemics at diffrent thresholds in Zhongshan. These results could be used by local health departments in developing strategies towards dengue prevention and control, and push the public to pay more attention to social factors like human movement in disease transmission.
Collapse
Affiliation(s)
- Yingtao Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
| | - Tao Wang
- Zhongshan Center for Disease Control and Prevention, Zhongshan, Guangdong Province, P. R. China
- Zhongshan Institute of School of Public Health, Sun Yat-sen University, Zhongshan, Guangdong Province, P. R. China
| | - Kangkang Liu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
| | - Yao Xia
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
| | - Yi Lu
- Department of Environmental Health, School of Public Health, University at Albany, State University of New York, Albany, New York, United States of America
| | - Qinlong Jing
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong Province, P. R. China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong Province, P. R. China
| | - Wenbiao Hu
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- * E-mail: (WH); (JL)
| | - Jiahai Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Zhongshan Institute of School of Public Health, Sun Yat-sen University, Zhongshan, Guangdong Province, P. R. China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- Institute of Emergency Technology for Serious Infectious Diseases Control and Prevention, Guangdong Provincial Department of Science and Technology; Emergency Management Office, the People’s Government of Guangdong Province, Guangzhou, P. R. China
- Center of Inspection and Quarantine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, P. R. China
- * E-mail: (WH); (JL)
| |
Collapse
|
27
|
Claflin SB, Webb CE. Ross River Virus: Many Vectors and Unusual Hosts Make for an Unpredictable Pathogen. PLoS Pathog 2015; 11:e1005070. [PMID: 26335937 PMCID: PMC4559463 DOI: 10.1371/journal.ppat.1005070] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Suzi B. Claflin
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Cameron E. Webb
- Department of Medical Entomology, University of Sydney and Pathology West—ICPMR Westmead, Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail:
| |
Collapse
|
28
|
Dhama K, Kapoor S, Pawaiya RVS, Chakraborty S, Tiwari R, Verma AK. Ross River Virus (RRV) infection in horses and humans: a review. Pak J Biol Sci 2015; 17:768-79. [PMID: 26035950 DOI: 10.3923/pjbs.2014.768.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.
Collapse
|
29
|
|
30
|
Tompkins DM, Slaney D. Exploring the potential for Ross River virus emergence in New Zealand. Vector Borne Zoonotic Dis 2014; 14:141-8. [PMID: 24528096 DOI: 10.1089/vbz.2012.1215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ross River virus (RRV) is an exotic vector-borne disease considered highly likely to emerge as a future human health issue in New Zealand, with its range expansion from Australia being driven by exotic mosquito introduction and improving conditions for mosquito breeding. We investigated our ability to assess the potential for such emergence using deterministic modeling and making preliminary predictions based on currently available evidence. Although data on actual mosquito densities (as opposed to indices) were identified as a need for predictions to be made with greater confidence, this approach generated a contrasting prediction to current opinion. Only limited potential for RRV emergence in New Zealand was predicted, with outbreaks in the human population more likely of concern in urban areas (mainly should major exotic vectors of the virus establish). The mechanistic nature of the model also allowed the understanding that if such outbreaks do occur, they will most likely be driven by virus amplification in dense human populations (as opposed to the spillover infection from wildlife common in Australia). With implications for biosecurity and health care resource allocation, modeling approaches such as that employed here have much to offer both for disease emergence prediction and surveillance strategy design.
Collapse
|
31
|
Yu W, Mengersen K, Dale P, Mackenzie JS, Toloo G(S, Wang X, Tong S. Epidemiologic patterns of Ross River virus disease in Queensland, Australia, 2001-2011. Am J Trop Med Hyg 2014; 91:109-118. [PMID: 24799374 PMCID: PMC4080548 DOI: 10.4269/ajtmh.13-0455] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 01/08/2014] [Indexed: 11/07/2022] Open
Abstract
Ross River virus (RRV) infection is a debilitating disease that has a significant impact on population health, economic productivity, and tourism in Australia. This study examined epidemiologic patterns of RRV disease in Queensland, Australia, during January 2001-December 2011 at a statistical local area level. Spatio-temporal analyses were used to identify the patterns of the disease distribution over time stratified by age, sex, and space. The results show that the mean annual incidence was 54 per 100,000 persons, with a male:female ratio of 1:1.1. Two space-time clusters were identified: the areas adjacent to Townsville, on the eastern coast of Queensland, and the southeast areas. Thus, although public health intervention should be considered across all areas in which RRV occurs, it should specifically focus on high-risk regions, particularly during summer and autumn to reduce the social and economic impacts of RRV infection.
Collapse
Affiliation(s)
- Weiwei Yu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation; Disciplines of Mathematical Sciences, Faculty of Science and Technology Queensland University of Technology, Brisbane, Australia; Environmental Futures Centre, Griffith School of Environment, Griffith University, Nathan, Queensland, Australia; Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia; Burnet Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Ng V, Dear K, Harley D, McMichael A. Analysis and prediction of Ross River virus transmission in New South Wales, Australia. Vector Borne Zoonotic Dis 2014; 14:422-38. [PMID: 24745350 DOI: 10.1089/vbz.2012.1284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ross River virus (RRV) disease is the most widespread mosquito-borne disease in Australia. The disease is maintained in enzootic cycles between mosquitoes and reservoir hosts. During outbreaks and in endemic regions, RRV transmission can be sustained between vectors and reservoir hosts in zoonotic cycles with spillover to humans. Symptoms include arthritis, rash, fever and fatigue and can persist for several months. The prevalence and associated morbidity make this disease a medically and economically important mosquito-borne disease in Australia. METHODS Climate, environment, and RRV vector and reservoir host information were used to develop predictive models in four regions in NSW over a 13-year period (1991-2004). Polynomial distributed lag (PDL) models were used to explore long-term influences of up to 2 years ago that could be related to RRV activity. RESULTS Each regional model consisted of a unique combination of predictors for RRV disease highlighting the differences in the disease ecology and epidemiology in New South Wales (NSW). Events up to 2 years before were found to influence RRV activity. The shorter-term associations may reflect conditions that promote virus amplification in RRV vectors whereas long-term associations may reflect RRV reservoir host breeding and herd immunity. The models indicate an association between host populations and RRV disease, lagged by 24 months, suggesting two or more generations of susceptible juveniles may be necessary for an outbreak. Model sensitivities ranged from 60.4% to 73.1%, and model specificities ranged from 57.9% to 90.7%. This was the first study to include reservoir host data into statistical RRV models; the inclusion of host parameters was found to improve model fit significantly. CONCLUSION The research presents the novel use of a combination of climate, environment, and RRV vector and reservoir host information in statistical predictive models. The models have potential for public health decision-making.
Collapse
Affiliation(s)
- Victoria Ng
- National Centre for Epidemiology and Population Health, The Australian National University , Canberra, Australia
| | | | | | | |
Collapse
|
33
|
Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs. Epidemiol Infect 2014; 142:2013-23. [PMID: 24612684 DOI: 10.1017/s0950268814000399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.
Collapse
|
34
|
Kline K, McCarthy JS, Pearson M, Loukas A, Hotez PJ. Neglected tropical diseases of Oceania: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis 2013; 7:e1755. [PMID: 23383349 PMCID: PMC3561157 DOI: 10.1371/journal.pntd.0001755] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Among Oceania's population of 35 million people, the greatest number living in poverty currently live in Papua New Guinea (PNG), Fiji, Vanuatu, and the Solomon Islands. These impoverished populations are at high risk for selected NTDs, including Necator americanus hookworm infection, strongyloidiasis, lymphatic filariasis (LF), balantidiasis, yaws, trachoma, leprosy, and scabies, in addition to outbreaks of dengue and other arboviral infections including Japanese encephalitis virus infection. PNG stands out for having the largest number of cases and highest prevalence for most of these NTDs. However, Australia's Aboriginal population also suffers from a range of significant NTDs. Through the Pacific Programme to Eliminate Lymphatic Filariasis, enormous strides have been made in eliminating LF in Oceania through programs of mass drug administration (MDA), although LF remains widespread in PNG. There are opportunities to scale up MDA for PNG's major NTDs, which could be accomplished through an integrated package that combines albendazole, ivermectin, diethylcarbamazine, and azithromycin, in a program of national control. Australia's Aboriginal population may benefit from appropriately integrated MDA into primary health care systems. Several emerging viral NTDs remain important threats to the region.
Collapse
Affiliation(s)
- Kevin Kline
- Departments of Pediatrics and Molecular Virology & Microbiology, and National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children's Hospital-Baylor College of Medicine Center for Vaccine Development, Houston, Texas, United States of America
| | - James S. McCarthy
- Clinical Tropical Medicine Laboratory, Queensland Institute of Medical Research, University of Queensland, Brisbane, Australia
| | - Mark Pearson
- Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Cairns, Queensland, Australia
| | - Peter J. Hotez
- Departments of Pediatrics and Molecular Virology & Microbiology, and National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Sabin Vaccine Institute and Texas Children's Hospital-Baylor College of Medicine Center for Vaccine Development, Houston, Texas, United States of America
| |
Collapse
|
35
|
Vally H, Peel M, Dowse GK, Cameron S, Codde JP, Hanigan I, Lindsay MDA. Geographic Information Systems used to describe the link between the risk of Ross River virus infection and proximity to the Leschenault estuary, WA. Aust N Z J Public Health 2012; 36:229-35. [PMID: 22672028 DOI: 10.1111/j.1753-6405.2012.00869.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate the relationship between risk of Ross River virus (RRV) infection and proximity to mosquito-breeding habitat surrounding a tidal wetland ecosystem in south-west Australia. METHODS Geographic information systems (GIS) were used to spatially map cases of RRV disease in the Leschenault region between July 1995 and June 1996. Half kilometre buffer zones were constructed around the Leschenault Estuary and associated waterways; RRV disease case counts were calculated for each zone. RESULTS Different relationships between RRV disease incidence and proximity to saltmarsh mosquito habitat were observed east of the Leschenault Estuary compared with an urban region to the south. Disease incidence showed a decreasing trend away from eastern margins of the Estuary, particularly for the first 2 km. In the urban region, RRV disease risk was low close to the Estuary, but increased further out and remained steady across the remainder of that region. CONCLUSIONS The findings support an increased risk of contracting RRV disease for people residing close to eastern margins of the Leschenault Estuary. IMPLICATIONS This study highlights how historical data combined with GIS can improve understanding of the epidemiology of RRV disease. This has a valuable role in assessing the risk of mosquito-borne disease for land-use planning.
Collapse
Affiliation(s)
- Hassan Vally
- Communicable Disease Control Directorate, Department of Health, Western Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect Dis 2011; 11:166. [PMID: 21658238 PMCID: PMC3128053 DOI: 10.1186/1471-2334-11-166] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 06/09/2011] [Indexed: 11/16/2022] Open
Abstract
Background During the last decades, dengue viruses have spread throughout the Americas region, with an increase in the number of severe forms of dengue. The surveillance system in Guadeloupe (French West Indies) is currently operational for the detection of early outbreaks of dengue. The goal of the study was to improve this surveillance system by assessing a modelling tool to predict the occurrence of dengue epidemics few months ahead and thus to help an efficient dengue control. Methods The Box-Jenkins approach allowed us to fit a Seasonal Autoregressive Integrated Moving Average (SARIMA) model of dengue incidence from 2000 to 2006 using clinical suspected cases. Then, this model was used for calculating dengue incidence for the year 2007 compared with observed data, using three different approaches: 1 year-ahead, 3 months-ahead and 1 month-ahead. Finally, we assessed the impact of meteorological variables (rainfall, temperature and relative humidity) on the prediction of dengue incidence and outbreaks, incorporating them in the model fitting the best. Results The 3 months-ahead approach was the most appropriate for an effective and operational public health response, and the most accurate (Root Mean Square Error, RMSE = 0.85). Relative humidity at lag-7 weeks, minimum temperature at lag-5 weeks and average temperature at lag-11 weeks were variables the most positively correlated to dengue incidence in Guadeloupe, meanwhile rainfall was not. The predictive power of SARIMA models was enhanced by the inclusion of climatic variables as external regressors to forecast the year 2007. Temperature significantly affected the model for better dengue incidence forecasting (p-value = 0.03 for minimum temperature lag-5, p-value = 0.02 for average temperature lag-11) but not humidity. Minimum temperature at lag-5 weeks was the best climatic variable for predicting dengue outbreaks (RMSE = 0.72). Conclusion Temperature improves dengue outbreaks forecasts better than humidity and rainfall. SARIMA models using climatic data as independent variables could be easily incorporated into an early (3 months-ahead) and reliably monitoring system of dengue outbreaks. This approach which is practicable for a surveillance system has public health implications in helping the prediction of dengue epidemic and therefore the timely appropriate and efficient implementation of prevention activities.
Collapse
|
37
|
Pelecanos AM, Ryan PA, Gatton ML. Spatial-temporal epidemiological analyses of two sympatric, co-endemic alphaviral diseases in Queensland, Australia. Vector Borne Zoonotic Dis 2011; 11:375-82. [PMID: 21466385 DOI: 10.1089/vbz.2009.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The two most reported mosquito-borne diseases in Queensland, a northern state of Australia, are Ross River virus (RRV) disease and Barmah Forest virus (BFV) disease. Both diseases are endemic in Queensland and have similar clinical symptoms and comparable transmission cycles involving a complex inter-relationship between human hosts, various mosquito vectors, and a range of nonhuman vertebrate hosts, including marsupial mammals that are unique to the Australasian region. Although these viruses are thought to share similar vectors and vertebrate hosts, RRV is four times more prevalent than BFV in Queensland. METHODS We performed a retrospective analysis of BFV and RRV human disease notification data collected from 1995 to 2007 in Queensland to ascertain whether there were differences in the incidence patterns of RRV and BFV disease. In particular, we compared the temporal incidence and spatial distribution of both diseases and considered the relationship between their disease dynamics. We also investigated whether a peak in BFV incidence during spring was indicative of the following RRV and BFV transmission season incidence levels. RESULTS Although there were large differences in the notification rates of the two diseases, they had similar annual temporal patterns, but there were regional variations between the length and magnitude of the transmission seasons. During periods of increased disease activity, however, there was no association between the dynamics of the two diseases. CONCLUSIONS The results from this study suggest that while RRV and BFV share similar mosquito vectors, there are significant differences in the ecology of these viruses that result in different epidemic patterns of disease incidence. Further investigation is required into the ecology of each virus to determine which factors are important in promoting RRV and BFV disease outbreaks.
Collapse
Affiliation(s)
- Anita M Pelecanos
- Malaria Drug Resistance and Chemotherapy Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | |
Collapse
|
38
|
Environmental drivers of Ross River virus in southeastern Tasmania, Australia: towards strengthening public health interventions. Epidemiol Infect 2011; 140:359-71. [PMID: 21439102 DOI: 10.1017/s0950268811000446] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In Australia, Ross River virus (RRV) is predominantly identified and managed through passive health surveillance. Here, the proactive use of environmental datasets to improve community-scale public health interventions in southeastern Tasmania is explored. Known environmental drivers (temperature, rainfall, tide) of the RRV vector Aedes camptorhynchus are analysed against cumulative case records for five adjacent local government areas (LGAs) from 1993 to 2009. Allowing for a 0- to 3-month lag period, temperature was the most significant driver of RRV cases at 1-month lag, contributing to a 23·2% increase in cases above the long-term case average. The potential for RRV to become an emerging public health issue in Tasmania due to projected climate changes is discussed. Moreover, practical outputs from this research are proposed including the development of an early warning system for local councils to implement preventative measures, such as public outreach and mosquito spray programmes.
Collapse
|
39
|
Biological and cultural coevolution and emerging infectious disease: Ross River virus in Australia. Med Hypotheses 2011; 76:893-6. [PMID: 21435794 DOI: 10.1016/j.mehy.2011.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
Enhanced virulence of pathogens infecting host populations, with no previous exposure thereto, is characteristic of many diseases labelled "emerging" or "resurging". One cause of emergence characteristics can be interpreted as absence of co-evolutionary optimization of interactions between hosts and pathogens. We explore the historical and evolutionary development between Ross River virus (RRV) and its human host in Australia; a mosquito vectored pathogen causing polyarthritic symptoms. Epidemics of RRV have increased in frequency, size and range throughout European settlement. We hypothesise that human cultural evolution contributed to the emergence of RRV in humans, and argue that epidemics of RRV were unlikely to occur in Aboriginal hunter-gatherer societies in Australia's early human history, but only occur in more recent agrarian and industrial societies. A perspective of cultural evolution, in addition to biological evolution, may help with understanding the determinants of disease emergence and resurgence, and inform ongoing development of effective public health interventions.
Collapse
|
40
|
Jacups SP, Whelan PI, Harley D. Arbovirus models to provide practical management tools for mosquito control and disease prevention in the Northern Territory, Australia. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:453-460. [PMID: 21485389 DOI: 10.1603/me10193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ross River virus (RRV) causes the most common human arbovirus disease in Australia. Although the disease is nonfatal, the associated arthritis and postinfection fatigue can be debilitating for many months, impacting on workforce participation. We sought to create an early-warning system to notify of approaching RRV disease outbreak conditions for major townships in the Northern Territory. By applying a logistic regression model to meteorologic factors, including rainfall, a postestimation analysis of sensitivity and specificity can create rainfall cut-points. These rainfall cut-points indicate the rainfall level above which previous epidemic conditions have occurred. Furthermore, rainfall cut-points indirectly adjust for vertebrate host data from the agile wallaby (Macropus agilis) as the life cycle of the agile wallaby is intricately meshed with the wet season. Once generated, cut-points can thus be used prospectively to allow timely implementation of larval survey and control measures and public health warnings to preemptively reduce RRV disease incidence. Cut-points are location specific and have the capacity to replace previously used models, which require data management and input, and rarely provide timely notification for vector control requirements and public health warnings. These methods can be adapted for use elsewhere.
Collapse
Affiliation(s)
- Susan P Jacups
- School for Environmental Research, Institute of Advanced Studies, Charles Darwin University, Darwin, Northern Territory, 0909, Australia.
| | | | | |
Collapse
|
41
|
McIver L, Xiao J, Lindsay MDA, Rowe T, Yun G. A climate-based early warning system to predict outbreaks of Ross River virus disease in the Broome region of Western Australia. Aust N Z J Public Health 2010; 34:89-90. [PMID: 20920112 DOI: 10.1111/j.1753-6405.2010.00480.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Affiliation(s)
- Iqbal Hossain
- Department of Medicine, National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | | | | |
Collapse
|
43
|
Zhang Y, Bi P, Hiller JE. Climate change and the transmission of vector-borne diseases: a review. Asia Pac J Public Health 2009; 20:64-76. [PMID: 19124300 DOI: 10.1177/1010539507308385] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reviews studies examining the relationship between climate variability and the transmission of vector- and rodent-borne diseases, including malaria, dengue fever, Ross River virus infection, and hemorrhagic fever with renal syndrome. The review has evaluated their study designs, statistical analysis methods, usage of meteorological variables, and results of those studies. The authors found that the limitations of analytical methods exist in most of the articles. Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease (eg, socioeconomic status). In addition, the quantitative relationship between climate and vector-borne diseases is inconsistent. Further research should be conducted among different populations with various climatic/ecological regions by using appropriate statistical models.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Public Health, University of Adelaide, Australia
| | | | | |
Collapse
|
44
|
Williams CR, Fricker SR, Kokkinn MJ. Environmental and entomological factors determining Ross River virus activity in the River Murray Valley of South Australia. Aust N Z J Public Health 2009; 33:284-8. [DOI: 10.1111/j.1753-6405.2009.00390.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Climate variability and Ross River virus infections in Riverland, South Australia, 1992-2004. Epidemiol Infect 2009; 137:1486-93. [PMID: 19296873 DOI: 10.1017/s0950268809002441] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ross River virus (RRV) infection is the most common notifiable vector-borne disease in Australia, with around 6000 cases annually. This study aimed to examine the relationship between climate variability and notified RRV infections in the Riverland region of South Australia in order to set up an early warning system for the disease in temperate-climate regions. Notified data of RRV infections were collected by the South Australian Department of Health. Climatic variables and monthly river flow were provided by the Australian Bureau of Meteorology and South Australian Department of Water, Land and Biodiversity Conservation over the period 1992-2004. Spearman correlation and time-series-adjusted Poisson regression analysis were performed. The results indicate that increases in monthly mean minimum and maximum temperatures, monthly total rainfall, monthly mean Southern Oscillation Index and monthly flow in the Murray River increase the likelihood, but an increase in monthly mean relative humidity decreases the likelihood, of disease transmission in the region, with different time-lag effects. This study demonstrates that a useful early warning system can be developed for local regions based on the statistical analysis of readily available climate data. These early warning systems can be utilized by local public health authorities to develop disease prevention and control activities.
Collapse
|
46
|
Naish S, Hu W, Nicholls N, Mackenzie JS, Dale P, McMichael AJ, Tong S. Socio-environmental predictors of Barmah forest virus transmission in coastal areas, Queensland, Australia. Trop Med Int Health 2009; 14:247-56. [PMID: 19187524 DOI: 10.1111/j.1365-3156.2008.02217.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To assess the socio-environmental predictors of Barmah forest virus (BFV) transmission in coastal areas, Queensland, Australia. METHODS Data on BFV notified cases, climate, tidal levels and socioeconomic index for area (SEIFA) in six coastal cities, Queensland, for the period 1992-2001 were obtained from the relevant government agencies. Negative binomial regression models were used to assess the socio-environmental predictors of BFV transmission. RESULTS The results show that maximum and minimum temperature, rainfall, relative humidity, high and low tide were statistically significantly associated with BFV incidence at lags 0-2 months. The fitted negative binomial regression models indicate a significant independent association of each of maximum temperature (beta = 0.139, P = 0.000), high tide (beta = 0.005, P = 0.000) and SEIFA index (beta = -0.010, P = 0.000) with BFV transmission after adjustment for confounding variables. CONCLUSIONS The transmission of BFV disease in Queensland coastal areas seemed to be determined by a combination of local social and environmental factors. The model developed in this study may have applications in the control and prevention of BFV disease in these areas.
Collapse
Affiliation(s)
- Suchithra Naish
- School of Public Health & Institute of Health and Biomedical Innovation, Queensland University of Technology, Qld, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tong S, Dale P, Nicholls N, Mackenzie JS, Wolff R, McMichael AJ. Climate variability, social and environmental factors, and ross river virus transmission: research development and future research needs. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1591-1597. [PMID: 19079707 PMCID: PMC2599750 DOI: 10.1289/ehp.11680] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND Arbovirus diseases have emerged as a global public health concern. However, the impact of climatic, social, and environmental variability on the transmission of arbovirus diseases remains to be determined. OBJECTIVE Our goal for this study was to provide an overview of research development and future research directions about the interrelationship between climate variability, social and environmental factors, and the transmission of Ross River virus (RRV), the most common and widespread arbovirus disease in Australia. METHODS We conducted a systematic literature search on climatic, social, and environmental factors and RRV disease. Potentially relevant studies were identified from a series of electronic searches. RESULTS The body of evidence revealed that the transmission cycles of RRV disease appear to be sensitive to climate and tidal variability. Rainfall, temperature, and high tides were among major determinants of the transmission of RRV disease at the macro level. However, the nature and magnitude of the interrelationship between climate variability, mosquito density, and the transmission of RRV disease varied with geographic area and socioenvironmental condition. Projected anthropogenic global climatic change may result in an increase in RRV infections, and the key determinants of RRV transmission we have identified here may be useful in the development of an early warning system. CONCLUSIONS The analysis indicates that there is a complex relationship between climate variability, social and environmental factors, and RRV transmission. Different strategies may be needed for the control and prevention of RRV disease at different levels. These research findings could be used as an additional tool to support decision making in disease control/surveillance and risk management.
Collapse
Affiliation(s)
- Shilu Tong
- School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Jacups SP, Whelan PI, Currie BJ. Ross River virus and Barmah Forest virus infections: a review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector Borne Zoonotic Dis 2008; 8:283-97. [PMID: 18279007 DOI: 10.1089/vbz.2007.0152] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of the present article is to present a review of the Ross River virus (RRV) and Barmah Forest virus (BFV) literature in relation to potential implications for future disease in tropical northern Australia. Ross River virus infection is the most common and most widespread arboviral disease in Australia, with an average of 4,800 national notifications annually. Of recent concern is the sudden rise in BFV infections; the 2005-2006 summer marked the largest BFV epidemic on record in Australia, with 1,895 notifications. Although not life-threatening, infection with either virus can cause arthritis, myalgia, and fatigue for 6 months or longer, resulting in substantial morbidity and economic impact. The geographic distribution of mosquito species and their seasonal activity is determined in large part by temperature and rainfall. Predictive models can be useful tools in providing early warning systems for epidemics of RRV and BFV infection. Various models have been developed to predict RRV outbreaks, but these appear to be mostly only regionally valid, being dependent on local ecological factors. Difficulties have arisen in developing useful models for the tropical northern parts of Australia, and to date no models have been developed for the Northern Territory. Only one model has been developed for predicting BFV infections using climate and tide variables. It is predicted that the exacerbation of current greenhouse conditions will result in longer periods of high mosquito activity in the tropical regions where RRV and BFV are already common. In addition, the endemic locations may expand further within temperate regions, and epidemics may become more frequent in those areas. Further development of predictive models should benefit public health planning by providing early warning systems of RRV and BFV infection outbreaks in different geographical locations.
Collapse
Affiliation(s)
- Susan P Jacups
- School for Environmental Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | | |
Collapse
|
49
|
Carver S, Sakalidis V, Weinstein P. House mouse abundance and Ross River virus notifications in Victoria, Australia. Int J Infect Dis 2008; 12:528-33. [DOI: 10.1016/j.ijid.2008.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 02/19/2008] [Accepted: 02/23/2008] [Indexed: 11/27/2022] Open
|
50
|
Wu PC, Guo HR, Lung SC, Lin CY, Su HJ. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 2007; 103:50-7. [PMID: 17612499 DOI: 10.1016/j.actatropica.2007.05.014] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 03/11/2007] [Accepted: 05/20/2007] [Indexed: 11/15/2022]
Abstract
We evaluated the impacts of weather variability on the occurrence of dengue fever in a major metropolitan city, Kaohsiung, in southern Taiwan using time-series analysis. Autoregressive integrated moving average (ARIMA) models showed that the incidence of dengue fever was negatively associated with monthly temperature deviation (beta=-0.126, p=0.044), and a reverse association was also found with relative humidity (beta=-0.025, p=0.048). Both factors were observed to present their most prominent effects at a time lag of 2 months. Meanwhile, vector density record, a conventional approach often applied as a predictor for outbreak, did not appear to be a good one for diseases occurrence. Weather variability was identified as a meaningful and significant indicator for the increasing occurrence of dengue fever in this study, and it might be feasible to be adopted for predicting the influences of rising average temperature on the occurrence of infectious diseases of such kind at a city level. Further studies should take into account variations of socio-ecological changes and disease transmission patterns to better propose the increasing risk for infectious disease outbreak by applying the conveniently accumulated information of weather variability.
Collapse
Affiliation(s)
- Pei-Chih Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan, ROC.
| | | | | | | | | |
Collapse
|