1
|
Shukla S, Osumi T, Al-Toubat M, Serrano S, Singh PK, Mietzsch M, McKenna R, Chardon-Robles J, Krishnan S, Balaji KC. Protein kinase D1 mitigation against etoposide induced DNA damage in prostate cancer is associated with increased α-Catenin. Prostate 2025; 85:156-164. [PMID: 39428693 DOI: 10.1002/pros.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The E-cadherin, α- and β-Catenin interaction at the cell adherens junction plays a key role in cell adhesion; alteration in the expression and function of these genes are associated with disease progression in several solid tumors including prostate cancer. The membranous β-Catenin is dynamically linked to the cellular cytoskeleton through interaction with α-Catenin at amino acid positions threonine 120 (T120) to 151 of β-Catenin. Nuclear presence of α-Catenin modulates the sensitivity of cells to DNA damage. The objective of this study is to determine the role of α-Catenin and protein kinase D1 (PrKD1) in DNA damage response. METHODS Prostate cancer cells; LNCaP, LNCaP (Sh-PrKD1; silenced PrKD1), C4-2 and C4-2 PrKD1 were used for various sets of experiments to determine the role of DNA damage in PrKD1 overexpression and silencing cells. These cells were treated with compound-10 (100 nM) and Etoposide (30 µM), total cell lysates, cytosolic and nuclear fractions were prepared to observe various protein expressions. We performed single cell gel electrophoresis (COMET assay) to determine the etoposide induce DNA damage in C4-2 and C4-2 PrKD1 cells. The animal experiments were carried out to determine the tolerability of compound-10 by mice and generate preliminary data on efficacy of compound-10 in modulating the α-Catenin and PrKD1 expressions in inhibiting tumor progression. RESULTS PrKD1, a novel serine threonine kinase, phosphorylates β-Catenin T120. In silico analysis, confirmed that T120 phosphorylation alters β- to α-Catenin binding. Forced expression of PrKD1 in prostate cancer cells increased β- and α-Catenin protein levels associated with reduced etoposide induced DNA damage. Downregulation of α-Catenin abrogates the PrKD1 mitigation of DNA damage. The in vitro results were corroborated in vivo using mouse prostate cancer patient derived xenograft model by inhibition of PrKD1 kinase activity with compound-10, a selective PrKD inhibitor, demonstrating decreased total β- and α-Catenin protein levels, and β-Catenin T120 phosphorylation. CONCLUSIONS Alteration in DNA damage response pathways play major role in prostate cancer progression. The study identifies a novel mechanism of α-Catenin dependent DNA damage mitigation role for PrKD1 in prostate cancer.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Teruko Osumi
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Mohammed Al-Toubat
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Samuel Serrano
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Pankaj Kumar Singh
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - K C Balaji
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| |
Collapse
|
2
|
Li F, Yu Y, Jiang M, Zhang H. Targets for improving prostate tumor response to radiotherapy. Eur J Pharmacol 2025; 986:177149. [PMID: 39577551 DOI: 10.1016/j.ejphar.2024.177149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Prostate cancer is a prevalent malignancy that is frequently managed with radiotherapy. However, resistance to radiotherapy remains a significant challenge in controlling this disease. Early radiotherapy is employed for locally confined prostate cancer (PCa), while recurrent disease post-surgery and metastatic castration-resistant prostate cancer (mCRPC) are treated with late-stage radiotherapy, including radium-223. Combination therapies to integrate radiotherapy and chemotherapy have demonstrated enhanced treatment efficacy. Nonetheless, both modalities can induce severe local and systemic toxicities. Consequently, selectively sensitizing prostate tumors to radiotherapy could improve therapeutic outcomes while minimizing systemic side effects. The mechanisms underlying radioresistance in prostate cancer are multifaceted, including DNA damage repair (DDR) pathways, hypoxia, angiogenesis, androgen receptor (AR) signaling, and immune evasion. The advent of 177Lu-PSMA-617, which was approved in 2022, has shown promise in targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer. Experimental and clinical studies have yielded promising results in suppressing prostate tumors by targeting these pathways. This paper reviews potential targets for sensitizing prostate tumors to radiotherapy. We discuss cellular and molecular mechanisms contributing to therapy resistance and examine findings from experimental and clinical trials on promising targets and drugs that can be used in combination with radiotherapy.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Yizhi Yu
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Maozhu Jiang
- Department of Radiotherapy, Yantaishan Hospital, Shandong, 264000, China
| | - Haiying Zhang
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China.
| |
Collapse
|
3
|
Banadaki MD, Rummel NG, Backus S, Butterfield DA, St Clair DK, Campbell JM, Zhong W, Mayer K, Berry SM, Chaiswing L. Extraction of redox extracellular vesicles using exclusion-based sample preparation. Anal Bioanal Chem 2024; 416:6317-6331. [PMID: 39243301 DOI: 10.1007/s00216-024-05518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Studying specific subpopulations of cancer-derived extracellular vesicles (EVs) could help reveal their role in cancer progression. In cancer, an increase in reactive oxygen species (ROS) happens which results in lipid peroxidation with a major product of 4-hydroxynonenal (HNE). Adduction by HNE causes alteration to the structure of proteins, leading to loss of function. Blebbing of EVs carrying these HNE-adducted proteins as a cargo or carrying HNE-adducted on EV membrane are methods for clearing these molecules by the cells. We have referred to these EVs as Redox EVs. Here, we utilize a surface tension-mediated extraction process, termed exclusion-based sample preparation (ESP), for the rapid and efficient isolation of intact Redox EVs, from a mixed population of EVs derived from human glioblastoma cell line LN18. After optimizing different parameters, two populations of EVs were analyzed, those isolated from the sample (Redox EVs) and those remaining in the original sample (Remaining EVs). Electron microscopic imaging was used to confirm the presence of HNE adducts on the outer leaflet of Redox EVs. Moreover, the population of HNE-adducted Redox EVs shows significantly different characteristics to those of Remaining EVs including smaller size EVs and a more negative zeta potential EVs. We further treated glioblastoma cells (LN18), radiation-resistant glioblastoma cells (RR-LN18), and normal human astrocytes (NHA) with both Remaining and Redox EV populations. Our results indicate that Redox EVs promote the growth of glioblastoma cells, likely through the production of H2O2, and cause injury to normal astrocytes. In contrast, Remaining EVs have minimal impact on the viability of both glioblastoma cells and NHA cells. Thus, isolating a subpopulation of EVs employing ESP-based immunoaffinity could pave the way for a deeper mechanistic understanding of how subtypes of EVs, such as those containing HNE-adducted proteins, induce biological changes in the cells that take up these EVs.
Collapse
Affiliation(s)
| | - Nicole G Rummel
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Backus
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - David Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Daret K St Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - James M Campbell
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kristy Mayer
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Scott M Berry
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506, USA.
| | - Luksana Chaiswing
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
HUANG YONGJIAN, WANG JINZHOU, XU JIUHUA, RUAN NING. Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer. Oncol Res 2024; 32:1765-1776. [PMID: 39449815 PMCID: PMC11497182 DOI: 10.32604/or.2024.045564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background Despite significant advancements in the development of anticancer therapies over the past few decades, the clinical management of colorectal cancer remains a challenging task. This study aims to investigate the inhibitory effects of cancer-targeting liposomes against colorectal cancer. Materials and Methods Liposomes consisting of 3β-[N-(N', N'-dimethylamino ethane)carbamoyl]-cholesterol (DC-CHOL), cholesterol (CHOL), and dioleoylphosphatidylethanolamine (DOPE) at a molar ratio of 1:1:0.5 were created and used as carriers to deliver an apoptosis-inducing plasmid encoding the tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL) gene, along with the toll-like receptor (TLR7) agonist Rsiquimod (R848). The rationale behind this design is that pTRAIL can trigger cancer cell apoptosis by activating the DR4/5 receptor, while R848 can stimulate the immune microenvironment. Results Experimental results demonstrated the synergistic effects of R848 and pTRAIL encapsulated by liposomes (RTL) in suppressing the proliferation of colorectal cancer cells. Moreover, further in vivo investigations revealed the strong anti-tumor efficacy of RTL in xenograft and orthotropic in situ models of colorectal cancer. Conclusions These findings collectively highlight the therapeutic potential of R848/pTRAIL-loaded liposomes in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- YONGJIAN HUANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JINZHOU WANG
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - JIUHUA XU
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - NING RUAN
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
5
|
Kristiansson A, Ceberg C, Bjartell A, Ceder J, Timmermand OV. Investigating Ras homolog gene family member C (RhoC) and Ki67 expression following external beam radiation therapy show increased RhoC expression in relapsing prostate cancer xenografts. Biochem Biophys Res Commun 2024; 728:150324. [PMID: 38968772 DOI: 10.1016/j.bbrc.2024.150324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Section for Pediatrics, Lund, Sweden; Department of Neonatology, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Medical Radiation Physics, Lund, Sweden
| | - Anders Bjartell
- Lund University, Faculty of Medicine, Department of Translational Medicine, Urological Cancers, Malmö, Sweden
| | - Jens Ceder
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden
| | - Oskar Vilhelmsson Timmermand
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden.
| |
Collapse
|
6
|
Tripathi S, Kharkwal G, Mishra R, Singh G. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in heavy metals-induced oxidative stress. Heliyon 2024; 10:e37545. [PMID: 39309893 PMCID: PMC11416300 DOI: 10.1016/j.heliyon.2024.e37545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Organisms encounter reactive oxidants through intrinsic metabolism and environmental exposure to toxicants. Reactive oxygen and nitrogen species (ROS, RNS) are generally considered detrimental because they induce oxidative stress. In order to combat oxidative stress, a potential modulator of cellular defense nuclear factor erythroid 2-related factor 2 (Nrf2) and its endogenous inhibitor Kelch-like ECH-associated protein 1 (Keap1) operate as a common, genetically preserved intrinsic defense system. There has been a significant increase in the amount of harmful metalloids and metals that individuals are exposed to through their food, water, and air, primarily due to human activities. Many studies have looked at the connection between the emergence of different ailments in humans and ecological exposure to metalloids, i.e., arsenic (As) and metals viz., chromium (Cr), mercury (Hg), cadmium (Cd), cobalt (Co), and lead (Pb). It is known that they can produce ROS in several organs by both direct and indirect means. Studies suggest that Nrf2 signaling is a crucial mechanism in maintaining antioxidant balance and can have two roles, depending on the particular biological setting. From one perspective, Nrf2 is an essential defense mechanism against metal-induced toxicity. Still, it may also operate as a catalyst for metal-induced carcinogenesis in situations involving protracted exposure and persistent activation. Therefore, this review aims to provide an overview of the antioxidant defense mechanism of Nrf2-Keap1 signaling and the interrelation between Nrf2 signaling and the toxic elements.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad - 380009, India
| | - Gitika Kharkwal
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University Kanpur - 208024, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad-380016, India
| |
Collapse
|
7
|
Harary PM, Hori YS, Persad ARL, Tayag A, Ustrzynski L, Emrich SC, Rahimy E, Park DJ, Li G, Chang SD. KEAP1-mutant atypical meningioma: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24387. [PMID: 39250830 PMCID: PMC11404106 DOI: 10.3171/case24387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND While genetic testing of tumors is commonly used to inform the selection of systemic therapies, there is limited evidence for the application of radiotherapy for brain cancer. Recent studies have shown that Kelch-like ECH-associated protein 1 (KEAP1), a key regulator of cellular responses to oxidative and electrophilic stress, is associated with radioresistance in multiple cancer types. Several studies have reported the clinical significance of KEAP1 mutation in brain metastasis; however, the effect of KEAP1 mutations on radioresponse in meningioma has never been reported. OBSERVATIONS The authors present the case of a 40-year-old female with a KEAP1 mutation-positive atypical meningioma that was initially treated with resection followed by intensity-modulated radiation therapy (IMRT). Recurrence was observed at 15 months, requiring reoperation and adjuvant stereotactic radiosurgery (SRS). An excellent treatment response was observed at 7 months post-SRS with an improvement in reported symptoms, although bevacizumab was required for the resolution of radiation necrosis observed 2 months post-SRS. LESSONS To the authors' knowledge, this is the first report of KEAP1-mutant meningioma, including its clinical course after comprehensive management. Notably, treatment included multimodal radiotherapy with IMRT followed by SRS. SRS led to an excellent treatment response at the 7-month follow-up. However, radiation necrosis developed after both radiotherapy treatments, suggesting that radiological modification can be beneficial in patients with KEAP1 mutations. https://thejns.org/doi/10.3171/CASE24387.
Collapse
Affiliation(s)
- Paul M Harary
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Yusuke S Hori
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Amit R L Persad
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Armine Tayag
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Louisa Ustrzynski
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Sara C Emrich
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Elham Rahimy
- Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - David J Park
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Gordon Li
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Steven D Chang
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Jassi C, kuo WW, Kuo CH, Chang CM, Chen MC, Shih TC, Li CC, Huang CY. Mediation of radiation-induced bystander effect and epigenetic modification: The role of exosomes in cancer radioresistance. Heliyon 2024; 10:e34460. [PMID: 39114003 PMCID: PMC11304029 DOI: 10.1016/j.heliyon.2024.e34460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Wei-Wen kuo
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging & Radiological Science College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
9
|
von Eyben FE, Virgolini I, Baum R. Review on the Increasing Role for PSMA-Based Radioligand Therapy in Prostate Cancer. Cancers (Basel) 2024; 16:2520. [PMID: 39061160 PMCID: PMC11274522 DOI: 10.3390/cancers16142520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
In 2021, two randomized controlled trials (RCTs), TheraP and VISION, demonstrated that 177Lu-PSMA-617 as monotherapy was more effective for the decline of PSA than the comparator third-line treatments. METHODS Our review summarizes new RCTs that add to the use of radioligand therapy (RLT) for patients with high-risk prostate cancer (PCa). RESULTS Four past and present RCTs included 1081 patients. An RCT, ENZA-p, studied first-line treatment of patients with metastatic castration-resistant PCa (mCRPC). A combination of enzalutamide (ENZA) and 177Lu-PSMA-617 gave longer progression-free survival than ENZA as monotherapy. Other RCTs of patients with mCRPC, including the PSMAfore, and SPLASH trials, showed 177Lu-PSMA-617 as second-line treatment gave better progression-free survival than androgen receptor pathway inhibitors (combined p value < 6.9 × 10-6). CONCLUSIONS Patients with PCa gain if they are given PSMA-RLT early in the treatment of PCa and as part of combination therapies.
Collapse
Affiliation(s)
| | - Irene Virgolini
- Department of Nuclear Medicine, University Hospital Innsbruck, 6020 Innsbruck, Austria
| | - Richard Baum
- DKD Helios Clinic, 65 191 Frankfurth-Wiesbaden, Germany
| |
Collapse
|
10
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Porrazzo A, Cassandri M, D'Alessandro A, Morciano P, Rota R, Marampon F, Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell Oncol (Dordr) 2024; 47:717-732. [PMID: 38095764 DOI: 10.1007/s13402-023-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Andrea D'Alessandro
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy
| | - Patrizia Morciano
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università Degli Studi dell'Aquila, 67100, L'Aquila, Italy
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100, L'Aquila, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
12
|
Eapen RS, Buteau JP, Jackson P, Mitchell C, Oon SF, Alghazo O, McIntosh L, Dhiantravan N, Scalzo MJ, O'Brien J, Sandhu S, Azad AA, Williams SG, Sharma G, Haskali MB, Bressel M, Chen K, Jenjitranant P, McVey A, Moon D, Lawrentschuk N, Neeson PJ, Murphy DG, Hofman MS. Administering [ 177Lu]Lu-PSMA-617 Prior to Radical Prostatectomy in Men with High-risk Localised Prostate Cancer (LuTectomy): A Single-centre, Single-arm, Phase 1/2 Study. Eur Urol 2024; 85:217-226. [PMID: 37891072 DOI: 10.1016/j.eururo.2023.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND High-risk localised prostate cancer (HRCaP) has high rates of biochemical recurrence; [177Lu]Lu-PSMA-617 is effective in men with advanced prostate cancer. OBJECTIVE To investigate the dosimetry, safety, and efficacy of upfront [177Lu]Lu-PSMA-617 in men with HRCaP prior to robotic radical prostatectomy (RP). DESIGN, SETTING, AND PARTICIPANTS In this single-arm, phase I/II trial, we recruited men with HRCaP (any of prostate-specific antigen [PSA] >20 ng/ml, International Society of Urological Pathology (ISUP) grade group [GG] 3-5, and ≥cT2c), with high tumour uptake on [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PSMA PET/CT), and scheduled for RP. INTERVENTION Cohort A (n = 10) received one cycle and cohort B (n = 10) received two cycles of [177Lu]Lu-PSMA-617 (5 GBq) followed by surgery 6 weeks later. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was tumour radiation absorbed dose. Adverse events (AEs; Common Terminology Criteria for Adverse Events (CTCAE) version 5.0), surgical safety (Clavien-Dindo), imaging, and biochemical responses were evaluated (ClinicalTrials.gov: NCT04430192). RESULTS AND LIMITATIONS Between May 29, 2020 and April 28, 2022, 20 patients were enrolled. The median PSA was 18 ng/ml (interquartile range [IQR] 11-35), Eighteen (90%) had GG ≥3, and six (30%) had N1 disease. The median (IQR) highest tumour radiation absorbed dose after cycle 1 for all lesions was 35.5 Gy (19.5-50.1), with 19.6 Gy (11.3-48.4) delivered to the prostate. Five patients received radiation to lymph nodes. Nine (45%) patients achieved >50% PSA decline. The most common AEs related to [177Lu]Lu-PSMA-617 were grade 1 fatigue in eight (40%), nausea in seven (35%), dry mouth in six (30%), and thrombocytopenia in four (20%) patients. No grade 3/4 toxicities or Clavien 3-5 complications occurred. Limitations include small a sample size. CONCLUSIONS In men with HRCaP and high prostate-specific membrane antigen (PSMA) expression, [177Lu]Lu-PSMA-617 delivered high levels of targeted radiation doses with few toxicities and without compromising surgical safety. Further studies of [177Lu]Lu-PSMA-617 in this population are worthwhile to determine whether meaningful long-term oncological benefits can be demonstrated. PATIENT SUMMARY In this study, we demonstrate that up to two cycles of [177Lu]Lu-PSMA-617 given prior to radical prostatectomy in patients with high-risk localised prostate cancer are safe and deliver targeted doses of radiation to tumour-affected tissues. It is tolerated well with minimal treatment-related adverse events, and surgery is safe with a low rate of complications. Activity measured through PSA reduction, repeat PSMA PET/CT, and histological response is promising.
Collapse
Affiliation(s)
- Renu S Eapen
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| | - James P Buteau
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Price Jackson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Catherine Mitchell
- Department of Anatomical Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sheng F Oon
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Omar Alghazo
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lachlan McIntosh
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nattakorn Dhiantravan
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark J Scalzo
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jonathan O'Brien
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Arun A Azad
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Scott G Williams
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Gaurav Sharma
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mohammad B Haskali
- Radiopharmaceutical Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mathias Bressel
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kenneth Chen
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Aoife McVey
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Daniel Moon
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
13
|
Jiang W, Huang G, Pan S, Chen X, Liu T, Yang Z, Chen T, Zhu X. TRAIL-driven targeting and reversing cervical cancer radioresistance by seleno-nanotherapeutics through regulating cell metabolism. Drug Resist Updat 2024; 72:101033. [PMID: 38157648 DOI: 10.1016/j.drup.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guanning Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ziyi Yang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tianfeng Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
14
|
You P, Liu S, Li Q, Xie D, Yao L, Guo C, Guo Z, Wang T, Qiu H, Guo Y, Li J, Zhou H. Radiation-sensitive genetic prognostic model identifies individuals at risk for radiation resistance in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2023; 149:15623-15640. [PMID: 37656244 DOI: 10.1007/s00432-023-05304-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The advantages of radiotherapy for head and neck squamous cell carcinoma (HNSCC) depend on the radiation sensitivity of the patient. Here, we established and verified radiological factor-related gene signature and built a prognostic risk model to predict whether radiotherapy would be beneficial. METHODS Data from The Cancer Genome Atlas, Gene Expression Omnibus, and RadAtlas databases were subjected to LASSO regression, univariate COX regression, and multivariate COX regression analyses to integrate genomic and clinical information from patients with HNSCC. HNSCC radiation-related prognostic genes were identified, and patients classified into high- and low-risk groups, based on risk scores. Variations in radiation sensitivity according to immunological microenvironment, functional pathways, and immunotherapy response were investigated. Finally, the expression of HNSCC radiation-related genes was verified by qRT-PCR. RESULTS We built a clinical risk prediction model comprising a 15-gene signature and used it to divide patients into two groups based on their susceptibility to radiation: radiation-sensitive and radiation-resistant. Overall survival was significantly greater in the radiation-sensitive than the radiation-resistant group. Further, our model was an independent predictor of radiotherapy response, outperforming other clinical parameters, and could be combined with tumor mutational burden, to identify the target population with good predictive value for prognosis at 1, 2, and 3 years. Additionally, the radiation-resistant group was more vulnerable to low levels of immune infiltration, which are significantly associated with DNA damage repair, hypoxia, and cell cycle regulation. Tumor Immune Dysfunction and Exclusion scores also suggested that the resistant group would respond less favorably to immunotherapy. CONCLUSIONS Our prognostic model based on a radiation-related gene signature has potential for application as a tool for risk stratification of radiation therapy for patients with HNSCC, helping to identify candidates for radiation therapy and overcome radiation resistance.
Collapse
Affiliation(s)
- Peimeng You
- Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Shengbo Liu
- Second Clinical College of Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiaxuan Li
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Daipeng Xie
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Chenguang Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zefeng Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongrui Qiu
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yangzhong Guo
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China
| | - Junyu Li
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, China.
| | - Haiyu Zhou
- Nanchang University, Nanchang, China.
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Jiangxi Lung Cancer Institute, Nanchang, China.
| |
Collapse
|
15
|
Macedo-Silva C, Miranda-Gonçalves V, Tavares NT, Barros-Silva D, Lencart J, Lobo J, Oliveira Â, Correia MP, Altucci L, Jerónimo C. Epigenetic regulation of TP53 is involved in prostate cancer radioresistance and DNA damage response signaling. Signal Transduct Target Ther 2023; 8:395. [PMID: 37840069 PMCID: PMC10577134 DOI: 10.1038/s41392-023-01639-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
External beam radiotherapy (RT) is a leading first-line therapy for prostate cancer (PCa), and, in recent years, significant advances have been accomplished. However, RT resistance can arise and result in long-term recurrence or disease progression in the worst-case scenario. Thus, making crucial the discovery of new targets for PCa radiosensitization. Herein, we generated a radioresistant PCa cell line, and found p53 to be highly expressed in radioresistant PCa cells, as well as in PCa patients with recurrent/disease progression submitted to RT. Mechanism dissection revealed that RT could promote p53 expression via epigenetic modulation. Specifically, a decrease of H3K27me3 occupancy at TP53 gene promoter, due to increased KDM6B activity, was observed in radioresistant PCa cells. Furthermore, p53 is essential for efficient DNA damage signaling response and cell recovery upon stress induction by prolonged fractionated irradiation. Remarkably, KDM6B inhibition by GSK-J4 significantly decreased p53 expression, consequently attenuating the radioresistant phenotype of PCa cells and hampering in vivo 3D tumor formation. Overall, this work contributes to improve the understanding of p53 as a mediator of signaling transduction in DNA damage repair, as well as the impact of epigenetic targeting for PCa radiosensitization.
Collapse
Grants
- CJ’s Research is funded by Research Center of Portuguese Institute of Porto (BF.CBEG CI-IPOP-27-2016) and EpiParty PI 159-CI-IPOP-152-2021).
- CM-S holds a fellowship grant from UniCampania, Naples, Italy (2019-UNA2CLE-0170010).
- VM-G was funded by P.CCC: Centro Compreensivo de Cancro do Porto” – NORTE-01-0145-FEDER-072678, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).
- NTT was funded by P.CCC: Centro Compreensivo de Cancro do Porto” – NORTE-01-0145-FEDER-072678, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).
- DB-S holds a fellowship grant from FCT—Fundação para a Ciência e Tecnologia (SFRH/BD/136007/2018).
- MPC was funded by FCT—Fundação para a Ciência e Tecnologia (CEECINST/00091/2018).
- LA’s research is funded by Epi-MS under the VALERE 2019 Program; V:ALERE 2020—“CIRCE”; Campania Regional Government Technology Platform 2038 Lotta alle Patologie Oncologiche iCURE-B21C17000030007; Campania Regional Government FASE2: IDEAL; MIUR, Proof of Concept POC01_00043; POR Campania FSE 2014-2020 ASSE III; PON RI 2014/2020 “Dottorati Innovativi con caratterizzazione ndustrial”; Horizon EU: CAN-SERV BBMRI; EPI-MET MISE 2022; Bando giovani ricercatori D.R. n.834 del 30/09/2022 Università Vanvitelli project: Miranda; National Plan for NRRP Complementary Investments – Law Decree May 6, 2021, n. 59, converted and modified as to Law n. 101/2021Research initiatives for technologies and innovative trajectories in the health and care sectors: project ANTHEM (AdvaNced Technologies for Human-centrEd Medicine).
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Nuno Tiago Tavares
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joana Lencart
- Medical Physics, Radiobiology and Radiation Protection Group-Research Center of IPO Porto (CI-IPOP)/CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Medical Physics, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal
| | - João Lobo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Ângelo Oliveira
- Department of Radiation Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Margareta P Correia
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- BIOGEM, Molecular Biology and Genetics Research Institute, 83100, Avellino, Italy
- IEOS, Institute of Endocrinology and Oncology, 80100, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
16
|
Ali A, Mekhaeil B, Biziotis OD, Tsakiridis EE, Ahmadi E, Wu J, Wang S, Singh K, Menjolian G, Farrell T, Mesci A, Liu S, Berg T, Bramson JL, Steinberg GR, Tsakiridis T. The SGLT2 inhibitor canagliflozin suppresses growth and enhances prostate cancer response to radiotherapy. Commun Biol 2023; 6:919. [PMID: 37684337 PMCID: PMC10491589 DOI: 10.1038/s42003-023-05289-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Radiotherapy is a non-invasive standard treatment for prostate cancer (PC). However, PC develops radio-resistance, highlighting a need for agents to improve radiotherapy response. Canagliflozin, an inhibitor of sodium-glucose co-transporter-2, is approved for use in diabetes and heart failure, but is also shown to inhibit PC growth. However, whether canagliflozin can improve radiotherapy response in PC remains unknown. Here, we show that well-tolerated doses of canagliflozin suppress proliferation and survival of androgen-sensitive and insensitive human PC cells and tumors and sensitize them to radiotherapy. Canagliflozin blocks mitochondrial respiration, promotes AMPK activity, inhibits the MAPK and mTOR-p70S6k/4EBP1 pathways, activates cell cycle checkpoints, and inhibits proliferation in part through HIF-1α suppression. Canagliflozin mediates transcriptional reprogramming of several metabolic and survival pathways known to be regulated by ETS and E2F family transcription factors. Genes downregulated by canagliflozin are associated with poor PC prognosis. This study lays the groundwork for clinical investigation of canagliflozin in PC prevention and treatment in combination with radiotherapy.
Collapse
Affiliation(s)
- Amr Ali
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Bassem Mekhaeil
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
| | - Olga-Demetra Biziotis
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elham Ahmadi
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
| | - Simon Wang
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Kanwaldeep Singh
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Gabe Menjolian
- Department of Radiotherapy, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Thomas Farrell
- Department of Physics, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Aruz Mesci
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Department of Radiation Oncology, Juravinski Cancer Center, Hamilton, ON, Canada
| | - Stanley Liu
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Tobias Berg
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan L Bramson
- Departments of Oncology, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Departments of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Theodoros Tsakiridis
- Departments of Oncology, McMaster University, Hamilton, ON, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada.
- Department of Radiation Oncology, Juravinski Cancer Center, Hamilton, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Tossetta G, Fantone S, Marzioni D, Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15113037. [PMID: 37296999 DOI: 10.3390/cancers15113037] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the second most common cancer in men worldwide. Prostate cancer can be treated by surgery or active surveillance when early diagnosed but, when diagnosed at an advanced or metastatic stage, radiation therapy or androgen-deprivation therapy is needed to reduce cancer progression. However, both of these therapies can cause prostate cancer resistance to treatment. Several studies demonstrated that oxidative stress is involved in cancer occurrence, development, progression and treatment resistance. The nuclear factor erythroid 2-related factor 2 (NRF2)/KEAP1 (Kelch-Like ECH-Associated Protein 1) pathway plays an important role in protecting cells against oxidative damage. Reactive oxygen species (ROS) levels and NRF2 activation can determine cell fate. In particular, toxic levels of ROS lead physiological cell death and cell tumor suppression, while lower ROS levels are associated with carcinogenesis and cancer progression. On the contrary, a high level of NRF2 promotes cell survival related to cancer progression activating an adaptive antioxidant response. In this review, we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 signaling pathway in prostate cancer.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Roberta Mazzucchelli
- Department of Biomedical Sciences and Public Health, Section of Pathological Anatomy, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
18
|
Burchardt WM, Chyrek AJ, Bielęda GM, Burchardt E, Chicheł A. The potential of low-dose-rate brachytherapy with iodine-125 in the treatment of local recurrences of prostate cancer after primary high-dose-rate monotherapy. J Contemp Brachytherapy 2023; 15:103-109. [PMID: 37215611 PMCID: PMC10196734 DOI: 10.5114/jcb.2023.126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose The incidence of local prostate cancer recurrences after monotherapy with high-dose-rate brachytherapy (HDR-BT) is low. However, a cumulated number of local recurrences during follow-up is naturally observed in highly specialized oncological centers. This retrospective study aimed to present the treatment of local recurrences after HDR-BT with low-dose-rate brachytherapy (LDR-BT). Material and methods Nine patients with low- and intermediate-risk prostate cancer with a median age of 71 years (range, 59-82 years) were diagnosed with local recurrences after previous monotherapy HDR-BT, 3 × 10.5 Gy (from 2010 to 2013). Median time to biochemical recurrence was 59 months (range, 21-80 months). All patients received 145 Gy with salvage LDR-BT (iodine-125). Gastrointestinal and urological toxicities were evaluated based on patients' records following CTCAE v. 4.0 and IPSS scales. Results The median follow-up after salvage treatment was 30 months (range, 17-63 months). Local recurrences (LR) were detected in two cases, and the actuarial 2-year local control was 88%. Biochemical failure was observed in four cases. Distant metastases (DM) were observed in 2 patients. In one patient, both LR and DM were diagnosed simultaneously. Four patients had no relapse of the disease, and a 2-year disease-free survival (DSF) was 58.3%. Before salvage treatment, median IPSS scores were 6.5 points (range, 1-23 points). At the first follow-up visit, after one month, the mean IPSS score was 20 points, and at the last follow-up visit, it was 8 points (range, 1-26 points). One patient had urinary retention after treatment. There was no significant change in IPSS scores before and after the treatment (p = 0.68). Two patients had grade 1 toxicity in the gastrointestinal tract. Conclusions Salvage LDR-BT for patients with prostate cancer previously treated with HDR-BT monotherapy is characterized by acceptable toxicity, and may result in local disease control.
Collapse
Affiliation(s)
- Wojciech M. Burchardt
- Brachytherapy Department, Greater Poland Cancer Centre, Poznan,, Poland
- Electroradiology Department, Poznan University of Medical Sciences, Poznan,, Poland
| | - Artur J. Chyrek
- Brachytherapy Department, Greater Poland Cancer Centre, Poznan,, Poland
- Electroradiology Department, Poznan University of Medical Sciences, Poznan,, Poland
| | - Grzegorz M. Bielęda
- Electroradiology Department, Poznan University of Medical Sciences, Poznan,, Poland
- Medical Physics Department, Greater Poland Cancer Centre, Poznan,, Poland
| | - Ewa Burchardt
- Electroradiology Department, Poznan University of Medical Sciences, Poznan,, Poland
- Department of Radiotherapy and Oncological Gynecology, Greater Poland Cancer Center, Poznan,, Poland
| | - Adam Chicheł
- Brachytherapy Department, Greater Poland Cancer Centre, Poznan,, Poland
| |
Collapse
|
19
|
Pawar JS, Al-Amin MY, Hu CD. JNJ-64619178 radiosensitizes and suppresses fractionated ionizing radiation-induced neuroendocrine differentiation (NED) in prostate cancer. Front Oncol 2023; 13:1126482. [PMID: 36959798 PMCID: PMC10028149 DOI: 10.3389/fonc.2023.1126482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Background Radiation therapy (RT) is a standard treatment regimen for locally advanced prostate cancer; however, its failure results in tumor recurrence, metastasis, and cancer-related death. The recurrence of cancer after radiotherapy is one of the major challenges in prostate cancer treatment. Despite overall cure rate of 93.3% initially, prostate cancer relapse in 20-30% patients after radiation therapy. Cancer cells acquire radioresistance upon fractionated ionizing radiation (FIR) treatment, eventually undergo neuroendocrine differentiation (NED) and transform into neuroendocrine-like cells, a mechanism involved in acquiring resistance to radiation therapy. Radiosensitizers are agents that inhibit the repair of radiation-induced DNA damage. Protein arginine methyltransferase 5 (PRMT5) gets upregulated upon ionizing radiation treatment and epigenetically activates DNA damage repair genes in prostate cancer cells. In this study, we targeted PRMT5 with JNJ-64619178 and assessed its effect on DNA damage repair gene activation, radiosensitization, and FIR-induced NED in prostate cancer. Methods γH2AX foci analysis was performed to evaluate the DNA damage repair after radiation therapy. RT-qPCR and western blot were carried out to analyze the expression of DNA damage repair genes. Clonogenic assay was conducted to find out the surviving fraction after radiation therapy. NED was targeted with JNJ-64619178 in androgen receptor (AR) positive and negative prostate cancer cells undergoing FIR treatment. Results JNJ-64619178 inhibits DNA damage repair in prostate cancer cells independent of their AR status. JNJ-64619178 impairs the repair of ionizing radiation-induced damaged DNA by transcriptionally inhibiting the DNA damage repair gene expression and radiosensitizes prostate, glioblastoma and lung cancer cell line. It targets NED induced by FIR in prostate cancer cells. Conclusion JNJ-64619178 can radiosensitize and suppress NED induced by FIR in prostate cancer cells and can be a potential radiosensitizer for prostate cancer treatment.
Collapse
Affiliation(s)
- Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Jogendra Singh Pawar, ;
| | - Md. Yusuf Al-Amin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Radioresistance Mechanisms in Prostate Cancer Cell Lines Surviving Ultra-Hypo-Fractionated EBRT: Implications and Possible Clinical Applications. Cancers (Basel) 2022; 14:cancers14225504. [PMID: 36428597 PMCID: PMC9688510 DOI: 10.3390/cancers14225504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
The use of a higher dose per fraction to overcome the high radioresistance of prostate cancer cells has been unsuccessfully proposed. Herein, we present PC3 and DU-145, castration-resistant prostate cancer cell lines that survived a clinically used ultra-higher dose per fraction, namely, radioresistant PC3 and DU-145 cells (PC3RR and DU-145RR). Compared to PC3, PC3RR showed a higher level of aggressive behaviour, with enhanced clonogenic potential, DNA damage repair, migration ability and cancer stem cell features. Furthermore, compared to PC3, PC3RR more efficiently survived further radiation by increasing proliferation and down-regulating pro-apoptotic proteins. No significant changes of the above parameters were described in DU-145RR, suggesting that different prostate cancer cell lines that survive ultra-higher dose per fraction do not display the same grade of aggressive phenotype. Furthermore, both PC3RR and DU-145RR increased antioxidant enzymes and mesenchymal markers. Our data suggest that different molecular mechanisms could be potential targets for future treatments plans based on sequential strategies and synergistic effects of different modalities, possibly in a patient-tailored fashion. Moreover, PC3RR cells displayed an increase in specific markers involved in bone remodeling, indicating that radiotherapy selects a PC3 population capable of migrating to secondary metastatic sites. Finally, PC3RR cells showed a better sensitivity to Docetaxel as compared to native PC3 cells. This suggests that a subset of patients with castration-resistant metastatic disease could benefit from upfront Docetaxel treatment after the failure of radiotherapy.
Collapse
|
21
|
Hydrogen Peroxide Promotes the Production of Radiation-Derived EVs Containing Mitochondrial Proteins. Antioxidants (Basel) 2022; 11:antiox11112119. [PMID: 36358489 PMCID: PMC9686922 DOI: 10.3390/antiox11112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/01/2022] Open
Abstract
In spite of extensive successes, cancer recurrence after radiation treatment (RT) remains one of the significant challenges in the cure of localized prostate cancer (PCa). This study focuses on elucidating a novel adaptive response to RT that could contribute to cancer recurrence. Here, we used PC3 cell line, an adenocarcinoma from a bone metastasis and radio-resistant clone 695 cell line, which survived after total radiation dose of 66 Gy (2 Gy × 33) and subsequently regrew in nude mice after exposure to fractionated radiation at 10 Gy (2 Gy × 5). Clone 695 cells not only showed an increase in surviving fraction post-radiation but also an increase in hydrogen peroxide (H2O2) production when compared to PC3 cells. At the single cell level, confocal microscope images coupled with IMARIS rendering software demonstrate an increase in mitochondrial mass and membrane potential in clone 695 cells. Utilizing the Seahorse XF96 instrument to investigate mitochondrial respiration, clone 695 cells demonstrated a higher basal Oxygen Consumption Rate (OCR), ATP-linked OCR, and proton leak compared to PC3 cells. The elevation of mitochondrial function in clone 695 cells is accompanied by an increase in mitochondrial H2O2 production. These data suggest that H2O2 could reprogram PCa’s mitochondrial homeostasis, which allows the cancer to survive and regrow after RT. Upon exposure to RT, in addition to ROS production, we found that RT induces the release of extracellular vesicles (EVs) from PC3 cells (p < 0.05). Importantly, adding H2O2 to PC3 cells promotes EVs production in a dose-dependent manner and pre-treatment with polyethylene glycol-Catalase mitigates H2O2-mediated EV production. Both RT-derived EVs and H2O2-derived EVs carried higher levels of mitochondrial antioxidant proteins including, Peroxiredoxin 3, Glutathione Peroxidase 4 as well as mitochondrial-associated oxidative phosphorylation proteins. Significantly, adding isolated functional mitochondria 24 h prior to RT shows a significant increase in surviving fractions of PC3 cells (p < 0.05). Together, our findings reveal that H2O2 promotes the production of EVs carrying mitochondrial proteins and that functional mitochondria enhance cancer survival after RT.
Collapse
|
22
|
Marinescu IM, Rogg M, Spohn S, von Büren M, Kamps M, Jilg CA, Fountzila E, Papadopoulou K, Ceci L, Bettermann A, Ruf J, Benndorf M, Adebahr S, Zips D, Grosu AL, Schell C, Zamboglou C. Ex vivo γH2AX assay for tumor radiosensitivity in primary prostate cancer patients and correlation with clinical parameters. Radiat Oncol 2022; 17:163. [PMID: 36199143 PMCID: PMC9533509 DOI: 10.1186/s13014-022-02131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Backround Accurate surrogate parameters for radio resistance are warranted for individualized radiotherapy (RT) concepts in prostate cancer (PCa). The purpose of this study was to assess intertumoral heterogeneity in terms of radio resistance using an ex-vivo γH2AX assay after irradiation of prostate biopsy cores and to investigate its correlation with clinical features of respective patients as well as imaging and genomic features of tumor areas.
Methods Twenty one patients with histologically-proven PCa and pre-therapeutic multiparametric resonance imaging and prostate-specific membrane antigen positron emission tomography were included in the study. Biopsy cores were collected from 26 PCa foci. Residual γH2AX foci were counted 24 h after ex-vivo irradiation (with 0 and 4 Gy) of biopsy specimen and served as a surrogate for radio resistance. Clinical, genomic (next generation sequencing) and imaging features were collected and their association with the radio resistance was studied. Results In total 18 PCa lesions from 16 patients were included in the final analysis. The median γH2AX foci value per PCa lesion was 3.12. According to this, the patients were divided into two groups (radio sensitive vs. radio resistant) with significant differences in foci number (p < 0.0001). The patients in the radio sensitive group had significantly higher prostate specific antigen serum concentration (p = 0.015), tumor areas in the radio sensitive group had higher SUV (standardized uptake values in PSMA PET)-max and -mean values (p = 0.0037, p = 0.028) and lower ADC (apparent diffusion coefficient-mean values, p = 0.049). All later parameters had significant (p < 0.05) correlations in Pearson’s test. One patient in the radio sensitive group displayed a previously not reported loss of function frameshift mutation in the NBN gene (c.654_658delAAAAC) that introduces a premature termination codon and results in a truncated protein. Conclusion In this pilot study, significant differences in intertumoral radio resistance were observed and clinical as well as imaging parameters may be applied for their prediction. After further prospective validation in larger patient cohorts these finding may lead to individual RT dose prescription for PCa patients in the future.
Collapse
Affiliation(s)
- Ioana M Marinescu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany.
| | - Manuel Rogg
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon Spohn
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Moritz von Büren
- Department of Urology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Marius Kamps
- Department of Urology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Cordula A Jilg
- Department of Urology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Elena Fountzila
- Second Department of Medical Oncology, Euromedica General Clinic of Thessaloniki, Thessaloniki, Greece.,Greece and European University Cyprus, Engomi, Cyprus
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lara Ceci
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Alisa Bettermann
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Daniel Zips
- Medical Faculty and University Hospital, Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany.,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, University of Freiburg, Freiburg, Germany.,German Oncology Center, European University Cyprus, Limassol, Cyprus
| |
Collapse
|
23
|
Sutera P, Deek MP, Van der Eecken K, Wyatt AW, Kishan AU, Molitoris JK, Ferris MJ, Minhaj Siddiqui M, Rana Z, Mishra MV, Kwok Y, Davicioni E, Spratt DE, Ost P, Feng FY, Tran PT. Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate 2022; 82 Suppl 1:S73-S85. [PMID: 35657158 PMCID: PMC9202472 DOI: 10.1002/pros.24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Kim Van der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amar U. Kishan
- Department of Radiation Oncology, UCLA, Los Angeles, CA, USA
| | - Jason K. Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew J. Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Minhaj Siddiqui
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zaker Rana
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark V. Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals, Cleveland, OH, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium and Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Felix Y. Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
A radiation resistance related index for biochemical recurrence and tumor immune environment in prostate cancer patients. Comput Biol Med 2022; 146:105711. [PMID: 35701253 DOI: 10.1016/j.compbiomed.2022.105711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/08/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE To establish and verify a novel radiation resistance related index for predicting biochemical recurrence and tumor immune environment in prostate cancer (PCa) patients. MATERIALS AND METHODS The transcriptome information of PCa were obtained from GEO and TCGA portal. We identified radiation resistance related genes (RRGs) between radioresistant and radiosensitive PCa cells. We conducted multivariate Cox analysis to construct a novel radiation resistance related index for predicting biochemical recurrence (BCR)-free survival (BCRFS). Internal and external validations were conducted. Preliminary experimental verifications were performed. RESULTS We identified 194 differentially expressed RRGs and three radiation resistance related molecular clusters for PCa. Moreover, we established a novel radiation resistance related index and succeeded in conducting internal and external validations. High-risk populations meant significantly worse BCRFS in training, testing and validating cohort. The area under receiver operating characteristic curve were 0.809, 0.698, and 0.712 in training, testing, and validating cohort. The immune microenvironment was significantly different between high and low-risk score patients. Preliminary experiment identified and validated three potential biomarkers related to radiation resistance (ZNF695, TM4SF19, CCDC3) of PCa. CONCLUSIONS This study successfully established and verified a novel radiation resistance related index, which had an excellent performance in predicting BCR and tumor immune microenvironment in patients with PCa.
Collapse
|
25
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Marques A, Belchior A, Silva F, Marques F, Campello MPC, Pinheiro T, Santos P, Santos L, Matos APA, Paulo A. Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. Int J Mol Sci 2022; 23:ijms23095279. [PMID: 35563666 PMCID: PMC9105611 DOI: 10.3390/ijms23095279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022] Open
Abstract
For a while, gold nanoparticles (AuNPs) have been recognized as potential radiosensitizers in cancer radiation therapy, mainly due to their physical properties, making them appealing for medical applications. Nevertheless, the performance of AuNPs as radiosensitizers still raises important questions that need further investigation. Searching for selective prostate (PCa) radiosensitizing agents, we studied the radiosensitization capability of the target-specific AuNP-BBN in cancer versus non-cancerous prostate cells, including the evaluation of dose rate effects in comparison with non-targeted counterparts (AuNP-TDOTA). PCa cells were found to exhibit increased AuNP uptake when compared to non-tumoral ones, leading to a significant loss of cellular proliferation ability and complex DNA damage, evidenced by the occurrence of multiple micronucleus per binucleated cell, in the case of PC3 cells irradiated with 2 Gy of γ-rays, after incubation with AuNP-BBN. Remarkably, the treatment of the PC3 cells with AuNP-BBN led to a much stronger influence of the dose rate on the cellular survival upon γ-photon irradiation, as well as on their genomic instability. Overall, AuNP-BBN emerged in this study as a very promising nanotool for the efficient and selective radiosensitization of human prostate cancer PC3 cells, therefore deserving further preclinical evaluation in adequate animal models for prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Ana Marques
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Correspondence: (A.B.); (F.S.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - Teresa Pinheiro
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
- Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Pedro Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
| | - Luis Santos
- Laboratório de Metrologia, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| | - António P. A. Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal;
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.M.); (M.P.C.C.); (P.S.); (A.P.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal;
| |
Collapse
|
27
|
Saxby H, Boussios S, Mikropoulos C. Androgen Receptor Gene Pathway Upregulation and Radiation Resistance in Oligometastatic Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094786. [PMID: 35563176 PMCID: PMC9105839 DOI: 10.3390/ijms23094786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/24/2022] [Indexed: 12/20/2022] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) is currently used as a salvage intervention for men with oligometastatic prostate cancer (PC), and increasingly so since the results of the Stereotactic Ablative Body Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers (SABR-COMET) trial reported a significant improvement in overall survival with SABR. The addition of androgen deprivation therapy (ADT) to localised prostate radiotherapy improves survival as it sensitises PC to radiotherapy-induced cell death. The importance of the androgen receptor (AR) gene pathway in the development of resistance to radiotherapy is well established. In this review paper, we will examine the data to determine how we can overcome the upregulation of the AR pathway and suggest a strategy for improving outcomes in men with oligometastatic hormone-sensitive PC.
Collapse
Affiliation(s)
- Helen Saxby
- Torbay & South Devon NHS Healthcare Foundation Trust, Lowes Bridge, Torquay TQ2 7AA, UK;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham Kent ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
- Correspondence: , or
| | - Christos Mikropoulos
- St Lukes Cancer Centre, Royal Surrey County Hospital, Egerton Rd, Guildford GU2 7XX, UK;
| |
Collapse
|
28
|
5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells. Br J Cancer 2022; 127:350-363. [PMID: 35365766 PMCID: PMC9296661 DOI: 10.1038/s41416-022-01789-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
Background The naturally occurring amino acid 5-aminolevulinic acid (5-ALA) is a precursor of protoporphyrin IX (PpIX) biosynthesised in the mitochondria. When accumulated PpIX is excited by light (wavelength of 625–635 nm), reactive oxygen species (ROS) are generated. Here, we investigated whether 5-ALA may increase the sensitisation of prostate cancer (PCA) cells to radiotherapy through the generation of ROS via its metabolite, PpIX. Methods Effect of 5-ALA on PC-3 and DU-145 PCA cell lines treated with ionising radiation (IR) was examined in vitro and in vivo with assessment by clonogenic assay, mitochondrial function and ROS production under normoxia or hypoxia condition. Results 5-ALA enhanced intra-mitochondrial ROS production immediately after exposure to IR and decreased mitochondrial membrane potential via increase of intra-cellular PpIX. IR with 5-ALA induced mitochondrial dysfunction and increased ATP production, switching energy metabolism to the quiescence. Under hypoxic condition, ROS burst and mitochondrial dysfunction were induced by IR with 5-ALA resulting reducing cancer stemness and radiation resistance. Conclusion These results suggest that combined therapy with 5-ALA and radiation therapy is a novel strategy to improve the anti-cancer effects of radiation therapy for PCA.
Collapse
|
29
|
Jasinski M, Olszewska-Slonina D. Serum Paraoxonase-1 Activity and the Risk of Prostate Cancer Recurrence in Patients Treated with Radiotherapy. Antioxidants (Basel) 2022; 11:antiox11020346. [PMID: 35204228 PMCID: PMC8868428 DOI: 10.3390/antiox11020346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
The antioxidant paraoxonase-1 (PON1) may be involved in the response to radiation-induced oxidative stress and possibly prevent cell apoptosis. The correlation of PON1 with the risk of cancer recurrence after radiotherapy (RT) is not yet explored. We investigated changes in the activity of PON1 in patients with prostate cancer (PCa) undergoing RT, and the relation of PON1 activity to the risk of recurrence after RT. We included 56 men with PCa. Blood samples were obtained before irradiation and after the completion of RT. Patients were followed for an average of 51.2 months. Each case of biochemical recurrence was confirmed with biopsy. The control group was composed of 60 healthy men. There was no significant difference in PON1 activity between the control group and patients pre-radiotherapy. Irradiation was associated with a significant decrease in PON1 activity. Patients with PCa recurrence had significantly higher serum PON1 activity than those recurrence-free, both before and after RT. PON1 activity was a predictor of PCa recurrence, with sensitivity over 80% and specificity over 64%. Our results suggest that PON1 activity may be a predictor of PCa recurrence risk after RT. Studies with a larger number of patients and longer follow-up are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Milosz Jasinski
- Department of Urology, Institute of Oncology, Romanowskiej 2, 85-796 Bydgoszcz, Poland
- Correspondence:
| | - Dorota Olszewska-Slonina
- Department of Pathobiochemistry and Clinical Chemistry, Collegium Medicum of Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
30
|
Lou D, Zhu D, Wang Z, Zhang R, Yu Z, Gong F, Peng Y, Zeng S, Liu Y, Li A, Fan Q. Effect of GADD45G on the radioresistance of nasopharyngeal carcinoma cells. Anticancer Drugs 2022; 33:e84-e93. [PMID: 34282742 DOI: 10.1097/cad.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of radioresistance by nasopharyngeal carcinoma (NPC) cells almost always results in tumor recurrence and metastasis, making clinical treatment of the disease difficult. In this study, the mechanism of radioresistance in NPC cells was investigated. First, a gene array and quantitative reverse-transcription-PCR assays were used to screen for genes exhibiting significantly altered expression in the DNA damage signaling pathway. Based on those results, GADD45G was further studied in the context of radioresistance. A GADD45G-knockout NPC cell line (CNE-2R-KO) was constructed using CRISPR-Cas9 technology and used for a comparison of differences in radioresistance with other radiosensitive and radioresistant NPC cells, as evaluated using colony formation assays. Cell cycle changes were observed using flow cytometry. Cell proliferation and migration were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and wound healing assays, respectively. The sequencing results revealed the successful construction of the CNE-2R-KO cell line, the radiosensitivity of which was higher than that of its parent radioresistant cell line owing to the GADD45G knockout. This was likely related to the increase in the number of cells in the G1 phase and decrease in those in the S1 phase as well as the increased cell proliferation rate and decreased migratory ability. GADD45G is associated with radioresistance in NPC cells and likely has a role in the occurrence and metastasis of NPC.
Collapse
Affiliation(s)
- Dandan Lou
- TCM Molecular Biology Laboratory, School of Traditional Chinese Medicine, Southern Medical University
| | - Daoqi Zhu
- TCM Molecular Biology Laboratory, School of Traditional Chinese Medicine, Southern Medical University
| | - Zetai Wang
- TCM Molecular Biology Laboratory, School of Traditional Chinese Medicine, Southern Medical University
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center
| | - Zhijian Yu
- Department of Traditional Chinese Medicine Formulae, School of Traditional Chinese Medicine, Southern Medical University
| | - Fengying Gong
- Department of Traditional Chinese Medicine, NanFang Hospital, Guangdong, Guangzhou, China
| | - Yan Peng
- TCM Molecular Biology Laboratory, School of Traditional Chinese Medicine, Southern Medical University
| | - Siying Zeng
- TCM Molecular Biology Laboratory, School of Traditional Chinese Medicine, Southern Medical University
| | - Ying Liu
- Department of Radiotherapy, Nanfang Hospital, Southern Medical University, Guangdong, Guangzhou
| | - Aiwu Li
- Department of Traditional Chinese Medicine, NanFang Hospital, Guangdong, Guangzhou, China
| | - Qin Fan
- TCM Molecular Biology Laboratory, School of Traditional Chinese Medicine, Southern Medical University
| |
Collapse
|
31
|
EGFR-mediated Rad51 expression potentiates intrinsic resistance in prostate cancer via EMT and DNA repair pathways. Life Sci 2021; 286:120031. [PMID: 34627777 DOI: 10.1016/j.lfs.2021.120031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
AIM To study the role of EGFR signaling in regulation of intrinsic resistance in prostate cancer. MATERIALS AND METHODS Radioresistant prostate carcinoma DU145 and PC-3 cells were used to study the effect of shRNA-mediated knockdown of EGFR on intrinsic radioresistance mechanisms. Semi-quantitative PCR, western blotting, growth kinetics, colony formation, transwell migration, invasion and trypan blue assays along with inhibitors erlotinib, NU7441, B02, PD98059 and LY294002 were used. KEY FINDINGS EGFR knock-down induced morphological alterations along with reduction in clonogenic potential and cell proliferation in DU145 cells. Migratory potential of prostate cancer cells were reduced concomitant with upregulation of epithelial marker, E-cadherin and decreased expression of mesenchymal markers, vimentin and snail. Further, EGFR knock-down decreased the expression of Rad51 and DNA-PK at mRNA as well as protein levels. Likewise, erlotinib, an EGFR inhibitor, and NU7441, a DNA-PK inhibitor increased the expression of E-cadherin and decreased the level of vimentin. Both these inhibitors also decreased the levels of DNA damage regulatory protein Rad51. Further, Rad51 inhibitor, B02, inhibited the clonogenic potential, cell migration and reduced the expression of vimentin, Ku70 and Ku80, and also, B02 radiosensitized DU145 cells. EGFR-regulated expression of Rad51 was found to be mediated via PI3K/Akt and Erk1/2 pathways. SIGNIFICANCE EGFR was found to regulate DNA damage repair, survival and EMT responses in prostate cancer cells through transcriptional regulation of Rad51. A novel role of EGFR-Erk1/2/Akt-Rad51 axis through modulation of EMT and DNA repair pathways in prostate cancer resistance mechanisms is suggested.
Collapse
|
32
|
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol 2021; 11:718636. [PMID: 34900673 PMCID: PMC8652287 DOI: 10.3389/fonc.2021.718636] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy has been used worldwide for many decades as a therapeutic regimen for the treatment of different types of cancer. Just over 50% of cancer patients are treated with radiotherapy alone or with other types of antitumor therapy. Radiation can induce different types of cell damage: directly, it can induce DNA single- and double-strand breaks; indirectly, it can induce the formation of free radicals, which can interact with different components of cells, including the genome, promoting structural alterations. During treatment, radiosensitive tumor cells decrease their rate of cell proliferation through cell cycle arrest stimulated by DNA damage. Then, DNA repair mechanisms are turned on to alleviate the damage, but cell death mechanisms are activated if damage persists and cannot be repaired. Interestingly, some cells can evade apoptosis because genome damage triggers the cellular overactivation of some DNA repair pathways. Additionally, some surviving cells exposed to radiation may have alterations in the expression of tumor suppressor genes and oncogenes, enhancing different hallmarks of cancer, such as migration, invasion, and metastasis. The activation of these genetic pathways and other epigenetic and structural cellular changes in the irradiated cells and extracellular factors, such as the tumor microenvironment, is crucial in developing tumor radioresistance. The tumor microenvironment is largely responsible for the poor efficacy of antitumor therapy, tumor relapse, and poor prognosis observed in some patients. In this review, we describe strategies that tumor cells use to respond to radiation stress, adapt, and proliferate after radiotherapy, promoting the appearance of tumor radioresistance. Also, we discuss the clinical impact of radioresistance in patient outcomes. Knowledge of such cellular strategies could help the development of new clinical interventions, increasing the radiosensitization of tumor cells, improving the effectiveness of these therapies, and increasing the survival of patients.
Collapse
Affiliation(s)
- Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico City
| | | |
Collapse
|
33
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
34
|
Zhu X, Wang Y, Jiang C, Li X, Sun L, Wang G, Fu X. Radiosensitivity-Specific Proteomic and Signaling Pathway Network of Non-Small Cell Lung Cancer (NSCLC). Int J Radiat Oncol Biol Phys 2021; 112:529-541. [PMID: 34506873 DOI: 10.1016/j.ijrobp.2021.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE An unmet clinical need in non-small cell lung cancer (NSCLC) management is the accurate prediction of radiation response in patients receiving radical radiation therapy. We explored the intrinsic radiosensitivity of NSCLC from the proteomic profiles of NSCLC cell lines and paraffin-embedded human samples. METHODS AND MATERIALS To uncover radiosensitivity-specific proteomic and signaling pathways, we performed quantitative proteomics by data-independent acquisition mass spectrometry assay on 29 human NSCLC cell lines and 13 paraffin-embedded human NSCLC samples. We validated closely interacting radioresistant proteins by western blotting, immunofluorescence, real-time quantitative polymerase chain reaction in NSCLC cell lines, and immunohistochemistry in paraffin-embedded human samples. We validated the functions of 3 key hub proteins by lentivirus transfection, clonogenic survival assay, and flow cytometry. RESULTS The proteomic profiling of NSCLC showed that the intrinsic radiosensitivity of NSCLC is mainly modulated by signaling pathways of proteoglycans in cancer, focal adhesion, and regulation of the actin cytoskeleton. We identified 71 differentially expressed proteins and validated 8 closely interacting proteins as radioresistant proteins of NSCLC. Moreover, we also validated the functionality of integrin-linked protein kinase, p21-activated kinase 1, and Ras GTPase-activating-like protein IQGAP1 in the radiation response of NSCLC cell lines. Finally, with the NSCLC radiosensitivity-specific proteins, we delineated the atlas network of NSCLC radiosensitivity-related signaling pathways. CONCLUSIONS Radiosensitivity-specific proteins could guide individualized radiation therapy in clinical practice by predicting the radiation response of patients with NSCLC. Moreover, the NSCLC radiosensitivity-related signaling pathway atlas could guide further exploration of the underlying mechanism.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Li
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Anhui, China
| | - Linying Sun
- Institution of Computing Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangzhong Wang
- Institution of Computing Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Ba S, Yu M. Ultrasound-stimulated microbubbles enhances radiosensitivity of ovarian cancer. Acta Radiol 2021; 63:1433-1440. [PMID: 34463146 DOI: 10.1177/02841851211038808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Radiation therapy is regarded as an effective treatment for early ovarian cancer (OC). However, due to radiation resistance caused by DNA double-strand breaks (DSBs) and angiogenesis, the efficacy of radiotherapy for advanced OC is limited and controversial. PURPOSE To explore whether ultrasound-stimulated microbubbles (USMBs) can enhance the radiosensitivity of OC. MATERIAL AND METHODS OC cells (ES-2) were respectively irradiated with 5-Gy and 10-Gy radiation doses with or without exposure to USMB. Methyl thiazolyltetrazolium (MTT) and colony-formation assays were conducted to detect the viability and proliferation of ES-2 cells after USMBs and ionizing radiation (IR) treatment. Immunofluorescence assays were conducted to examine levels of gamma-H2A histone family member X (γ-H2AX), an indicator for DSBs. Flow cytometry analyses were carried out to assess the apoptosis of ES-2 cells. The angiogenic activity of human umbilical vein endothelial cells (HUVECs) was measured by tube formation assays. RESULTS USMBs enhanced IR-induced suppressive effect on the viability and proliferation of OC cells. The protein levels of phosphorylated γ-H2AX and CHK1 were significantly upregulated after IR treatment and further enhanced by USMBs. In addition, USMBs enhanced the promotion of IR-mediated OC cell apoptosis. The inhibitory effect of IR on angiogenesis was further enhanced by USMBs, and protein levels of AT1R, VEGFA, and EGFR were downregulated by IR in a dose-dependent way and then enhanced by USMB treatment in HUVECs. CONCLUSIONS USMB exposure significantly enhances the radiosensitivity of OC by suppressing cell proliferation, promoting OC cell apoptosis, and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Shuang Ba
- Department of Ultrasound, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, PR China
| | - Ming Yu
- Department of Ultrasound, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, PR China
| |
Collapse
|
36
|
MiR-223-3p targets FOXO3a to inhibit radiosensitivity in prostate cancer by activating glycolysis. Life Sci 2021; 282:119798. [PMID: 34237309 DOI: 10.1016/j.lfs.2021.119798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 01/11/2023]
Abstract
AIMS The incidence and detection rate of prostate cancer in China have been increasing in recent years. Radiotherapy is the ideal treatment for non-metastatic prostate cancer (PCa), but the effectiveness of radiotherapy is greatly discounted due to radio resistance. Therefore, relieving the radiotherapy resistance of PCa is key to improve the clinical efficacy of PCA. MAIN METHODS Cell proliferation was estimated using the MTT and clone formation assays. Cell apoptosis was estimated using the Annexin V-FITC/propidium iodide (PI) staining assay. Glucose uptake and lactose and ATP production were used to detect glycolysis. KEY FINDINGS miR-223-3p was significantly upregulated in clinically collected urine samples and PCa cells with low radiosensitivity. Enhancing miR-223-3p reduced radiosensitivity further, while inhibiting miR-223-3p improved the radiosensitivity of PC3 and LNCaP cells. Importantly, miR-223-3p regulated radiosensitivity by enhancing cell glycolysis. FOXO3a was a key target of miRNA-223-3p regulating glycolysis and radiosensitivity. Overexpression of FOXO3a abated the glycolysis level and alleviated the radioresistance caused by enhancing miR-223-3p to a certain extent. SIGNIFICANCE This is novel research on the role of miR-223-3p in promoting radiotherapy resistance of PCa cells by activating glycolysis. This approach provides a new perspective and ideas for alleviating radiotherapy resistance of PCa cells.
Collapse
|
37
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
38
|
Tsakanova G, Stepanyan A, Arakelova E, Ayvazyan V, Tonoyan V, Arakelyan A, Hildebrandt G, Schültke E. The radioenhancement potential of Schiff base derived copper (II) compounds against lung carcinoma in vitro. PLoS One 2021; 16:e0253553. [PMID: 34143847 PMCID: PMC8213134 DOI: 10.1371/journal.pone.0253553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
For the last years, copper complexes have been intensively implicated in biomedical research as components of cancer treatment. Herewith, we provide highlights of the synthesis, physical measurements, structural characterization of the newly developed Cu(II) chelates of Schiff Bases, Cu(Picolinyl-L-Tryptopahanate)2, Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2, Cu(Nicotinyl-L-Phenylalaninate)2, Cu(Isonicotinyl-L-Phenylalaninate)2, and their radioenhancement capacity at kV and MV ranges of irradiation of human lung carcinoma epithelial cells in vitro. The methods of cell growth, viability and proliferation were used. All compounds exerted very potent radioenhancer capacities in the irradiated lung carcinoma cells at both kV and MV ranges in a 100 μM concentration. At a concentration of 10 μM, only Cu(Picolinyl-L-Tyrosinate)2, Cu(Isonicotinyl-L-Tyrosinate)2, Cu(Picolinyl-L-Phenylalaninate)2 possessed radioenhancer properties at kV and MV ranges. Cu(Picolinyl-L-Tryptophanate)2 showed radioenhancer properties only at kV range. Cu(Nicotinyl-L-Phenylalaninate)2 and Cu(Isonicotinyl-L-Phenylalaninate)2 showed remarkable radioenhancer activity only at MV range. All compounds acted in dose-dependent manner at both tested energy ranges. These copper (II) compounds, in combination with 1 Gy irradiation at either 120 kV or 6 MV, are more efficient at delaying cell growth of lung cancer cells and at reducing cell viability in vitro than the irradiation administered alone. Thus, we have demonstrated that the studied copper compounds have a good potential for radioenhancement.
Collapse
Affiliation(s)
- Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| | - Ani Stepanyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | | | - Vahan Tonoyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
| | | | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
39
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
40
|
Mohammadi C, Mahdavinezhad A, Saidijam M, Bahreini F, Sedighi Pashaki A, Gholami MH, Najafi R. DCLK1 Inhibition Sensitizes Colorectal Cancer Cells to Radiation Treatment. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:23-33. [PMID: 34268251 PMCID: PMC8256833 DOI: 10.22088/ijmcm.bums.10.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial-mesenchymal transition (EMT) related genes (vimentin, N-cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β-catenin signaling pathway (β-catenin) were evaluated. DCLK1 siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P <0.01). Colony formation assay showed a significantly reduced cell survival in the DCLK1 siRNA transfected group in comparison with the control group following exposure to 4 and 6 Gy doses of irradiation (P <0.01). Moreover, the expression of cancer stem cells markers (P <0.01), EMT related genes (P <0.01), and DNA repair proteins including pATM (P <0.01) and γH2AX (P <0.001) were significantly decreased in the transfected cells in comparison with the nontransfected group after radiation. Finally, the cell apoptosis rate (P <0.01) and the number of cells in the G0/G1 phase in the silencing DCLK1 group was increased (P <0.01). These findings suggest that DCLK1 can be considered a promising therapeutic target for the treatment of radioresistant human CRC.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fatemeh Bahreini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
41
|
Doldi V, El Bezawy R, Zaffaroni N. MicroRNAs as Epigenetic Determinants of Treatment Response and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2021; 13:2380. [PMID: 34069147 PMCID: PMC8156532 DOI: 10.3390/cancers13102380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men worldwide, and the fifth leading cause of male cancer-related deaths in western countries. PC is a very heterogeneous disease, meaning that optimal clinical management of individual patients is challenging. Depending on disease grade and stage, patients can be followed in active surveillance protocols or undergo surgery, radiotherapy, hormonal therapy, and chemotherapy. Although therapeutic advancements exist in both radiatiotherapy and chemotherapy, in a considerable proportion of patients, the treatment remains unsuccessful, mainly due to tumor poor responsiveness and/or recurrence and metastasis. microRNAs (miRNAs), small noncoding RNAs that epigenetically regulate gene expression, are essential actors in multiple tumor-related processes, including apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition, invasion, and metastasis. Given that these processes are deeply involved in cell response to anti-cancer treatments, miRNAs have been considered as key determinants of tumor treatment response. In this review, we provide an overview on main PCa-related miRNAs and describe the biological mechanisms by which specific miRNAs concur to determine PCa response to radiation and drug therapy. Additionally, we illustrate whether miRNAs can be considered novel therapeutic targets or tools on the basis of the consequences of their expression modulation in PCa experimental models.
Collapse
Affiliation(s)
| | | | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (R.E.B.)
| |
Collapse
|
42
|
Qian D, Li Q, Zhu Y, Li D. Comprehensive Analysis of Key Proteins Involved in Radioresistance of Prostate Cancer by Integrating Protein-protein Interaction Networks. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200605143510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Radioresistance remains a significant obstacle in the treatment of prostate
cancer (PCa). The mechanisms underlying the radioresistance in PCa remained to be further
investigated.
Methods:
GSE53902 dataset was used in this study to identify radioresistance-related mRNAs.
Protein-protein interaction (PPI) network was constructed based on STRING analysis. DAVID
system was used to predict the potential roles of radioresistance-related mRNAs.
Results:
We screened and re-annotated the GSE53902 dataset to identify radioresistance-related
mRNAs. A total of 445 up-regulated and 1036 down-regulated mRNAs were identified in
radioresistance PCa cells. Three key PPI networks consisting of 81 proteins were further constructed
in PCa. Bioinformatics analysis revealed that these genes were involved in regulating MAP kinase
activity, response to hypoxia, regulation of the apoptotic process, mitotic nuclear division, and
regulation of mRNA stability. Moreover, we observed that radioresistance-related mRNAs, such as
PRC1, RAD54L, PIK3R3, ASB2, FBXO32, LPAR1, RNF14, and UBA7, were dysregulated and
correlated to the survival time in PCa.
Conclusion:
We thought this study would be useful to understand the mechanisms underlying
radioresistance of PCa and identify novel prognostic markers for PCa.
Collapse
Affiliation(s)
- Duocheng Qian
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Quan Li
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Yansong Zhu
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| |
Collapse
|
43
|
Balázs K, Antal L, Sáfrány G, Lumniczky K. Blood-Derived Biomarkers of Diagnosis, Prognosis and Therapy Response in Prostate Cancer Patients. J Pers Med 2021; 11:296. [PMID: 33924671 PMCID: PMC8070149 DOI: 10.3390/jpm11040296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is among the most frequent cancers in men worldwide. Despite the fact that multiple therapeutic alternatives are available for its treatment, it is often discovered in an advanced stage as a metastatic disease. Prostate cancer screening is based on physical examination of prostate size and prostate-specific antigen (PSA) level in the blood as well as biopsy in suspect cases. However, these markers often fail to correctly identify the presence of cancer, or their positivity might lead to overdiagnosis and consequent overtreatment of an otherwise silent non-progressing disease. Moreover, these markers have very limited if any predictive value regarding therapy response or individual risk for therapy-related toxicities. Therefore, novel, optimally liquid biopsy-based (blood-derived) markers or marker panels are needed, which have better prognostic and predictive value than the ones currently used in the everyday routine. In this review the role of circulating tumour cells, extracellular vesicles and their microRNA content, as well as cellular and soluble immunological and inflammation- related blood markers for prostate cancer diagnosis, prognosis and prediction of therapy response is discussed. A special emphasis is placed on markers predicting response to radiotherapy and radiotherapy-related late side effects.
Collapse
Affiliation(s)
| | | | | | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1221 Budapest, Hungary; (K.B.); (L.A.); (G.S.)
| |
Collapse
|
44
|
Fan Y, Fan H, Quan Z, Wu X. Ionizing Radiation Combined with PARP1 Inhibitor Reduces Radioresistance in Prostate Cancer with RB1/TP53 Loss. Cancer Invest 2021; 39:423-434. [PMID: 33683975 DOI: 10.1080/07357907.2021.1899200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tumor suppressor genes RB1 and TP53 are altered frequently in prostate cancer (PC), whether RB1 and TP53 inactivation promotes radioresistance remains unclear. Herein, we demonstrated that RB1 loss enhanced ionizing radiation (IR)-induced DNA damage to inhibit cell proliferation and promote cellular senescence through a TP53-dependent pathway in LNCaP cells. Furthermore, the stabilization of TP53 was regulated by ATM-mediated phosphorylation of MDM2 at Ser395. However, inactivation of RB1/TP53 reversed DNA damage-induced cellular senescence and promoted radiation survival. Importantly, combined with PARP1 inhibitor restored radiosensitivity. This finding provides a potential approach for the therapy of PC with RB1/TP53 inactivation.
Collapse
Affiliation(s)
- Yao Fan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, Chongqing Medical University, Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - XiaoHou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Fasolino I, Soriente A, Caporali M, Serrano-Ruiz M, Peruzzini M, Ambrosio L, Raucci MG. 2D exfoliated black phosphorus influences healthy and cancer prostate cell behaviors. Sci Rep 2021; 11:5856. [PMID: 33712665 PMCID: PMC7955096 DOI: 10.1038/s41598-021-85310-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Nowadays, prostate cancer is the most widespread tumour in worldwide male population. Actually, brachytherapy is the most advanced radiotherapy strategy for the local treatment of prostate cancer. It consists in the placing of radioactive sources closed to the tumour side thus killing cancer cells. However, brachytherapy causes the same adverse effects of external-beam radiotherapy. Therefore, alternative treatment approaches are required for enhancing radiotherapy effectiveness and reducing toxic symptoms. Nanostructured exfoliated black phosphorus (2D BP) may represent a strategic tool for local cancer therapy because of its capability to induce singlet oxygen production and act as photosensitizer. Hence, we investigated 2D BP in vitro effect on healthy and cancer prostate cell behavior. 2D BP was obtained through liquid exfoliation. 2D BP effect on healthy and cancer prostate cell behaviors was analyzed by investigating cell viability, oxidative stress and inflammatory marker expression. 2D BP inhibited prostate cancer cell survival, meanwhile promoted healthy prostate cell survival in vitro by modulating oxidative stress and immune response with and without near-infrared light (NIR)-irradiation. Nanostructured 2D BP is able to inhibit in vitro prostate cancer cells survival and preserve healthy prostate cell vitality through the control of oxidative stress and immune response, respectively.
Collapse
Affiliation(s)
- Ines Fasolino
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare pad.20 - Viale J.F. Kennedy 54, 80125, Naples, Italy.
| | - Alessandra Soriente
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare pad.20 - Viale J.F. Kennedy 54, 80125, Naples, Italy
| | - Maria Caporali
- Institute of Chemistry of Organometallic Compounds - National Research Council (ICCOM-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Manuel Serrano-Ruiz
- Institute of Chemistry of Organometallic Compounds - National Research Council (ICCOM-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Maurizio Peruzzini
- Institute of Chemistry of Organometallic Compounds - National Research Council (ICCOM-CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare pad.20 - Viale J.F. Kennedy 54, 80125, Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Mostra d'Oltremare pad.20 - Viale J.F. Kennedy 54, 80125, Naples, Italy.
| |
Collapse
|
46
|
Zhang Y, He L, Sadagopan A, Ma T, Dotti G, Wang Y, Zheng H, Gao X, Wang D, DeLeo AB, Fan S, Sun R, Yu L, Zhang L, Wang G, Ferrone S, Wang X. Targeting Radiation-Resistant Prostate Cancer Stem Cells by B7-H3 CAR T Cells. Mol Cancer Ther 2021; 20:577-588. [PMID: 33653946 PMCID: PMC7952034 DOI: 10.1158/1535-7163.mct-20-0446] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023]
Abstract
Radiotherapy (RT) is a key treatment for prostate cancer. However, RT resistance can contribute to treatment failure. Prostate cancer stem cells (PCSCs) are radioresistant. We recently found that fractionated irradiation (FIR) upregulates expression of the immune checkpoint B7-H3 (CD276) on PCSCs and bulk cells in each prostate cancer cell line tested. These findings prompted us to investigate whether B7-H3 targeting chimeric antigen receptor (CAR) T cells, which may abrogate function of an immune checkpoint and mediate lysis of targeted cells, can target RT-resistant PCSCs in vitro and in vivo. B7-H3 expression is naturally higher on PCSCs than bulk prostate cancer cells and cytotoxicity of B7-H3 CAR T cells to PCSCs is more potent than to bulk prostate cancer cells. Furthermore, FIR significantly upregulates B7-H3 expression on PCSCs and bulk prostate cancer cells. The duration of FIR or single-dose irradiation-induced further upregulation of B7-H3 on bulk prostate cancer cells and PCSCs lasts for up to 3 days. B7-H3 CAR T-cell cytotoxicity against FIR-resistant PCSCs at a low effector to target ratio of 1:1 was assessed by flow cytometry and sphere formation assays. Further upregulation of B7-H3 expression by FIR made PCSCs even more sensitive to B7-H3 CAR T-cell-mediated killing. Consequently, the FIR and B7-H3 CAR T-cell therapy combination is much more effective than FIR or CAR T cells alone in growth inhibition of hormone-insensitive prostate cancer xenografts in immunodeficient mice. Our work provides a sound basis for further development of this unique combinatorial model of RT and B7-H3 CAR T-cell therapy for prostate cancer. SIGNIFICANCE: We demonstrate that FIR significantly upregulates B7-H3 expression by RT-resistant PCSCs and bulk cells; cytotoxicity of B7-H3 CAR T cells to FIR-treated PCSCs is potent and results in significantly improved antitumor efficacy in mice.
Collapse
Affiliation(s)
- Yida Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lile He
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ananthan Sadagopan
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tao Ma
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina
| | - Yufeng Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xin Gao
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dian Wang
- Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois
| | - Albert B DeLeo
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Song Fan
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ruochuan Sun
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ling Yu
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Liyuan Zhang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Soldano Ferrone
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xinhui Wang
- Division of Surgical Oncology, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
47
|
Chen YA, Lai YR, Wu HY, Lo YJ, Chang YF, Hung CL, Lin CJ, Lo UG, Lin H, Hsieh JT, Chiu CH, Lin YH, Lai CH. Bacterial Genotoxin-Coated Nanoparticles for Radiotherapy Sensitization in Prostate Cancer. Biomedicines 2021; 9:biomedicines9020151. [PMID: 33557143 PMCID: PMC7913852 DOI: 10.3390/biomedicines9020151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men and usually becomes refractory because of recurrence and metastasis. CD44, a transmembrane glycoprotein, serves as a receptor for hyaluronic acid (HA). It has been found to be abundantly expressed in cancer stem cells (CSCs) that often exhibit a radioresistant phenotype. Cytolethal distending toxin (CDT), produced by Campylobacter jejuni, is a tripartite genotoxin composed of CdtA, CdtB, and CdtC subunits. Among the three, CdtB acts as a type I deoxyribonuclease (DNase I), which creates DNA double-strand breaks (DSBs). Nanoparticles loaded with antitumor drugs and specific ligands that recognize cancerous cell receptors are promising methods to overcome the therapeutic challenges. In this study, HA-decorated nanoparticle-encapsulated CdtB (HA-CdtB-NPs) were prepared and their targeted therapeutic activity in radioresistant PCa cells was evaluated. Our results showed that HA-CdtB-NPs sensitized radioresistant PCa cells by enhancing DSB and causing G2/M cell-cycle arrest, without affecting the normal prostate epithelial cells. HA-CdtB-NPs possess maximum target specificity and delivery efficiency of CdtB into the nucleus and enhance the effect of radiation in radioresistant PCa cells. These findings demonstrate that HA-CdtB-NPs exert target specificity accompanied with radiomimetic activity and can be developed as an effective strategy against radioresistant PCa.
Collapse
Affiliation(s)
- Yu-An Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Yen-Ju Lo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Yu-Fang Chang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
| | - Chiu-Lien Hung
- Targeted Drug and Delivery Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan;
| | - Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (C.-J.L.); (U.-G.L.); (J.-T.H.)
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| | - Yu-Hsin Lin
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Center for Advanced Pharmaceutics and Drug Delivery Research, Department and Institute of Pharmacology, Institute of Biopharmaceutical Sciences, Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-A.C.); (Y.-R.L.); (H.-Y.W.); (Y.-J.L.); (Y.-F.C.)
- Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung 40447, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (C.-H.C.); (Y.-H.L.); (C.-H.L.)
| |
Collapse
|
48
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
49
|
Li Y, Cho MH, Lee SS, Lee DE, Cheong H, Choi Y. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy. J Control Release 2020; 325:100-110. [PMID: 32621826 DOI: 10.1016/j.jconrel.2020.06.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023]
Abstract
Radiotherapy (RT) is a major modality for cancer treatment, along with surgery and chemotherapy. Despite its therapeutic effect, the recurrence and metastasis of tumors due to the acquired resistance of cancer cells to RT remain significant clinical problems. Therefore, it is imperative to overcome radioresistance and improve radiosensitivity in cancer patients. Here, we synthesized hydroxychloroquine (HCQ)-loaded hollow mesoporous silica nanoparticles (HMSNs) to enable effective inhibition of radiation-induced cytoprotective autophagy and enhance the therapeutic efficacy of RT. HCQ-HMSN-treated HCT116 colon cancer cells showed a 200-fold higher intracellular uptake of HCQ than that of free HCQ-treated cells, thereby effectively inhibiting the radiation-induced autophagy of cancer cells. In vivo imaging and therapy studies of a tumor xenograft model showed preferential accumulation of HCQ-HMSNs in tumor tissues and significant enhancement of RT by inhibiting autophagy in the tumor sites. Histopathology analyses of major organs, blood chemistry profiles, and changes in body weights of mice confirmed the good biocompatibility of HCQ-HMSNs.
Collapse
Affiliation(s)
- Yan Li
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, Republic of Korea
| | - Mi Hyeon Cho
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, Republic of Korea
| | - Seon Sook Lee
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, Republic of Korea
| | - Dong-Eun Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, Republic of Korea
| | - Heesun Cheong
- Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, Republic of Korea.
| | - Yongdoo Choi
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, Republic of Korea.
| |
Collapse
|
50
|
Zhang J, Ding L, Sun G, Ning H, Huang R. Suppression of LINC00460 mediated the sensitization of HCT116 cells to ionizing radiation by inhibiting epithelial-mesenchymal transition. Toxicol Res (Camb) 2020; 9:107-116. [PMID: 32440342 DOI: 10.1093/toxres/tfaa010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation resistance is the most common challenge for improving radiotherapy. The mechanisms underlying the development of radioresistance remain poorly understood. This study aims to explore the role of LINC00460 in ionizing radiation-induced radioresistance as well as the mechanisms by which LINC00460 is regulated by radiation exposure. The expression of LINC00460 was measured. Cell proliferation and colony formation were measured in HCT116 cells after treatment by radiation. The development of epithelial-mesenchymal transition (EMT) was determined with or without knockdown LINC00460 expression using western blot analysis. Transcription activity was determined using a series of LINC00460-promoter luciferase reporter gene vectors. LINC00460 expression was significantly higher in HCT116 cells, relative to other cell types, with LINC00460 expression significantly affecting HCT116 cell proliferation. Suppression of LINC00460 inhibits EMT development in HCT116 cells via regulation of ZEB1 expression. Furthermore, LINC00460 expression was induced by irradiation via the activation of c-jun transcription factor-binding element located on the LINC00460 promoter. LINC00460 was shown to play a crucial role in EMT-associated progression of colorectal cancer, indicating that LINC00460 may be an indicator or new potential therapeutic target for colorectal cancer radiosensitization.
Collapse
Affiliation(s)
- Jiani Zhang
- Gerontology Department of Xiangya Hospital, Central South University, Changsha, Xiangya road 238, Hunan Province 410078, P. R. China
| | - Lixin Ding
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Taiping road 27, Beijing, 100088, P. R. China
| | - Gaofeng Sun
- Department of Chronic and Non-communicable Diseases Control, City Center for Disease Control and Prevention, Jingyi Road 58, Urumqi, 830026, P. R. China
| | - Huacheng Ning
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Xiangya Road 238, Changsha, Hunan Province 410078, P. R. China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Heath, Central South University, Xiangya Road 238, Changsha, Hunan Province 410078, P. R. China
| |
Collapse
|