1
|
Schüle S, Bunert F, Hackenbroch C, Beer M, Ostheim P, Stewart S, Port M, Scherthan H, Abend M. The Influence of Computed Tomography Contrast Agent on Radiation-Induced Gene Expression and Double-Strand Breaks. Radiat Res 2024; 201:396-405. [PMID: 38282002 DOI: 10.1667/rade-23-00118.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes. Here, we investigated the effect of iodinated contrast agents on radiation-induced gene expression (GE) changes used for biodosimetry (AEN, BAX, CDKN1A, EDA2R, APOBEC3H) and for hematologic ARS severity prediction (FDXR, DDB2, WNT3, POU2AF1), and on the induction of double-strand breaks (DSBs) used for biodosimetry. Whole blood samples from 10 healthy donors (5 males, 5 females, mean age: 28 ± 2 years) were irradiated with X rays (0, 1 and 4 Gy) with and without the addition of iodinated contrast agent (0.016 ml contrast agent/ml blood) to the blood prior to the exposure. The amount of contrast agent was set to be equivalent to the blood concentration of an average patient (80 kg) during a contrast-enhanced CT scan. After irradiation, blood samples were incubated at 37°C for 20 min (DSB) and 8 h (GE, DSB). GE was measured employing quantitative real-time polymerase chain reaction. DSB foci were revealed by γH2AX + 53BP1 immunostaining and quantified automatically in >927 cells/sample. Radiation-induced differential gene expression (DGE) and DSB foci were calculated using the respective unexposed sample without supplementation of contrast agent as the reference. Neither the GE nor the number of DSB foci was significantly (P = 0.07-0.94) altered by the contrast agent application. However, for some GE and DSB comparisons with/without contrast agent, there were weakly significant differences (P = 0.03-0.04) without an inherent logic and thus are likely due to inter-individual variation. In nuclear events, the diagnostics of combined injuries can require the use of an iodinated contrast agent, which, according to our results, does not alter or influence radiation-induced GE changes and the quantity of DSB foci. Therefore, the gene expression and γH2AX focus assay can still be applied for biodosimetry and/or hematologic ARS severity prediction in such scenarios.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Felix Bunert
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
- Department of Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| |
Collapse
|
2
|
Moon JI, Kim WJ, Kim KT, Kim HJ, Shin HR, Yoon H, Park SG, Park MS, Cho YD, Kim PJ, Ryoo HM. Foci-Xpress: Automated and Fast Nuclear Foci Counting Tool. Int J Mol Sci 2023; 24:14465. [PMID: 37833912 PMCID: PMC10572366 DOI: 10.3390/ijms241914465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
In the nucleus, distinct, discrete spots or regions called "foci" have been identified, each harboring a specific molecular function. Accurate and efficient quantification of these foci is essential for understanding cellular dynamics and signaling pathways. In this study, we present an innovative automated image analysis method designed to precisely quantify subcellular foci within the cell nucleus. Manual foci counting methods can be tedious and time-consuming. To address these challenges, we developed an open-source software that automatically counts the number of foci from the indicated image files. We compared the foci counting efficiency, velocity, accuracy, and convenience of Foci-Xpress with those of other conventional methods in foci-induced models. We can adjust the brightness of foci to establish a threshold. The Foci-Xpress method was significantly faster than other conventional methods. Its accuracy was similar to that of conventional methods. The most significant strength of Foci-Xpress is automation, which eliminates the need for analyzing equipment while counting. This enhanced throughput facilitates comprehensive statistical analyses and supports robust conclusions from experiments. Furthermore, automation completely rules out biases caused by researchers, such as manual errors or daily variations. Thus, Foci-Xpress is a convincing, convenient, and easily accessible focus-counting tool for cell biologists.
Collapse
Affiliation(s)
- Jae-I Moon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Sang Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea;
| | - Pil-Jong Kim
- Department of Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Wilkins RC, Beaton-Green LA. Development of high-throughput systems for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1477-1484. [PMID: 37721060 PMCID: PMC10720693 DOI: 10.1093/rpd/ncad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 09/19/2023]
Abstract
Biomarkers for ionising radiation exposure have great utility in scenarios where there has been a potential exposure and physical dosimetry is missing or in dispute, such as for occupational and accidental exposures. Biomarkers that respond as a function of dose are particularly useful as biodosemeters to determine the dose of radiation to which an individual has been exposed. These dose measurements can also be used in medical scenarios to track doses from medical exposures and even have the potential to identify an individual's response to radiation exposure that could help tailor treatments. The measurement of biomarkers of exposure in medicine and for accidents, where a larger number of samples would be required, is limited by the throughput of analysis (i.e. the number of samples that could be processed and analysed), particularly for microscope-based methods, which tend to be labour-intensive. Rapid analysis in an emergency scenario, such as a large-scale accident, would provide dose estimates to medical practitioners, allowing timely administration of the appropriate medical countermeasures to help mitigate the effects of radiation exposure. In order to improve sample throughput for biomarker analysis, much effort has been devoted to automating the process from sample preparation through automated image analysis. This paper will focus mainly on biological endpoints traditionally analysed by microscopy, specifically dicentric chromosomes, micronuclei and gamma-H2AX. These endpoints provide examples where sample throughput has been improved through automated image acquisition, analysis of images acquired by microscopy, as well as methods that have been developed for analysis using imaging flow cytometry.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Lindsay A Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
4
|
Port M, Barquinero JF, Endesfelder D, Moquet J, Oestreicher U, Terzoudi G, Trompier F, Vral A, Abe Y, Ainsbury L, Alkebsi L, Amundson S, Badie C, Baeyens A, Balajee A, Balázs K, Barnard S, Bassinet C, Beaton-Green L, Beinke C, Bobyk L, Brochard P, Brzoska K, Bucher M, Ciesielski B, Cuceu C, Discher M, D,Oca M, Domínguez I, Doucha-Senf S, Dumitrescu A, Duy P, Finot F, Garty G, Ghandhi S, Gregoire E, Goh V, Güçlü I, Hadjiiska L, Hargitai R, Hristova R, Ishii K, Kis E, Juniewicz M, Kriehuber R, Lacombe J, Lee Y, Lopez Riego M, Lumniczky K, Mai T, Maltar-Strmečki N, Marrale M, Martinez J, Marciniak A, Maznyk N, McKeever S, Meher P, Milanova M, Miura T, Gil OM, Montoro A, Domene MM, Mrozik A, Nakayama R, O’Brien G, Oskamp D, Ostheim P, Pajic J, Pastor N, Patrono C, Pujol-Canadell M, Rodriguez MP, Repin M, Romanyukha A, Rößler U, Sabatier L, Sakai A, Scherthan H, Schüle S, Seong K, Sevriukova O, Sholom S, Sommer S, Suto Y, Sypko T, Szatmári T, Takahashi-Sugai M, Takebayashi K, Testa A, Testard I, Tichy A, Triantopoulou S, Tsuyama N, Unverricht-Yeboah M, Valente M, Van Hoey O, Wilkins R, Wojcik A, Wojewodzka M, Younghyun L, Zafiropoulos D, Abend M. RENEB Inter-Laboratory Comparison 2021: Inter-Assay Comparison of Eight Dosimetry Assays. Radiat Res 2023; 199:535-555. [PMID: 37310880 PMCID: PMC10508307 DOI: 10.1667/rade-22-00207.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 06/15/2023]
Abstract
Tools for radiation exposure reconstruction are required to support the medical management of radiation victims in radiological or nuclear incidents. Different biological and physical dosimetry assays can be used for various exposure scenarios to estimate the dose of ionizing radiation a person has absorbed. Regular validation of the techniques through inter-laboratory comparisons (ILC) is essential to guarantee high quality results. In the current RENEB inter-laboratory comparison, the performance quality of established cytogenetic assays [dicentric chromosome assay (DCA), cytokinesis-block micronucleus assay (CBMN), stable chromosomal translocation assay (FISH) and premature chromosome condensation assay (PCC)] was tested in comparison to molecular biological assays [gamma-H2AX foci (gH2AX), gene expression (GE)] and physical dosimetry-based assays [electron paramagnetic resonance (EPR), optically or thermally stimulated luminescence (LUM)]. Three blinded coded samples (e.g., blood, enamel or mobiles) were exposed to 0, 1.2 or 3.5 Gy X-ray reference doses (240 kVp, 1 Gy/min). These doses roughly correspond to clinically relevant groups of unexposed to low exposed (0-1 Gy), moderately exposed (1-2 Gy, no severe acute health effects expected) and highly exposed individuals (>2 Gy, requiring early intensive medical care). In the frame of the current RENEB inter-laboratory comparison, samples were sent to 86 specialized teams in 46 organizations from 27 nations for dose estimation and identification of three clinically relevant groups. The time for sending early crude reports and more precise reports was documented for each laboratory and assay where possible. The quality of dose estimates was analyzed with three different levels of granularity, 1. by calculating the frequency of correctly reported clinically relevant dose categories, 2. by determining the number of dose estimates within the uncertainty intervals recommended for triage dosimetry (±0.5 Gy or ±1.0 Gy for doses <2.5 Gy or >2.5 Gy), and 3. by calculating the absolute difference (AD) of estimated doses relative to the reference doses. In total, 554 dose estimates were submitted within the 6-week period given before the exercise was closed. For samples processed with the highest priority, earliest dose estimates/categories were reported within 5-10 h of receipt for GE, gH2AX, LUM, EPR, 2-3 days for DCA, CBMN and within 6-7 days for the FISH assay. For the unirradiated control sample, the categorization in the correct clinically relevant group (0-1 Gy) as well as the allocation to the triage uncertainty interval was, with the exception of a few outliers, successfully performed for all assays. For the 3.5 Gy sample the percentage of correct classifications to the clinically relevant group (≥2 Gy) was between 89-100% for all assays, with the exception of gH2AX. For the 1.2 Gy sample, an exact allocation to the clinically relevant group was more difficult and 0-50% or 0-48% of the estimates were wrongly classified into the lowest or highest dose categories, respectively. For the irradiated samples, the correct allocation to the triage uncertainty intervals varied considerably between assays for the 1.2 Gy (29-76%) and 3.5 Gy (17-100%) samples. While a systematic shift towards higher doses was observed for the cytogenetic-based assays, extreme outliers exceeding the reference doses 2-6 fold were observed for EPR, FISH and GE assays. These outliers were related to a particular material examined (tooth enamel for EPR assay, reported as kerma in enamel, but when converted into the proper quantity, i.e. to kerma in air, expected dose estimates could be recalculated in most cases), the level of experience of the teams (FISH) and methodological uncertainties (GE). This was the first RENEB ILC where everything, from blood sampling to irradiation and shipment of the samples, was organized and realized at the same institution, for several biological and physical retrospective dosimetry assays. Almost all assays appeared comparably applicable for the identification of unexposed and highly exposed individuals and the allocation of medical relevant groups, with the latter requiring medical support for the acute radiation scenario simulated in this exercise. However, extreme outliers or a systematic shift of dose estimates have been observed for some assays. Possible reasons will be discussed in the assay specific papers of this special issue. In summary, this ILC clearly demonstrates the need to conduct regular exercises to identify research needs, but also to identify technical problems and to optimize the design of future ILCs.
Collapse
Affiliation(s)
- M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | - J. Moquet
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | | | - G. Terzoudi
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - F. Trompier
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Vral
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - Y. Abe
- Department of Radiation Biology and Protection, Nagasaki University, Japan
| | - L. Ainsbury
- UK Health Security Agency and Office for Health Improvement and Disparities, Cytogenetics and Pathology Group, Oxfordshire, England
| | - L Alkebsi
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - S.A. Amundson
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Badie
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - A. Baeyens
- Ghent University, Radiobiology Research Unit, Gent, Belgium
| | - A.S. Balajee
- Cytogenetic Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - K. Balázs
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - S. Barnard
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - C. Bassinet
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | | | - C. Beinke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - L. Bobyk
- Institut de Recherche Biomédicale des Armées (IRBA), Bretigny Sur Orge, France
| | | | - K. Brzoska
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - M. Bucher
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | - B. Ciesielski
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - C. Cuceu
- Genevolution, Porcheville, France
| | - M. Discher
- Paris-Lodron-University of Salzburg, Department of Environment and Biodiversity, 5020 Salzburg, Austria
| | - M.C. D,Oca
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - I. Domínguez
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | | | - A. Dumitrescu
- National Institute of Public Health, Radiation Hygiene Laboratory, Bucharest, Romania
| | - P.N. Duy
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - F. Finot
- Genevolution, Porcheville, France
| | - G. Garty
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - S.A. Ghandhi
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | - E. Gregoire
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - V.S.T. Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative (SNRSI), National University of Singapore, Singapore
| | - I. Güçlü
- TENMAK, Nuclear Energy Research Institute, Technology Development and Nuclear Research Department, Türkey
| | - L. Hadjiiska
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R. Hargitai
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - R. Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - K. Ishii
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - E. Kis
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Juniewicz
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - R. Kriehuber
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - J. Lacombe
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - Y. Lee
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - K. Lumniczky
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - T.T. Mai
- Dalat Nuclear Research Institute, Radiation Technlogy & Biotechnology Center, Dalat City, Vietnam
| | - N. Maltar-Strmečki
- Ruðer Boškovic Institute, Division of Physical Chemistry, Zagreb, Croatia
| | - M. Marrale
- Università Degli Studi di Palermo, Dipartimento di Fisica e Chimica “Emilio Segrè,” Palermo, Italy
| | - J.S. Martinez
- Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, France
| | - A. Marciniak
- Medical University of Gdansk, Department of Physics and Biophysics, Gdansk, Poland
| | - N. Maznyk
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - S.W.S. McKeever
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | | | - M. Milanova
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - T. Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - O. Monteiro Gil
- Instituto Superior Técnico/ Campus Tecnológico e Nuclear, Lisbon, Portugal
| | - A. Montoro
- Servicio de Protección Radiológica. Laboratorio de Dosimetría Biológica, Valencia, Spain
| | - M. Moreno Domene
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - A. Mrozik
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - R. Nakayama
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - G. O’Brien
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Division, Oxfordshire, United Kingdom
| | - D. Oskamp
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - J. Pajic
- Serbian Institute of Occupational Health, Belgrade, Serbia
| | - N. Pastor
- Universidad de Sevilla, Departamento de Biología Celular, Sevilla, Spain
| | - C. Patrono
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - M.J. Prieto Rodriguez
- Hospital General Universitario Gregorio Marañón, Laboratorio de dosimetría biológica, Madrid, Spain
| | - M. Repin
- Columbia University, Irving Medical Center, Center for Radiological Research, New York, New York
| | | | - U. Rößler
- Bundesamt für Strahlenschutz, Oberschleißheim, Germany
| | | | - A. Sakai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - H. Scherthan
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - K.M. Seong
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | | | - S. Sholom
- Radiation Dosimetry Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - S. Sommer
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Y. Suto
- Department of Radiation Measurement and Dose Assessment, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - T. Sypko
- Radiation Cytogenetics Laboratory, S.P. Grigoriev Institute for Medical Radiology and Oncology of Ukrainian National Academy of Medical Science, Kharkiv, Ukraine
| | - T. Szatmári
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - M. Takahashi-Sugai
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K. Takebayashi
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - A. Testa
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - I. Testard
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - A. Tichy
- University of Defense, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - S. Triantopoulou
- National Centre for Scientific Research “Demokritos”, Health Physics, Radiobiology & Cytogenetics Laboratory, Agia Paraskevi, Greece
| | - N. Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - M. Unverricht-Yeboah
- Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - M. Valente
- CEA-Saclay, Gif-sur-Yvette Cedex, France
| | - O. Van Hoey
- Belgian Nuclear Research Center SCK CEN, Mol, Belgium
| | | | - A. Wojcik
- Stockholm University, Stockholm, Sweden
| | - M. Wojewodzka
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lee Younghyun
- Laboratory of Biological Dosimetry, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - D. Zafiropoulos
- Laboratori Nazionali di Legnaro - Istituto Nazionale di Fisica Nucleare, Legnaro, Italy
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
5
|
Schüle S, Hackenbroch C, Beer M, Muhtadi R, Hermann C, Stewart S, Schwanke D, Ostheim P, Port M, Scherthan H, Abend M. Ex-vivo dose response characterization of the recently identified EDA2R gene after low level radiation exposures and comparison with FDXR gene expression and the γH2AX focus assay. Int J Radiat Biol 2023; 99:1584-1594. [PMID: 36988552 DOI: 10.1080/09553002.2023.2194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes. MATERIALS AND METHODS Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints. RESULTS A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd. CONCLUSION Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Carsten Hackenbroch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, German Armed Force Hospital of Ulm, Ulm, Germany
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, University Hospital of Ulm, Ulm, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Daniel Schwanke
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
6
|
López JS, Pujol-Canadell M, Puig P, Armengol G, Barquinero JF. Evaluation of γ-H2AX foci distribution among different peripheral blood mononucleated cell subtypes. Int J Radiat Biol 2023; 99:1550-1558. [PMID: 36862979 DOI: 10.1080/09553002.2023.2187480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION The detection of γ-H2AX foci in peripheral blood mononucleated cells (PBMCs) has been incorporated as an early assay for biological dosimetry. However, overdispersion in the γ-H2AX foci distribution is generally reported. In a previous study from our group, it was suggested that overdispersion could be caused by the fact that when evaluating PBMCs, different cell subtypes are analyzed, and that these could differ in their radiosensitivity. This would cause a mixture of different frequencies that would result in the overdispersion observed. OBJECTIVES The objective of this study was to evaluate both the possible differences in the radiosensitivities of the different cell subtypes present in the PBMCs and to evaluate the distribution of γ-H2AX foci in each cell subtype. MATERIALS AND METHODS Peripheral blood samples from three healthy donors were obtained and total PBMCs, and CD3+, CD4+, CD8+, CD19+, and CD56+ cells were separated. Cells were irradiated with 1 and 2 Gy and incubated at 37 °C for 1, 2, 4, and 24 h. Sham-irradiated cells were also analyzed. γ-H2AX foci were detected after immunofluorescence staining and analyzed automatically using a Metafer Scanning System. For each condition, 250 nuclei were considered. RESULTS When the results from each donor were compared, no observable significant differences between donors were observed. When the different cell subtypes were compared, CD8+ cells showed the highest mean of γ-H2AX foci in all post-irradiation time points. The cell type that showed the lowest γ-H2AX foci frequency was CD56+. The frequencies observed in CD4+ and CD19+ cells fluctuated between CD8+ and CD56+ without any clear pattern. For all cell types evaluated, and at all post-irradiation times, overdispersion in γ-H2AX foci distribution was significant. Independent of the cell type evaluated the value of the variance was four times greater than that of the mean. CONCLUSION Although different PBMC subsets studied showed different radiation sensitivity, these differences did not explain the overdispersion observed in the γ-H2AX foci distribution after exposure to IR.
Collapse
Affiliation(s)
- Juan S López
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Mònica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centre de Recerca Matemàtica, Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
7
|
Młynarczyk D, Puig P, Armero C, Gómez-Rubio V, Barquinero JF, Pujol-Canadell M. Radiation dose estimation with time-since-exposure uncertainty using the [Formula: see text]-H2AX biomarker. Sci Rep 2022; 12:19877. [PMID: 36400833 PMCID: PMC9674680 DOI: 10.1038/s41598-022-24331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
To predict the health effects of accidental or therapeutic radiation exposure, one must estimate the radiation dose that person received. A well-known ionising radiation biomarker, phosphorylated [Formula: see text]-H2AX protein, is used to evaluate cell damage and is thus suitable for the dose estimation process. In this paper, we present new Bayesian methods that, in contrast to approaches where estimation is carried out at predetermined post-irradiation times, allow for uncertainty regarding the time since radiation exposure and, as a result, produce more precise results. We also use the Laplace approximation method, which drastically cuts down on the time needed to get results. Real data are used to illustrate the methods, and analyses indicate that the models might be a practical choice for the [Formula: see text]-H2AX biomarker dose estimation process.
Collapse
Affiliation(s)
- Dorota Młynarczyk
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Carmen Armero
- Departament d’Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Virgilio Gómez-Rubio
- Department of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Joan F. Barquinero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mònica Pujol-Canadell
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123761. [PMID: 35744887 PMCID: PMC9229263 DOI: 10.3390/molecules27123761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic and genotoxic properties of the tested compounds were estimated using the MTT assay, comet assay (alkaline and neutral version), and γ-H2AX immuno-staining. Examined sulfonamides exhibited strong anticancer properties towards tested cells in a very low concentration range (IC50 = 0.17-1.15 μM) after 72 h exposure time. The results of the alkaline and neutral version of the comet assay following 24 h incubation of the cells with tested compounds demonstrated the capability of heterocycles to induce significant DNA damage in exposed cells. HCT 116 cells were the most sensitive to the genotoxic activity of novel tricyclic pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in the neutral version of the comet assay. Immunocytochemical detection of γ-H2AX showed an increase in DNA DSBs level in the HCT 116 cell line, after 24 h incubation with all tested compounds, confirming the results obtained in the neutral comet assay. Among all investigated compounds, MM131 showed the strongest cytotoxic and genotoxic activity toward all tested cell types. In conclusion, our results suggest that MM129, MM130, and MM131 exhibit high cytotoxic and genotoxic potential in vitro, especially towards the colorectal cancer cell line HCT 116. However, further investigations and analyses are required for their future implementation in the field of medicine.
Collapse
|
9
|
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation. Sci Rep 2022; 12:5527. [PMID: 35365702 PMCID: PMC8975967 DOI: 10.1038/s41598-022-09180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal form of damage to cells from irradiation. γ-H2AX (phosphorylated form of H2AX histone variant) has become one of the most reliable and sensitive biomarkers of DNA DSBs. However, the γ-H2AX foci assay still has limitations in the time consumed for manual scoring and possible variability between scorers. This study proposed a novel automated foci scoring method using a deep convolutional neural network based on a You-Only-Look-Once (YOLO) algorithm to quantify γ-H2AX foci in peripheral blood samples. FociRad, a two-stage deep learning approach, consisted of mononuclear cell (MNC) and γ-H2AX foci detections. Whole blood samples were irradiated with X-rays from a 6 MV linear accelerator at 1, 2, 4 or 6 Gy. Images were captured using confocal microscopy. Then, dose-response calibration curves were established and implemented with unseen dataset. The results of the FociRad model were comparable with manual scoring. MNC detection yielded 96.6% accuracy, 96.7% sensitivity and 96.5% specificity. γ-H2AX foci detection showed very good F1 scores (> 0.9). Implementation of calibration curve in the range of 0-4 Gy gave mean absolute difference of estimated doses less than 1 Gy compared to actual doses. In addition, the evaluation times of FociRad were very short (< 0.5 min per 100 images), while the time for manual scoring increased with the number of foci. In conclusion, FociRad was the first automated foci scoring method to use a YOLO algorithm with high detection performance and fast evaluation time, which opens the door for large-scale applications in radiation triage.
Collapse
|
10
|
Wanotayan R, Wongsanit S, Boonsirichai K, Sukapirom K, Buppaungkul S, Charoenphun P, Songprakhon P, Jangpatarapongsa K, Uttayarat P. Quantification of histone H2AX phosphorylation in white blood cells induced by ex vivo gamma irradiation of whole blood by both flow cytometry and foci counting as a dose estimation in rapid triage. PLoS One 2022; 17:e0265643. [PMID: 35320288 PMCID: PMC8942256 DOI: 10.1371/journal.pone.0265643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
A quick, reliable, and reproducible biological assay to distinguish individuals with possible life-threatening risk following radiological or nuclear incidents remains a quest in biodosimetry. In this paper, we examined the use of a γ-H2AX assay as an early dose estimation for rapid triage based on both flow cytometry and image analyses. In the experiment, whole blood from 11 donors was irradiated ex vivo inside a water phantom by gamma rays from Co-60 at 0.51 Gy/min. After the lysis of red blood cells, the white blood cells were collected for immunofluorescence labeling of γ-H2AX, CD45, and nuclear stained for signal collection and visualization. Analysis by flow cytometry showed that the relative γ-H2AX intensities of lymphocytes and granulocytes increased linearly with absorbed doses from 0 to 6 Gy with a large variation among individuals observed above 2 Gy. The relative γ-H2AX intensities of lymphocytes assessed by two different laboratories were highly correlated (ICC = 0.979). Using confocal microscopic images, γ-H2AX foci were observed to be discretely distributed inside the nuclei and to increase proportionally with doses from 0 to 2 Gy, whereas large plagues of merged foci appeared at 4 and 6 Gy, resulting in the saturation of foci counts above 4 Gy. The number of total foci per cell as well as the number of foci per plane were significantly different at 0 vs 1 and 2 vs 4 Gy doses (p < 0.01). Blind tests at 0.5 Gy and 1 Gy doses showed that dose estimation by flow cytometry had a mean absolute difference of less than 0.5 Gy from the actual value. In conclusion, while flow cytometry can provide a dose estimation with an uncertainty of 0.5 Gy at doses ≤ 1 Gy, foci counting can identify merged foci that are prominent at doses ≥ 4 Gy.
Collapse
Affiliation(s)
- Rujira Wanotayan
- Faculty of Medical Technology, Department of Radiological Technology, Mahidol University, Nakhon Pathom, Thailand
- * E-mail: , (PU); , (RW)
| | - Sarinya Wongsanit
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kanokporn Boonsirichai
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
| | - Kasama Sukapirom
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Microparticle and Exosome in Diseases, Research Department, Bangkok, Thailand
| | - Sakchai Buppaungkul
- Secondary Standard Dosimetry Laboratory (SSDL), Bureau of Radiation and Medical Devices, Ministry of Public Health, Bangkok, Thailand
| | - Putthiporn Charoenphun
- Faculty of Medicine Ramathibodi Hospital, Division of Nuclear Medicine, Department of Diagnostic and Therapeutic Radiology, Mahidol University, Nakhon Pathom, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Faculty of Medicine Siriraj Hospital, Research Department, Mahidol University, Bangkok, Thailand
| | - Kulachart Jangpatarapongsa
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Nakhon Pathom, Thailand
| | - Pimpon Uttayarat
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkarak, Nakhon Nayok, Thailand
- * E-mail: , (PU); , (RW)
| |
Collapse
|
11
|
Sholom S, McKeever SWS, Escalona MB, Ryan TL, Balajee AS. A comparative validation of biodosimetry and physical dosimetry techniques for possible triage applications in emergency dosimetry. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:021515. [PMID: 35196651 DOI: 10.1088/1361-6498/ac5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Large-scale radiological accidents or nuclear terrorist incidents involving radiological or nuclear materials can potentially expose thousands, or hundreds of thousands, of people to unknown radiation doses, requiring prompt dose reconstruction for appropriate triage. Two types of dosimetry methods namely, biodosimetry and physical dosimetry are currently utilized for estimating absorbed radiation dose in humans. Both methods have been tested separately in several inter-laboratory comparison exercises, but a direct comparison of physical dosimetry with biological dosimetry has not been performed to evaluate their dose prediction accuracies. The current work describes the results of the direct comparison of absorbed doses estimated by physical (smartphone components) and biodosimetry (dicentric chromosome assay (DCA) performed in human peripheral blood lymphocytes) methods. For comparison, human peripheral blood samples (biodosimetry) and different components of smartphones, namely surface mount resistors (SMRs), inductors and protective glasses (physical dosimetry) were exposed to different doses of photons (0-4.4 Gy; values refer to dose to blood after correction) and the absorbed radiation doses were reconstructed by biodosimetry (DCA) and physical dosimetry (optically stimulated luminescence (OSL)) methods. Additionally, LiF:Mg,Ti (TLD-100) chips and Al2O3:C (Luxel) films were used as reference TL and OSL dosimeters, respectively. The best coincidence between biodosimetry and physical dosimetry was observed for samples of blood and SMRs exposed toγ-rays. Significant differences were observed in the reconstructed doses by the two dosimetry methods for samples exposed to x-ray photons with energy below 100 keV. The discrepancy is probably due to the energy dependence of mass energy-absorption coefficients of the samples extracted from the phones. Our results of comparative validation of the radiation doses reconstructed by luminescence dosimetry from smartphone components with biodosimetry using DCA from human blood suggest the potential use of smartphone components as an effective emergency triage tool for high photon energies.
Collapse
Affiliation(s)
- Sergey Sholom
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
| | - Stephen W S McKeever
- Radiation Dosimetry Laboratory, Department of Physics, Oklahoma State University, Stillwater, OK, United States of America
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| | - Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, United States of America
| |
Collapse
|
12
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|
13
|
López JS, Pujol-Canadell M, Puig P, Ribas M, Carrasco P, Armengol G, Barquinero JF. Establishment and validation of surface model for biodosimetry based on γ-H2AX foci detection. Int J Radiat Biol 2021; 98:1-10. [PMID: 34705602 DOI: 10.1080/09553002.2022.1998706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In the event of a radiation accident detecting γ-H2AX foci is being accepted as fast method for triage and dose assessment. However, due to their disappearance kinetics, published calibrations have been constructed at specific post-irradiation times. OBJECTIVES To develop a surface, or tridimensional, model to estimate doses at times not included in the calibration analysis, and to validate it. MATERIALS AND METHODS Calibration data was obtained irradiating peripheral mononucleated cells from one donor with radiation doses ranging from 0 to 3 Gy, and γ -H2AX foci were detected microscopically using a semi-automatic method, at different post-irradiation times from 0.5 to 24 h. For validation, in addition to the above-mentioned donor, blood samples from another donor were also used. Validation was done within the range of doses and post-irradiation times used in the calibration. RESULTS The calibration data clearly shows that at each analyzed time, the γ-H2AX foci frequency increases as dose increases, and for each dose this frequency decreases with post-irradiation time. The γ-H2AX foci nucleus distribution was clearly overdispersed, for this reason to obtain bidimensional and tridimensional dose-effect relationships no probability distribution was assumed, and linear and non-linear least squares weighted regression was used. In the two validation exercises for most evaluated samples, the 95% confidence limits of the estimated dose were between ±0.5 Gy of the real dose. No major differences were observed between donors. CONCLUSION In case of a suspected overexposure to radiation, the surface model here presented allows a correct dose estimation using γ-H2AX foci as biomarker. The advantage of this surface model is that it can be used at any post-irradiation time, in our model between 0.5 and 24 h.
Collapse
Affiliation(s)
- Juan S López
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mònica Pujol-Canadell
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Montserrat Ribas
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pablo Carrasco
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan F Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Tang FR, Liu L, Wang H, Ho KJN, Sethi G. Spatiotemporal dynamics of γH2AX in the mouse brain after acute irradiation at different postnatal days with special reference to the dentate gyrus of the hippocampus. Aging (Albany NY) 2021; 13:15815-15832. [PMID: 34162763 PMCID: PMC8266370 DOI: 10.18632/aging.203202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Gamma H2A histone family member X (γH2AX) is a molecular marker of aging and disease. However, radiosensitivity of the different brain cells, including neurons, glial cells, cells in cerebrovascular system, epithelial cells in pia mater, ependymal cells lining the ventricles of the brain in immature animals at different postnatal days remains unknown. Whether radiation-induced γH2AX foci in immature brain persist in adult animals still needs to be investigated. Hence, using a mouse model, we showed an extensive postnatal age-dependent induction of γH2AX foci in different brain regions at 1 day after whole body gamma irradiation with 5Gy at postnatal day 3 (P3), P10 and P21. P3 mouse brain epithelial cells in pia mater, glial cells in white matter and cells in cerebrovascular system were more radiosensitive at one day after radiation exposure than those from P10 and P21 mice. Persistent DNA damage foci (PDDF) were consistently demonstrated in the brain at 120 days and 15 months after irradiation at P3, P10 and P21, and these mice had shortened lifespan compared to the age-matched control. Our results suggest that early life irradiation-induced PDDF at later stages of animal life may be related to the brain aging and shortened life expectancy of irradiated animals.
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Lian Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Kimberly Jen Ni Ho
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
15
|
Errington A, Einbeck J, Cumming J, Rössler U, Endesfelder D. The effect of data aggregation on dispersion estimates in count data models. Int J Biostat 2021; 18:183-202. [PMID: 33962495 DOI: 10.1515/ijb-2020-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
For the modelling of count data, aggregation of the raw data over certain subgroups or predictor configurations is common practice. This is, for instance, the case for count data biomarkers of radiation exposure. Under the Poisson law, count data can be aggregated without loss of information on the Poisson parameter, which remains true if the Poisson assumption is relaxed towards quasi-Poisson. However, in biodosimetry in particular, but also beyond, the question of how the dispersion estimates for quasi-Poisson models behave under data aggregation have received little attention. Indeed, for real data sets featuring unexplained heterogeneities, dispersion estimates can increase strongly after aggregation, an effect which we will demonstrate and quantify explicitly for some scenarios. The increase in dispersion estimates implies an inflation of the parameter standard errors, which, however, by comparison with random effect models, can be shown to serve a corrective purpose. The phenomena are illustrated by γ-H2AX foci data as used for instance in radiation biodosimetry for the calibration of dose-response curves.
Collapse
Affiliation(s)
- Adam Errington
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Jochen Einbeck
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Jonathan Cumming
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Ute Rössler
- Bundesamt für Strahlenschutz (BfS), Oberschleissheim, Germany
| | | |
Collapse
|
16
|
Noubissi FK, McBride AA, Leppert HG, Millet LJ, Wang X, Davern SM. Detection and quantification of γ-H2AX using a dissociation enhanced lanthanide fluorescence immunoassay. Sci Rep 2021; 11:8945. [PMID: 33903655 PMCID: PMC8076281 DOI: 10.1038/s41598-021-88296-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the histone protein H2AX to form γ-H2AX foci directly represents DNA double-strand break formation. Traditional γ-H2AX detection involves counting individual foci within individual nuclei. The novelty of this work is the application of a time-resolved fluorescence assay using dissociation-enhanced lanthanide fluorescence immunoassay for quantitative measurements of γ-H2AX. For comparison, standard fluorescence detection was employed and analyzed either by bulk fluorescent measurements or by direct foci counting using BioTek Spot Count algorithm and Gen 5 software. Etoposide induced DNA damage in A549 carcinoma cells was compared across all test platforms. Time resolved fluorescence detection of europium as a chelated complex enabled quantitative measurement of γ-H2AX foci with nanomolar resolution. Comparative bulk fluorescent signals achieved only micromolar sensitivity. Lanthanide based immunodetection of γ-H2AX offers superior detection and a user-friendly workflow. These approaches have the potential to improve screening of compounds that either enhance DNA damage or protect against its deleterious effects.
Collapse
Affiliation(s)
| | - Amber A McBride
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Hannah G Leppert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Larry J Millet
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Sandra M Davern
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
17
|
Köcher S, Volquardsen J, Perugachi Heinsohn A, Petersen C, Roggenbuck D, Rothkamm K, Mansour WY. Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation. DNA Repair (Amst) 2021; 102:103100. [PMID: 33812230 DOI: 10.1016/j.dnarep.2021.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022]
Abstract
Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated γH2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as γH2AX and 53BP1 in adherent tumor cells.
Collapse
Affiliation(s)
- S Köcher
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - J Volquardsen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Perugachi Heinsohn
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | - K Rothkamm
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Y Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Potential application of γ-H2AX as a biodosimetry tool for radiation triage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108350. [PMID: 34083048 DOI: 10.1016/j.mrrev.2020.108350] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.
Collapse
|
19
|
El-Shafie S, Fahmy SA, Ziko L, Elzahed N, Shoeib T, Kakarougkas A. Encapsulation of Nedaplatin in Novel PEGylated Liposomes Increases Its Cytotoxicity and Genotoxicity against A549 and U2OS Human Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12090863. [PMID: 32927897 PMCID: PMC7559812 DOI: 10.3390/pharmaceutics12090863] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Following the discovery of cisplatin over 50 years ago, platinum-based drugs have been a widely used and effective form of cancer therapy, primarily causing cell death by inducing DNA damage and triggering apoptosis. However, the dose-limiting toxicity of these drugs has led to the development of second and third generation platinum-based drugs that maintain the cytotoxicity of cisplatin but have a more acceptable side-effect profile. In addition to the creation of new analogs, tumor delivery systems such as liposome encapsulated platinum drugs have been developed and are currently in clinical trials. In this study, we have created the first PEGylated liposomal form of nedaplatin using thin film hydration. Nedaplatin, the main focus of this study, has been exclusively used in Japan for the treatment of non-small cell lung cancer, head and neck, esophageal, bladder, ovarian and cervical cancer. Here, we investigate the cytotoxic and genotoxic effects of free and liposomal nedaplatin on the human non-small cell lung cancer cell line A549 and human osteosarcoma cell line U2OS. We use a variety of assays including ICP MS and the highly sensitive histone H2AX assay to assess drug internalization and to quantify DNA damage induction. Strikingly, we show that by encapsulating nedaplatin in PEGylated liposomes, the platinum uptake cytotoxicity and genotoxicity of nedaplatin was significantly enhanced in both cancer cell lines. Moreover, the enhanced platinum uptake as well as the cytotoxic/antiproliferative effect of liposomal nedaplatin appears to be selective to cancer cells as it was not observed on two noncancer cell lines. This is the first study to develop PEGylated liposomal nedaplatin and to demonstrate the superior cell delivery potential of this product.
Collapse
Affiliation(s)
- Salma El-Shafie
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo 11835 Egypt;
| | - Laila Ziko
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
| | - Nada Elzahed
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
| | - Tamer Shoeib
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, Cairo 11835 Egypt;
- Correspondence: (T.S.); (A.K.)
| | - Andreas Kakarougkas
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (S.E.-S.); (L.Z.); (N.E.)
- Correspondence: (T.S.); (A.K.)
| |
Collapse
|
20
|
Bucher M, Duchrow L, Endesfelder D, Roessler U, Gomolka M. Comparison of inexperienced operators and experts in γH2A.X and 53BP1 foci assay for high-throughput biodosimetry approaches in a mass casualty incident. Int J Radiat Biol 2020; 96:1263-1273. [PMID: 32673132 DOI: 10.1080/09553002.2020.1793024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE In case of population exposure by ionizing radiation, a fast and reliable dose assessment of exposed and non-exposed individuals is crucial important. In initial triage, physicians have to take fast decisions whom to treat with adequate medical care. In addition, worries about significant exposure can be taken away from hundreds to thousands non- or low exposed individuals. Studies have shown that the γH2A.X radiation-induced foci assay is a promising test for fast triage decisions. However, in a large-scale scenario most biodosimetry laboratories will quickly reach their capacity limit. The aim of this study was to evaluate the benefit of inexperienced experimenters to speed up the foci assay and manual foci scoring. MATERIALS AND METHODS The participants of two training courses performed the radiation-induced foci assay (γH2A.X) under the guidance of experts and scored foci (γH2A.X and 53BP1) on sham-irradiated and irradiated blood samples (0.05-1.5 Gy). The outcome of laboratory experiments and manual foci scoring by 26 operators with basic experience in laboratory work was statistically analyzed in comparison to the results from experts. RESULTS Inexperienced operators prepared slides with significant dose-effects (0, 0.1 and 1.0 Gy) for semi-automatic microscopic analyses. Manual foci scoring by inexperienced scorer resulted in a dose-effect curve for γH2A.X, 53BP1 and co-localized foci. In addition, inexperienced scorers were able to distinguish low irradiation doses from unirradiated cells. While 53BP1 foci scoring was in accordance to the expert counting, differences between beginners and expert increased for γH2A.X or co-localized foci. CONCLUSIONS In case of a large-scale radiation event, inexperienced staff is useful to support laboratories in slide preparation for semi-automatic foci counting as well as γH2A.X and 53BP1 manual foci scoring for triage-mode biodosimetry. Slides can be clearly classified in the non-, low- or high-exposed category.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Lukas Duchrow
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|
21
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:cancers11091397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of ”deleted chromosomes” and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
22
|
Miura S, Yamaguchi M, Yoshino H, Nakai Y, Kashiwakura I. Dose-Dependent Increase of Nrf2 Target Gene Expression in Mice Exposed to Ionizing Radiation. Radiat Res 2018; 191:176-188. [PMID: 30566388 DOI: 10.1667/rr15203.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nuclear factor-erythroid-2-related factor 2 transcription factor (Nrf2) is activated by reactive oxygen species (ROS) and binds to antioxidant response elements in the promoter regions of its target genes involved in redox regulation and antioxidative functions. In this study, we elucidated the relationship between radiation dose and the expression response of Nrf2 target genes involved in oxidative stress, such as heme oxygenase 1, ferritin heavy polypeptide 1 ( Fth1), NADPH dehydrogenase quinone 1, glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione reductase ( Gsr) and thioredoxin reductase 1 genes, in peripheral blood from X-ray irradiated mice. Whole-body radiation doses ranged from 0.5 to 3 Gy, and gene expressions were analyzed using reverse transcription quantitative polymerase chain reaction. A significant relationship was observed only for one gene: a statistically significant positive correlation between radiation dose and Fth1 mRNA expression was detected. However, Fth1 did not show any correlations with the biological damages induced by radiation tested in this study. Furthermore, while Gsr expression was significantly associated with spleen weight loss, splenic cell number reduction and bone marrow cell death apoptosis, no significant correlation was observed between Gsr expression and radiation dose. Together these results indicate that Nrf2 target gene expression is closely related to radiation dose and its level may reflect biological damages induced by ionizing radiation. These findings suggest the possibility for application of these target genes as a bio-dosimeter and/or damage marker in individuals exposed to ionizing radiation.
Collapse
Affiliation(s)
- Shuta Miura
- a Department of Radiology, Akita Kousei Medical Center, Akita 011-0948, Japan
| | - Masaru Yamaguchi
- b Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Hironori Yoshino
- b Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| | - Yuji Nakai
- c Institute for Food Sciences, Hirosaki University, Aomori 038-0012, Japan
| | - Ikuo Kashiwakura
- b Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Aomori 036-8564, Japan
| |
Collapse
|
23
|
Einbeck J, Ainsbury EA, Sales R, Barnard S, Kaestle F, Higueras M. A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLoS One 2018; 13:e0207464. [PMID: 30485322 PMCID: PMC6261578 DOI: 10.1371/journal.pone.0207464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022] Open
Abstract
Over the last decade, the γ–H2AX focus assay, which exploits the phosphorylation of the H2AX histone following DNA double–strand–breaks, has made considerable progress towards acceptance as a reliable biomarker for exposure to ionizing radiation. While the existing literature has convincingly demonstrated a dose–response effect, and also presented approaches to dose estimation based on appropriately defined calibration curves, a more widespread practical use is still hampered by a certain lack of discussion and agreement on the specific dose–response modelling and uncertainty quantification strategies, as well as by the unavailability of implementations. This manuscript intends to fill these gaps, by stating explicitly the statistical models and techniques required for calibration curve estimation and subsequent dose estimation. Accompanying this article, a web applet has been produced which implements the discussed methods.
Collapse
Affiliation(s)
- Jochen Einbeck
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
- * E-mail:
| | - Elizabeth A. Ainsbury
- Public Health England, Chemical and Environmental Hazards, Chilton, Didcot, United Kingdom
| | - Rachel Sales
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Stephen Barnard
- Public Health England, Chemical and Environmental Hazards, Chilton, Didcot, United Kingdom
| | - Felix Kaestle
- Bundesamt für Strahlenschutz, Fachbereich Strahlenschutz und Gesundheit, Oberschleissheim, Germany
| | - Manuel Higueras
- Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja, Spain
- Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain
| |
Collapse
|
24
|
Port M, Pieper B, Knie T, Dörr H, Ganser A, Graessle D, Meineke V, Abend M. Rapid Prediction of Hematologic Acute Radiation Syndrome in Radiation Injury Patients Using Peripheral Blood Cell Counts. Radiat Res 2017; 188:156-168. [DOI: 10.1667/rr14612.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - B. Pieper
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - T. Knie
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - H. Dörr
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - A. Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Germany
| | - D. Graessle
- Bundeswehr Institute of Radiobiology, Munich, Germany
- Radiation Medicine Research Group of the Faculty of Medicine, University of Ulm, Ulm, Germany and World Health Organization Liaison Institute for Radiation Emergency Preparedness, Munich, Germany
| | - V. Meineke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
25
|
Zeegers D, Venkatesan S, Koh SW, Low GKM, Srivastava P, Sundaram N, Sethu S, Banerjee B, Jayapal M, Belyakov O, Baskar R, Balajee AS, Hande MP. Biomarkers of Ionizing Radiation Exposure: A Multiparametric Approach. Genome Integr 2017; 8:6. [PMID: 28250913 PMCID: PMC5320786 DOI: 10.4103/2041-9414.198911] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Humans are exposed to ionizing radiation not only through background radiation but also through the ubiquitous presence of devices and sources that generate radiation. With the expanded use of radiation in day-to-day life, the chances of accidents or misuse only increase. Therefore, a thorough understanding of the dynamic effects of radiation exposure on biological entities is necessary. The biological effects of radiation exposure on human cells depend on much variability such as level of exposure, dose rate, and the physiological state of the cells. During potential scenarios of a large-scale radiological event which results in mass casualties, dose estimates are essential to assign medical attention according to individual needs. Many attempts have been made to identify biomarkers which can be used for high throughput biodosimetry screening. In this study, we compare the results of different biodosimetry methods on the same irradiated cells to assess the suitability of current biomarkers and push forward the idea of employing a multiparametric approach to achieve an accurate dose and risk estimation.
Collapse
Affiliation(s)
- Dimphy Zeegers
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu Wen Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace Kah Mun Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pallavee Srivastava
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Neisha Sundaram
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Birendranath Banerjee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NanoString Technologies, Seattle, WA, USA
| | - Oleg Belyakov
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | | | - Adayabalam S Balajee
- REAC/TS, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge TN, USA
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Human Health, International Atomic Energy Agency, Vienna, Austria; Tembusu College, National University of Singapore, Singapore
| |
Collapse
|
26
|
Liu JX, Pan Y, Ruan JL, Piao C, Su X. Intercomparison in Cytogenetic Dosimetry among 22 Laboratories in China. Genome Integr 2016; 7:6. [PMID: 28217282 PMCID: PMC5292918 DOI: 10.4103/2041-9414.197164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
As part of a regional International Atomic Energy Agency-coordinated research project with the support from the National Health and Family Planning Commission of China, 22 laboratories participated in the intercomparison in cytogenetic dosimetry in China. Slides for chromosomal aberrations were prepared by the Department of Radiation Epidemiology, National Institute for Radiological Protection, which organized the exercise. Slides were sent to the other participating laboratories through Express Mail Service. For estimates of dose, each laboratory scored the frequency of dicentrics plus centric rings chromosomes. The whole blood samples were irradiated with 60Co γ-rays (1.3 Gy, 2.4 Gy and 1.5 Gy, 2.6 Gy). Each laboratory got one group of the slides. Ten of the 44 estimates of dose fell within ±5% of the true physical dose, 12 fell within ±5-10%, 9 fell within ±10-15%, 12 fell within ±15-20%, while only one sample fell ± >20%. The evaluation of the respective dose was achieved by 21 laboratories.
Collapse
Affiliation(s)
- Jian Xiang Liu
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Yan Pan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Jian Lei Ruan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Chunnan Piao
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| | - Xu Su
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, China
| |
Collapse
|
27
|
Pan Y, Gao G, Ruan JL, Liu JX. Study on γH2AX Expression of Lymphocytes as a Biomarker In Radiation Biodosimetry. Genome Integr 2016; 7:10. [PMID: 28217286 PMCID: PMC5292907 DOI: 10.4103/2041-9414.197167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flow cytometry analysis was used to detect the changes of γH2AX protein expression in human peripheral blood lymphocytes. In the dose-effect study, the expression of γH2AX was detected 1 h after irradiation with 60Co γ-rays at doses of 0, 0.5, 1, 2, 4, and 6 Gy. Blood was cultivated for 0, 1, 2, 4, 6, 12, and 24 h after 4 Gy 60Co γ-rays irradiation for the time-effect study. At the same time, the blood was divided into four treatment groups (ultraviolet [UV] irradiation, 60Co γ-rays irradiation, UV plus 60Co γ-rays irradiation, and control group) to detect the changes of protein expression of γH2AX. The results showed that the γH2AX protein expression was in dose-effect and time-effect relationship with 60Co γ-rays. The peak expression of γH2AX was at 1 h after 60Co γ-ray irradiation and began to decrease quickly. Compared to irradiation with 60Co γ-rays alone, the expression of γH2AX was not significantly changed after irradiation with 60Co γ-rays plus UV. Dose rate did not significantly change the expression of γH2AX. The expression of γH2AX induced by 60Co γ-rays was basically consistent with the mice in vivo and in vitro. The results revealed that the detection of γH2AX protein expression changes in peripheral blood lymphocyte by flow cytometry analysis is reasonable and may be useful for biodosimetry.
Collapse
Affiliation(s)
- Yan Pan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| | - Gang Gao
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| | - Jian Lei Ruan
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| | - Jian Xiang Liu
- Chinese Center for Disease Control and Prevention Key Laboratory of Radiological Protection and Nuclear Emergency, Beijing 100088, PR China; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China; Chinese Center for Medical Response to Radiation Emergency, Ministry of Health, Beijing 100088, PR China
| |
Collapse
|
28
|
γ-H2AX/53BP1/pKAP-1 foci and their linear tracks induced by in vitro exposure to radon and its progeny in human peripheral blood lymphocytes. Sci Rep 2016; 6:38295. [PMID: 27922110 PMCID: PMC5138821 DOI: 10.1038/srep38295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
The biodosimetric information is critical for evaluating the human health hazards caused by radon and its progeny. Here, we demonstrated that the formation of phosphorylated histone variant H2AX (γ-H2AX), p53-binding protein 1 (53BP1) and phosphorylated KRAB-associated protein 1 (pKAP-1) foci and their linear tracks in human peripheral blood lymphocytes (HPBLs) in vitro exposed to radon and its progeny were dependent on the cumulative absorbed dose of radon exposure but was unrelated to the concentration of radon. Among them, γ-H2AX foci and its linear tracks were the most sensitive indicators with the lowest estimable cumulative absorbed dose of 1.74 mGy from their linear dose-response curves and sustained for 12 h after termination of radon exposure. In addition, three types of foci showed an overdispersed non-Poisson distribution in HPBLs. The ratios of pKAP-1/γ-H2AX foci co-localization, 53BP1/γ-H2AX foci co-localization and 53BP1/pKAP-1 foci co-localization were significantly increased in HPBLs exposed to radon while they were unrelated to the cumulative dose of radon exposure, suggesting that γ-H2AX, pKAP-1 and 53BP1 play an important role in the repair of heterochromatic double-strand breaks. Altogether, our findings provide an experimental basis for estimating the biological dose of internal α-particle irradiation from radon and its progeny exposure in humans.
Collapse
|
29
|
Wilkins RC, Carr Z, Lloyd DC. An update of the WHO Biodosenet: Developments since its Inception. RADIATION PROTECTION DOSIMETRY 2016; 172:47-57. [PMID: 27421473 DOI: 10.1093/rpd/ncw154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2007 the World Health Organization established an international network of biodosimetry laboratories, the BioDoseNet. The goal of this network was to support international cooperation and capacity building in the area of biodosimetry around the world, including harmonisation of protocols and techniques to enable them to provide mutual assistance during a mass casualty event. In order to assess the progress and success of this network, the results of the second survey conducted in 2015 that assessed the capabilities and capacities of the members of the network, were compared to the similar first survey conducted in 2009. The results of the survey offer a unique cross-section of the global status of biodosimetry capacity and demonstrate how the BioDoseNet has brought together laboratories from around the world and strengthened the international capacity for biodosimetry.
Collapse
Affiliation(s)
| | - Z Carr
- World Health Organization, Geneva, Switzerland
| | - D C Lloyd
- Public Health England, Chilton, Didcot, Oxon OX11 0RQ, UK
| |
Collapse
|
30
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
31
|
Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci Rep 2016; 6:33290. [PMID: 27624453 PMCID: PMC5022028 DOI: 10.1038/srep33290] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Characterising and predicting the effects of ionising radiation on cells remains challenging, with the lack of robust models of the underlying mechanism of radiation responses providing a significant limitation to the development of personalised radiotherapy. In this paper we present a mechanistic model of cellular response to radiation that incorporates the kinetics of different DNA repair processes, the spatial distribution of double strand breaks and the resulting probability and severity of misrepair. This model enables predictions to be made of a range of key biological endpoints (DNA repair kinetics, chromosome aberration and mutation formation, survival) across a range of cell types based on a set of 11 mechanistic fitting parameters that are common across all cells. Applying this model to cellular survival showed its capacity to stratify the radiosensitivity of cells based on aspects of their phenotype and experimental conditions such as cell cycle phase and plating delay (correlation between modelled and observed Mean Inactivation Doses R(2) > 0.9). By explicitly incorporating underlying mechanistic factors, this model can integrate knowledge from a wide range of biological studies to provide robust predictions and may act as a foundation for future calculations of individualised radiosensitivity.
Collapse
|
32
|
McKeever S, Sholom S. Biodosimetry versus physical dosimetry for emergency dose assessment following large-scale radiological exposures. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Moquet J, Barnard S, Staynova A, Lindholm C, Monteiro Gil O, Martins V, Rößler U, Vral A, Vandevoorde C, Wojewódzka M, Rothkamm K. The second gamma-H2AX assay inter-comparison exercise carried out in the framework of the European biodosimetry network (RENEB). Int J Radiat Biol 2016; 93:58-64. [DOI: 10.1080/09553002.2016.1207822] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - Albena Staynova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Carita Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Octávia Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Vanda Martins
- Instituto Superior Técnico, Universidade de Lisboa, C2TN, Bobadela-LRS, Portugal
| | - Ute Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Charlot Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
- Themba LABS, National Research Foundation, Somerset West, South Africa
| | - Maria Wojewódzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
- Department of Radiotherapy & Radio-Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Raavi V, Basheerudeen SAS, Jagannathan V, Joseph S, Chaudhury NK, Venkatachalam P. Frequency of gamma H2AX foci in healthy volunteers and health workers occupationally exposed to X-irradiation and its relevance in biological dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:339-47. [PMID: 27287768 DOI: 10.1007/s00411-016-0658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/01/2016] [Indexed: 05/19/2023]
Abstract
Gamma-H2AX (γ-H2AX) assay is a marker to measure double-strand breaks in the deoxyribonucleic acid. Variables such as age, oxidative stress, temperature, genetic factors and inter-individual variation have been reported to influence the baseline γ-H2AX focus levels. Therefore, knowledge on baseline frequency of γ-H2AX foci in a targeted population would facilitate reliable radiation triage and dose estimation. The objective of the present study was to establish the baseline data using blood samples from healthy volunteers (n = 130) differing in age, occupation and lifestyle as well as from occupationally exposed health workers (n = 20). The γ-H2AX focus assay was performed using epifluorescence microscopy. In vitro dose-response curve for γ-H2AX foci was constructed in blood samples (n = 3) exposed to X-rays (30 min post-exposure). The mean γ-H2AX focus frequency obtained in healthy volunteers was 0.042 ± 0.001 and showed an age-related increase (p < 0.001). Significantly higher (p < 0.005) focus frequencies were observed in health workers (0.066 ± 0.005) than in healthy volunteers. A sub-group analysis did not show a significant (p > 0.1) difference in γ-H2AX focus frequency among sexes. Blood exposed in vitro to X-rays showed dose-dependent increase in γ-H2AX foci frequency (Y = 0.1902 ± 0.1363 + 2.9020 ± 0.3240 * D). Baseline frequency of γ-H2AX foci obtained from different age groups showed a significant (p < 0.01) influence on the dose-response coefficients. The overall results demonstrated that the γ-H2AX assay can be used as a reliable biomarker for radiation triage and estimating the radiation absorbed dose by considering variables such as age, occupation and lifestyle factors.
Collapse
Affiliation(s)
- Venkateswarlu Raavi
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | | | | | - Santosh Joseph
- Department of Neuro Interventional Radiology, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Nabo Kumar Chaudhury
- Chemical Radio Protector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Brig Mazumdar Road, Timarpur, Delhi, 110 054, India
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India.
| |
Collapse
|
35
|
Wang J, Yin L, Zhang J, Zhang Y, Zhang X, Ding D, Gao Y, Li Q, Chen H. The profiles of gamma-H2AX along with ATM/DNA-PKcs activation in the lymphocytes and granulocytes of rat and human blood exposed to gamma rays. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:359-70. [PMID: 27260225 DOI: 10.1007/s00411-016-0653-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
Establishing a rat model suitable for γ-H2AX biodosimeter studies has important implications for dose assessment of internal radionuclide contamination in humans. In this study, γ-H2AX, p-ATM and p-DNA-PKcs foci were enumerated using immunocytofluorescence method, and their protein levels were measured by Western blot in rat blood lymphocytes and granulocytes exposed to γ-rays compared with human blood lymphocytes and granulocytes. It was found that DNA double-strand break repair kinetics and linear dose responses in rat lymphocytes were similar to those observed in the human counterparts. Moreover, radiation induced clear p-ATM and p-DNA-PKcs foci formation and an increase in ratio of co-localization of p-ATM or p-DNA-PKcs with γ-H2AX foci in rat lymphocytes similar to those of human lymphocytes. The level of γ-H2AX protein in irradiated rat and human lymphocytes was significantly reduced by inhibitors of ATM and DNA-PKcs. Surprisingly, unlike human granulocytes, rat granulocytes with DNA-PKcs deficiency displayed a rapid accumulation, but delayed disappearance of γ-H2AX foci with essentially no change from 10 h to 48 h post-irradiation. Furthermore, inhibition of ATM activity in rat granulocytes also decreased radiation-induced γ-H2AX foci formation. In comparison, human granulocytes showed no response to irradiation regarding γ-H2AX, p-ATM or p-DNA-PKcs foci. Importantly, incidence of γ-H2AX foci in lymphocytes after total-body radiation of rats was consistent with that of in vitro irradiation of rat lymphocytes. These findings show that rats are a useful in vivo model for validation of γ-H2AX biodosimetry for dose assessment in humans. ATM and DNA-PKcs participate together in DSB repair in rat lymphocytes similar to that of human lymphocytes. Further, rat granulocytes, which have the characteristic of delayed disappearance of γ-H2AX foci in response to radiation, may be a useful experimental system for biodosimetry studies.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Lina Yin
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Junxiang Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Yaping Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Xuxia Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Defang Ding
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Yun Gao
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Qiang Li
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China
| | - Honghong Chen
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, No. 2094, Xie-Tu Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
36
|
Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats. Sci Rep 2016; 6:30018. [PMID: 27445126 PMCID: PMC4957115 DOI: 10.1038/srep30018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022] Open
Abstract
The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.
Collapse
|
37
|
Markiewicz E, Barnard S, Haines J, Coster M, van Geel O, Wu W, Richards S, Ainsbury E, Rothkamm K, Bouffler S, Quinlan RA. Nonlinear ionizing radiation-induced changes in eye lens cell proliferation, cyclin D1 expression and lens shape. Open Biol 2016; 5:150011. [PMID: 25924630 PMCID: PMC4422125 DOI: 10.1098/rsob.150011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Elevated cataract risk after radiation exposure was established soon after the discovery of X-rays in 1895. Today, increased cataract incidence among medical imaging practitioners and after nuclear incidents has highlighted how little is still understood about the biological responses of the lens to low-dose ionizing radiation (IR). Here, we show for the first time that in mice, lens epithelial cells (LECs) in the peripheral region repair DNA double strand breaks (DSB) after exposure to 20 and 100 mGy more slowly compared with circulating blood lymphocytes, as demonstrated by counts of γH2AX foci in cell nuclei. LECs in the central region repaired DSBs faster than either LECs in the lens periphery or lymphocytes. Although DSB markers (γH2AX, 53BP1 and RAD51) in both lens regions showed linear dose responses at the 1 h timepoint, nonlinear responses were observed in lenses for EdU (5-ethynyl-2′-deoxy-uridine) incorporation, cyclin D1 staining and cell density after 24 h at 100 and 250 mGy. After 10 months, the lens aspect ratio was also altered, an indicator of the consequences of the altered cell proliferation and cell density changes. A best-fit model demonstrated a dose-response peak at 500 mGy. These data identify specific nonlinear biological responses to low (less than 1000 mGy) dose IR-induced DNA damage in the lens epithelium.
Collapse
Affiliation(s)
- Ewa Markiewicz
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Jackie Haines
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Margaret Coster
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Orry van Geel
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK Faculty of Science, KU Leuven, Kasteelpark Arenberg 11, Leuven 3001, Belgium
| | - Weiju Wu
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK Biophysical Sciences Institute, University of Durham, Durham DH1 3LE, UK
| | - Shane Richards
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | - Elizabeth Ainsbury
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Simon Bouffler
- Public Health England, Centre for Radiation, Chemical & Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK
| | - Roy A Quinlan
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK Biophysical Sciences Institute, University of Durham, Durham DH1 3LE, UK
| |
Collapse
|
38
|
Viau M, Testard I, Shim G, Morat L, Normil MD, Hempel WM, Sabatier L. Global quantification of γH2AX as a triage tool for the rapid estimation of received dose in the event of accidental radiation exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:123-31. [DOI: 10.1016/j.mrgentox.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
39
|
Perumal V, Sekaran TSG, Raavi V, Basheerudeen SAS, Kanagaraj K, Chowdhury AR, Paul SFD. Radiation signature on exposed cells: Relevance in dose estimation. World J Radiol 2015; 7:266-278. [PMID: 26435777 PMCID: PMC4585950 DOI: 10.4329/wjr.v7.i9.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice. However, it can be achieved by using biomarkers with a potential for the radiation triage and medical management. An ideal biomarker to adopt in those situations should be rapid, specific, sensitive, reproducible, and able to categorize the nature of exposure and could provide a reliable dose estimation irrespective of the time of the exposures. Since cytogenetic markers shown to have many advantages relatively than other markers, the origins of various chromosomal abnormalities induced by ionizing radiations along with dose-response curves generated in the laboratory are presented. Current status of the gold standard dicentric chromosome assay, micronucleus assay, translocation measurement by fluorescence in-situ hybridization and an emerging protein marker the γ-H2AX assay are discussed with our laboratory data. With the wide choice of methods, an appropriate assay can be employed based on the net.
Collapse
|
40
|
Venkateswarlu R, Tamizh SG, Bhavani M, Kumar A, Alok A, Karthik K, Kalra N, Vijayalakshmi J, Paul SFD, Chaudhury NK, Venkatachalam P. Mean frequency and relative fluorescence intensity measurement of γ-H2AX foci dose response in PBL exposed to γ-irradiation: An inter- and intra-laboratory comparison and its relevance for radiation triage. Cytometry A 2015; 87:1138-46. [PMID: 26305808 DOI: 10.1002/cyto.a.22729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/07/2022]
Abstract
Measurement of γ-H2AX protein changes in the peripheral blood lymphocytes (PBL) of individuals exposed to ionizing radiation is a simple, sensitive, and rapid assay for radiation triage and early marker of dose estimation. The qualitative and quantitative measurements of the protein changes were examined using flow cytometry and microscopy. Whole blood and isolated lymphocytes were exposed in vitro between 0.1 and 5 Gy doses of (60) Co γ-radiation at a dose rate of 1 Gy/min. Radiation induced γ-H2AX foci frequency (n = 3) and relative fluorescence intensity (n = 7) in PBL was measured at 0.5 and 2 hrs postexposure. The observed dose response for γ-H2AX foci frequency at both time points, for whole blood and isolated lymphocytes did not show any significant (P > 0.05) differences. However, when compared with γ-H2AX foci frequency scored manually (microscopy), the semiautomated analysis (captured images) showed a better correlation (r(2) = 0.918) than that obtained with automated (Metafer) scoring (r(2) = 0.690). It is noteworthy to mention that, the γ-H2AX foci frequency quantified using microscopy showed a dose dependent increase up to 2 Gy and the relative fluorescence intensity (RFI) measured with flow cytometry revealed an increase up to 5 Gy in the PBL exposed in vitro. Moreover, a better correlation was observed between the γ-H2AX foci frequency obtained by manual scoring and RFI (r(2) = 0.910). Kinetic studies showed that the γ-H2AX foci remain more or less unchanged up to 4 hrs and reduces gradually over 48 hrs of postexposure at 37°C. Further, inter and intra-laboratory comparisons showed consistency in the scoring of γ-H2AX foci frequency by manual and semiautomated scoring. The overall results suggest that measurement of γ-H2AX (microscopy and flow cytometry) should be employed within 4 to 6 hrs for a reliable dosimetry either by sharing the work load between the laboratories or investing more manpower; however, triage can be possible even up to 48 hrs of postirradiation.
Collapse
Affiliation(s)
- Raavi Venkateswarlu
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Selvan G Tamizh
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Manivannan Bhavani
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Arun Kumar
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - Amit Alok
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - Kanagaraj Karthik
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Namita Kalra
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - J Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| | - N K Chaudhury
- Chemical Radioprotector and Radiation Dosimetry Research Group, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India-110 054
| | - Perumal Venkatachalam
- Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, 600 116, India
| |
Collapse
|
41
|
Vandevoorde C, Gomolka M, Roessler U, Samaga D, Lindholm C, Fernet M, Hall J, Pernot E, El-Saghire H, Baatout S, Kesminiene A, Thierens H. EPI-CT: in vitro assessment of the applicability of the γ-H2AX-foci assay as cellular biomarker for exposure in a multicentre study of children in diagnostic radiology. Int J Radiat Biol 2015; 91:653-63. [PMID: 25968559 DOI: 10.3109/09553002.2015.1047987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To conduct a feasibility study on the application of the γ-H2AX foci assay as an exposure biomarker in a prospective multicentre paediatric radiology setting. MATERIALS AND METHODS A set of in vitro experiments was performed to evaluate technical hurdles related to biological sample collection in a paediatric radiology setting (small blood sample volume), processing and storing of blood samples (effect of storing blood at 4°C), the reliability of foci scoring for low-doses (merge γ-H2AX/53BP1 scoring), as well as the impact of contrast agent administration as potential confounding factor. Given the exploratory nature of this study and the ethical constraints related to paediatric blood sampling, blood samples from adult volunteers were used for these experiments. In order to test the feasibility of pooling the γ-H2AX data when different centres are involved in an international multicentre study, two intercomparison studies in the low-dose range (10-500 mGy) were performed. RESULTS Determination of the number of X-ray induced γ-H2AX foci is feasible with one 2 ml blood sample pre- and post-computed tomography (CT) scan. Lymphocyte isolation and fixation on slides is necessary within 5 h of blood sampling to guarantee reliable results. The possible enhancement effect of contrast medium on the induction of DNA DSB in a patient study can be ruled out if radiation doses and the contrast agent concentration are within diagnostic ranges. The intercomparison studies using in vitro irradiated blood samples showed that the participating laboratories, executing successfully the γ-H2AX foci assay in lymphocytes, were able to rank blind samples in order of lowest to highest radiation dose based on mean foci/cell counts. The dose response of all intercomparison data shows that a dose point of 10 mGy could be distinguished from the sham-irradiated control (p = 0.006). CONCLUSIONS The results demonstrate that it is feasible to apply the γ-H2AX foci assay as a cellular biomarker of exposure in a multicentre prospective study in paediatric CT imaging after validating it in an in vivo international pilot study on paediatric patients.
Collapse
Affiliation(s)
| | - Maria Gomolka
- b Federal Office for Radiation Protection , BfS , Germany
| | - Ute Roessler
- b Federal Office for Radiation Protection , BfS , Germany
| | - Daniel Samaga
- b Federal Office for Radiation Protection , BfS , Germany
| | | | | | - Janet Hall
- e Centre de Recherche en Cancérologie de Lyon - UMR Inserm 1052 - CNRS 5286 , France
| | - Eileen Pernot
- f Centre for Research in Environmental Epidemiology , CREAL , Spain
- g Universitat Pompeu Fabra (UPF) , Barcelona , Spain
- h CIBER Epidemiología y salud P ublica (CIBERESP) , Barcelona , Spain
| | | | - Sarah Baatout
- i Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN , Belgium
| | | | | |
Collapse
|
42
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
43
|
DNA damage in blood lymphocytes in patients after (177)Lu peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2015; 42:1739-1749. [PMID: 26048612 PMCID: PMC4554740 DOI: 10.1007/s00259-015-3083-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/05/2015] [Indexed: 01/14/2023]
Abstract
Purpose The aim of the study was to investigate DNA double strand break (DSB) formation and its correlation with the absorbed dose to the blood lymphocytes of patients undergoing their first peptide receptor radionuclide therapy (PRRT) with 177Lu-labelled DOTATATE/DOTATOC. Methods The study group comprised 16 patients receiving their first PRRT. At least six peripheral blood samples were obtained before, and between 0.5 h and 48 h after radionuclide administration. From the time–activity curves of the blood and the whole body, residence times for blood self-irradiation and whole-body irradiation were determined. Peripheral blood lymphocytes were isolated, fixed with ethanol and subjected to immunofluorescence staining for colocalizing γ-H2AX/53BP1 DSB-marking foci. The average number of DSB foci per cell per patient sample was determined as a function of the absorbed dose to the blood and compared with an in vitro calibration curve established in our laboratory with 131I and 177Lu. Results The average number of radiation-induced foci (RIF) per cell increased over the first 5 h after radionuclide administration and decreased thereafter. A linear fit from 0 to 5 h as a function of the absorbed dose to the blood agreed with our in vitro calibration curve. At later time-points the number of RIF decreased, indicating progression of DNA repair. Conclusion Measurements of RIF and the absorbed dose to the blood after systemic administration of 177Lu may be used to obtain data on the individual dose–response relationships in vivo. Individual patient data were characterized by a linear dose-dependent increase and an exponential decay function describing repair. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3083-9) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Eberlein U, Peper M, Fernández M, Lassmann M, Scherthan H. Calibration of the γ-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes. PLoS One 2015; 10:e0123174. [PMID: 25853575 PMCID: PMC4390303 DOI: 10.1371/journal.pone.0123174] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/16/2015] [Indexed: 12/22/2022] Open
Abstract
DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers γ-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing γ-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing γ-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra- and inter-subject deviations.
Collapse
Affiliation(s)
- Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Michel Peper
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Maria Fernández
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
45
|
Zahnreich S, Ebersberger A, Kaina B, Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat Res 2015; 183:432-46. [DOI: 10.1667/rr13911.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anne Ebersberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
46
|
Barnard S, Ainsbury EA, Al-hafidh J, Hadjidekova V, Hristova R, Lindholm C, Monteiro Gil O, Moquet J, Moreno M, Rößler U, Thierens H, Vandevoorde C, Vral A, Wojewódzka M, Rothkamm K. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB. RADIATION PROTECTION DOSIMETRY 2015; 164:265-270. [PMID: 25118318 DOI: 10.1093/rpd/ncu259] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
In the event of a mass casualty radiation incident, the gamma-H2AX foci assay could be a useful tool to estimate radiation doses received by individuals. The rapid processing time of blood samples of just a few hours and the potential for batch processing, enabling high throughput, make the assay ideal for early triage categorisation to separate the 'worried well' from the low and critically exposed by quantifying radiation-induced foci in peripheral blood lymphocytes. Within the RENEB framework, 8 European laboratories have taken part in the first European gamma-H2AX biodosimetry exercise, which consisted of a telescoring comparison of 200 circulated foci images taken from 8 samples, and a comparison of 10 fresh blood lymphocyte samples that were shipped overnight to participating labs 4 or 24 h post-exposure. Despite large variations between laboratories in the dose-response relationship for foci induction, the obtained results indicate that the network should be able to use the gamma-H2AX assay for rapidly identifying the most severely exposed individuals within a cohort who could then be prioritised for accurate chromosome dosimetry.
Collapse
Affiliation(s)
- S Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - E A Ainsbury
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - J Al-hafidh
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - V Hadjidekova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - R Hristova
- National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - C Lindholm
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - O Monteiro Gil
- Instituto Superior Técnico, Universidade de Lisboa, CTN, Grupo de Protecção e Segurança Radiológica, Bobadela-LRS, Portugal
| | - J Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| | - M Moreno
- Servicio Madrileño de Salud, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - U Rößler
- Bundesamt für Strahlenschutz, Oberschleissheim, Germany
| | - H Thierens
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - C Vandevoorde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - A Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - M Wojewódzka
- Institute of Nuclear Chemistry and Technology, Center for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - K Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards, Chilton, UK
| |
Collapse
|
47
|
Turner HC, Shuryak I, Taveras M, Bertucci A, Perrier JR, Chen C, Elliston CD, Johnson GW, Smilenov LB, Amundson SA, Brenner DJ. Effect of dose rate on residual γ-H2AX levels and frequency of micronuclei in X-irradiated mouse lymphocytes. Radiat Res 2015; 183:315-24. [PMID: 25738897 DOI: 10.1667/rr13860.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological risks associated with low-dose-rate (LDR) radiation exposures are not yet well defined. To assess the risk related to DNA damage, we compared the yields of two established biodosimetry end points, γ-H2AX and micronuclei (MNi), in peripheral mouse blood lymphocytes after prolonged in vivo exposure to LDR X rays (0.31 cGy/min) vs. acute high-dose-rate (HDR) exposure (1.03 Gy/min). C57BL/6 mice were total-body irradiated with 320 kVP X rays with doses of 0, 1.1, 2.2 and 4.45 Gy. Residual levels of total γ-H2AX fluorescence in lymphocytes isolated 24 h after the start of irradiation were assessed using indirect immunofluorescence methods. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to determine apoptotic cell frequency in lymphocytes sampled at 24 h. Curve fitting analysis suggested that the dose response for γ-H2AX yields after acute exposures could be described by a linear dependence. In contrast, a linear-quadratic dose-response shape was more appropriate for LDR exposure (perhaps reflecting differences in repair time after different LDR doses). Dose-rate sparing effects (P < 0.05) were observed at doses ≤2.2 Gy, such that the acute dose γ-H2AX and TUNEL-positive cell yields were significantly larger than the equivalent LDR yields. At the 4.45 Gy dose there was no difference in γ-H2AX expression between the two dose rates, whereas there was a two- to threefold increase in apoptosis in the LDR samples compared to the equivalent 4.45 Gy acute dose. Micronuclei yields were measured at 24 h and 7 days using the in vitro cytokinesis-blocked micronucleus (CBMN) assay. The results showed that MNi yields increased up to 2.2 Gy with no further increase at 4.45 Gy and with no detectable dose-rate effect across the dose range 24 h or 7 days post exposure. In conclusion, the γ-H2AX biomarker showed higher sensitivity to measure dose-rate effects after low-dose LDR X rays compared to MNi formation; however, confounding factors such as variable repair times post exposure, increased cell killing and cell cycle block likely contributed to the yields of MNi with accumulating doses of ionizing radiation.
Collapse
Affiliation(s)
- H C Turner
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The visualisation of DNA damage response proteins enables the indirect measurement of DNA damage. Soon after the occurrence of a DNA double-strand break (DSB), the formation of γ-H2AX histone variants is to be expected. This review is focused on the potential use of the γ-H2AX foci assay in assessing the genotoxicity of environmental contaminants including cytostatic pharmaceuticals, since standard methods may not be sensitive enough to detect the damaging effect of low environmental concentrations of such drugs. These compounds are constantly released into the environment, potentially representing a threat to water quality, aquatic organisms, and, ultimately, human health. Our review of the literature revealed that this method could be used in the biomonitoring and risk assessment of aquatic systems affected by wastewater from the production, usage, and disposal of cytostatic pharmaceuticals.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| |
Collapse
|
49
|
Moquet J, Barnard S, Rothkamm K. Gamma-H2AX biodosimetry for use in large scale radiation incidents: comparison of a rapid '96 well lyse/fix' protocol with a routine method. PeerJ 2014; 2:e282. [PMID: 24688860 PMCID: PMC3961158 DOI: 10.7717/peerj.282] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 01/09/2023] Open
Abstract
Following a radiation incident, preliminary dose estimates made by γ-H2AX foci analysis can supplement the early triage of casualties based on clinical symptoms. Sample processing time is important when many individuals need to be rapidly assessed. A protocol was therefore developed for high sample throughput that requires less than 0.1 ml blood, thus potentially enabling finger prick sampling. The technique combines red blood cell lysis and leukocyte fixation in one step on a 96 well plate, in contrast to the routine protocol, where lymphocytes in larger blood volumes are typically separated by Ficoll density gradient centrifugation with subsequent washing and fixation steps. The rapid '96 well lyse/fix' method reduced the estimated sample processing time for 96 samples to about 4 h compared to 15 h using the routine protocol. However, scoring 20 cells in 96 samples prepared by the rapid protocol took longer than for the routine method (3.1 versus 1.5 h at zero dose; 7.0 versus 6.1 h for irradiated samples). Similar foci yields were scored for both protocols and consistent dose estimates were obtained for samples exposed to 0, 0.2, 0.6, 1.1, 1.2, 2.1 and 4.3 Gy of 250 kVp X-rays at 0.5 Gy/min and incubated for 2 h. Linear regression coefficients were 0.87 ± 0.06 (R (2) = 97.6%) and 0.85 ± 0.05 (R (2) = 98.3%) for estimated versus actual doses for the routine and lyse/fix method, respectively. The lyse/fix protocol can therefore facilitate high throughput processing for γ-H2AX biodosimetry for use in large scale radiation incidents, at the cost of somewhat longer foci scoring times.
Collapse
Affiliation(s)
- Jayne Moquet
- Public Health England, Centre for Radiation Chemical and Environmental Hazards , Chilton, Didcot, Oxfordshire , UK
| | - Stephen Barnard
- Public Health England, Centre for Radiation Chemical and Environmental Hazards , Chilton, Didcot, Oxfordshire , UK
| | - Kai Rothkamm
- Public Health England, Centre for Radiation Chemical and Environmental Hazards , Chilton, Didcot, Oxfordshire , UK
| |
Collapse
|
50
|
Tucker JD, Joiner MC, Thomas RA, Grever WE, Bakhmutsky MV, Chinkhota CN, Smolinski JM, Divine GW, Auner GW. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts. Int J Radiat Oncol Biol Phys 2014; 88:933-9. [DOI: 10.1016/j.ijrobp.2013.11.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
|