1
|
Bolte E, Dean T, Garcia B, Seferovic MD, Sauter K, Hummel G, Bucher M, Li F, Hicks J, Qin X, Suter MA, Barrozo ER, Jochum M, Shope C, Friedman JE, Gannon M, Wesolowski SR, McCurdy CE, Kievit P, Aagaard KM. Initiation of metformin in early pregnancy results in fetal bioaccumulation, growth restriction, and renal dysmorphology in a primate model. Am J Obstet Gynecol 2024; 231:352.e1-352.e16. [PMID: 38871238 PMCID: PMC11344684 DOI: 10.1016/j.ajog.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND In recent years, pragmatic metformin use in pregnancy has stretched to include prediabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and (most recently) preeclampsia. However, with its expanded use, concerns of unintended harm have been raised. OBJECTIVE This study developed an experimental primate model and applied ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry for direct quantitation of maternal and fetal tissue metformin levels with detailed fetal biometry and histopathology. STUDY DESIGN Within 30 days of confirmed conception (defined as early pregnancy), 13 time-bred (timed-mated breeding) Rhesus dams with pregnancies designated for fetal necropsy were initiated on twice-daily human dose-equivalent 10 mg/kg metformin or vehicle control. Pregnant dams were maintained as pairs and fed either a control chow or 36% fat Western-style diet. Metformin or placebo vehicle control was delivered in various treats while the animals were separated via a slide. A cesarean delivery was performed at gestational day 145, and amniotic fluid and blood were collected, and the fetus and placenta were delivered. The fetus was immediately necropsied by trained primate center personnel. All fetal organs were dissected, measured, sectioned, and processed per clinical standards. Fluid and tissue metformin levels were assayed using validated ultrahigh performance liquid chromatography coupled to triple-quadrupole mass spectrometry in selected reaction monitoring against standard curves. RESULTS Among 13 pregnancies at gestational day 145 with fetal necropsy, 1 dam and its fetal tissues had detectable metformin levels despite being allocated to the vehicle control group (>1 μmol metformin/kg maternal weight or fetal or placental tissue), whereas a second fetus allocated to the vehicle control group had severe fetal growth restriction (birthweight of 248.32 g [<1%]) and was suspected of having a fetal congenital condition. After excluding these 2 fetal pregnancies from further analyses, 11 fetuses from dams initiated on either vehicle control (n=4: 3 female and 1 male fetuses) or 10 mg/kg metformin (n=7: 5 female and 2 male fetuses) were available for analyses. Among dams initiated on metformin at gestational day 30 (regardless of maternal diet), significant bioaccumulation within the fetal kidney (0.78-6.06 μmol/kg; mean of 2.48 μmol/kg), liver (0.16-0.73 μmol/kg; mean of 0.38 μmol/kg), fetal gut (0.28-1.22 μmol/kg; mean of 0.70 μmol/kg), amniotic fluid (0.43-3.33 μmol/L; mean of 1.88 μmol/L), placenta (0.16-1.00 μmol/kg; mean of 0.50 μmol/kg), fetal serum (0.00-0.66 μmol/L; mean of 0.23 μmol/L), and fetal urine (4.10-174.10 μmol/L; mean of 38.5 μmol/L) was observed, with fetal levels near biomolar equivalent to maternal levels (maternal serum: 0.18-0.86 μmol/L [mean of 0.46 μmol/L]; maternal urine: 42.60-254.00 μmol/L [mean of 149.30 μmol/L]). Western-style diet feeding neither accelerated nor reduced metformin bioaccumulations in maternal or fetal serum, urine, amniotic fluid, placenta, or fetal tissues. In these 11 animals, fetal bioaccumulation of metformin was associated with less fetal skeletal muscle (57% lower cross-sectional area of gastrocnemius) and decreased liver, heart, and retroperitoneal fat masses (P<.05), collectively driving lower delivery weight (P<.0001) without changing the crown-rump length. Sagittal sections of fetal kidneys demonstrated delayed maturation, with disorganized glomerular generations and increased cortical thickness. This renal dysmorphology was not accompanied by structural or functional changes indicative of renal insufficiency. CONCLUSION Our study demonstrates fetal bioaccumulation of metformin with associated fetal growth restriction and renal dysmorphology after maternal initiation of the drug within 30 days of conception in primates. Given these results and the prevalence of metformin use during pregnancy, additional investigation of any potential immediate and enduring effects of prenatal metformin use is warranted.
Collapse
Affiliation(s)
- Erin Bolte
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Tyler Dean
- Oregon National Primate Research Center, Beaverton, OR
| | - Brandon Garcia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | | | - Gwendolynn Hummel
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Matthew Bucher
- Department of Human Physiology, University of Oregon, Eugene OR
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Xuan Qin
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Michael Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Cynthia Shope
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Paul Kievit
- Oregon National Primate Research Center, Beaverton, OR
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Oregon National Primate Research Center, Beaverton, OR.
| |
Collapse
|
2
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
4
|
Song JH, Kim HJ, Lee J, Hong SP, Chung MY, Lee YG, Park JH, Choi HK, Hwang JT. Robinetin Alleviates Metabolic Failure in Liver through Suppression of p300-CD38 Axis. Biomol Ther (Seoul) 2024; 32:214-223. [PMID: 38298012 PMCID: PMC10902699 DOI: 10.4062/biomolther.2023.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 02/02/2024] Open
Abstract
Metabolic abnormalities in the liver are closely associated with diverse metabolic diseases such as non-alcoholic fatty liver disease, type 2 diabetes, and obesity. The aim of this study was to evaluate the ameliorating effect of robinetin (RBN) on the significant pathogenic features of metabolic failure in the liver and to identify the underlying molecular mechanism. RBN significantly decreased triglyceride (TG) accumulation by downregulating lipogenesis-related transcription factors in AML-12 murine hepatocyte cell line. In addition, mice fed with Western diet (WD) containing 0.025% or 0.05% RBN showed reduced liver mass and lipid droplet size, as well as improved plasma insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) values. CD38 was identified as a target of RBN using the BioAssay database, and its expression was increased in OPA-treated AML-12 cells and liver tissues of WD-fed mice. Furthermore, RBN elicited these effects through its anti-histone acetyltransferase (HAT) activity. Computational simulation revealed that RBN can dock into the HAT domain pocket of p300, a histone acetyltransferase, which leads to the abrogation of its catalytic activity. Additionally, knock-down of p300 using siRNA reduced CD38 expression. The chromatin immunoprecipitation (ChIP) assay showed that p300 occupancy on the promoter region of CD38 was significantly decreased, and H3K9 acetylation levels were diminished in lipid-accumulated AML-12 cells treated with RBN. RBN improves the pathogenic features of metabolic failure by suppressing the p300-CD38 axis through its anti-HAT activity, which suggests that RBN can be used as a new phytoceutical candidate for preventing or improving this condition.
Collapse
Affiliation(s)
- Ji-Hye Song
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hyo-Jin Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jangho Lee
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Seung-Pyo Hong
- Department of Molecular Biology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul 07661, Republic of Korea
| | - Yu-Geun Lee
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jae Ho Park
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| |
Collapse
|
5
|
Mouzaki M, Woo JG, Divanovic S. Gestational and Developmental Contributors of Pediatric MASLD. Semin Liver Dis 2024; 44:43-53. [PMID: 38423068 DOI: 10.1055/s-0044-1782210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pediatric metabolic dysfunction-associated steatotic liver disease (MASLD) is common and can be seen as early as in utero. A growing body of literature suggests that gestational and early life exposures modify the risk of MASLD development in children. These include maternal risk factors, such as poor cardiometabolic health (e.g., obesity, gestational diabetes, rapid weight gain during pregnancy, and MASLD), as well as periconceptional dietary exposures, degree of physical activity, intestinal microbiome, and smoking. Paternal factors, such as diet and obesity, also appear to play a role. Beyond gestation, early life dietary exposures, as well as the rate of infant weight gain, may further modify the risk of future MASLD development. The mechanisms linking parental health and environmental exposures to pediatric MASLD are complex and not entirely understood. In conclusion, investigating gestational and developmental contributors to MASLD is critical and may identify future interventional targets for disease prevention.
Collapse
Affiliation(s)
- Marialena Mouzaki
- Divisions of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jessica G Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
6
|
Matuszak O, Banach W, Pogorzały B, Muszyński J, Mengesha SH, Bogdański P, Skrypnik D. The Long-Term Effect of Maternal Obesity on the Cardiovascular Health of the Offspring-Systematic Review. Curr Probl Cardiol 2024; 49:102062. [PMID: 37652110 DOI: 10.1016/j.cpcardiol.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Maternal obesity may affect offspring's cardiovascular health. Our literature search using PubMed, Web of Sciences included original English research and Google Scholar articles published over the past ten years, culminating in 96 articles in this topic. A mother's obesity during pregnancy has a negative impact on the cardiovascular risk for their offspring. Dependence was observed in relation to hypertension, coronary artery disease, stroke, and heart failure. The adverse impact of an abnormal diet in pregnant mice on heart hypertrophy was observed, and was also confirmed in human research. Pregnant women with obesity were at greater risk of having a child with innate heart disease than pregnant women with normal mass. To conclude: mother's obesity has a negative impact on the long-term cardiovascular consequences for their offspring, increasing their risk of high blood pressure, coronary heart disease, stroke and heart failure. It also increases the probability of heart hypertrophy and innate heart defects.
Collapse
Affiliation(s)
- Oskar Matuszak
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Weronika Banach
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Bartosz Pogorzały
- Department of Internal Medicine and Cardiology, District Hospital, Juraszów St. 7-19, Poznań, Poland
| | - Józef Muszyński
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Solyana Hailemelekot Mengesha
- Faculty of Medicine, Poznań University of Medical Sciences, Poznań, Poland; Student Scientific Association of Lifestyle Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences; Poznań, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences; Poznań, Poland.
| |
Collapse
|
7
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Chen Z, Xia LP, Shen L, Xu D, Guo Y, Wang H. Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease. Metabolism 2024; 150:155713. [PMID: 37914025 DOI: 10.1016/j.metabol.2023.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Accumulating epidemiological and experimental evidence indicates that nonalcoholic fatty liver disease (NAFLD) has an intrauterine origin. Fetuses exposed to adverse prenatal environments (e.g., maternal malnutrition and xenobiotic exposure) are more susceptible to developing NAFLD after birth. Glucocorticoids are crucial triggers of the developmental programming of fetal-origin diseases. Adverse intrauterine environments often lead to fetal overexposure to maternally derived glucocorticoids, which can program fetal hepatic lipid metabolism through epigenetic modifications. Adverse intrauterine environments program the offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, which contributes to postnatal catch-up growth and disturbs glucose and lipid metabolism. These glucocorticoid-driven programming alterations increase susceptibility to NAFLD in the offspring. Notably, after delivery, offspring often face an environment distinct from their in utero life. The mismatch between the intrauterine and postnatal environments can serve as a postnatal hit that further disturbs the programmed endocrine axes, accelerating the onset of NAFLD. In this review, we summarize the current epidemiological and experimental evidence demonstrating that NAFLD has an intrauterine origin and discuss the underlying intrauterine programming mechanisms, focusing on the role of overexposure to maternally derived glucocorticoids. We also briefly discuss potential early life interventions that may be beneficial against fetal-originated NAFLD.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Li-Ping Xia
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lang Shen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Doshani A, Konje JC. Placental dysfunction in obese women and antenatal surveillance. Best Pract Res Clin Obstet Gynaecol 2023; 91:102407. [PMID: 37738759 DOI: 10.1016/j.bpobgyn.2023.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 09/24/2023]
Abstract
Obesity is a significant health concern worldwide and is associated with numerous health complications, including placental dysfunction during pregnancy. Placental dysfunction can lead to adverse outcomes for both the mother and the foetus, such as preeclampsia, gestational diabetes, preterm birth, and foetal growth restriction. Studies have shown that maternal obesity can lead to placental dysfunction through various mechanisms, including chronic inflammation, oxidative stress, and dysregulation of metabolic pathways. These factors can contribute to changes in the placenta's structure and function, impairing nutrient and oxygen exchange between the mother and foetus. Recent research has also suggested that alteration of gene expression in the placenta due to epigenetic changes, such as DNA methylation, may play a role in placental dysfunction associated with maternal obesity. These changes can affect altering foetal growth and development. Prevention and management of maternal obesity are crucial in reducing the risk of placental dysfunction and associated adverse outcomes during pregnancy. This can be achieved through lifestyle modifications, such as diet and exercise, and early detection and management of underlying health conditions. In conclusion, maternal obesity is a significant risk factor for placental dysfunction during pregnancy, which can lead to adverse outcomes for both the mother and the foetus. Further research is needed to understand the relationship and mechanisms to develop effective interventions to prevent and manage placental dysfunction in obese pregnant women.
Collapse
Affiliation(s)
- Anjum Doshani
- University Hospital of Leicester NHS Trust, Leicester, United Kingdom.
| | - Justin C Konje
- Feto Maternal Center Doha, Qatar; Obstetrics and Gynecology, Weil Cornell Medicine, Qatar; Obstetrics & Gynaecology, University of Leicester, United Kingdom
| |
Collapse
|
10
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
11
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
12
|
Carroll DT, Elsakr JM, Miller A, Fuhr J, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Maternal Western-style diet in nonhuman primates leads to offspring islet adaptations including altered gene expression and insulin hypersecretion. Am J Physiol Endocrinol Metab 2023; 324:E577-E588. [PMID: 37134140 PMCID: PMC10259856 DOI: 10.1152/ajpendo.00087.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate β-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future β-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter β-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.
Collapse
Affiliation(s)
- Darian T Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer Fuhr
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sarah Rene Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Melissa Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
13
|
Harmancıoğlu B, Kabaran S. Maternal high fat diets: impacts on offspring obesity and epigenetic hypothalamic programming. Front Genet 2023; 14:1158089. [PMID: 37252665 PMCID: PMC10211392 DOI: 10.3389/fgene.2023.1158089] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Maternal high-fat diet (HFD) during pregnancy is associated with rapid weight gain and fetal fat mass increase at an early stage. Also, HFD during pregnancy can cause the activation of proinflammatory cytokines. Maternal insulin resistance and inflammation lead to increased adipose tissue lipolysis, and also increased free fatty acid (FFA) intake during pregnancy (˃35% of energy from fat) cause a significant increase in FFA levels in the fetus. However, both maternal insulin resistance and HFD have detrimental effects on adiposity in early life. As a result of these metabolic alterations, excess fetal lipid exposure may affect fetal growth and development. On the other hand, increase in blood lipids and inflammation can adversely affect the development of the liver, adipose tissue, brain, skeletal muscle, and pancreas in the fetus, increasing the risk for metabolic disorders. In addition, maternal HFD is associated with changes in the hypothalamic regulation of body weight and energy homeostasis by altering the expression of the leptin receptor, POMC, and neuropeptide Y in the offspring, as well as altering methylation and gene expression of dopamine and opioid-related genes which cause changes in eating behavior. All these maternal metabolic and epigenetic changes may contribute to the childhood obesity epidemic through fetal metabolic programming. Dietary interventions, such as limiting dietary fat intake <35% with appropriate fatty acid intake during the gestation period are the most effective type of intervention to improve the maternal metabolic environment during pregnancy. Appropriate nutritional intake during pregnancy should be the principal goal in reducing the risks of obesity and metabolic disorders.
Collapse
|
14
|
Nash MJ, Dobrinskikh E, Soderborg TK, Janssen RC, Takahashi DL, Dean TA, Varlamov O, Hennebold JD, Gannon M, Aagaard KM, McCurdy CE, Kievit P, Bergman BC, Jones KL, Pietras EM, Wesolowski SR, Friedman JE. Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring. Cell Rep 2023; 42:112393. [PMID: 37058409 PMCID: PMC10570400 DOI: 10.1016/j.celrep.2023.112393] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
Collapse
Affiliation(s)
- Michael J Nash
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor K Soderborg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Bryan C Bergman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric M Pietras
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
15
|
Satokar VV, Derraik JGB, Harwood M, Okesene-Gafa K, Beck K, Cameron-Smith D, Garg ML, O'Sullivan JM, Sundborn G, Pundir S, Mason RP, Cutfield WS, Albert BB. Fish oil supplementation during pregnancy and postpartum in mothers with overweight and obesity to improve body composition and metabolic health during infancy: A double-blind randomized controlled trial. Am J Clin Nutr 2023; 117:883-895. [PMID: 36781129 DOI: 10.1016/j.ajcnut.2023.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Maternal obesity during pregnancy is associated with an increased risk of obesity and metabolic disease in the offspring. Supplementation with fish oil (FO), which is insulin sensitizing, during pregnancy in mothers with overweight or obesity may prevent the development of greater adiposity and metabolic dysfunction in their children. OBJECTIVES To determine the effects of FO supplementation throughout the second half of pregnancy and lactation in mothers with overweight or obesity on infant body composition and metabolism. METHODS A double-blind randomized controlled trial of 6 g FO (3.55 g/d of n-3 PUFAs) compared with olive oil (control) from mid-pregnancy until 3 mo postpartum. Eligible women had singleton pregnancies at 12-20 wk of gestation, and BMI ≥ 25 kg/m2. The primary outcome was the infant body fat percentage (DXA scans) at 2 wk of age. Secondary outcomes included maternal metabolic markers during pregnancy, infant anthropometry at 2 wk and 3 mo of age, and metabolic markers at 3 mo. RESULTS A total of 129 mothers were randomized, and 98 infants had a DXA scan at 2 wk. PRIMARY OUTCOME Imputed and nonimputed analyses showed no effects of FO supplementation on infant body fat percentage at age 2 wk. SECONDARY OUTCOMES There were no treatment effects on infant outcomes at 2 wk, but FO infants had a higher BMI z-score (P = 0.025) and ponderal index (P = 0.017) at age 3 mo. FO supplementation lowered maternal triglycerides by 17% at 30 wk of pregnancy (P = 0.0002) and infant triglycerides by 21% at 3 mo of age (P = 0.016) but did not affect maternal or infant insulin resistance. The rate of emergency cesarean section was lower with FO supplementation [aRR = 0.38 (95%CI 0.16, 0.90); P = 0.027]. CONCLUSIONS FO supplementation of mothers with overweight or obesity during pregnancy did not impact infant body composition. There is a need to follow up the offspring to determine whether the observed metabolic effects persist. CLINICAL TRIAL REGISTRY NUMBER This study was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12617001078347p). In addition, the Universal Trial Number, WHO, was obtained (U1111-1199-5860).
Collapse
Affiliation(s)
- Vidit V Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - José G B Derraik
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Environmental - Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Matire Harwood
- Department of General Practice and Primary Care, University of Auckland, Auckland, New Zealand
| | - Karaponi Okesene-Gafa
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kathryn Beck
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; College of Engineering, Science and Environment, University of Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, New South Wales, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, New South Wales, Australia
| | | | - Gerhard Sundborn
- Department of Pacific Health, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Shikha Pundir
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand; A Better Start - National Science Challenge, University of Auckland, New Zealand
| | - Benjamin B Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand; A Better Start - National Science Challenge, University of Auckland, New Zealand.
| |
Collapse
|
16
|
Agrelius TC, Altman J, Dudycha JL. The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex. Heredity (Edinb) 2023; 130:73-81. [PMID: 36477021 PMCID: PMC9905607 DOI: 10.1038/s41437-022-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The inheritance of epigenetic marks induced by environmental variation in a previous generation is broadly accepted as a mediator of phenotypic plasticity. Transgenerational effects linking maternal experiences to changes in morphology, gene expression, and life history of successive generations are known across many taxa. While the number of studies linking epigenetic variation to ecological maternal effects is increasing rapidly, few if any attempts have been made to investigate molecular mechanisms governing epigenetic functions in the context of ecologically relevant maternal effects. Daphnia make an ideal model for investigating molecular epigenetic mechanisms and ecological maternal effects because they will reproduce asexually in the lab. Daphnia are also known to have strong maternal effects, involving a variety of traits and environmental variables. Using two clones of Daphnia pulex, we investigated the plasticity of life history and DNA methyltransferase (Dnmt) gene expression with respect to food limitation within and across generations. We found strong evidence of genotypic variation of responses of life history and Dnmt expression to low food diets, both within and across generations. In general, effects of offspring diet were larger than either the direct maternal effect or offspring-maternal environment interactions, but the direction of the maternal effect was usually in the opposite direction of the within-generation effect. For both life history and Dnmt expression, we also found that when offspring had low food, effects of the maternal environment were stronger than when offspring had high food.
Collapse
Affiliation(s)
- Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA.
| | - Julia Altman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
17
|
Galvan-Martinez DH, Bosquez-Mendoza VM, Ruiz-Noa Y, Ibarra-Reynoso LDR, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G99-G114. [PMID: 36472341 DOI: 10.1152/ajpgi.00168.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main liver disease worldwide, and its prevalence in children and adolescents has been increasing in the past years. It has been demonstrated that parental exposure to different conditions, both preconceptionally and during pregnancy, can lead to fetal programming of several metabolic diseases, including NAFLD. In this article, we review some of the maternal and paternal conditions that may be involved in early-life programing of adult NAFLD. First, we describe the maternal nutritional factors that have been suggested to increase the risk of NAFLD in the offspring, such as an obesogenic diet, overweight/obesity, and altered lipogenesis. Second, we review the association of certain vitamin supplementation and the use of some drugs during pregnancy, for instance, glucocorticoids, with a higher risk of NAFLD. Furthermore, we discuss the evidence showing that maternal-fetal pathologies, including gestational diabetes mellitus (GDM), insulin resistance (IR), and intrauterine growth restriction (IUGR), as well as the exposure to environmental contaminants, and the impact of microbiome changes, are important factors in early-life programming of NAFLD. Finally, we review how paternal preconceptional conditions, such as exercise and diet (particularly obesogenic diets), may impact fetal growth and liver function. Altogether, the presented evidence supports the hypothesis that both in utero exposure and parental conditions may influence fetal outcomes, including the development of NAFLD in early life and adulthood. The study of these conditions is crucial to better understand the diverse mechanisms involved in NAFLD, as well as for defining new preventive strategies for this disease.
Collapse
Affiliation(s)
| | | | - Yeniley Ruiz-Noa
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | | - Gloria Barbosa-Sabanero
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | |
Collapse
|
18
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
19
|
Peng H, Li J, Xu H, Wang X, He L, McCauley N, Zhang KK, Xie L. Offspring NAFLD liver phospholipid profiles are differentially programmed by maternal high-fat diet and maternal one carbon supplement. J Nutr Biochem 2023; 111:109187. [PMID: 36270572 DOI: 10.1016/j.jnutbio.2022.109187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
Little is known if and how maternal diet affects the liver phospholipid profiles that contribute to non-alcoholic fatty liver disease (NAFLD) development in offspring. We examined NAFLD phenotypes in male offspring mice of either maternal normal-fat diet (NF group), maternal high-fat diet (HF group), maternal methionine supplement (H1S group), or complete one-carbon supplement (H2S group) added to the maternal HF diet during gestation and lactation. HF offspring displayed worsened NAFLD phenotypes induced by post-weaning HF diet, however, maternal one-carbon supplement prevented such outcome. HF offspring also showed a distinct phospholipid profile from the offspring exposed to H1S or H2S diet. Whole genome bisulfite sequencing (WGBS) analysis further identified five pathways involved in phospholipid metabolism altered by different maternal diet interventions. Furthermore, differential methylated regions (DMRs) on Prkca, Dgkh, Plcb1 and Dgki were identified comparing between HF and NF offspring; most of these DMRs were recovered in H2S offspring. These methylation pattern changes were associated with gene expression changes: HF diet significantly reduced while H1S and H2S diet recovered their levels. Maternal HF diet disrupted offspring phospholipid profiles contributing to worsened hepatic steatosis. The maternal one-carbon supplement prevented such effects, probably through DNA methylation modification.
Collapse
Affiliation(s)
- Hui Peng
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Jiangyuan Li
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Department of Statistics, Texas A&M University, College Station, Texas, USA
| | - Huiting Xu
- Department of Pathology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Xian Wang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, Texas, USA; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas, USA; Department of Pathology, University of North Dakota, Grand Forks, North Dakota, USA.
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
20
|
KENANOGLU SERCAN, GOKCE NURIYE, AKALIN HILAL, ERGOREN MAHMUTCERKEZ, BECCARI TOMMASO, BERTELLI MATTEO, DUNDAR MUNIS. Implication of the Mediterranean diet on the human epigenome. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E44-E55. [PMID: 36479488 PMCID: PMC9710399 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epigenetics, defined as "hereditary changes in gene expression that occur without any change in the DNA sequence", consists of various epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. The epigenome, which has a dynamic structure in response to intracellular and extracellular stimuli, has a key role in the control of gene activity, since it is located at the intersection of cellular information encoded in the genome and molecular/chemical information of extracellular origin. The focus shift of studies to epigenetic reprogramming has led to the formation and progressive importance of a concept called "nutriepigenetics", whose aim is to prevent diseases by intervening on nutrition style. Among the diet types adopted in the world, the renowned Mediterranean Diet (MD), being rich in unsaturated fatty acids and containing high levels of whole grain foods and large quantities of fruits, vegetables, and legumes, has shown numerous advantages in excluding chronic diseases. Additionally, the fact that this diet is rich in polyphenols with high antioxidant and anti-inflammatory properties has an undeniable effect in turning some cellular pathways against the disease. It is also apparent that the effects of polyphenols on the epigenome cause changes in mechanisms such as DNA methylation and histone acetylation/deacetylation, which have a regulatory effect on gene regulation. This review presents the effects of long-term consumption of nutrients from the MD on the epigenome and discusses the benefits of this diet in the treatment and even prevention of chronic diseases.
Collapse
Affiliation(s)
- SERCAN KENANOGLU
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - NURIYE GOKCE
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - HILAL AKALIN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - TOMMASO BECCARI
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - MATTEO BERTELLI
- MAGISNAT, Peachtree Corners (GA), USA
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
| | - MUNIS DUNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Correspondence: Munis Dundar, Department of Medical Genetics, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey. E-mail:
| |
Collapse
|
21
|
Sassin AM, Johnson GJ, Goulding AN, Aagaard KM. Crucial nuances in understanding (mis)associations between the neonatal microbiome and Cesarean delivery. Trends Mol Med 2022; 28:806-822. [PMID: 36085277 PMCID: PMC9509442 DOI: 10.1016/j.molmed.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
As rates of Cesarean delivery and common non-communicable disorders (NCDs), such as obesity, metabolic disease, and atopy/asthma, have concomitantly increased in recent decades, investigators have attempted to discern a causal link. One line of research has led to a hypothesis that Cesarean birth disrupts the presumed normal process of colonization of the neonatal microbiome with vaginal microbes, yielding NCDs later in life. However, a direct link between a disrupted microbiota transfer at time of delivery and acute and/or chronic illness in infants born via Cesarean has not been causally established. Microbiota seeding from maternal vaginal or stool sources has been preliminarily evaluated as an intervention designed to compensate for the lack of (or limited) exposure to such sources among Cesarean-delivered neonates. However, to date, clinical trials have yet to show a clear health benefit with neonatal 'vaginal seeding' practices. Until the long-term effects of these microbiome alterations can be fully determined, it is paramount to conduct parallel meaningful and mechanistic-minded interrogations of the impact of clinically modifiable maternal, nutritional, or environmental exposure on the functional microbiome over the duration of pregnancy and lactation to determine their role in the mitigation of childhood and adult NCDs.
Collapse
Affiliation(s)
- Alexa M Sassin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Grace J Johnson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison N Goulding
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022; 10:biomedicines10102461. [PMID: 36289722 PMCID: PMC9599218 DOI: 10.3390/biomedicines10102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
While a dramatic increase in obesity and related comorbidities is being witnessed, the underlying mechanisms of their spread remain unresolved. Epigenetic and other non-genetic mechanisms tend to be prominent candidates involved in the establishment and transmission of obesity and associated metabolic disorders to offspring. Here, we review recent findings addressing those candidates, in the context of maternal and paternal influences, and discuss the effectiveness of preventive measures.
Collapse
Affiliation(s)
- Gemma Comas-Armangue
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Lela Makharadze
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
| | - Melisa Gomez-Velazquez
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| | - Raffaele Teperino
- German Research Center for Environmental Health Neuherberg, Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD) Neuherberg, 85764 Neuherberg, Germany
- Correspondence: (M.G.-V.); (R.T.)
| |
Collapse
|
23
|
Satokar VV, Vickers MH, Reynolds CM, Ponnampalam AP, Firth EC, Garg ML, Barrett CJ, Cutfield WS, Albert BB. Fish oil supplementation of rats fed a high fat diet during pregnancy improves offspring insulin sensitivity. Front Nutr 2022; 9:968443. [PMID: 36118754 PMCID: PMC9481032 DOI: 10.3389/fnut.2022.968443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionIn rats, a maternal high-fat diet (HFD) leads to adverse metabolic changes in the adult offspring, similar to the children of mothers with obesity during pregnancy. Supplementation with a high dose of fish oil (FO) to pregnant rats fed a HFD has been shown to prevent the development of insulin resistance in adult offspring. However, the effects of supplementation at a translationally relevant dose remain unknown.AimTo determine whether supplementation with a human-relevant dose of FO to pregnant rats can prevent the long-term adverse metabolic and cardiovascular effects of a maternal HFD on adult offspring.MethodsFemale rats (N = 100, 90 days of age) were assigned to HFD (45% kcal from fat) or control diet (CD) for 14 days prior to mating and throughout pregnancy and lactation. Following mating, dams received a gel containing 0.05 ml of FO (human equivalent 2–3 ml) or a control gel on each day of pregnancy. This produced 4 groups, CD with control gel, CD with FO gel, HFD with control gel and HFD with FO gel. Plasma and tissue samples were collected at day 20 of pregnancy and postnatal day 2, 21, and 100. Adult offspring were assessed for insulin sensitivity, blood pressure, DXA scan, and 2D echocardiography.ResultsThere was an interaction between maternal diet and FO supplementation on insulin sensitivity (p = 0.005) and cardiac function (p < 0.01). A maternal HFD resulted in impaired insulin sensitivity in the adult offspring (p = 0.005 males, p = 0.001 females). FO supplementation in the context of a maternal HFD prevented the reduction in insulin sensitivity in offspring (p = 0.05 males, p = 0.0001 females). However, in dams consuming CD, FO supplementation led to impaired insulin sensitivity (p = 0.02 males, p = 0.001 females), greater body weight and reduced cardiac ejection fraction.ConclusionThe effects of a human-relevant dose of maternal FO on offspring outcomes were dependent on the maternal diet, so that FO was beneficial to the offspring if the mother consumed a HFD, but deleterious if the mother consumed a control diet. This study suggests that supplementation with FO should be targeted to women expected to have abnormalities of metabolism such as those with overweight and obesity.
Collapse
Affiliation(s)
- Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clare M. Reynolds
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Anna P. Ponnampalam
- Manaaki Mānawa – The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Elwyn C. Firth
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Manohar L. Garg
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Carolyn J. Barrett
- Manaaki Mānawa – The Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Wayne S. Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start – National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Benjamin B. Albert
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start – National Science Challenge, University of Auckland, Auckland, New Zealand
- *Correspondence: Benjamin B. Albert,
| |
Collapse
|
24
|
Reimann B, Martens DS, Wang C, Ghantous A, Herceg Z, Plusquin M, Nawrot TS. Interrelationships and determinants of aging biomarkers in cord blood. J Transl Med 2022; 20:353. [PMID: 35945616 PMCID: PMC9361565 DOI: 10.1186/s12967-022-03541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Vaughan OR, Rosario FJ, Chan J, Cox LA, Ferchaud-Roucher V, Zemski-Berry KA, Reusch JEB, Keller AC, Powell TL, Jansson T. Maternal obesity causes fetal cardiac hypertrophy and alters adult offspring myocardial metabolism in mice. J Physiol 2022; 600:3169-3191. [PMID: 35545608 DOI: 10.1113/jp282462] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/04/2022] [Indexed: 01/09/2023] Open
Abstract
Obesity in pregnant women causes fetal cardiac dysfunction and increases offspring cardiovascular disease risk, but its effect on myocardial metabolism is unknown. We hypothesized that maternal obesity alters fetal cardiac expression of metabolism-related genes and shifts offspring myocardial substrate preference from glucose towards lipids. Female mice were fed control or obesogenic diets before and during pregnancy. Fetal hearts were studied in late gestation (embryonic day (E) 18.5; term ≈ E21), and offspring were studied at 3, 6, 9 or 24 months postnatally. Maternal obesity increased heart weight and peroxisome proliferator activated receptor gamma (Pparg) expression in female and male fetuses and caused left ventricular diastolic dysfunction in the adult offspring. Cardiac dysfunction worsened progressively with age in female, but not male, offspring of obese dams, in comparison to age-matched control animals. In 6-month-old offspring, exposure to maternal obesity increased cardiac palmitoyl carnitine-supported mitochondrial respiration in males and reduced myocardial 18 F-fluorodeoxyglucose uptake in females. Cardiac Pparg expression remained higher in adult offspring of obese dams than control dams and was correlated with contractile and metabolic function. Maternal obesity did not affect cardiac palmitoyl carnitine respiration in females or 18 F-fluorodeoxyglucose uptake in males and did not alter cardiac 3 H-oleic acid uptake, pyruvate respiration, lipid content or fatty acid/glucose transporter abundance in offspring of either sex. The results support our hypothesis and show that maternal obesity affects offspring cardiac metabolism in a sex-dependent manner. Persistent upregulation of Pparg expression in response to overnutrition in utero might underpin programmed cardiac impairments mechanistically and contribute to cardiovascular disease risk in children of women with obesity. KEY POINTS: Obesity in pregnant women causes cardiac dysfunction in the fetus and increases lifelong cardiovascular disease risk in the offspring. In this study, we showed that maternal obesity in mice induces hypertrophy of the fetal heart in association with altered expression of genes related to nutrient metabolism. Maternal obesity also alters cardiac metabolism of carbohydrates and lipids in the adult offspring. The results suggest that overnutrition in utero might contribute to increased cardiovascular disease risk in children of women with obesity.
Collapse
Affiliation(s)
- Owen R Vaughan
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeannie Chan
- Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Laura A Cox
- Department of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Veronique Ferchaud-Roucher
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karin A Zemski-Berry
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jane E B Reusch
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Amy C Keller
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
26
|
Zhao D, Liu Y, Jia S, He Y, Wei X, Liu D, Ma W, Luo W, Gu H, Yuan Z. Influence of maternal obesity on the multi-omics profiles of the maternal body, gestational tissue, and offspring. Biomed Pharmacother 2022; 151:113103. [PMID: 35605294 DOI: 10.1016/j.biopha.2022.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epidemiological studies show that obesity during pregnancy affects more than half of the pregnancies in the developed countries and is associated with obstetric problems and poor outcomes. Obesity tends to increase the incidence of complications. Furthermore, the resulting offspring are also adversely affected. However, the molecular mechanisms of obesity leading to poor pregnancy outcomes remain unclear. Omics methods are used for genetic diagnosis and marker discovery. The aim of this review was to summarize the maternal and fetal pathophysiological alterations induced by gestational obesity,identified using multi-omics detection techniques, and to generalize the biological functions and potential mechanisms of the differentially expressed molecules.
Collapse
Affiliation(s)
- Duan Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Yiwen He
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| |
Collapse
|
27
|
Abate KH, Arage G, Hassen H, Abafita J, Belachew T. Differential effect of prenatal exposure to the Great Ethiopian Famine (1983-85) on the risk of adulthood hypertension based on sex: a historical cohort study. BMC Womens Health 2022; 22:220. [PMID: 35690760 PMCID: PMC9188157 DOI: 10.1186/s12905-022-01815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background The consequence of the Great Ethiopian Famine (1983–1985) on mortality had been well documented. However, the long term assaults of the famine on adulthood health, particularly on the risk of hypertension, has never been documented. The aim of this study was twofold: to examine the association of prenatal-exposure to the Great Ethiopian Famine and hypertension in adulthood and investigate if there existed sex difference in the risk estimate. Methods Participants were recruited using multistage stratified random sampling and grouped as prenatal famine exposed and non-exposed cohorts based on their reported date of birth and current age. Independent sample T test was employed to compare continuous outcomes between the groups. A multivariable logistic regression was used to examine the association between prenatal famine exposure and risk of hypertension in adults. Results Compared to the non-exposed groups, prenatal famine exposed cohorts had higher systolic blood pressure by 1.05 mmHg, (95% CI 0.29, 4.42) and diastolic by 2.47 mmHg (95% CI 1.01, 3.95). In multivariable logistic regression analysis, both unadjusted (COR = 2.50; 1.575, 3.989) and adjusted model for covariates (OR: 2.306 95% CI (1.426, 3.72) indicated a positive association between prenatal famine exposure and the risk of adult hypertension. However, in sex disaggregated analysis, the positive association was only significant in females (AOR = 3.95 95% CI 1.76, 8.85) indicating nearly four folds of odds of hypertension among females, while the corresponding figure for males was not significant (AOR = 1.201 (0.69, 2.07). Conclusions Famine exposure during prenatal period could have differential impact on the development of hypertension based on sex, where adult exposed females had higher risk of hypertension as compared to males. Contextualized primary prevention programs with special focus on gender is critical undertaking in hunger spots and regions with historical famine. Supplementary Information The online version contains supplementary material available at 10.1186/s12905-022-01815-w.
Collapse
Affiliation(s)
| | - Getachew Arage
- Department of Nutrition and Dietetics, College of Health Sciences, DebreTabor University, Debre Tabor, Ethiopia
| | - Habtamu Hassen
- Department of Public Health, Hosanna College of Health Science, Hosanna, Ethiopia
| | - Jemal Abafita
- College of Business and Economics, Jimma University, Jimma, Ethiopia
| | - Tefera Belachew
- Food and Nutrition Research Institute, Jimma University, Jimma, Ethiopia
| |
Collapse
|
28
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
29
|
Kankowski L, Ardissino M, McCracken C, Lewandowski AJ, Leeson P, Neubauer S, Harvey NC, Petersen SE, Raisi-Estabragh Z. The Impact of Maternal Obesity on Offspring Cardiovascular Health: A Systematic Literature Review. Front Endocrinol (Lausanne) 2022; 13:868441. [PMID: 35669689 PMCID: PMC9164814 DOI: 10.3389/fendo.2022.868441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/02/2023] Open
Abstract
Objective Obesity and cardiovascular disease are major global public health problems. Maternal obesity has been linked to multiple adverse health consequences for both mother and baby. Obesity during pregnancy may adversely alter the intrauterine environment, which has been hypothesised to predispose the offspring to poorer cardiovascular health throughout life. In this paper, we systematically review current literature examining the links between maternal obesity and offspring cardiovascular health. Methods This study is registered with PROSPERO (CRD42021278567) and was conducted in accordance with the PRISMA guidelines. A comprehensive systematic literature search was conducted, including two electronic databases (Ovid Medline, Embase), cross-referencing, author searching, and grey literature searches. We selected studies exploring the relationship between maternal obesity and offspring cardiovascular health, using pre-defined eligibility criteria. Studies were critically appraised using the ROBINS-I tool. Results From 1,214 results, 27 articles met the eligibility criteria. Multiple cardiovascular outcomes were considered, including congenital heart disease, cardiometabolic parameters, and cardiovascular diseases in neonates, children, and adults. In these studies, maternal obesity was consistently associated with congenital heart disease, several adverse cardiometabolic parameters throughout life including higher body mass index and insulin levels, and greater risk of cardiovascular disease in adulthood. Hypothesized underlying mechanisms are complex and multifactorial comprising genetic, environmental, and socioeconomic components, which can be difficult to quantify. Heterogeneity in study designs, highly selected study samples, and high risk of bias in some studies limit conclusions regarding causality. Conclusions We identified consistent evidence of links between maternal obesity and poorer offspring cardiovascular health throughout the lifecourse, extending from the neonatal period into adulthood. Although underlying mechanisms are unclear, our findings support consideration of targeted maternal obesity prevention for promotion of offspring cardiovascular health. This all-encompassing systematic review provides critical appraisal of the latest evidence, defines gaps and biases of existing literature, and may inform potential new public health strategies for cardiovascular disease prevention. Systematic Review Registration [https://www.crd.york.ac.uk/prospero], identifier PROSPERO (CRD42021278567).
Collapse
Affiliation(s)
- Lois Kankowski
- Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Maddalena Ardissino
- Imperial College School of Medicine, Imperial College London, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Celeste McCracken
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Adam J. Lewandowski
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Paul Leeson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Nicholas C. Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Steffen E. Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, United Kingdom
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, United Kingdom
| |
Collapse
|
30
|
Polyploidy as a Fundamental Phenomenon in Evolution, Development, Adaptation and Diseases. Int J Mol Sci 2022; 23:ijms23073542. [PMID: 35408902 PMCID: PMC8998937 DOI: 10.3390/ijms23073542] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/02/2023] Open
Abstract
DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.
Collapse
|
31
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
32
|
Haapanen MJ, Jylhävä J, Kortelainen L, Mikkola TM, Salonen M, Wasenius NS, Kajantie E, Eriksson JG, von Bonsdorff MB. Early life factors as predictors of age-associated deficit accumulation across 17 years from midlife into old age. J Gerontol A Biol Sci Med Sci 2022; 77:2281-2287. [PMID: 35018457 DOI: 10.1093/gerona/glac007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Early life exposures have been associated with the risk of frailty in old age. We investigated whether early life exposures predict the level and rate of change in a frailty index (FI) from midlife into old age. METHODS A linear mixed model analysis was performed using data from three measurement occasions over 17 years in participants from the Helsinki Birth Cohort Study (n=2000) aged 57-84 years. A 41-item FI was calculated on each occasion. Information on birth size, maternal body mass index (BMI), growth in infancy and childhood, childhood socioeconomic status (SES), and early life stress (wartime separation from both parents), was obtained from registers and healthcare records. RESULTS At age 57 years the mean FI level was 0.186 and the FI levels increased by 0.34 percent/year from midlife into old age. Larger body size at birth associated with a slower increase in FI levels from midlife into old age. Per 1kg greater birth weight the increase in FI levels per year was -0.087 percentage points slower (95% CI=-0.163, -0.011; p=0.026). Higher maternal BMI was associated with a higher offspring FI level in midlife and a slower increase in FI levels into old age. Larger size, faster growth from infancy to childhood, and low SES in childhood were all associated with a lower FI level in midlife but not with its rate of change. CONCLUSIONS Early life factors seem to contribute to disparities in frailty from midlife into old age. Early life factors may identify groups that could benefit from frailty prevention, optimally initiated early in life.
Collapse
Affiliation(s)
- Markus J Haapanen
- Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Faculty of Social Sciences (Health Sciences) and Gerontology Research Center, Tampere University, Tampere, Finland
| | | | - Tuija M Mikkola
- Folkhälsan Research Center, Helsinki, Finland.,Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Salonen
- Department of Public Health and Welfare, Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Niko S Wasenius
- Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- Department of Public Health and Welfare, Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan G Eriksson
- Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland.,Yong Loo Lin School of Medicine, Department of obstetrics and gynecology and Human Potential Translational Research Programme, National University Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mikaela B von Bonsdorff
- Folkhälsan Research Center, Helsinki, Finland.,Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
33
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
34
|
Early Identification of the Maternal, Placental and Fetal Dialog in Gestational Diabetes and Its Prevention. REPRODUCTIVE MEDICINE 2021. [DOI: 10.3390/reprodmed3010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) complicates between 5 and 12% of pregnancies, with associated maternal, fetal, and neonatal complications. The ideal screening and diagnostic criteria to diagnose and treat GDM have not been established and, currently, diagnostic use with an oral glucose tolerance test occurs late in pregnancy and produces poor reproducibility. Therefore, in recent years, significant research has been undertaken to identify a first-trimester biomarker that can predict GDM later in pregnancy, enable early intervention, and reduce GDM-related adverse pregnancy outcomes. Possible biomarkers include glycemic markers (fasting glucose and hemoglobin A1c), adipocyte-derived markers (adiponectin and leptin), pregnancy-related markers (pregnancy-associated plasma protein-A and the placental growth factor), inflammatory markers (C-reactive protein and tumor necrosis factor-α), insulin resistance markers (sex hormone-binding globulin), and others. This review summarizes current data on first-trimester biomarkers, the advantages, and the limitations. Large multi-ethnic clinical trials and cost-effectiveness analyses are needed not only to build effective prediction models but also to validate their clinical use.
Collapse
|
35
|
Vickers MH. Early life nutrition and neuroendocrine programming. Neuropharmacology 2021; 205:108921. [PMID: 34902348 DOI: 10.1016/j.neuropharm.2021.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Alterations in the nutritional environment in early life can significantly increase the risk for obesity and a range of development of metabolic disorders in offspring in later life, effects that can be passed onto future generations. This process, termed development programming, provides the framework of the developmental origins of health and disease (DOHaD) paradigm. Early life nutritional compromise including undernutrition, overnutrition or specific macro/micronutrient deficiencies, results in a range of adverse health outcomes in offspring that can be further exacerbated by a poor postnatal nutritional environment. Although the mechanisms underlying programming remain poorly defined, a common feature across the phenotypes displayed in preclinical models is that of altered wiring of neuroendocrine circuits that regulate satiety and energy balance. As such, altered maternal nutritional exposures during critical early periods of developmental plasticity can result in aberrant hardwiring of these circuits with lasting adverse consequences for the offspring. There is also increasing evidence around the role of an altered epigenome and the gut-brain axis in mediating some of the central programming effects observed. Further, although such programming was once considered to result in a permanent change in developmental trajectory, there is evidence, at least from preclinical models, that programming can be reversed via targeted nutritional manipulations during early development. Further work is required at a mechanistic level to allow for identification for early markers of later disease risk, delineation of sex-specific effects and pathways to implementation of strategies aimed at breaking the transgenerational transmission of disease.
Collapse
Affiliation(s)
- M H Vickers
- Liggins Institute, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
| |
Collapse
|
36
|
Epigenetic Modifications at the Center of the Barker Hypothesis and Their Transgenerational Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312728. [PMID: 34886453 PMCID: PMC8656758 DOI: 10.3390/ijerph182312728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
Embryo/fetal nutrition and the environment in the reproductive tract influence the subsequent risk of developing adult diseases and disorders, as formulated in the Barker hypothesis. Metabolic syndrome, obesity, heart disease, and hypertension in adulthood have all been linked to unwanted epigenetic programing in embryos and fetuses. Multiple studies support the conclusion that environmental challenges, such as a maternal low-protein diet, can change one-carbon amino acid metabolism and, thus, alter histone and DNA epigenetic modifications. Since histones influence gene expression and the program of embryo development, these epigenetic changes likely contribute to the risk of adult disease onset not just in the directly affected offspring, but for multiple generations to come. In this paper, we hypothesize that the effects of parental nutritional status on fetal epigenetic programming are transgenerational and warrant further investigation. Numerous studies supporting this hypothesis are reviewed, and potential research techniques to study these transgenerational epigenetic effects are offered.
Collapse
|
37
|
Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and Therapeutic Opportunities of Histone Modifications in Chronic Liver Disease. Front Pharmacol 2021; 12:784591. [PMID: 34887768 PMCID: PMC8650224 DOI: 10.3389/fphar.2021.784591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic liver disease (CLD) represents a global health problem, accounting for the heavy burden of disability and increased health care utilization. Epigenome alterations play an important role in the occurrence and progression of CLD. Histone modifications, which include acetylation, methylation, and phosphorylation, represent an essential part of epigenetic modifications that affect the transcriptional activity of genes. Different from genetic mutations, histone modifications are plastic and reversible. They can be modulated pharmacologically without changing the DNA sequence. Thus, there might be chances to establish interventional solutions by targeting histone modifications to reverse CLD. Here we summarized the roles of histone modifications in the context of alcoholic liver disease (ALD), metabolic associated fatty liver disease (MAFLD), viral hepatitis, autoimmune liver disease, drug-induced liver injury (DILI), and liver fibrosis or cirrhosis. The potential targets of histone modifications for translation into therapeutics were also investigated. In prospect, high efficacy and low toxicity drugs that are selectively targeting histone modifications are required to completely reverse CLD and prevent the development of liver cirrhosis and malignancy.
Collapse
Affiliation(s)
- Qiuyu Cai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
39
|
Zhu F, Zhang D, Shen F, Xu K, Huang X, Liu J, Zhang J, Teng Y. Maternal Socs3 knockdown attenuates postnatal obesity caused by an early life environment of maternal obesity and intrauterine overnutrition in progeny mice. IUBMB Life 2021; 73:1210-1221. [PMID: 34184397 DOI: 10.1002/iub.2526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/29/2021] [Accepted: 06/20/2021] [Indexed: 11/07/2022]
Abstract
Pathological states in the early life environment of mammalian offspring, including maternal obesity and intrauterine overnutrition, can induce obesity and metabolic disorder later in life. Leptin resistance caused by upregulation of Socs3 in the hypothalamus of offspring was believed to be the main mechanism of this effect. In this study, obese mother (OM) and lean mother (LM) models were generated by feeding C57BL/6N female mice a high-fat diet or standard lean diet, respectively. Additionally, an obese mother with intervention (OMI) model was generated by injecting the high-fat diet group with Socs3-shRNA lentivirus during early pregnancy. The offspring of the groups was correspondingly named OM-F1 , LM-F1 , and OMI-F1 , representing progeny mouse models of different early life environments. The offspring were fed a high-fat diet to test their propensity for obesity. The body weight, food intake and fat accumulation were higher, while glucose intolerance and insulin resistance were worse in the OM-F1 group than LM-F1 group. By contrast, the obesity phenotype, hyperphagia and metabolic disorder were alleviated in the OMI-F1 group compared with the OM-F1 group. The mechanism was identified that downregulation of hypothalamic SOCS3 resulted in an increased level of p-STAT3 and p-JAK2, which ameliorated the leptin resistance and restored the lean expression of appetite regulatory genes (Pomc and Agrp) in hypothalamus of OMI-F1 group. Taken together, these results indicate that reducing maternal Socs3 expression during pregnancy can attenuate obesity caused by the early life environment in mice, which may inspire therapies that enable obese mothers to bear metabolically healthy children.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Graduate, Bengbu Medical College, Bengbu, China
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Dawei Zhang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Fangfang Shen
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ke Xu
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xin Huang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Jue Liu
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological and Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Yiqun Teng
- Department of Graduate, Bengbu Medical College, Bengbu, China
- Children's Medical Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
40
|
Zhang L, Yang L, Wang C, Yuan T, Zhang D, Wei H, Li J, Lei Y, Sun L, Li X, Hua Y, Che H, Li Y. Combined Effect of Famine Exposure and Obesity Parameters on Hypertension in the Midaged and Older Adult: A Population-Based Cross-Sectional Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5594718. [PMID: 34604385 PMCID: PMC8486537 DOI: 10.1155/2021/5594718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/07/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Undernutrition early in life may increase the incidence of adverse effects on adult health. The relations between undernutrition and obesity parameters (body mass index (BMI) and WC (waist circle)) and hypertension were often contradictory. Our study is aimed at identifying the combined effects of famine exposure and obesity parameters on hypertension in middle-aged and older Chinese. DESIGN A population-based cross-sectional study. Setting. Data were selected from the China Health and Retirement Longitudinal Study Wave2011 (CHARLS Wave2011). Participants. The sample included 12945 individuals aged 45 to 96. Main Outcome Measurements. The study analyzed data from 12945 middle-aged and older Chinese selected from CHARLS Wave2011. Differences between baseline characteristics and famine exposure/BMI levels/WC levels were evaluated using the t-, Chi-square- (χ 2-), and F-test. Then, the difference in the prevalence of hypertension between baseline characteristics was estimated by the t- and χ 2-test. Finally, multivariable-adjusted logistic regression models were used to explore the associations of famine exposure and obesity parameters with odds of prevalence of hypertension. RESULTS Among the 12945 participants, 1548 (11.96%) participants had been exposed to the Chinese famine during the fetal group, whereas 5101 (39.41%) participants and 4362 (33.70%) participants had been exposed to the famine during childhood and adolescence/adult group, respectively. Regarding the participants with BMI levels, 3746 (28.94%) were overweight, and 1465 (11.32%) were obese, whereas 5345 (41.29%) of the participants with WC levels were obese, respectively. Furthermore, 1920 (31.17%) had hypertension in males and 2233 (32.91%) in females. In multivariable-adjusted models, famine exposure and obesity parameters were related with prevalence of hypertension independently in total populations ((1) model threec, famine exposure with prevalence of hypertension: the fatal-exposed vs. no-exposed group (OR1.27; 95% CI 1.08, 1.49); childhood-exposed vs. no-exposed group (OR1.64; 95% CI 1.44, 1.87); the adolescence/adult-exposed vs. no-exposed group (OR3.06; 95% CI 2.68, 3.50); P for trend < 0.001; (2) model threee, famine exposure with prevalence of hypertension: the fatal-exposed vs. no-exposed group (OR1.25; 95% CI 1.06, 1.47); childhood-exposed vs. no-exposed group (OR1.52; 95% CI 1.34, 1.73); the adolescence/adult-exposed vs. no-exposed group (OR2.66; 95% CI 2.33, 3.03); P for trend < 0.001; (3) model threeg, BMI levels with prevalence of hypertension: overweight vs. normal (OR1.75; 95% CI 1.60, 1.91); obesity vs. normal (OR2.79; 95% CI 2.48, 3.15); P for trend < 0.001; (4) WC levels with prevalence of hypertension: overweight vs. normal (OR1.42; 95% CI 1.36, 1.48)). When stratified by sex, results in both males and females were mostly similar to those in the total population. In general, interaction analysis in the multivariable-adjusted model, compared with the combination of normal BMI/WC levels and no-exposed famine group, all groups trended towards higher odds of prevalence of hypertension (the greatest increase in odds, adolescence/adult-exposed group with obesity in BMI levels: (OR8.13; 95% CI 6.18, 10.71); adolescence/adult-exposed group with obesity in WC levels: (OR6.36; 95% CI 5.22, 7.75); P for interaction < 0.001). When stratified by sex, the results in both males and females were also similar to those in the total population. CONCLUSION Our data support a strongly positive combined effect of famine exposure and obesity parameters on hypertension in middle-aged and elderly Chinese.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Liu Yang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Ting Yuan
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Dongmei Zhang
- Department of Pediatric Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Huanhuan Wei
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Jing Li
- Department of Surgical Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Yunxiao Lei
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Lu Sun
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Xiaoping Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Ying Hua
- Rehabilitation Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| | - Hengying Che
- Department of Nursing, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Zheshan West Road, Yijishan District, Wuhu City, Anhui Province, China
| | - Yuanzhen Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, Anhui Province, China
| |
Collapse
|
41
|
Zhang L, Yang L, Wang C, Yuan T, Zhang D, Wei H, Li J, Lei Y, Sun L, Li X, Hua Y, Che H, Li Y. Individual and combined association analysis of famine exposure and serum uric acid with hypertension in the mid-aged and older adult: a population-based cross-sectional study. BMC Cardiovasc Disord 2021; 21:420. [PMID: 34488649 PMCID: PMC8420034 DOI: 10.1186/s12872-021-02230-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Background Malnutrition in early life may affect health in later life. The associations between malnutrition and serum uric acid (SUA) and hypertension were inconsistent. The present study aimed to investigate the individual and combined association between famine exposure and serum uric acid and hypertension in middle-aged and older Chinese. Methods Data were selected from the China Health and Retirement Longitudinal Study (CHARLS) Wave2011. The analytic sample included 9368 individuals aged 45 to 90. Differences between baseline characteristics and famine exposure/SUA level were evaluated using the Chi-square test, t-test, and F-test. Then, the differences in the prevalence of hypertension between characteristic groups was also estimated by the Chi-square and t-test. Finally, multivariable-adjusted logistic regression models examined association of famine exposure and serum uric acid with odds of prevalence of hypertension. Results A total of 9368 individuals were enrolled in the study, 4366 (46.61%) and 5002 (53.39%) were male and female, respectively. Among males, 459 (10.51%) had been exposed to the Chinese famine during the fetal stage, whereas 1760 (40.31%) and 1645 (37.68%) had been exposed to the famine during childhood and adolescence/adult stage, respectively. Among females, 635 (12.69%) had been exposed to the Chinese famine during the fetal stage, whereas 1988 (39.74%) and 1569 (31.37%) had been exposed to the famine during childhood and adolescence/adult stage, respectively. Regarding the participants with SUA level measurements, 290 (6.64%) reported having Hyperuricemia (HUA) in males and 234 (4.68%) in the females. Furthermore, 1357 (31.08%) reported having hypertension in male and 1619 (32.37%) in the female. In multivariable-adjusted model, famine exposure and serum uric acid were associated with prevalence of hypertension independently in total populations [(1) Model fourd, fatal exposed group vs non-exposed group: 1.25 (95% CI 1.03, 1.52); childhood-exposed group vs non-exposed group:1.60 (95% CI 1.37, 1.87); adolescence/adult exposed group vs non-exposed group: 2.87 (95% CI 2.44, 3.37), P for trend < 0.001; (2) Model four e, high vs normal:1.73 (95% CI 1.44, 2.08)]. When stratified by sex, the results in both males and females were similar to those in the total population. In general, interaction analysis in the multivariable-adjusted model, compared with the combination of normal SUA level and no-exposed famine stage, all groups trended towards higher odds of prevalence of hypertension [the greatest increase in odds, adolescence/adult exposed stage and high SUA level in total participants: OR4.34; 95%CI 3.24, 5.81; P for interaction < 0.001]. When stratified by sex, the results in both males and females were also similar to those in the total population. Conclusion Our data support a strongly positive individual and combined association of famine exposure and serum uric acid with hypertension in middle-aged and elderly Chinese.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Liu Yang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Ting Yuan
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Dongmei Zhang
- Department of Pediatric Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Huanhuan Wei
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Jing Li
- Department of Surgical Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Yunxiao Lei
- Obstetrics and Gynecology Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Lu Sun
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Xiaoping Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Ying Hua
- Rehabilitation Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China
| | - Hengying Che
- Department of Nursing, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Zheshan West Road, Yijishan District, Wuhu City, Anhui Province, People's Republic of China.
| | - Yuanzhen Li
- Department of Emergency and Critical Care Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, An Hui Province, People's Republic of China.
| |
Collapse
|
42
|
Lee J, Song JH, Chung MY, Lee JH, Nam TG, Park JH, Hwang JT, Choi HK. 3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity. Acta Pharmacol Sin 2021; 42:1449-1460. [PMID: 33303988 PMCID: PMC8379200 DOI: 10.1038/s41401-020-00571-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
3,3',4',5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In ob/ob mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.
Collapse
|
43
|
Mäkinen H, van Oers K, Eeva T, Ruuskanen S. The effect of experimental lead pollution on DNA methylation in a wild bird population. Epigenetics 2021; 17:625-641. [PMID: 34369261 DOI: 10.1080/15592294.2021.1943863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Anthropogenic pollution is known to negatively influence an organism's physiology, behaviour, and fitness. Epigenetic regulation, such as DNA methylation, has been hypothesized as a potential mechanism to mediate such effects, yet studies in wild species are lacking. We first investigated the effects of early-life exposure to the heavy metal lead (Pb) on DNA methylation levels in a wild population of great tits (Parus major), by experimentally exposing nestlings to Pb at environmentally relevant levels. Secondly, we compared nestling DNA methylation from a population exposed to long-term heavy metal pollution (close to a copper smelter), where birds suffer from pollution-related decrease in food quality, and a control population. For both comparisons, the analysis of about one million CpGs covering most of the annotated genes revealed that pollution-related changes in DNA methylation were not genome wide, but enriched for genes underlying developmental processes. However, the results were not consistent when using binomial or beta binomial regression highlighting the difficulty of modelling variance in CpGs. Our study indicates that post-natal anthropogenic heavy metal exposure can affect methylation levels of development related genes in a wild bird population.
Collapse
Affiliation(s)
- Hannu Mäkinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Turku, Finland
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Tapio Eeva
- Department of Biological and Environmental Sciences, University of Jyväskylä, Turku, Finland
| | - Suvi Ruuskanen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Turku, Finland
| |
Collapse
|
44
|
Development of the circadian system and relevance of periodic signals for neonatal development. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:249-258. [PMID: 34225966 DOI: 10.1016/b978-0-12-819975-6.00015-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circadian rhythms are generated endogenously with a period of approximately 24h. Studies carried out during the last decade indicate that the circadian system develops before birth, and that the suprachiasmatic nucleus, a structure that is considered the mammalian circadian clock, is present in primates from the middle of pregnancy. Recent evidence shows that the infants' circadian system is sensitive to light from very early stages of development; it has also been proposed that low-intensity lighting can regulate the developing clock. After birth there is a progressive maturation of the outputs of the circadian system with marked rhythms in sleep-wake phenomena and hormone secretion. These facts express the importance of circadian photic regulation in infants. Thus, the exposure of premature babies to light/dark cycles results in a rapid establishment of activity/rest patterns, which are in the light-dark cycle. With the continuous study of the development of the circadian system and the influence on human physiology and disease, it is anticipated that the application of circadian biology will become an increasingly important component in the perinatal care.
Collapse
|
45
|
Elsakr JM, Zhao SK, Ricciardi V, Dean TA, Takahashi DL, Sullivan E, Wesolowski SR, McCurdy CE, Kievit P, Friedman JE, Aagaard KM, Edwards DRV, Gannon M. Western-style diet consumption impairs maternal insulin sensitivity and glucose metabolism during pregnancy in a Japanese macaque model. Sci Rep 2021; 11:12977. [PMID: 34155315 PMCID: PMC8217225 DOI: 10.1038/s41598-021-92464-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
The prevalence of maternal obesity is increasing in the United States. Offspring born to women with obesity or poor glycemic control have greater odds of becoming obese and developing metabolic disease later in life. Our group has utilized a macaque model to study the metabolic effects of consumption of a calorically-dense, Western-style diet (WSD; 36.3% fat) during pregnancy. Here, our objective was to characterize the effects of WSD and obesity, alone and together, on maternal glucose tolerance and insulin levels in dams during each pregnancy. Recognizing the collinearity of maternal measures, we adjusted for confounding factors including maternal age and parity. Based on intravenous glucose tolerance tests, dams consuming a WSD showed lower glucose area under the curve during first study pregnancies despite increased body fat percentage and increased insulin area under the curve. However, with (1) prolonged WSD feeding, (2) multiple diet switches, and/or (3) increasing age and parity, WSD was associated with increasingly higher insulin levels during glucose tolerance testing, indicative of insulin resistance. Our results suggest that prolonged or recurrent calorically-dense WSD and/or increased parity, rather than obesity per se, drive excess insulin resistance and metabolic dysfunction. These observations in a highly relevant species are likely of clinical and public health importance given the comparative ease of maternal dietary modifications relative to the low likelihood of successfully reversing obesity in the course of any given pregnancy.
Collapse
Affiliation(s)
- Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sifang Kathy Zhao
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, TN, 37203-1738, USA
| | - Valerie Ricciardi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, 7465 MRBIV, Nashville, TN, 37232-0475, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Elinor Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, 97403, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Digna R Velez Edwards
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 600, Nashville, TN, 37203-1738, USA.
- Department of Biomedical Informatics, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Avenue, 7465 MRBIV, Nashville, TN, 37232-0475, USA.
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
Richard D, Capellini TD. Shifting epigenetic contexts influence regulatory variation and disease risk. Aging (Albany NY) 2021; 13:15699-15749. [PMID: 34138751 PMCID: PMC8266365 DOI: 10.18632/aging.203194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Epigenetic shifts are a hallmark of aging that impact transcriptional networks at regulatory level. These shifts may modify the effects of genetic regulatory variants during aging and contribute to disease pathomechanism. However, these shifts occur on the backdrop of epigenetic changes experienced throughout an individual's development into adulthood; thus, the phenotypic, and ultimately fitness, effects of regulatory variants subject to developmental- versus aging-related epigenetic shifts may differ considerably. Natural selection therefore may act differently on variants depending on their changing epigenetic context, which we propose as a novel lens through which to consider regulatory sequence evolution and phenotypic effects. Here, we define genomic regions subjected to altered chromatin accessibility as tissues transition from their fetal to adult forms, and subsequently from early to late adulthood. Based on these epigenomic datasets, we examine patterns of evolutionary constraint and potential functional impacts of sequence variation (e.g., genetic disease risk associations). We find that while the signals observed with developmental epigenetic changes are consistent with stronger fitness consequences (i.e., negative selection pressures), they tend to have weaker effects on genetic risk associations for aging-related diseases. Conversely, we see stronger effects of variants with increased local accessibility in adult tissues, strongest in young adult when compared to old. We propose a model for how epigenetic status of a region may influence the effects of evolutionary relevant sequence variation, and suggest that such a perspective on gene regulatory networks may elucidate our understanding of aging biology.
Collapse
Affiliation(s)
- Daniel Richard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Peng H, Xu H, Wu J, Li J, Zhou Y, Ding Z, Siwko SK, Yuan X, Schalinske KL, Alpini G, Zhang KK, Xie L. Maternal high-fat diet disrupted one-carbon metabolism in offspring, contributing to nonalcoholic fatty liver disease. Liver Int 2021; 41:1305-1319. [PMID: 33529448 PMCID: PMC8137550 DOI: 10.1111/liv.14811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Pregnant women may transmit their metabolic phenotypes to their offspring, enhancing the risk for nonalcoholic fatty liver disease (NAFLD); however, the molecular mechanisms remain unclear. METHODS Prior to pregnancy female mice were fed either a maternal normal-fat diet (NF-group, "no effectors"), or a maternal high-fat diet (HF-group, "persistent effectors"), or were transitioned from a HF to a NF diet before pregnancy (H9N-group, "effectors removal"), followed by pregnancy and lactation, and then offspring were fed high-fat diets after weaning. Offspring livers were analysed by functional studies, as well as next-generation sequencing for gene expression profiles and DNA methylation changes. RESULTS The HF, but not the H9N offspring, displayed glucose intolerance and hepatic steatosis. The HF offspring also displayed a disruption of lipid homeostasis associated with an altered methionine cycle and abnormal one-carbon metabolism that caused DNA hypermethylation and L-carnitine depletion associated with deactivated AMPK signalling and decreased expression of PPAR-α and genes for fatty acid oxidation. These changes were not present in H9N offspring. In addition, we identified maternal HF diet-induced genes involved in one-carbon metabolism that were associated with DNA methylation modifications in HF offspring. Importantly, the DNA methylation modifications and their associated gene expression changes were reversed in H9N offspring livers. CONCLUSIONS Our results demonstrate for the first time that maternal HF diet disrupted the methionine cycle and one-carbon metabolism in offspring livers which further altered lipid homeostasis. CpG islands of specific genes involved in one-carbon metabolism modified by different maternal diets were identified.
Collapse
Affiliation(s)
- Hui Peng
- Department of Nutrition, Texas A&M University, College Station, TX,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiting Xu
- Department of Pathology, University of North Dakota, Grand Forks, North Dakota,Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Jie Wu
- Institute of Biosciences & Technology, Texas A&M University, Houston, TX
| | - Jiangyuan Li
- Department of Nutrition, Texas A&M University, College Station, TX,Department of Statistics, Texas A&M University, College Station, TX
| | - Yi Zhou
- Department of Nutrition, Texas A&M University, College Station, TX,Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zehuan Ding
- Department of Nutrition, Texas A&M University, College Station, TX
| | - Stefan K. Siwko
- Institute of Biosciences & Technology, Texas A&M University, Houston, TX
| | - Xianglin Yuan
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kevin L. Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, and Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX,Institute of Biosciences & Technology, Texas A&M University, Houston, TX,Department of Pathology, University of North Dakota, Grand Forks, North Dakota,Co-corresponding author: These authors contributed equally to this work
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX,Co-corresponding author: These authors contributed equally to this work
| |
Collapse
|
48
|
Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105227. [PMID: 34069012 PMCID: PMC8155932 DOI: 10.3390/ijerph18105227] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of chronic liver disease in the Western world, probably due to the growing prevalence of obesity, metabolic diseases, and exposure to some environmental agents. In certain patients, simple hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which can sometimes lead to liver cirrhosis and its complications including hepatocellular carcinoma. Understanding the mechanisms that cause the progression of NAFLD to NASH is crucial to be able to control the advancement of the disease. The main hypothesis considers that it is due to multiple factors that act together on genetically predisposed subjects to suffer from NAFLD including insulin resistance, nutritional factors, gut microbiota, and genetic and epigenetic factors. In this article, we will discuss the epidemiology of NAFLD, and we overview several topics that influence the development of the disease from simple steatosis to liver cirrhosis and its possible complications.
Collapse
Affiliation(s)
- Oriol Juanola
- Gastroenterology and Hepatology, Translational Research Laboratory, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sebastián Martínez-López
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Rubén Francés
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
49
|
Cai S, Quan S, Yang G, Chen M, Ye Q, Wang G, Yu H, Wang Y, Qiao S, Zeng X. Nutritional Status Impacts Epigenetic Regulation in Early Embryo Development: A Scoping Review. Adv Nutr 2021; 12:1877-1892. [PMID: 33873200 PMCID: PMC8483970 DOI: 10.1093/advances/nmab038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Guangxin Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Qianhong Ye
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China,Beijing Key Laboratory of Bio-feed Additives, China Agricultural University, Beijing, China
| | | |
Collapse
|
50
|
Pre-Pregnancy Diet Quality Is Associated with Lowering the Risk of Offspring Obesity and Underweight: Finding from a Prospective Cohort Study. Nutrients 2021; 13:nu13041044. [PMID: 33804865 PMCID: PMC8063840 DOI: 10.3390/nu13041044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Maternal diet plays a critical role in epigenetic changes and the establishment of the gut microbiome in the fetus, which has been associated with weight outcomes in offspring. This study examined the association between maternal diet quality before pregnancy and childhood body mass index (BMI) in offspring. There were 1936 mothers with 3391 children included from the Australian Longitudinal Study on Women’s Health (ALSWH) and the Mothers and their Children’s Health (MatCH) study. Maternal dietary intakes were assessed using a semi-quantitative and validated 101-item food-frequency questionnaire (FFQ). The healthy eating index (HEI-2015) score was used to explore preconception diet quality. Childhood BMI was categorized as underweight, normal, overweight, and obese based on sex and age-specific BMI classifications for children. Multinomial logistic regression with cluster-robust standard errors was used for analyses. Greater adherence to maternal diet quality before pregnancy was associated with a lower risk of offspring being underweight after adjustment for potential confounders, highest vs. lowest quartile (relative risk ratio (RRR) = 0.68, 95% confidence interval (CI): 0.49, 0.96). Higher adherence to preconception diet quality was also inversely linked with the risk of childhood obesity (RRR = 0.49, 95% CI: 0.24, 0.98). This association was, however, no longer significant after adjusting for pre-pregnancy BMI. Sodium intake was significantly associated with decreased risk of childhood overweight and obesity (RRR = 0.18, 95% CI: 0.14, 0.23) and (RRR = 0.21, 95% CI: 0.17, 0.26), respectively. No significant association was detected between preconception diet quality and offspring being overweight. This study suggests that better adherence to maternal diet quality before pregnancy is associated with a reduced risk of childhood underweight and obesity.
Collapse
|