1
|
Choi G, Kang H, Suh JS, Lee H, Han K, Yoo G, Jo H, Shin YM, Kim TJ, Youn B. Novel Estrogen Receptor Dimerization BRET-Based Biosensors for Screening Estrogenic Endocrine-Disrupting Chemicals. Biomater Res 2024; 28:0010. [PMID: 38464469 PMCID: PMC10923609 DOI: 10.34133/bmr.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The increasing prevalence of endocrine-disrupting chemicals (EDCs) in our environment is a growing concern, with numerous studies highlighting their adverse effects on the human endocrine system. Among the EDCs, estrogenic endocrine-disrupting chemicals (eEDCs) are exogenous compounds that perturb estrogenic hormone function by interfering with estrogen receptor (ER) homo (α/α, β/β) or hetero (α/β) dimerization. To date, a comprehensive screening approach for eEDCs affecting all ER dimer forms in live cells is lacking. Here, we developed ER dimerization-detecting biosensors (ERDDBs), based on bioluminescence resonance energy transfer, for dimerization detection and rapid eEDC identification. To enhance the performance of these biosensors, we determined optimal donor and acceptor locations using computational analysis. Additionally, employing HaloTag as the acceptor and incorporating the P2A peptide as a linker yielded the highest sensitivity among the prototypes. We also established stable cell lines to screen potential ER dimerization inducers among estrogen analogs (EAs). The EAs were categorized through cross-comparison of ER dimer responses, utilizing EC values derived from a standard curve established with 17β-estradiol. We successfully classified 26 of 72 EAs, identifying which ER dimerization types they induce. Overall, our study underscores the effectiveness of the optimized ERDDB for detecting ER dimerization and its applicability in screening and identifying eEDCs.
Collapse
Affiliation(s)
- Gyuho Choi
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyunkoo Kang
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Haksoo Lee
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Gaeun Yoo
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Jo
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yeong Min Shin
- Food Safety Risk Assessment Division,
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Institute of Systems Biology,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science,
Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences,
Pusan National University, Busan 46241, Republic of Korea
- Nuclear Science Research Institute,
Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Rock KD, Folts LM, Zierden HC, Marx-Rattner R, Leu NA, Nugent BM, Bale TL. Developmental transcriptomic patterns can be altered by transgenic overexpression of Uty. Sci Rep 2023; 13:21082. [PMID: 38030664 PMCID: PMC10687263 DOI: 10.1038/s41598-023-47977-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
The genetic material encoded on X and Y chromosomes provides the foundation by which biological sex differences are established. Epigenetic regulators expressed on these sex chromosomes, including Kdm6a (Utx), Kdm5c, and Ddx3x have far-reaching impacts on transcriptional control of phenotypic sex differences. Although the functionality of UTY (Kdm6c, the Y-linked homologue of UTX), has been supported by more recent studies, its role in developmental sex differences is not understood. Here we test the hypothesis that UTY is an important transcriptional regulator during development that could contribute to sex-specific phenotypes and disease risks across the lifespan. We generated a random insertion Uty transgenic mouse (Uty-Tg) to overexpress Uty. By comparing transcriptomic profiles in developmental tissues, placenta and hypothalamus, we assessed potential UTY functional activity, comparing Uty-expressing female mice (XX + Uty) with wild-type male (XY) and female (XX) mice. To determine if Uty expression altered physiological or behavioral outcomes, adult mice were phenotypically examined. Uty expression masculinized female gene expression patterns in both the placenta and hypothalamus. Gene ontology (GO) and gene set enrichment analysis (GSEA) consistently identified pathways including immune and synaptic signaling as biological processes associated with UTY. Interestingly, adult females expressing Uty gained less weight and had a greater glucose tolerance compared to wild-type male and female mice when provided a high-fat diet. Utilizing a Uty-overexpressing transgenic mouse, our results provide novel evidence as to a functional transcriptional role for UTY in developing tissues, and a foundation to build on its prospective capacity to influence sex-specific developmental and health outcomes.
Collapse
Affiliation(s)
- Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Lillian M Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Biomedical Sciences Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hannah C Zierden
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20740, USA
| | - Ruth Marx-Rattner
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bridget M Nugent
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Colorado School of Medicine, CU Anschutz Medical Campus, 12800 E. 19th Avenue, Aurora, CO, 80045, USA.
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Lee JS, Tocheny CE, Shaw LM. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121992. [PMID: 36556357 PMCID: PMC9782138 DOI: 10.3390/life12121992] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
In this review, we provide an overview of the role of the insulin-like growth factor (IGF) signaling pathway in breast cancer and discuss its potential as a therapeutic target. The IGF pathway ligands, IGF-1 and IGF-2, and their receptors, primarily IGF-1R, are important for normal mammary gland biology, and dysregulation of their expression and function drives breast cancer risk and progression through activation of downstream signaling effectors, often in a subtype-dependent manner. The IGF signaling pathway has also been implicated in resistance to current therapeutic strategies, including ER and HER2 targeting drugs. Unfortunately, efforts to target IGF signaling for the treatment of breast cancer have been unsuccessful, due to a number of factors, most significantly the adverse effects of disrupting IGF signaling on normal glucose metabolism. We highlight here the recent discoveries that provide enthusiasm for continuing efforts to target IGF signaling for the treatment of breast cancer patients.
Collapse
Affiliation(s)
| | | | - Leslie M. Shaw
- Correspondence: ; Tel.: +1-508-856-8675; Fax: +1-508-856-1310
| |
Collapse
|
4
|
Mavingire N, Campbell P, Wooten J, Aja J, Davis MB, Loaiza-Perez A, Brantley E. Cancer stem cells: Culprits in endocrine resistance and racial disparities in breast cancer outcomes. Cancer Lett 2020; 500:64-74. [PMID: 33309858 DOI: 10.1016/j.canlet.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer stem cells (BCSCs) promote endocrine therapy (ET) resistance, also known as endocrine resistance in hormone receptor (HR) positive breast cancer. Endocrine resistance occurs via mechanisms that are not yet fully understood. In vitro, in vivo and clinical data suggest that signaling cascades such as Notch, hypoxia inducible factor (HIF), and integrin/Akt promote BCSC-mediated endocrine resistance. Once HR positive breast cancer patients relapse on ET, targeted therapy agents such as cyclin dependent kinase inhibitors are frequently implemented, though secondary resistance remains a threat. Here, we discuss Notch, HIF, and integrin/Akt pathway regulation of BCSC activity and potential strategies to target these pathways to counteract endocrine resistance. We also discuss a plausible link between elevated BCSC-regulatory gene levels and reduced survival observed among African American women with basal-like breast cancer which lacks HR expression. Should future studies reveal a similar link for patients with luminal breast cancer, then the use of agents that impede BCSC activity could prove highly effective in improving clinical outcomes among African American breast cancer patients.
Collapse
Affiliation(s)
- Nicole Mavingire
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Petreena Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Jonathan Wooten
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA.
| | - Joyce Aja
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medicine-New York Presbyterian Hospital Network, New York, NY, USA.
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Área Investigación, Av. San Martin, 5481, C1417 DTB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Eileen Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Center for Health Disparities and Molecular Medicine, Loma Linda University Health School of Medicine, Loma Linda, CA, USA; Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA.
| |
Collapse
|
5
|
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1. Discov Oncol 2020; 11:129-147. [PMID: 32592004 DOI: 10.1007/s12672-020-00388-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional regulation of ESR1, the gene that encodes for estrogen receptor α (ER), is critical for regulating the downstream effects of the estrogen signaling pathway in breast cancer such as cell growth. ESR1 is a large and complex gene that is regulated by multiple regulatory elements, which has complicated our understanding of how ESR1 expression is controlled in the context of breast cancer. Early studies characterized the genomic structure of ESR1 with subsequent studies focused on identifying intrinsic (chromatin environment, transcription factors, signaling pathways) and extrinsic (tumor microenvironment, secreted factors) mechanisms that impact ESR1 gene expression. Currently, the introduction of genomic sequencing platforms and additional genome-wide technologies has provided additional insight on how chromatin structures may coordinate with these intrinsic and extrinsic mechanisms to regulate ESR1 expression. Understanding these interactions will allow us to have a clearer understanding of how ESR1 expression is regulated and eventually provide clues on how to influence its regulation with potential treatments. In this review, we highlight key studies concerning the genomic structure of ESR1, mechanisms that affect the dynamics of ESR1 expression, and considerations towards affecting ESR1 expression and hormone responsiveness in breast cancer.
Collapse
|
6
|
Gogola J, Hoffmann M, Ptak A. Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate IGF1 secretion by adult ovarian granulosa cell tumor spheroids and thereby increase proliferation of non-cancer ovarian granulosa cells. Toxicol In Vitro 2020; 65:104769. [DOI: 10.1016/j.tiv.2020.104769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
|
7
|
Mohanty SS, Mohanty PK. Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis 2019; 8:117-123. [PMID: 33997158 PMCID: PMC8099684 DOI: 10.1016/j.gendis.2019.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the second highest prevalent cancer globally after lung cancer with 2.09 million cases during 2018. Adults about 1.9 billion were overweight and over 650 million out of these were obese during 2016. There is a significant relationship between breast cancer risk and obesity. Premature menopause and premenopausal obesity diminish the risk whereas postmenopausal obesity amplifies the risk, because adipose tissue acts as the major reservoir for estrogen biosynthesis after menopause. Lofty estrogen levels in serum along with enhanced peripheral site production of estrogen have been viewed as major reasons of developing breast cancer in overweight postmenopausal women. This review explains body fat as a peripheral site for estrogen biosynthesis, estrogen exposure affecting body fat distribution, and the mechanism of estrogen production from body fats.
Collapse
Affiliation(s)
- Swati Sucharita Mohanty
- Cytogenetics Laboratory, P.G. Department of Zoology, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Prafulla Kumar Mohanty
- Cytogenetics Laboratory, P.G. Department of Zoology, Utkal University, Bhubaneswar, 751004, Odisha, India
| |
Collapse
|
8
|
Hada M, Oh H, Pfeiffer RM, Falk RT, Fan S, Mullooly M, Pollak M, Geller B, Vacek PM, Weaver D, Shepherd J, Wang J, Fan B, Mahmoudzadeh AP, Malkov S, Herschorn S, Brinton LA, Sherman ME, Gierach GL. Relationship of circulating insulin-like growth factor-I and binding proteins 1-7 with mammographic density among women undergoing image-guided diagnostic breast biopsy. Breast Cancer Res 2019; 21:81. [PMID: 31337427 PMCID: PMC6651938 DOI: 10.1186/s13058-019-1162-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background Mammographic density (MD) is a strong breast cancer risk factor that reflects fibroglandular and adipose tissue composition, but its biologic underpinnings are poorly understood. Insulin-like growth factor binding proteins (IGFBPs) are markers that may be associated with MD given their hypothesized role in breast carcinogenesis. IGFBPs sequester IGF-I, limiting its bioavailability. Prior studies have found positive associations between circulating IGF-I and the IGF-I:IGFBP-3 ratio and breast cancer risk. We evaluated the associations of IGF-I, IGFBP-3, and six other IGFBPs with MD. Methods Serum IGF measures were quantified in 296 women, ages 40–65, undergoing diagnostic image-guided breast biopsy. Volumetric density measures (MD-V) were assessed in pre-biopsy digital mammograms using single X-ray absorptiometry. Area density measures (MD-A) were estimated by computer-assisted thresholding software. Age, body mass index (BMI), and BMI2-adjusted linear regression models were used to examine associations of serum IGF measures with MD. Effect modification by BMI was also assessed. Results IGF-I and IGFBP-3 were not strongly associated with MD after BMI adjustment. In multivariable analyses among premenopausal women, IGFBP-2 was positively associated with both percent MD-V (β = 1.49, p value = 0.02) and MD-A (β = 1.55, p value = 0.05). Among postmenopausal women, positive relationships between IGFBP-2 and percent MD-V (β = 2.04, p = 0.003) were observed; the positive associations between IGFBP-2 and percent MD-V were stronger among lean women (BMI < 25 kg/m2) (β = 5.32, p = 0.0002; p interaction = 0.0003). Conclusions In this comprehensive study of IGFBPs and MD, we observed a novel positive association between IGFBP-2 and MD, particularly among women with lower BMI. In concert with in vitro studies suggesting a dual role of IGFBP-2 on breast tissue, promoting cell proliferation as well as inhibiting tumorigenesis, our findings suggest that further studies assessing the role of IGFBP-2 in breast tissue composition, in addition to IGF-1 and IGFBP-3, are warranted. Electronic supplementary material The online version of this article (10.1186/s13058-019-1162-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manila Hada
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Hannah Oh
- Division of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Ruth M Pfeiffer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Roni T Falk
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shaoqi Fan
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Berta Geller
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Pamela M Vacek
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Donald Weaver
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | | | - Jeff Wang
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Bo Fan
- University of California San Francisco, San Francisco, CA, USA
| | | | - Serghei Malkov
- University of California San Francisco, San Francisco, CA, USA
| | - Sally Herschorn
- University of Vermont and Vermont Cancer Center, Burlington, VT, USA
| | - Louise A Brinton
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gretchen L Gierach
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Ginsenoside Rb1 Blocks Ritonavir-Induced Oxidative Stress and eNOS Downregulation through Activation of Estrogen Receptor-Beta and Upregulation of SOD in Human Endothelial Cells. Int J Mol Sci 2019; 20:ijms20020294. [PMID: 30642080 PMCID: PMC6358897 DOI: 10.3390/ijms20020294] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that ritonavir (RTV), a highly active anti-retroviral therapy (HAART) drug, can cause endothelial dysfunction through oxidative stress. Several antioxidants including ginsenoside Rb1, a compound with antioxidant effect, can effectively block this side effect of RTV in endothelial cells. In the current study, we explored a mechanism by which ginsenoside Rb1 could protect these cells via binding of estrogen receptors (ERs). We found that several human endothelial cell lines differentially expressed ER-β and had very low levels of ER-α. RTV treatment significantly increased the production of reactive oxygen species (ROS) and decreased the expression of endothelial nitric oxidase synthase (eNOS) and superoxide dismutase (SOD) in HUVECs, while Rb1 effectively blocked these effects of RTV. These effects of Rb1 were effectively inhibited by silencing ER-β, indicating that ginsenoside Rb1 requires ER-β for its antioxidant activity in inhibiting the deleterious effect of RTV in human endothelial cells. Furthermore, Rb1 specifically activated ER-β transactivation activity by ER-β luciferase reporter assay. Rb1 competitively bound to ER-β, which was determined by the high sensitive fluorescent polarization assay.
Collapse
|
10
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
11
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Costa R, Carneiro BA, Tavora F, Pai SG, Kaplan JB, Chae YK, Chandra S, Kopp PA, Giles FJ. The challenge of developmental therapeutics for adrenocortical carcinoma. Oncotarget 2018; 7:46734-46749. [PMID: 27102148 PMCID: PMC5216833 DOI: 10.18632/oncotarget.8774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/10/2016] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare disease with an estimated incidence of only 0.7 new cases per million per year. Approximately 30-70% of the patients present with advanced disease with very poor prognosis and without effective therapeutic options. In the recent years, unprecedented progresses in cancer biology and genomics have fostered the development of numerous targeted therapies for various malignancies. Immunotherapy has also transformed the treatment landscape of malignancies such as melanoma, among others. However, these advances have not brought meaningful benefits for patients with ACC. Extensive genomic analyses of ACC have revealed numerous signal transduction pathway aberrations (e.g., insulin growth factor receptor and Wnt/β-catenin pathways) that play a central role in pathophysiology. These molecular alterations have been explored as potential therapeutic targets for drug development. This manuscript summarizes recent discoveries in ACC biology, reviews the results of early clinical studies with targeted therapies, and provides the rationale for emerging treatment strategies such as immunotherapy.
Collapse
Affiliation(s)
- Ricardo Costa
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benedito A Carneiro
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabio Tavora
- Department of Pathology, Messejana Heart and Lung Hospital, Fortaleza, Brazil
| | - Sachin G Pai
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason B Kaplan
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sunandana Chandra
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peter A Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francis J Giles
- Northwestern Medicine Developmental Therapeutics Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Chakraborty A, Hatzis C, DiGiovanna MP. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease. Breast Cancer Res Treat 2017; 163:37-50. [PMID: 28236033 DOI: 10.1007/s10549-017-4169-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). METHODS Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. RESULTS Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. CONCLUSIONS Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.
Collapse
Affiliation(s)
- Ashok Chakraborty
- Section of Medical Oncology, Departments of Internal Medicine, Yale Cancer Center, Smilow Cancer Hospital, Yale University School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06510, USA
| | - Christos Hatzis
- Section of Medical Oncology, Departments of Internal Medicine, Yale Cancer Center, Smilow Cancer Hospital, Yale University School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06510, USA
| | - Michael P DiGiovanna
- Section of Medical Oncology, Departments of Internal Medicine, Yale Cancer Center, Smilow Cancer Hospital, Yale University School of Medicine, 300 George Street, Suite 120, New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
Vaziri-Gohar A, Zheng Y, Houston KD. IGF-1 Receptor Modulates FoxO1-Mediated Tamoxifen Response in Breast Cancer Cells. Mol Cancer Res 2017; 15:489-497. [PMID: 28096479 DOI: 10.1158/1541-7786.mcr-16-0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
Tamoxifen is a common adjuvant treatment for estrogen receptor (ER)α-positive patients with breast cancer; however, acquired resistance abrogates the efficacy of this therapeutic approach. We recently demonstrated that G protein-coupled estrogen receptor 1 (GPER1) mediates tamoxifen action in breast cancer cells by inducing insulin-like growth factor-binding protein-1 (IGFBP-1) to inhibit IGF-1-dependent signaling. To determine whether dysregulation of IGFBP-1 induction is associated with tamoxifen resistance, IGFBP-1 transcription was measured in tamoxifen-resistant MCF-7 cells (TamR) after tamoxifen (Tam) treatment. IGFBP-1 transcription was not stimulated in tamoxifen-treated TamR cells whereas decreased expression of FoxO1, a known modulator of IGFBP-1, was observed. Exogenous expression of FoxO1 rescued the ability of tamoxifen to induce IGFBP-1 transcription in TamR cells. As decreased IGF-1R expression is observed in tamoxifen-resistant cells, the requirement for IGF-1R expression on tamoxifen-stimulated IGFBP-1 transcription was investigated. In TamR and SK-BR-3 cells, both characterized by low IGF-1R levels, exogenous IGF-1R expression increased FoxO1 levels and IGFBP-1 expression, whereas IGF-1R knockdown in MCF-7 cells decreased tamoxifen-stimulated IGFBP-1 transcription. Interestingly, both 17β-estradiol (E2)-stimulated ERα phosphorylation and progesterone receptor (PR) expression were altered in TamR. PR is a transcription factor known to modulate FoxO1 transcription. In addition, IGF-1R knockdown decreased FoxO1 protein levels in MCF-7 cells. Furthermore, IGF-1R or FoxO1 knockdown inhibited the ability of tamoxifen to induce IGFBP-1 transcription and tamoxifen sensitivity in MCF-7 cells. These data provide a molecular mechanistic connection between IGF-1R expression and the FoxO1-mediated mechanism of tamoxifen action in breast cancer cells.Implications: Loss of IGF-1R expression is associated with decreased tamoxifen efficacy in patients with breast cancer and the development of tamoxifen resistance. This contribution identifies potential molecular mechanisms of altered tamoxifen sensitivity in breast cancer cells resulting from decreased IGF-1R expression. Mol Cancer Res; 15(4); 489-97. ©2017 AACR.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Yan Zheng
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico
| | - Kevin D Houston
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico.
| |
Collapse
|
15
|
Yeh CR, Ou ZY, Xiao GQ, Guancial E, Yeh S. Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals. Oncotarget 2016; 6:44346-59. [PMID: 26587829 PMCID: PMC4792561 DOI: 10.18632/oncotarget.5884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.
Collapse
Affiliation(s)
- Chiuan-Ren Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zheng-Yu Ou
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elizabeth Guancial
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
16
|
Shi J, Aronson KJ, Grundy A, Kobayashi LC, Burstyn I, Schuetz JM, Lohrisch CA, SenGupta SK, Lai AS, Brooks-Wilson A, Spinelli JJ, Richardson H. Polymorphisms of Insulin-Like Growth Factor 1 Pathway Genes and Breast Cancer Risk. Front Oncol 2016; 6:136. [PMID: 27376028 PMCID: PMC4896919 DOI: 10.3389/fonc.2016.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic variants of insulin-like growth factor 1 (IGF1) pathway genes have been shown to be associated with breast density and IGF1 levels and, therefore, may also influence breast cancer risk via pro-survival signaling cascades. The aim of this study was to investigate associations between IGF1 pathway single nucleotide polymorphisms (SNPs) and breast cancer risk among European and East Asian women, and potential interactions with menopausal status and breast tumor subtype. Stratified analyses of 1,037 cases and 1,050 controls from a population-based case–control study were conducted to assess associations with breast cancer for 22 SNPs across 5 IGF1 pathway genes in European and East Asian women. Odds ratios were calculated using logistic regression in additive genetic models. Polytomous logistic regression was used to assess heterogeneity by breast tumor subtype. Two SNPs of the IGF1 gene (rs1019731 and rs12821878) were associated with breast cancer risk among European women. Four highly linked IGF1 SNPs (rs2288378, rs17727841, rs7136446, and rs7956547) were modified by menopausal status among East Asian women only and associated with postmenopausal breast cancers. The association between rs2288378 and breast cancer risk was also modified by breast tumor subtype among East Asian women. Several IGF1 polymorphisms were found to be associated with breast cancer risk and some of these associations were modified by menopausal status or breast tumor subtype. Such interactions should be considered when assessing the role of these variants in breast cancer etiology.
Collapse
Affiliation(s)
- Joy Shi
- Department of Public Health Sciences, Cancer Research Institute, Queen's University , Kingston, ON , Canada
| | - Kristan J Aronson
- Department of Public Health Sciences, Cancer Research Institute, Queen's University , Kingston, ON , Canada
| | - Anne Grundy
- Individuals and Families, Alberta Cancer Prevention Legacy Fund, Alberta Health Services , Calgary, AB , Canada
| | - Lindsay C Kobayashi
- Department of Epidemiology and Public Health, University College London , London , UK
| | - Igor Burstyn
- Department of Environmental and Occupational Health, Drexel University , Philadelphia, PA , USA
| | - Johanna M Schuetz
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency , Vancouver, BC , Canada
| | - Caroline A Lohrisch
- Department of Medical Oncology, British Columbia Cancer Agency , Vancouver, BC , Canada
| | - Sandip K SenGupta
- Department of Pathology and Molecular Medicine, Queen's University , Kingston, ON , Canada
| | - Agnes S Lai
- Department of Cancer Control Research, British Columbia Cancer Agency , Vancouver, BC , Canada
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - John J Spinelli
- Department of Cancer Control Research, British Columbia Cancer Agency, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Harriet Richardson
- Department of Public Health Sciences, Cancer Research Institute, Queen's University , Kingston, ON , Canada
| |
Collapse
|
17
|
Horne HN, Sherman ME, Pfeiffer RM, Figueroa JD, Khodr ZG, Falk RT, Pollak M, Patel DA, Palakal MM, Linville L, Papathomas D, Geller B, Vacek PM, Weaver DL, Chicoine R, Shepherd J, Mahmoudzadeh AP, Wang J, Fan B, Malkov S, Herschorn S, Hewitt SM, Brinton LA, Gierach GL. Circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of the breast: a cross-sectional study of women with benign breast disease. Breast Cancer Res 2016; 18:24. [PMID: 26893016 PMCID: PMC4758090 DOI: 10.1186/s13058-016-0678-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Background Terminal duct lobular units (TDLUs) are the primary structures from which breast cancers and their precursors arise. Decreased age-related TDLU involution and elevated mammographic density are both correlated and independently associated with increased breast cancer risk, suggesting that these characteristics of breast parenchyma might be linked to a common factor. Given data suggesting that increased circulating levels of insulin-like growth factors (IGFs) factors are related to reduced TDLU involution and increased mammographic density, we assessed these relationships using validated quantitative methods in a cross-sectional study of women with benign breast disease. Methods Serum IGF-I, IGFBP-3 and IGF-I:IGFBP-3 molar ratios were measured in 228 women, ages 40-64, who underwent diagnostic breast biopsies yielding benign diagnoses at University of Vermont affiliated centers. Biopsies were assessed for three separate measures inversely related to TDLU involution: numbers of TDLUs per unit of tissue area (“TDLU count”), median TDLU diameter (“TDLU span”), and number of acini per TDLU (“acini count”). Regression models, stratified by menopausal status and adjusted for potential confounders, were used to assess the associations of TDLU count, median TDLU span and median acini count per TDLU with tertiles of circulating IGFs. Given that mammographic density is associated with both IGF levels and breast cancer risk, we also stratified these associations by mammographic density. Results Higher IGF-I levels among postmenopausal women and an elevated IGF-I:IGFBP-3 ratio among all women were associated with higher TDLU counts, a marker of decreased lobular involution (P-trend = 0.009 and <0.0001, respectively); these associations were strongest among women with elevated mammographic density (P-interaction <0.01). Circulating IGF levels were not significantly associated with TDLU span or acini count per TDLU. Conclusions These results suggest that elevated IGF levels may define a sub-group of women with high mammographic density and limited TDLU involution, two markers that have been related to increased breast cancer risk. If confirmed in prospective studies with cancer endpoints, these data may suggest that evaluation of IGF signaling and its downstream effects may have value for risk prediction and suggest strategies for breast cancer chemoprevention through inhibition of the IGF system. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0678-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hisani N Horne
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA. .,Present Affiliation: Food and Drug Administration, Silver Spring, MD, USA.
| | - Mark E Sherman
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jonine D Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, Scotland.
| | - Zeina G Khodr
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | - Roni T Falk
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | | | - Deesha A Patel
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA. .,Present Affiliation: Northwestern University Medical School, Chicago, IL, USA.
| | - Maya M Palakal
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | - Laura Linville
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | - Daphne Papathomas
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| | | | | | | | | | - John Shepherd
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Amir Pasha Mahmoudzadeh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Jeff Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA. .,Present Affiliation: Hokkaido University, Graduate School of Medicine, Sapporo, Japan.
| | - Bo Fan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Serghei Malkov
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Sally Herschorn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Louise A Brinton
- Office of the Director, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Gretchen L Gierach
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rm. 7-E108, Bethesda, MD, 20892-9774, USA.
| |
Collapse
|
18
|
Vaziri-Gohar A, Houston KD. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells. Mol Cell Endocrinol 2016; 422:160-171. [PMID: 26690777 PMCID: PMC4742395 DOI: 10.1016/j.mce.2015.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023]
Abstract
Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kevin D Houston
- Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA; Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
19
|
Disruption of insulin receptor function inhibits proliferation in endocrine-resistant breast cancer cells. Oncogene 2016; 35:4235-43. [PMID: 26876199 PMCID: PMC4982805 DOI: 10.1038/onc.2015.488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 11/29/2022]
Abstract
The insulin-like growth factor (IGF) system is a well-studied growth regulatory pathway implicated in breast cancer biology. Clinical trials testing monoclonal antibodies directed against the type I IGF receptor (IGF1R) in combination with estrogen receptor-α (ER) targeting have been completed, but failed to show benefits in patients with endocrine resistant tumors compared to ER targeting alone. We have previously shown that the closely related insulin receptor (InsR) is expressed in tamoxifen resistant breast cancer cells. Here we examined if inhibition of InsR affected tamoxifen-resistant (TamR) breast cancer cells. InsR function was inhibited by three different mechanisms: InsR shRNA, a small InsR blocking peptide, S961 and an InsR monoclonal antibody (mAb). Suppression of InsR function by these methods in TamR cells successfully blocked insulin-mediated signaling, monolayer proliferation, cell cycle progression and anchorage-independent growth. This strategy was not effective in parental cells likely due to the presence of IGFR/InsR hybrid receptors. Down-regulation of IGF1R in conjunction with InsR inhibition was more effective in blocking IGF- and insulin-mediated signaling and growth in parental cells compared to single receptor targeting alone. Our findings show TamR cells were stimulated by InsR and were not sensitive to IGF1R inhibition, whereas in tamoxifen-sensitive parental cancer cells, the presence of both receptors, especially hybrid receptors, allowed cross-reactivity of ligand-mediated activation and growth. To suppress the IGF system, targeting of both IGF1R and InsR is optimal in endocrine sensitive and resistant breast cancer.
Collapse
|
20
|
Haizlip KM, Harrison BC, Leinwand LA. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology (Bethesda) 2015; 30:30-9. [PMID: 25559153 DOI: 10.1152/physiol.00024.2014] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies have identified over 3,000 genes that are differentially expressed in male and female skeletal muscle. Here, we review the sex-based differences in skeletal muscle fiber composition, myosin heavy chain expression, contractile function, and the regulation of these physiological differences by thyroid hormone, estrogen, and testosterone. The findings presented lay the basis for the continued work needed to fully understand the skeletal muscle differences between males and females.
Collapse
Affiliation(s)
- K M Haizlip
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | - B C Harrison
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | - L A Leinwand
- Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| |
Collapse
|
21
|
Caffeine and Caffeic Acid Inhibit Growth and Modify Estrogen Receptor and Insulin-like Growth Factor I Receptor Levels in Human Breast Cancer. Clin Cancer Res 2015; 21:1877-87. [DOI: 10.1158/1078-0432.ccr-14-1748] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 02/02/2015] [Indexed: 11/16/2022]
|
22
|
De Marco P, Cirillo F, Vivacqua A, Malaguarnera R, Belfiore A, Maggiolini M. Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells. Front Endocrinol (Lausanne) 2015; 6:30. [PMID: 25798130 PMCID: PMC4351617 DOI: 10.3389/fendo.2015.00030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression.
Collapse
Affiliation(s)
- Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonino Belfiore, Università degli Studi Magna Graecia di Catanzaro, Viale Europa, Loc. Germaneto, Catanzaro 88100, Italy e-mail: ; Marcello Maggiolini, Università della Calabria, via P. Bucci, Rende 87036, Italy e-mail:
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- *Correspondence: Antonino Belfiore, Università degli Studi Magna Graecia di Catanzaro, Viale Europa, Loc. Germaneto, Catanzaro 88100, Italy e-mail: ; Marcello Maggiolini, Università della Calabria, via P. Bucci, Rende 87036, Italy e-mail:
| |
Collapse
|
23
|
Karam M, Bièche I, Legay C, Vacher S, Auclair C, Ricort JM. Protein kinase D1 regulates ERα-positive breast cancer cell growth response to 17β-estradiol and contributes to poor prognosis in patients. J Cell Mol Med 2014; 18:2536-52. [PMID: 25287328 PMCID: PMC4302658 DOI: 10.1111/jcmm.12322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/07/2014] [Indexed: 12/21/2022] Open
Abstract
About 70% of human breast cancers express and are dependent for growth on estrogen receptor α (ERα), and therefore are sensitive to antiestrogen therapies. However, progression to an advanced, more aggressive phenotype is associated with acquisition of resistance to antiestrogens and/or invasive potential. In this study, we highlight the role of the serine/threonine-protein kinase D1 (PKD1) in ERα-positive breast cancers. Growth of ERα-positive MCF-7 and MDA-MB-415 human breast cancer cells was assayed in adherent or anchorage-independent conditions in cells overexpressing or depleted for PKD1. PKD1 induces cell growth through both an ERα-dependent manner, by increasing ERα expression and cell sensitivity to 17β-estradiol, and an ERα-independent manner, by reducing cell dependence to estrogens and conferring partial resistance to antiestrogen ICI 182,780. PKD1 knockdown in MDA-MB-415 cells strongly reduced estrogen-dependent and independent invasion. Quantification of PKD1 mRNA levels in 38 cancerous and non-cancerous breast cell lines and in 152 ERα-positive breast tumours from patients treated with adjuvant tamoxifen showed an association between PKD1 and ERα expression in 76.3% (29/38) of the breast cell lines tested and a strong correlation between PKD1 expression and invasiveness (P < 0.0001). In tamoxifen-treated patients, tumours with high PKD1 mRNA levels (n = 77, 50.66%) were significantly associated with less metastasis-free survival than tumours with low PKD1 mRNA expression (n = 75, 49.34%; P = 0.031). Moreover, PKD1 mRNA levels are strongly positively associated with EGFR and vimentin levels (P < 0.0000001). Thus, our study defines PKD1 as a novel attractive prognostic factor and a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Manale Karam
- Laboratoire de Biologie et de Pharmacologie Appliquée, UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | | | | | |
Collapse
|
24
|
Ribeiro JR, Freiman RN. Estrogen signaling crosstalk: Implications for endocrine resistance in ovarian cancer. J Steroid Biochem Mol Biol 2014; 143:160-73. [PMID: 24565562 PMCID: PMC4127339 DOI: 10.1016/j.jsbmb.2014.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Resistance to anti-estrogen therapies is a prominent challenge in the treatment of ovarian cancer. Tumors develop endocrine resistance by acquiring adaptations that help them rely on alternative oncogenic signaling cascades, which crosstalk with estrogen signaling pathways. An understanding of estrogen signaling crosstalk with these growth promoting cascades is essential in order to maximize efficacy of anti-estrogen treatments in ovarian cancer. Herein, we provide an overview of estrogen signaling in ovarian cancer and discuss the major challenges associated with anti-estrogen therapies. We also review what is currently known about how genomic and non-genomic estrogen signaling pathways crosstalk with several major oncogenic signaling cascades. The insights provided here illustrate existing strategies for targeting endocrine resistant ovarian tumors and may help identify new strategies to improve the treatment of this disease.
Collapse
Affiliation(s)
- Jennifer R Ribeiro
- Brown University, Pathobiology Graduate Program, 70 Ship St., Providence, RI 02903, USA.
| | - Richard N Freiman
- Brown University, Pathobiology Graduate Program, 70 Ship St., Providence, RI 02903, USA; Brown University, Department of Molecular and Cellular Biology and Biochemistry, 70 Ship St., Providence, RI 02903, USA.
| |
Collapse
|
25
|
Haluska P, Menefee M, Plimack ER, Rosenberg J, Northfelt D, LaVallee T, Shi L, Yu XQ, Burke P, Huang J, Viner J, McDevitt J, LoRusso P. Phase I dose-escalation study of MEDI-573, a bispecific, antiligand monoclonal antibody against IGFI and IGFII, in patients with advanced solid tumors. Clin Cancer Res 2014; 20:4747-57. [PMID: 25024259 DOI: 10.1158/1078-0432.ccr-14-0114] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE This phase I, multicenter, open-label, single-arm, dose-escalation, and dose-expansion study evaluated the safety, tolerability, and antitumor activity of MEDI-573 in adults with advanced solid tumors refractory to standard therapy or for which no standard therapy exists. EXPERIMENTAL DESIGN Patients received MEDI-573 in 1 of 5 cohorts (0.5, 1.5, 5, 10, or 15 mg/kg) dosed weekly or 1 of 2 cohorts (30 or 45 mg/kg) dosed every 3 weeks. Primary end points included the MEDI-573 safety profile, maximum tolerated dose (MTD), and optimal biologic dose (OBD). Secondary end points included MEDI-573 pharmacokinetics (PK), pharmacodynamics, immunogenicity, and antitumor activity. RESULTS In total, 43 patients (20 with urothelial cancer) received MEDI-573. No dose-limiting toxicities were identified, and only 1 patient experienced hyperglycemia related to treatment. Elevations in levels of insulin and/or growth hormone were not observed. Adverse events observed in >10% of patients included fatigue, anorexia, nausea, diarrhea, and anemia. PK evaluation demonstrated that levels of MEDI-573 increased with dose at all dose levels tested. At doses >5 mg/kg, circulating levels of insulin-like growth factor (IGF)-I and IGFII were fully suppressed. Of 39 patients evaluable for response, none experienced partial or complete response and 13 had stable disease as best response. CONCLUSIONS The MTD of MEDI-573 was not reached. The OBD was 5 mg/kg weekly or 30 or 45 mg/kg every 3 weeks. MEDI-573 showed preliminary antitumor activity in a heavily pretreated population and had a favorable tolerability profile, with no notable perturbations in metabolic homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Shi
- MedImmune, Gaithersburg, Maryland
| | | | | | | | | | | | | |
Collapse
|
26
|
Viedma-Rodríguez R, Baiza-Gutman L, Salamanca-Gómez F, Diaz-Zaragoza M, Martínez-Hernández G, Ruiz Esparza-Garrido R, Velázquez-Flores MA, Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review). Oncol Rep 2014; 32:3-15. [PMID: 24841429 DOI: 10.3892/or.2014.3190] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022] Open
Abstract
Anti-estrogens such as tamoxifen are widely used in the clinic to treat estrogen receptor-positive breast tumors. Patients with estrogen receptor-positive breast cancer initially respond to treatment with anti-hormonal agents such as tamoxifen, but remissions are often followed by the acquisition of resistance and, ultimately, disease relapse. The development of a rationale for the effective treatment of tamoxifen-resistant breast cancer requires an understanding of the complex signal transduction mechanisms. In the present study, we explored some mechanisms associated with resistance to tamoxifen, such as pharmacologic mechanisms, loss or modification in estrogen receptor expression, alterations in co-regulatory proteins and the regulation of the different signaling pathways that participate in different cellular processes such as survival, proliferation, stress, cell cycle, inhibition of apoptosis regulated by the Bcl-2 family, autophagy, altered expression of microRNA, and signaling pathways that regulate the epithelial-mesenchymal transition in the tumor microenvironment. Delineation of the molecular mechanisms underlying the development of resistance may aid in the development of treatment strategies to enhance response and compromise resistance.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Luis Baiza-Gutman
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Fabio Salamanca-Gómez
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | - Guadalupe Martínez-Hernández
- Unit of Morphology and Function, Faculty of Higher Studies (FES) Iztacala, National Autonomous University of Mexico (UNAM), Los Reyes Iztacala, State of Mexico, Mexico
| | - Ruth Ruiz Esparza-Garrido
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Miguel Angel Velázquez-Flores
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Diego Arenas-Aranda
- Molecular Genetics Laboratory, Medical Research Unit in Human Genetics, Pediatric Hospital, National Medical Center Century XXI (CMN-SXXI), Mexican Social Security Institute (IMSS), Mexico City, Mexico
| |
Collapse
|
27
|
In vivo evidence of IGF-I-estrogen crosstalk in mediating the cortical bone response to mechanical strain. Bone Res 2014; 2:14007. [PMID: 26273520 PMCID: PMC4472140 DOI: 10.1038/boneres.2014.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/11/2014] [Indexed: 12/04/2022] Open
Abstract
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%–6% in both control pOVX (P<0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7%–8% and an 11%–13% (P<0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P<0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P<0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%–17%) and thickness (17%–23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading.
Collapse
|
28
|
Felice DL, El-Shennawy L, Zhao S, Lantvit DL, Shen Q, Unterman TG, Swanson SM, Frasor J. Growth hormone potentiates 17β-estradiol-dependent breast cancer cell proliferation independently of IGF-I receptor signaling. Endocrinology 2013; 154:3219-27. [PMID: 23782942 PMCID: PMC3749474 DOI: 10.1210/en.2012-2208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Estrogen action in mammary gland development and breast cancer progression is tightly linked to the GH/IGF-I axis. Although many of the effects of GH on mammary gland growth and development require IGF-I, the extent to which GH action in breast cancer depends on IGF-I is not known. We examined GH action in a panel of estrogen receptor-positive breast cancer cell lines and found that T47D cells express significant levels of GH receptor and that GH significantly enhances 17β-estradiol (E2)-stimulated proliferation in these cells. GH action in the T47D cells was independent of changes in IGF-I and IGF-I receptor (IGF-IR) expression and IGF-IR signaling, suggesting that GH can exert direct effects on breast cancer cells. Although E2-dependent proliferation required IGF-IR signaling, the combination of GH+E2 overcame inhibition of IGF-IR activity to restore proliferation. In contrast, GH required both Janus kinase 2 and epidermal growth factor receptor signaling for subsequent ERK activation and potentiation of E2-dependent proliferation. Downstream of these pathways, we identified a number of immediate early-response genes associated with proliferation that are rapidly and robustly up-regulated by GH. These findings demonstrate that GH can have important effects in breast cancer cells that are distinct from IGF-IR activity, suggesting that novel drugs or improved combination therapies targeting estrogen receptor and the GH/IGF axis may be beneficial for breast cancer patients.
Collapse
Affiliation(s)
- Dana L Felice
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, MC 901, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Morgillo F, De Vita F, Antoniol G, Orditura M, Auriemma P, Diadema M, Lieto E, Savastano B, Festino L, Laterza M, Fabozzi A, Ventriglia J, Petrillo A, Ciardiello F, Barbarisi A, Iovino F. Serum insulin-like growth factor 1 correlates with the risk of nodal metastasis in endocrine-positive breast cancer. Curr Oncol 2013; 20:e283-e288. [PMID: 23904766 PMCID: PMC3728056 DOI: 10.3747/co.20.1380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increased insulin-like growth factor (igf) signalling has been observed in breast cancer, including endocrine-responsive cancers, and has been linked to disease progression and recurrence. In particular, igf-1 has the ability to induce and promote lymphangiogenesis through the induction of vascular endothelial growth factor C (vegfc). In the present study, we analyzed serum and tumour samples from 60 patients with endocrine-positive breast cancer to determine the expression and the possible relationship of circulating igf-1, igf binding protein 3 (igfbp3), and vegfc with the presence of lymphatic metastasis and other immunohistochemical parameters. The analysis revealed a clear and significant correlation between high basal levels of igf-1, igfbp3, and vegfc and lymph node metastasis in endocrine-responsive breast cancer. In addition, expression of those molecules was significantly higher in breast cancer patients than in healthy control subjects. Those findings may enable more accurate prediction of prognosis in patients with breast cancer.
Collapse
Affiliation(s)
- F. Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - F. De Vita
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - G. Antoniol
- Dèpartement de Génie Informatique et Génie Logiciel, École Polytechnique de Montréal, Montreal, QC
| | - M. Orditura
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - P.P. Auriemma
- IX Divisione di Chirurgia Generale, Dipartimento di Scienze Anestesiologiche, Chirurgiche e dell’Emergenza, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - M.R. Diadema
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - E. Lieto
- IX Divisione di Chirurgia Generale, Dipartimento di Scienze Anestesiologiche, Chirurgiche e dell’Emergenza, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - B. Savastano
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - L. Festino
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - M.M. Laterza
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - A. Fabozzi
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - J. Ventriglia
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - A. Petrillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - F. Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale “F.Magrassi e A. Lanzara”, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - A. Barbarisi
- IX Divisione di Chirurgia Generale, Dipartimento di Scienze Anestesiologiche, Chirurgiche e dell’Emergenza, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - F. Iovino
- IX Divisione di Chirurgia Generale, Dipartimento di Scienze Anestesiologiche, Chirurgiche e dell’Emergenza, Seconda Università degli Studi di Napoli, Napoli, Italy
| |
Collapse
|
30
|
Sirianni R, Zolea F, Chimento A, Ruggiero C, Cerquetti L, Fallo F, Pilon C, Arnaldi G, Carpinelli G, Stigliano A, Pezzi V. Targeting estrogen receptor-α reduces adrenocortical cancer (ACC) cell growth in vitro and in vivo: potential therapeutic role of selective estrogen receptor modulators (SERMs) for ACC treatment. J Clin Endocrinol Metab 2012; 97:E2238-50. [PMID: 23074235 DOI: 10.1210/jc.2012-2374] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Adrenocortical carcinoma (ACC) is a rare tumor with a very poor prognosis and no effective treatment. ACC is characterized by an increased production of IGF-II and by estrogen receptor (ER)-α up-regulation. OBJECTIVE The objective of this study was to define the role played by ERα in 17β-estradiol (E2)- and IGF-II-dependent ACC growth and evaluate whether selective estrogen receptor modulators are effective in controlling ACC growth in vivo. EXPERIMENTAL DESIGN The human adrenocortical cell line H295R was used as an in vitro model and to generate xenograft tumors in athymic nude mice. RESULTS In H295R cells IGF-II controlled expression of steroidogenic factor-1 that, in turn, increased aromatase transcription and, consequently, estrogen production, inducing cell proliferation. ERα silencing significantly blocked E2- and IGF-II-dependent cell proliferation. This effect was dependent on the regulation of cyclin D1 expression by ERα, activated in response to both E2 and IGF-II. In fact, IGF-II induced ERα activation by phosphorylating serine 118 and 167. Furthermore, we demonstrated that ERα mediated E2-induced nongenomic signaling that stimulated IGF-I receptor (IGF1R), ERK1/2, and AKT phosphorylation, resulting in a ligand-independent activation of the IGF1R-induced pathway. In addition, E2 potentiated this pathway by up-regulating IGF1R expression as a consequence of increased cAMP-responsive element binding protein activation and binding to IGF1R promoter. The estrogen antagonist, hydroxytamoxifen, the active metabolite of tamoxifen, reduced IGF1R protein levels and both E2- and IGF-II-induced cell proliferation. Moreover, H295R xenograft growth was strongly reduced by tamoxifen. CONCLUSION These findings establish a critical role for ERα in E2- and IGF-II-dependent ACC proliferation and provide a rationale for targeting ERα to control the proliferation of ACC.
Collapse
Affiliation(s)
- Rosa Sirianni
- Department of Pharmaco-Biology Edificio Polifunzionale, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Murkes D, Lalitkumar PGL, Leifland K, Lundström E, Söderqvist G. Percutaneous estradiol/oral micronized progesterone has less-adverse effects and different gene regulations than oral conjugated equine estrogens/medroxyprogesterone acetate in the breasts of healthy women in vivo. Gynecol Endocrinol 2012; 28 Suppl 2:12-5. [PMID: 22834417 DOI: 10.3109/09513590.2012.706670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression analysis of healthy postmenopausal women in a prospective clinical study indicated that genes encoding for epithelial proliferation markers Ki-67 and progesterone receptor B mRNA are differentially expressed in women using hormone therapy (HT) with natural versus synthetic estrogens. Two 28-day cycles of daily estradiol (E2) gel 1.5 mg and oral micronized progesterone (P) 200 mg/day for the last 14 days of each cycle did not significantly increase breast epithelial proliferation (Ki-67 MIB-1 positive cells) at the cell level nor at the mRNA level (MKI-67 gene). A borderline significant beneficial reduction in anti-apoptotic protein bcl-2, favouring apoptosis, was also seen followed by a slight numeric decrease of its mRNA. By contrast, two 28-day cycles of daily oral conjugated equine estrogens (CEE) 0.625 mg and oral medroxyprogesterone acetate (MPA) 5 mg for the last 14 days of each cycle significantly increased proliferation at both the cell level and at the mRNA level, and significantly enhanced mammographic breast density, an important risk factor for breast cancer. In addition, CEE/MPA affected around 2,500 genes compared with just 600 affected by E2/P. These results suggest that HT with natural estrogens affects a much smaller number of genes and has less-adverse effects on the normal breast in vivo than conventional, synthetic therapy.
Collapse
MESH Headings
- Administration, Cutaneous
- Administration, Oral
- Adult
- Breast Density
- Breast Neoplasms/epidemiology
- Breast Neoplasms/prevention & control
- Cell Proliferation/drug effects
- Estradiol/administration & dosage
- Estradiol/adverse effects
- Estradiol/therapeutic use
- Estrogen Replacement Therapy/adverse effects
- Estrogens, Conjugated (USP)/administration & dosage
- Estrogens, Conjugated (USP)/adverse effects
- Estrogens, Conjugated (USP)/therapeutic use
- Female
- Gels
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Humans
- Ki-67 Antigen/genetics
- Ki-67 Antigen/metabolism
- Mammary Glands, Human/abnormalities
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Medroxyprogesterone Acetate/administration & dosage
- Medroxyprogesterone Acetate/adverse effects
- Medroxyprogesterone Acetate/therapeutic use
- Middle Aged
- Postmenopause
- RNA, Messenger/metabolism
- Risk Factors
- Sweden/epidemiology
Collapse
Affiliation(s)
- Daniel Murkes
- Department of Obsterics and Gynecology, Södertälje Hospital, Södertälje, Sweden
| | | | | | | | | |
Collapse
|
32
|
Gaben AM, Sabbah M, Redeuilh G, Bedin M, Mester J. Ligand-free estrogen receptor activity complements IGF1R to induce the proliferation of the MCF-7 breast cancer cells. BMC Cancer 2012; 12:291. [PMID: 22799881 PMCID: PMC3476977 DOI: 10.1186/1471-2407-12-291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Background Ligand-dependent activation of the estrogen receptor (ER) as well as of the insulin-like growth factor type 1 (IGF1R) induces the proliferation of luminal breast cancer cells. These two pathways cooperate and are interdependent. We addressed the question of the mechanisms of crosstalk between the ER and IGF1R. Methods We evaluated the mitogenic effects of estradiol (E2; agonist ligand of ER) and of insulin (a ligand of IGF1R) in the MCF-7 cells by flow cytometry and by analyzing the cell levels of cell cycle-related proteins (immunoblotting) and mRNA (RT-QPCR). To verify the requirement for the kinase activity of Akt (a downstream target of IGF1R) in the mitogenic action of estradiol, we used shRNA strategy and shRNA-resistant expression vectors. Results The activation of the ER by E2 is unable to induce the cell cycle progression when the phosphatidyl inositol-3 kinase (PI3K)/Akt signaling is blocked by a chemical inhibitor (LY 294002) or by shRNA targeting Akt1 and Akt2. shRNA-resistant Akt wild-type constructs efficiently complemented the mitogenic signaling activity of E2 whereas constructs with inactivated kinase function did not. In growth factor-starved cells, the residual PI3K/Akt activity is sufficient to complement the mitogenic action of E2. Conversely, when ER function is blocked by the antiestrogen ICI 182780, IGF1R signaling is intact but does not lead to efficient reinitiation of the cell cycle in quiescent, growth factor-starved MCF-7 cells. The basal transcription-promoting activity of ligand-free ER in growth factor-starved cells is sufficient to complement the mitogenic action of the IGF1R-dependent signaling. Conclusions The basal ER activity in the absence of ligand is sufficient to allow efficient mitogenic action of IGF1R agonists and needs to be blocked to prevent the cell cycle progression.
Collapse
Affiliation(s)
- Anne-Marie Gaben
- Inserm U938, Centre de Recherche Saint-Antoine, Hôpital Saint-Antoine, Bâtiment Kourilsky, Paris cedex, France.
| | | | | | | | | |
Collapse
|
33
|
Bartella V, Rizza P, Barone I, Zito D, Giordano F, Giordano C, Catalano S, Mauro L, Sisci D, Panno ML, Fuqua SAW, Andò S. Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Res Treat 2012; 134:569-81. [PMID: 22622808 DOI: 10.1007/s10549-012-2090-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Human estrogen receptors alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a relative higher expression of ER beta than ER alpha, which drastically changes during breast tumorogenesis. Thus, it is reasonable to suggest that a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanisms underlying the potential opposing roles played by the two estrogen receptors on tumor cell growth remain to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content, along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of ER beta down-regulated basal ER alpha promoter activity. Furthermore, site-directed mutagenesis and deletion analysis revealed that the proximal GC-rich motifs at -223 and -214 are critical for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interactions within the ER alpha promoter region and the recruitment of a corepressor complex containing the nuclear receptor corepressor NCoR, accompanied by hypoacetylation of histone H4 and displacement of RNA-polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effects of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus blocking ER alpha's driving role on breast cancer cell growth.
Collapse
Affiliation(s)
- V Bartella
- Department of Pharmaco-Biology, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bartella V, De Marco P, Malaguarnera R, Belfiore A, Maggiolini M. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cell Signal 2012; 24:1515-21. [PMID: 22481093 DOI: 10.1016/j.cellsig.2012.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 01/07/2023]
Abstract
There is increasing awareness that estrogens may affect cell functions through the integration with a network of signaling pathways. The IGF system is a phylogenetically highly conserved axis that includes the insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) pathways, which are of crucial importance in the regulation of metabolism and cell growth in relationship to nutrient availability. Numerous studies nowadays document that estrogens cooperate with IGF system at multiple levels both in physiology and in disease. Several studies have focused on this bidirectional cross-talk in central nervous system, in mammary gland development and in cancer. Notably, cancer cells show frequent deregulation of the IGF system with overexpression of IR and/or IGF-IR and their ligands as well as frequent upregulation of the classical estrogen receptor (ER)α and the novel ER named GPER. Recent studies have, therefore, unraveled further mechanisms of cross-talk involving membrane initiated estrogen actions and the IGF system in cancer, that converge in the stimulation of pro-tumoral effects. These studies offer hope for new strategies aimed at the treatment of estrogen related cancers in order to prevent an estrogen-independent and more aggressive tumor progression.
Collapse
Affiliation(s)
- Viviana Bartella
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, Italy
| | | | | | | | | |
Collapse
|
35
|
Mu L, Tuck D, Katsaros D, Lu L, Schulz V, Perincheri S, Menato G, Scarampi L, Harris L, Yu H. Favorable outcome associated with an IGF-1 ligand signature in breast cancer. Breast Cancer Res Treat 2012; 133:321-31. [DOI: 10.1007/s10549-012-1952-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
36
|
Tian J, Berton TR, Shirley SH, Lambertz I, Gimenez-Conti IB, DiGiovanni J, Korach KS, Conti CJ, Fuchs-Young R. Developmental stage determines estrogen receptor alpha expression and non-genomic mechanisms that control IGF-1 signaling and mammary proliferation in mice. J Clin Invest 2011; 122:192-204. [PMID: 22182837 DOI: 10.1172/jci42204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 11/02/2011] [Indexed: 12/31/2022] Open
Abstract
Insulin like growth factor-1 (IGF-1) stimulates increased proliferation and survival of mammary epithelial cells and also promotes mammary tumorigenesis. To study the effects of IGF-1 on the mammary gland in vivo, we used BK5.IGF-1 transgenic (Tg) mice. In these mice, IGF-1 overexpression is controlled by the bovine keratin 5 promoter and recapitulates the paracrine exposure of breast epithelium to stromal IGF-1 that is seen in women. Studies have shown that BK5.IGF-1 Tg mice are more susceptible to mammary tumorigenesis than wild-type littermates. Investigation of the mechanisms underlying increased mammary cancer risk, reported here, revealed that IGF-1 preferentially activated the PI3K/Akt pathway in glands from prepubertal Tg mice, resulting in increased cyclin D1 expression and hyperplasia. However, in glands from postpubertal Tg mice, a pathway switch occurred and activation of the Ras/Raf/MAPK pathway predominated, without increased cyclin D1 expression or proliferation. We further showed that in prepubertal Tg glands, signaling was mediated by formation of an ERα/IRS-1 complex, which activated IRS-1 and directed signaling via the PI3K/Akt pathway. Conversely, in postpubertal Tg glands, reduced ERα expression failed to stimulate formation of the ERα/IRS-1 complex, allowing signaling to proceed via the alternate Ras/Raf/MAPK pathway. These in vivo data demonstrate that changes in ERα expression at different stages of development direct IGF-1 signaling and the resulting tissue responses. As ERα levels are elevated during the prepubertal and postmenopausal stages, these may represent windows of susceptibility during which increased IGF-1 exposure maximally enhances breast cancer risk.
Collapse
Affiliation(s)
- Jie Tian
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hou X, Huang F, Macedo LF, Harrington SC, Reeves KA, Greer A, Finckenstein FG, Brodie A, Gottardis MM, Carboni JM, Haluska P. Dual IGF-1R/InsR inhibitor BMS-754807 synergizes with hormonal agents in treatment of estrogen-dependent breast cancer. Cancer Res 2011; 71:7597-607. [PMID: 22042792 DOI: 10.1158/0008-5472.can-11-1080] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor (IGF) signaling has been implicated in the resistance to hormonal therapy in breast cancer. Using a model of postmenopausal, estrogen-dependent breast cancer, we investigated the antitumor effects of the dual IGF-1R/InsR tyrosine kinase inhibitor BMS-754807 alone and in combination with letrozole or tamoxifen. BMS-754807 exhibited antiproliferative effects in vitro that synergized strongly in combination with letrozole or 4-hydroxytamoxifen and fulvestrant. Similarly, combined treatment of BMS-754807 with either tamoxifen or letrozole in vivo elicited tumor regressions not achieved by single-agent therapy. Notably, hormonal therapy enhanced the inhibition of IGF-1R/InsR without major side effects in animals. Microarray expression analysis revealed downregulation of cell-cycle control and survival pathways and upregulation of erbB in response to BMS-754807 plus hormonal therapy, particularly tamoxifen. Overall, these results offer a preclinical proof-of-concept for BMS-754807 as an antitumor agent in combination with hormonal therapies in hormone-sensitive breast cancer. Cooperative cell-cycle arrest, decreased proliferation, and enhanced promotion of apoptosis may contribute to antitumor effects to be gauged in future clinical investigations justified by our findings.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Estradiol/administration & dosage
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogens/metabolism
- Female
- Fulvestrant
- Gene Expression Profiling
- Humans
- Letrozole
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nitriles/administration & dosage
- Nitriles/pharmacology
- Oligonucleotide Array Sequence Analysis
- Pyrazoles/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Tamoxifen/administration & dosage
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Triazines/pharmacology
- Triazoles/administration & dosage
- Triazoles/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dearth RK, Kuiatse I, Wang YF, Liao L, Hilsenbeck SG, Brown PH, Xu J, Lee AV. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis. BMC Cancer 2011; 11:377. [PMID: 21867536 PMCID: PMC3189189 DOI: 10.1186/1471-2407-11-377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/25/2011] [Indexed: 11/10/2022] Open
Abstract
Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first transgenic animal model to elevate circulating levels of IGF-I to those comparable to women at increased risk of breast cancer, we showed that moderately high levels of systemic IGF-I have no effect on pubertal mammary gland development, initiating mammary tumorigenesis or promoting ErbB2 driven mammary carcinogenesis. Our work suggests that ErbB2-induced mammary tumorigenesis is independent of the normal variation in circulating levels of IGF-I.
Collapse
Affiliation(s)
- Robert K Dearth
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The pubertal mammary gland is an ideal model for experimental morphogenesis. The primary glandular branching morphogenesis occurs at this time, integrating epithelial cell proliferation, differentiation, and apoptosis. Between birth and puberty, the mammary gland exists in a relatively quiescent state. At the onset of puberty, rapid expansion of a pre-existing rudimentary mammary epithelium generates an extensive ductal network by a process of branch initiation, elongation, and invasion of the mammary mesenchyme. It is this branching morphogenesis that characterizes pubertal mammary gland growth. Tissue-specific molecular networks interpret signals from local cytokines/growth factors in both the epithelial and stromal microenvironments. This is largely orchestrated by secreted ovarian and pituitary hormones. Here, we review the major molecular regulators of pubertal mammary gland development.
Collapse
Affiliation(s)
- Sara McNally
- UCD School of Bimolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Ireland
| | | |
Collapse
|
40
|
Buck E, Mulvihill M. Small molecule inhibitors of the IGF-1R/IR axis for the treatment of cancer. Expert Opin Investig Drugs 2011; 20:605-21. [PMID: 21446886 DOI: 10.1517/13543784.2011.558501] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The IGF-1 receptor (IGF-1R) is a receptor tyrosine kinase and is well established as a key regulator of tumor cell growth and survival. There is also a growing body of data to support a role for the structurally and functionally related insulin receptor (IR) in human cancer. Bidirectional crosstalk between IGF-1R and IR is observed, where specific inhibition of either receptor confers a compensatory increase in the activity for the reciprocal receptor, therefore dual inhibition of both IGF-1R and IR may be important for optimal efficacy. The importance of IGF-1R and IR as targets in cancer is further underscored by their contribution to resistance against both cytotoxic and molecularly targeted anti-cancer therapeutics. Currently, both IGF-1R-neutralizing antibodies and small-molecule tyrosine kinase inhibitors of IGF-1R/IR are in clinical development. AREAS COVERED The importance of IGF-1R and IR as cancer targets and how IGF-1R/IR inhibitors may sensitize tumor cells to the anti-proliferative and pro-apoptotic effects of other anti-tumor agents. The potential advantages of small molecule IGF-1R/IR inhibitors compared with IGF-1R-specific neutralizing antibodies, and the characteristics of small-molecule IGF-1R inhibitors that have entered clinical development. EXPERT OPINION Because of compensatory crosstalk between IGF-1R and IR, dual IGF-1R and IR tyrosine kinase inhibitors may have superior anti-tumor activity compared to anti-IGF-1R specific antibodies. The clinical success for IGF-1R/IR inhibitors may ultimately be dependent upon our ability to correctly administer these agents to the right niche patient subpopulation using single agent therapy, when appropriate, or using the right combination therapy.
Collapse
Affiliation(s)
- Elizabeth Buck
- Translational Research, OSI Pharmaceuticals, Farmingdale, NY 11735, USA.
| | | |
Collapse
|
41
|
Hao K, Gong P, Sun SQ, Hao HP, Wang GJ, Dai Y, Liang Y, Xie L, Li FY. Beneficial estrogen-like effects of ginsenoside Rb1, an active component of Panax ginseng, on neural 5-HT disposition and behavioral tasks in ovariectomized mice. Eur J Pharmacol 2011; 659:15-25. [PMID: 21414307 DOI: 10.1016/j.ejphar.2011.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/08/2011] [Accepted: 03/01/2011] [Indexed: 11/29/2022]
Abstract
Decreased 5-hydroxytryptamine (5-HT) concentration in the brain has been linked to central nervous system dysfunctions, especially in menopausal women. Ginsenoside Rb1, a potential phytoestrogen, has been shown to improve central nervous system dysfunctions, comparable to the estrogen treatment. To investigate the estrogen-like effects of ginsenoside Rb1 on neural 5-HT disposition and behavioral tasks, we quantified the concentrations of 5-HT and other related endogenous substances in the frontal cortex and striatum of ovariectomized mice. The activities of tryptophan hydroxylase (TPH), aromatic amino acid decarboxylase (AAAD) and monoamine oxidase (MAO) were also measured to evaluate the synthesis and metabolism of neural 5-HT. Our work shows that both ginsenoside Rb1 and estradiol increased the neural 5-HT concentration. Ginsenoside Rb1 and estradiol administration resulted in elevated TPH and depressed MAO activities, indicating that modulating the synthesis and metabolism of neural 5-HT successfully elevated 5-HT concentration. Ginsenoside Rb1 and estradiol also improved object recognition and decreased immobility time in the forced swimming test. However, a pretreatment with clomiphene (an estrogen receptor antagonist) blocked the beneficial effects of ginsenoside Rb1 and estradiol, suggesting that the estrogen-like effects of ginsenoside Rb1 were estrogen receptor-dependent.
Collapse
Affiliation(s)
- Kun Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Ping Gong
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Shi-Qing Sun
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Hai-Ping Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Guang-Ji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Yue Dai
- College of Traditional Chinese Materia Medica, China Pharmaceutical University, Nanjing, PR China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | - Fei-Yan Li
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
42
|
Becker MA, Ibrahim YH, Cui X, Lee AV, Yee D. The IGF pathway regulates ERα through a S6K1-dependent mechanism in breast cancer cells. Mol Endocrinol 2011; 25:516-28. [PMID: 21292829 DOI: 10.1210/me.2010-0373] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The IGF pathway stimulates malignant behavior of breast cancer cells. Herein we identify the mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) axis as a critical component of IGF and estrogen receptor (ER)α cross talk. The insulin receptor substrate (IRS) adaptor molecules function downstream of IGF-I receptor and dictate a specific biological response, in which IRS-1 drives proliferation and IRS-2 is linked to motility. Although rapamycin-induced mTOR inhibition has been shown to block IGF-induced IRS degradation, we reveal differential effects on motility (up-regulation) and proliferation (down-regulation). Because a positive correlation between IRS-1 and ERα expression is thought to play a central role in the IGF growth response, we investigated the potential role of ERα as a downstream mTOR target. Small molecule inhibition and targeted knockdown of S6K1 blocked the IGF-induced ERα(S167) phosphorylation and did not influence ligand-dependent ERα(S118) phosphorylation. Inhibition of S6K1 kinase activity consequently ablated IGF-stimulated S6K1/ERα association, estrogen response element promoter binding and ERα target gene transcription. Moreover, site-specific ERα(S167) mutation reduced ERα target gene transcription and blocked IGF-induced colony formation. These findings support a novel link between the IGF pathway and ERα, in which the translation factor S6K1 affects transcription of ERα-regulated genes.
Collapse
Affiliation(s)
- Marc A Becker
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
43
|
Litzenburger BC, Creighton CJ, Tsimelzon A, Chan BT, Hilsenbeck SG, Wang T, Carboni JM, Gottardis MM, Huang F, Chang JC, Lewis MT, Rimawi MF, Lee AV. High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clin Cancer Res 2010; 17:2314-27. [PMID: 21177763 DOI: 10.1158/1078-0432.ccr-10-1903] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE We previously reported an insulin-like growth factor (IGF) gene expression signature, based on genes induced or repressed by IGF-I, which correlated with poor prognosis in breast cancer. We tested whether the IGF signature was affected by anti-IGF-I receptor (IGF-IR) inhibitors and whether the IGF signature correlated with response to a dual anti-IGF-IR/insulin receptor (InsR) inhibitor, BMS-754807. EXPERIMENTAL DESIGN An IGF gene expression signature was examined in human breast tumors and cell lines and changes were noted following treatment of cell lines or xenografts with anti-IGF-IR antibodies or tyrosine kinase inhibitors. Sensitivity of cells to BMS-754807 was correlated with levels of the IGF signature. Human primary tumorgrafts were analyzed for the IGF signature and IGF-IR levels and activity, and MC1 tumorgrafts were treated with BMS-754807 and chemotherapy. RESULTS The IGF gene expression signature was reversed in three different models (cancer cell lines or xenografts) treated with three different anti-IGF-IR therapies. The IGF signature was present in triple-negative breast cancers (TNBC) and TNBC cell lines, which were especially sensitive to BMS-754807, and sensitivity was significantly correlated to the expression of the IGF gene signature. The TNBC primary human tumorgraft MC1 showed high levels of both expression and activity of IGF-IR and IGF gene signature score. Treatment of MC1 with BMS-754807 showed growth inhibition and, in combination with docetaxel, tumor regression occurred until no tumor was palpable. Regression was associated with reduced proliferation, increased apoptosis, and mitotic catastrophe. CONCLUSIONS These studies provide a clear biological rationale to test anti-IGF-IR/InsR therapy in combination with chemotherapy in patients with TNBC.
Collapse
Affiliation(s)
- Beate C Litzenburger
- Lester and Sue Smith Breast Center and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nelson AC, Lyons TR, Young CD, Hansen KC, Anderson SM, Holt JT. AKT regulates BRCA1 stability in response to hormone signaling. Mol Cell Endocrinol 2010; 319:129-42. [PMID: 20085797 PMCID: PMC4548798 DOI: 10.1016/j.mce.2010.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 10/20/2022]
Abstract
The observation that inherited mutations within BRCA1 result in breast and ovarian cancers suggests a functional relationship may exist between hormone signaling and BRCA1 function. We demonstrate that AKT activation promotes the expression of BRCA1 in response to estrogen and IGF-1 receptor signaling, and the rapid increase in BRCA1 protein levels appears to occur independently of new protein synthesis. Further, we identify a novel AKT phosphorylation site in BRCA1 at S694 which is responsive to activation of these signaling pathways. These data suggest AKT phosphorylation of BRCA1 increases total protein expression by preventing proteasomal degradation. AKT activation also appears to support nuclear localization of BRCA1, and co-expression of activated AKT with BRCA1 decreases radiation sensitivity, suggesting this interaction has functional consequences for BRCA1's role in DNA repair. Targets within this pathway could provide strategies for modulation of BRCA1 protein, which may prove therapeutically beneficial for breast and ovarian cancer treatment.
Collapse
Affiliation(s)
- Andrew C. Nelson
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
- Medical Scientist Training Program, University of Colorado Denver, Aurora, CO 80045, USA
| | - Traci R. Lyons
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
- Department of Medical Oncology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Christian D. Young
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kirk C. Hansen
- Department of Pediatrics-Cancer Center Proteomics Core, University of Colorado Denver, Aurora, CO 80045, USA
| | - Steven M. Anderson
- Department of Pathology and Program in Cancer Biology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jeffrey T. Holt
- The Commonwealth Medical College, Scranton, PA 18510, USA
- Contact: Jeffrey T. Holt, Professor of Pathology, The Commonwealth Medical College 501 Madison Avenue, Scranton PA 18510. . Phone: 570-955-1336
| |
Collapse
|
45
|
Nicolini A, Carpi A. Immune manipulation of advanced breast cancer: an interpretative model of the relationship between immune system and tumor cell biology. Med Res Rev 2009; 29:436-71. [PMID: 19105214 DOI: 10.1002/med.20143] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes some recent clinical immunological approaches with cytokines and/or antibodies for therapy of advanced breast cancer. It considers the recent advances in genetics and molecular tumor biology related to impaired immunosurveillance involving cytokines and growth factors to explain clinical results. Evasion of the host immune attack might be induced by the following groups of mechanisms: (a) tumor dependent (genomic instability, HLA class I antigen abnormalities, upregulation of fetal type nonclassical HLA class I molecules, epitope immunodominance, apoptosis inhibition by defective death receptor signaling, apoptosis of activated T cells, tumor cannibalism and constitutive activation of signal transducer, and activator of transcription-3 (Stat 3) and nuclear factor-kappaB (NF-kappaB) signaling); (b) host dependent (CD4+CD25+ regulatory T cells (T reg), CD4+ T cells anergy, Th2 antitumor immunity diversion and myeloid suppressor cells); (c) tumor and host dependent (lack of co-stimulation molecules, immunosuppressive cytokines (vascular endothelial growth factor (VEGF), interleukin (IL)-10, prostaglandin (PG)E2, transforming growth factor (TGF)-beta)). Cytokines and growth factors are involved in virtually all three types of mechanisms. These mechanisms are integrated with the current knowledge of tumor growth and inhibited apoptosis primarily mediated by cytokines and growth factors to propose an interpretation of the relationships among tumor cells, tumor stroma, and tumor-infiltrating lymphocytes. Tumor growth, defective immunorecognition and immunosuppression are the three principal effects considered responsible for immune evasion.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Internal Medicine, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
46
|
Al-Sader H, Abdul-Jabar H, Allawi Z, Haba Y. Alcohol and breast cancer: the mechanisms explained. J Clin Med Res 2009; 1:125-31. [PMID: 22493645 PMCID: PMC3318874 DOI: 10.4021/jocmr2009.07.1246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2009] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is a leading cause of death amongst women, several studies have shown significant association between alcohol consumption and breast cancer. The aim of this overview is to highlight some of the mechanisms by which alcohol consumption could increase the risk of developing breast cancer. Using online Medline search engine, article containing details about mechanisms which explain the link between alcohol and breast cancer were examined. A number of mechanisms were found by which alcohol could increase the risk of breast cancer, alcohol's interaction and effect on oestrogen secretion; number of oestrogen receptors; the generation of acetaldehyde and hydroxyl free radicals; cells migration and metastasis; secretion of IGF1 and interaction with HRT and folate metabolism. In conclusion, it is essential for clinicians to understand these mechanisms and inform patients of the link between alcohol and breast cancer.
Collapse
|
47
|
Chakraborty AK, Welsh A, Digiovanna MP. Co-targeting the insulin-like growth factor I receptor enhances growth-inhibitory and pro-apoptotic effects of anti-estrogens in human breast cancer cell lines. Breast Cancer Res Treat 2009; 120:327-35. [PMID: 19337828 DOI: 10.1007/s10549-009-0382-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 03/16/2009] [Indexed: 11/25/2022]
Abstract
The insulin-like growth factor I receptor (IGF1R) interacts with estrogen receptor-alpha (ERalpha) and HER2. We examined the effect of combinations of IGF1R antagonists (alpha-IR3, AG1024) and anti-estrogens (4-hydroxy tamoxifen, fulvestrant) in two human ER+ breast cancer cell lines: BT474 (HER2 overexpressing, IGF1R low) and MCF7 (HER2 non-overexpressing, IGF1R high). In BT474 cells, growth was inhibited by anti-estrogens, but not by IGF1R antagonists; however, adding IGF1R inhibitors to anti-estrogens enhanced growth inhibition. In MCF7 cells, growth was inhibited by IGF1R and ER antagonists and more so by their combination. In both cell lines, no single agents could induce apoptosis, but combining IGF1R inhibitors with anti-estrogens induced dramatic levels of apoptosis. IGF1R antagonists enhanced the ability of the anti-estrogens to inhibit ER transcriptional activity in BT474 cells, but not in MCF7 cells. The drug combination synergistically inhibited ER and IGF1R activity. Such combinations may be useful therapy for breast cancer.
Collapse
Affiliation(s)
- Ashok K Chakraborty
- Departments of Internal Medicine (Section of Medical Oncology) and Pharmacology, and the Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, Room WWW217, New Haven, CT 06510, USA
| | | | | |
Collapse
|
48
|
|
49
|
Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 2009; 30:51-74. [PMID: 19075184 PMCID: PMC5393153 DOI: 10.1210/er.2008-0022] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer chemoprevention by preventing actions of both estrogen and progesterone, especially in women at extremely high risk for developing breast cancer such as BRCA gene 1 or 2 mutations.
Collapse
Affiliation(s)
- David L Kleinberg
- Neuroendocrine Unit, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
50
|
Strissel PL, Ellmann S, Loprich E, Thiel F, Fasching PA, Stiegler E, Hartmann A, Beckmann MW, Strick R. Early aberrant insulin-like growth factor signaling in the progression to endometrial carcinoma is augmented by tamoxifen. Int J Cancer 2009; 123:2871-9. [PMID: 18814240 DOI: 10.1002/ijc.23900] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tamoxifen is an important selective estrogen receptor (ER) modulator for treatment of steroid hormone positive breast cancer. In addition to the beneficial effect, tamoxifen is one risk factor for endometrial carcinoma (EnCa) development. We hypothesized that, (1) dysregulation of gene expression and protein phosphorylation of the insulin-like growth factor (IGF) and steroid hormone receptor-signaling occur early in benign endometrial tissues and (2) signaling differences would be detected between patients with or without tamoxifen treatment. Seventy-eight tissues, including 2 benign cohorts from patients treated with (n = 24) or without tamoxifen (n = 28) (hyperproliferative endometrium, hyperplasia, polyps), EnCa (n = 12) with endometrium controls (n = 14) were analyzed for expression of 15 genes from the IGF and steroid hormone receptor-signaling, including the target genes Syncytin-1, PAX2 and c-myc. Total and phosphorylated protein expression were examined for ERalpha, PTEN, AKT, mTOR and Syncytin-1. Compared to controls similar significant deregulation of IGF and steroid hormone receptor-signaling, Syncytin-1 and PAX2 occurred in both benign cohorts, irrelevant of tamoxifen treatment. Comparing both benign cohorts with and without tamoxifen significant expression differences were noted. Increased total protein and phosphorylation of pERalpha-Ser118, pPTEN-Thr380, pAKT-Thr308, pAKT-Ser473, pmTOR-Ser2448 and Syncytin-1 were noted in early benign tissue stages associating with tamoxifen, especially polyps. Functional kinetic studies following tamoxifen treatment of the PTEN mutated RL95-2 EnCa cell line, demonstrated a doubling of phosphorylation of pERalpha-Ser118 and a 4.2-fold induction of pAKT-Thr308 along with Syncytin-1 induction. This study supports that dysregulated IGF and steroid hormone receptor signaling is prominent in endometrial benign stages and these alterations could represent clinical indicators for the risk of EnCa and also help in development of new therapies.
Collapse
Affiliation(s)
- Pamela L Strissel
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University-Clinic Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|