1
|
Wang Y, Jiang S, Di D, Zou G, Gao H, Shang S, Li W. The prognostic role of activation of the complement pathways in the progression of advanced IgA nephropathy to end-stage renal disease. BMC Nephrol 2024; 25:387. [PMID: 39478440 PMCID: PMC11523594 DOI: 10.1186/s12882-024-03832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION The role of complement system in late stage of IgA nephropathy (IgAN) remains unknown. We therefore investigated the effects of complement system on worsening kidney function in advanced (stage 4 CKD) IgAN. METHODS Renal specimens of 69 IgAN patients who underwent renal biopsy during stage 4 CKD between 2010 and 2021, were stained using immunofluorescence (IF) and immunohistochemistry (IHC) for glomerular complement components. The primary outcome was progression to end-stage renal disease (ESRD). Associations of complement components with baseline clinicopathological characteristics and outcomes were assessed using multivariable Cox regression and Spearman analyses. RESULTS During a median follow-up of 18.0 months, 26 (37.7%) patients progressed to ESRD and none died. C1q and C3 deposition were detected in 12 and 66 patients, respectively. Higher eGFR [hazards ratio (HR), 0.852, 95% confidence interval (CI), 0.756-0.959; P = 0.008], higher C3 intensity (HR, 2.955, 95%CI, 1.063-8.220; P = 0.038) and T1-2 score (HR, 2.576, 95%CI, 1.205-5.576, P = 0.015) were predictive of time to ESRD in CKD 4 stage IgAN. Significant expressions of C1q (P = 0.005), C4d (P < 0.001), factor B (P < 0.001), C3 (P = 0.042) and C5b-9 (P = 0.004) were identified in ESRD group than in non-ESRD group by IHC, while MBL expression was low. Although they were not associated with baseline 24 h-UP, higher factor B and C1q expressions were both correlated with a lower baseline eGFR (P < 0.001 and = 0.04, respectively) and the deterioration of kidney function during follow-up (P = 0.046 and 0.015, respectively). CONCLUSION Complement deposition in IgAN patients with stage 4 CKD portends a faster deterioration of kidney function. Activation of classical and alternative complement pathways plays a major role in this stage.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Shimin Jiang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China.
| | - Dingxin Di
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Hongmei Gao
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
2
|
Torikoshi K, Endo T, Tsukamoto T, Yasuda T, Yasuda Y, Kawamura T, Matsuo S, Suzuki Y, Muso E. Serum IgA/C3 ratio: a useful marker of disease activity in patients with IgA nephropathy. Int Urol Nephrol 2024; 56:3389-3396. [PMID: 38829466 DOI: 10.1007/s11255-024-04104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE High serum IgA and low serum C3 levels resulting from lectin and alternative pathway activation might be related to IgA nephropathy (IgAN) progression and exacerbation. This study examined whether the serum IgA/C3 ratio can serve as an IgAN progression marker. METHODS (1) This nationwide multicenter retrospective study in Japan included 718 patients with biopsy-confirmed IgAN. The patients whose serum creatinine levels at the time of renal biopsy had doubled were defined as having disease progression. (2) Furthermore, to investigate the pathological significance of a reduction in serum IgA/C3 ratio, we reviewed 63 patients whose serum IgA and C3 data at the end of the observation period were obtained. RESULTS (1) A Kaplan-Meier analysis of the patients with IgAN revealed that the group with a high serum IgA/C3 (≥ 3.3) had a significantly worse renal outcome. In a multivariate analysis of eGFR ≥ 60 mL/min per 1.73m2 at the time of biopsy, poor renal outcome was significantly predicted by a serum IgA/C3 ratio of ≥ 3.3. (2) A 15% reduction in the change of serum IgA/C3 ratio was associated with a significantly higher percentage of complete remission of proteinuria. Among the four groups divided by treatment, both the serum IgA/C3 ratio and proteinuria were reduced only in the tonsillectomy and steroid pulse group. CONCLUSION The serum IgA/C3 level might reflect the disease activity and be a potent surrogate marker of therapeutic efficacy in patients with IgAN.
Collapse
Affiliation(s)
- Kazuo Torikoshi
- Department of Nephrology and Dialysis, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan.
- Rokushima Clinic, Hyogo, Japan.
| | - Tomomi Endo
- Department of Nephrology and Dialysis, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology and Dialysis, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan
| | - Takashi Yasuda
- Study Group of The Nationwide Retrospective Cohort Study in IgAN, Tokyo, Japan
| | - Yoshinari Yasuda
- Study Group of The Nationwide Retrospective Cohort Study in IgAN, Tokyo, Japan
| | - Tetsuya Kawamura
- Study Group of The Nationwide Retrospective Cohort Study in IgAN, Tokyo, Japan
| | - Seiichi Matsuo
- Study Group of The Nationwide Retrospective Cohort Study in IgAN, Tokyo, Japan
| | - Yusuke Suzuki
- Study Group of The Nationwide Retrospective Cohort Study in IgAN, Tokyo, Japan
| | - Eri Muso
- Department of Nephrology and Dialysis, Medical Research Institute Kitano Hospital, PIIF Tazuke-Kofukai, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan
- Faculty of Contemporary Home Economics, Department of Food and Nutrition, Kyoto Kacho University, Kyoto, Japan
| |
Collapse
|
3
|
Yu G, Zhao J, Wang M, Chen Y, Feng S, Li B, Wang C, Wang Y, Jiang H, Chen J. Urinary C4d and progression of kidney disease in IgA vasculitis. Nephrol Dial Transplant 2024; 39:1642-1648. [PMID: 38373839 DOI: 10.1093/ndt/gfae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Immunoglobulin A (IgA) vasculitis nephritis (IgAVN) is the most common secondary IgA nephropathy (IgAN). Urinary C4d have been identified associated with the development and progression in primary IgAN; however, its role in kidney disease progression of IgAVN is still unclear. METHODS This study enrolled 139 patients with IgAVN, 18 healthy subjects, 23 focal segmental glomerulosclerosis patients and 38 IgAN patients. Urinary C4d levels at kidney biopsy were measured using enzyme-linked immunosorbent assay. The association between urinary C4d/creatinine and kidney disease progression event, defined as 40% estimated glomerular filtration rate decline or end-stage kidney disease, was assessed using Cox proportional hazards models and restricted cubic splines. RESULTS The levels of urinary C4d/creatinine (Cr) in IgAVN and IgAN patients were higher than in healthy controls. Higher levels of urinary C4d/Cr were associated with higher proteinuria and severe Oxford C lesions, and glomerular C4d deposition. After a median follow-up of 52.79 months, 18 (12.95%) participants reached composite kidney disease progression event. The risk of kidney disease progression event was higher with higher levels of Ln(urinary C4d/Cr). After adjustment for clinical data, higher levels of urinary C4d/Cr were associated with kidney disease progression in IgAVN [per Ln-transformed urinary C4d/Cr, hazard ratio 1.573, 95% confidence interval (CI) 1.101-2.245; P = .013]. Compared with the lower C4d/Cr group, the hazard ratio was 5.539 (95% CI 1.135-27.035; P = .034) for the higher levels group. CONCLUSIONS Higher levels of urinary C4d/Cr were associated with kidney disease progression event in patients with IgAVN.
Collapse
Affiliation(s)
- Guizhen Yu
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jie Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Meifang Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yang Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Bingjue Li
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
4
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2024:10.1038/s41581-024-00885-3. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
5
|
Vivarelli M, Barratt J, Beck LH, Fakhouri F, Gale DP, Goicoechea de Jorge E, Mosca M, Noris M, Pickering MC, Susztak K, Thurman JM, Cheung M, King JM, Jadoul M, Winkelmayer WC, Smith RJH. The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2024; 106:369-391. [PMID: 38844295 DOI: 10.1016/j.kint.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.
Collapse
Affiliation(s)
- Marina Vivarelli
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Laurence H Beck
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, Nantes, France; INSERM UMR S1064, Nantes, France
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, UK
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ORL, Complutense University, Madrid, Spain; Area of Chronic Diseases and Transplantation, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta Mosca
- Department of Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, Pisa, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College, Hammersmith Campus, London, UK
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
6
|
Mathur M, Sahay M, Pereira BJG, Rizk DV. State-of-Art Therapeutics in IgA Nephropathy. Indian J Nephrol 2024; 34:417-430. [PMID: 39372635 PMCID: PMC11450772 DOI: 10.25259/ijn_319_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 10/08/2024] Open
Abstract
Immunoglobulin-A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, with up to 40% of patients progressing to end-stage kidney disease (ESKD) within 30 years of diagnosis. IgAN is characterized by elevated serum levels of galactose-deficient IgA1 (Gd-IgA1), which leads to immune complex formation and deposition in the glomerular mesangium, causing kidney injury. A diverse disease course and the long-term follow-up required for clinically relevant endpoints (e.g., ESKD) have been barriers to the development of novel therapies in IgAN. Disease management has focused on supportive care with inhibitors of the renin-angiotensin system and, more recently, sodium-glucose transporter inhibitors to control proteinuria. The recent acceptance of proteinuria as a surrogate endpoint by regulatory bodies and a better understanding of disease pathology have helped to initiate the development of several novel treatments. Subsequently, a targeted-release formulation of budesonide and a dual endothelin/angiotensin inhibitor (sparsentan) have received accelerated approval for patients with IgAN. However, additional therapies are needed to target the different pathogenic mechanisms and individualize patient care. Several compounds currently under investigation target various effectors of pathology. There are promising clinical results from emerging compounds that target the generation of Gd-IgA1 by B cells, including inhibitors of A PRoliferation-Inducing Ligand (APRIL) and dual inhibitors of APRIL and B-cell activating factor (BAFF). Other investigational therapies target the complement cascade by inhibiting proteins of the lectin or alternative pathways. As the therapeutic landscape evolves, it will be important to revise treatment guidelines and develop updated standards of care.
Collapse
Affiliation(s)
| | - Manisha Sahay
- Department of Nephrology, Osmania General Hospital and Osmania Medical College, Hyderabad, India
| | | | - Dana V. Rizk
- Department of Medicine, Division of Nephrology, University of Alabama, Birmingham, USA
| |
Collapse
|
7
|
Roberts ISD. Pathology of IgA nephropathy: A global perspective. Nephrology (Carlton) 2024; 29 Suppl 2:71-74. [PMID: 39327761 DOI: 10.1111/nep.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/24/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Abstract
Worldwide adoption of the Oxford Classification of IgA nephropathy (IgAN) has enabled comparison of pathology data from clinicopathological studies in different regions of the world. It is apparent that the frequency of Oxford Classification MEST-C scores shows geographic variations. These in part reflect differences in the stage of disease at diagnosis, criteria for performing biopsies and inclusion in clinical studies, and pathologist reporting practice. However, there appears to be a true geographic difference in the frequency of glomerular inflammation and crescents with a 2-3 fold greater proportion of patients showing these changes in East Asia when compared to Europe and North America. This indicates that the pathology of IgAN is influenced by genetic background. Geographic differences in the pathology of IgAN might underly the reported differences in clinical presentation and outcome in different regions of the world, and has important implications for clinical trials and patient management.
Collapse
Affiliation(s)
- Ian S D Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS FT, Oxford, UK
| |
Collapse
|
8
|
Haas M. IgA nephropathy: Correlation between pathologic findings and complement activation. Nephrology (Carlton) 2024; 29 Suppl 2:60-62. [PMID: 39327748 DOI: 10.1111/nep.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Abstract
Summary at a glanceComplement plays a vital role in the pathogenesis of IgA nephropathy. Kidney biopsies with IgA nephropathy show glomerular immune complex deposits with evidence of complement activation by the alternative pathway and in a subset of cases the mannose binding lectin pathway. The recent development of specific drugs targeting these complement pathways represent a potentially important new approach to treating IgA nephropathy.
Collapse
Affiliation(s)
- Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
9
|
Filippone EJ, Gulati R, Farber JL. Contemporary review of IgA nephropathy. Front Immunol 2024; 15:1436923. [PMID: 39188719 PMCID: PMC11345586 DOI: 10.3389/fimmu.2024.1436923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024] Open
Abstract
IgA nephropathy (IgAN) is considered the most common primary glomerulonephritis worldwide with a predilection for Asian-Pacific populations and relative rarity in those of African descent. Perhaps 20%-50% of patients progress to kidney failure. The pathogenesis is incompletely understood. Mesangial deposition of immune complexes containing galactose-deficient IgA1 complexed with anti-glycan IgG or IgA antibodies results in mesangial cell activation and proliferation, inflammatory cell recruitment, complement activation, and podocyte damage. Diagnosis requires a biopsy interpreted by the Oxford criteria. Additional pathologic features include podocytopathy, thrombotic microangiopathy, and C4d staining. Biomarkers predicting adverse outcomes include proteinuria, reduced GFR, hypertension, and pathology. Acceptable surrogate endpoints for therapeutic trials include ongoing proteinuria and rate of eGFR decline. The significance of persisting hematuria remains uncertain. The mainstay of therapy is supportive, consisting of lifestyle modifications, renin-angiotensin inhibition (if hypertensive or proteinuric), sodium-glucose-transporter 2 inhibition (if GFR reduced or proteinuric), and endothelin-receptor antagonism (if proteinuric). Immunosuppression should be considered for those at high risk after maximal supportive care. Corticosteroids are controversial with the most positive results observed in Chinese. They carry a high risk of serious side effects. Similarly, mycophenolate may be most effective in Chinese. Other immunosuppressants are of uncertain benefit. Tonsillectomy appears efficacious in Japanese. Active areas of investigation include B-cell inhibition with agents targeting the survival factors BAFF and APRIL and complement inhibition with agents targeting the alternate pathway (Factors B and D), the lectin pathway (MASP-2), and the common pathway (C3 and C5). Hopefully soon, the who and the how of immunosuppression will be clarified, and kidney failure can be forestalled.
Collapse
Affiliation(s)
- Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Rakesh Gulati
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - John L. Farber
- Department of Pathology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Yang D, Zhou H, Qin W. High systemic inflammatory response index (SIRI) is an independent risk factor for poor outcome in IgA nephropathy patients. Int Urol Nephrol 2024:10.1007/s11255-024-04171-w. [PMID: 39060722 DOI: 10.1007/s11255-024-04171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The systemic inflammatory response index (SIRI), a straightforward and easily accessible measure of inflammation and prognosis, has drawn more attention lately. It is unknown, however, if SIRI is important for IgA nephropathy (IgAN) patients' outcomes. To better clarify these concerns, we conducted this investigation. METHOD This retrospective study involved 981 patients with biopsy-confirmed IgAN from West China Hospital of Sichuan University between 2008 and 2019. The patients were divided into two groups based on the SIRI's optimal cut-off value calculated by the X-tile: the low SIRI group (SIRI ≤ 0.63, n = 312) and the high SIRI group (SIRI > 0.63, n = 669). Basic clinical characteristics at the time of renal biopsy were evaluated, and the relationship between SIRI and the combined endpoint was analyzed. We also used the Cox proportional hazard model and Kaplan‒Meier curve to evaluate the renal prognosis of IgAN. RESULTS A total of 981 IgAN patients were included. During a median follow-up period of 56.7 months (36.8-80.4 months), 122 patients progressed to the combined endpoint (12.4%). Patients were divided into a low SIRI group (SIRI ≤ 0.63, n = 312) and a high SIRI group (SIRI > 0.63, n = 669) according to the optimal cut-off value of the systemic inflammatory response index (SIRI). Further analysis showed that a higher SIRI value was significantly associated with the risk of IgAN patients reaching the composite endpoint (HR 1.62, 95% CI 1.02-2.56, p = 0.041). CONCLUSION High SIRI is a significant and independent risk factor for renal disease progression in IgAN patients.
Collapse
Affiliation(s)
- Dandan Yang
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Guoxue Alley 37, Chengdu, 610041, Sichuan, China
| | - Huan Zhou
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
- West China School of Medicine, Sichuan University, Guoxue Alley 37, Chengdu, 610041, Sichuan, China
| | - Wei Qin
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Tringali E, Vetrano D, Tondolo F, Maritati F, Fabbrizio B, Pasquinelli G, Provenzano M, La Manna G, Baraldi O. Role of serum complement C3 and C4 on kidney outcomes in IgA nephropathy. Sci Rep 2024; 14:16224. [PMID: 39003309 PMCID: PMC11246413 DOI: 10.1038/s41598-024-65857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
IgA Nephropathy (IgAN) is the most prevalent glomerular disease worldwide. Complement system activation is crucial in its pathogenesis. Few studies correlated serum C3 and C4 with disease activity and prognosis. This retrospective study investigated the prognostic value of serum complement at the time of diagnosis in patients with IgAN. Specifically we evaluated whether adding serum C3 and C4 levels to established predictive models-one based on variables related to chronic kidney disease (CKD) progression and another incorporating variables from the International IgA Prediction Tool (IntIgAPT)-enhances the accuracy of outcome prediction. A composite renal outcome was defined as 50% decline in eGFR or onset of kidney failure. 101 patients were stratified according to baseline C3 levels in three groups (Low, Medium and High). During a median follow-up of 54 months, the Low group exhibited higher incidence of primary outcome (16.3 events vs 2.9 and 1.7 events × 100 pts/year, p = 0.0026). Model-1 (M1), consisting of CKD progression variables, and Model-3 (M3), comprising IntIgANPT variables, were implemented with baseline C3 and C4 to create Model-2 (M2) and Model-4 (M4), respectively. M2 demonstrated better predictive performance over M1, showing higher discrimination (lower AIC and BIC, higher C-index and NR2). Similarly, M4 outperformed M3, showing enhanced outcome prediction when C3 and C4 levels were added. Implementation of serum C3 and C4 can enhance prediction accuracy of already-validated prognostic models in IgAN. Lower C3 and higher C4 levels were associated with poorer prognosis, highlighting a more 'Complement-Pathic' subset of patients.
Collapse
Affiliation(s)
- Edoardo Tringali
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Daniele Vetrano
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Tondolo
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federica Maritati
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Benedetta Fabbrizio
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Provenzano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy.
| | - Gaetano La Manna
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy.
- Nephrology, Dialysis and Kidney Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Olga Baraldi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nephrology and Dialysis Unit, Santa Maria delle Croci Hospital-Ravenna, AUSL Della Romagna, Ravenna, Italy
| |
Collapse
|
12
|
Zdravkova I, Tilkiyan E, Bozhkova D. Mannose-Binding Lectin Deposition in Membranous Nephropathy and Differentiation of Primary from Secondary Forms. Int J Mol Sci 2024; 25:7659. [PMID: 39062903 PMCID: PMC11277517 DOI: 10.3390/ijms25147659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The differentiation between primary and secondary forms of membranous nephropathy (MN) is a cornerstone that is necessary for adequate decision making regarding the treatment options and behavior of each specific case. Kidney biopsy and antibody results can be controversial, and a unique biomarker has still not been found. BACKGROUND AND OBJECTIVES We investigated the lack of mannose-binding lectin (MBL) deposition in patients with secondary MNs (sMNs) with the presence of IgG4 deposition in relation to the presence of MBL deposition in patients with primary MNs (pMNs). We also established a connection between the stage of MN and MBL deposition. MATERIALS AND METHODS Materials from 72 renal biopsies with proven MN were used for immunohistochemistry staining (IHC) for the phospholipase A2 receptor (PLA2R), immunoglobulin subtype IgG4, and MBL. Patients were separated into one of the following three groups: primary MN (pMN), idiopathic MN (iMN), and secondary MN (sMN). Serum antibodies for PLA2R and thrombospondin type-I-domain-containing 7A (THSD7A) were also used for the precise evaluation of the type of MN, as well as for detecting positivity for PLA2R using IHC. Which stage of MN was present in relation to the deposition of MBL was evaluated. RESULTS In total, 50 patients were positive for IgG4, 34 with pMN, 12 with iMN, and 4 with sMN. A total of 20 patients were positive for MBL, 14 with pMN and 6 with iMN; no MBL deposits were found in patients with sMN. MBL positivity was predominantly present in the first two stages of MN, with a gradual reduction in the later stages. CONCLUSIONS The activation of the lectin-complement pathway occurs in the early stages of the disease and is associated with the deposition of IgG4; IgG4 deposition is present in sMN, but there is no MBL deposition. IgG4 cannot be used for the differentiation of primary from secondary MNs, but the lack of MBL can be used as a marker for sMN in the early stages of the disease.
Collapse
Affiliation(s)
- Irina Zdravkova
- Department of Propaedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- Nephrology Clinic, University Hospital “Kaspela”, 4000 Plovdiv, Bulgaria;
| | - Eduard Tilkiyan
- Nephrology Clinic, University Hospital “Kaspela”, 4000 Plovdiv, Bulgaria;
- Second Department of Internal Diseases, Section “Nephrology”, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Desislava Bozhkova
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Department of General and Clinical pathology, Kaspela University Hospital, 4000 Plovdiv, Bulgaria
| |
Collapse
|
13
|
Roberts LE, Williams CEC, Oni L, Barratt J, Selvaskandan H. IgA Nephropathy: Emerging Mechanisms of Disease. Indian J Nephrol 2024; 34:297-309. [PMID: 39156850 PMCID: PMC11326799 DOI: 10.25259/ijn_425_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 08/20/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis reported across the world and is characterized by immunoglobulin A (IgA) dominant mesangial deposits, which are poorly O-glycosylated. This deposition leads to a cascade of glomerular and tubulointerstitial inflammation and fibrosis, which can progress to chronic kidney disease. The variability in rate of progression reflects the many genetic and environmental factors that drive IgAN. Here, we summarize the contemporary understanding of the disease mechanisms that drive IgAN and provide an overview of new and emerging therapies, which target these mechanisms.
Collapse
Affiliation(s)
- Lydia E Roberts
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Chloe E C Williams
- Royal Liverpool and Broadgreen University Hospital Trusts, Liverpool, United Kingdom
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Nephrology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
14
|
Wang Y, Shang S, Jiang S, Zou G, Gao H, Li W. Complement C3a/C3aR and C5a/C5aR deposits accelerate the progression of advanced IgA nephropathy to end-stage renal disease. Clin Exp Med 2024; 24:139. [PMID: 38951265 PMCID: PMC11217045 DOI: 10.1007/s10238-024-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
IgA nephropathy (IgAN) is still one of the leading causes of end-stage kidney disease (ESRD), and complement system activation is a key to the pathogenesis of IgAN. The role of complement C3a/C3aR and C5a/C5aR in late stage of IgAN remains unknown. Renal specimens of 75 IgAN patients at the stage 4 CKD were stained using immunofluorescence and immunohistochemistry. The primary outcome was a composite of end-stage renal disease (ESRD) and death. Associations of complement components with baseline clinicopathological characteristics and outcomes were assessed using multivariable Cox regression and Spearman analyses. During a median follow-up of 15.0 months, 27 patients progressed to ESRD and none died. Lower eGFR [hazards ratio (HR), 0.827, 95% confidence interval (CI), 0.732-0.935; P = 0.002] and glomerular C3 deposition (HR, 3.179, 95% CI, 1.079-9.363; P = 0.036) were predictive of time to ESRD in stage 4 CKD IgAN. Higher expression of C3a (P = 0.010), C3aR (P = 0.005), C5a (P = 0.015), and C5aR (P < 0.001) was identified in ESRD group than in non-ESRD group. Glomerular C3a/C3aR and C5a/C5aR deposits were both correlated with a lower baseline eGFR, higher baseline 24 h-urinary protein (24 h-UP) and faster decline of eGFR. Besides, C3a and C5a deposits were found in patients with high S (S1) and T (T1/2) scores, respectively. Complement C3a/C3aR and C5a/C5aR in IgAN patients with stage 4 CKD may portend a faster deterioration of kidney function.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China.
| | - Shimin Jiang
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Guming Zou
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Hongmei Gao
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, No. 2 East Yinghuayuan Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
15
|
Kesarwani V, Bukhari MH, Kahlenberg JM, Wang S. Urinary complement biomarkers in immune-mediated kidney diseases. Front Immunol 2024; 15:1357869. [PMID: 38895123 PMCID: PMC11184941 DOI: 10.3389/fimmu.2024.1357869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The complement system, an important part of the innate system, is known to play a central role in many immune mediated kidney diseases. All parts of the complement system including the classical, alternative, and mannose-binding lectin pathways have been implicated in complement-mediated kidney injury. Although complement components are thought to be mainly synthesized in the liver and activated in the circulation, emerging data suggest that complement is synthesized and activated inside the kidney leading to direct injury. Urinary complement biomarkers are likely a better reflection of inflammation within the kidneys as compared to traditional serum complement biomarkers which may be influenced by systemic inflammation. In addition, urinary complement biomarkers have the advantage of being non-invasive and easily accessible. With the rise of therapies targeting the complement pathways, there is a critical need to better understand the role of complement in kidney diseases and to develop reliable and non-invasive biomarkers to assess disease activity, predict treatment response and guide therapeutic interventions. In this review, we summarized the current knowledge on urinary complement biomarkers of kidney diseases due to immune complex deposition (lupus nephritis, primary membranous nephropathy, IgA nephropathy) and due to activation of the alternative pathway (C3 glomerulopathy, thrombotic microangiography, ANCA-associated vasculitis). We also address the limitations of current research and propose future directions for the discovery of urinary complement biomarkers.
Collapse
Affiliation(s)
- Vartika Kesarwani
- Division of Rheumatology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Muhammad Hamza Bukhari
- Department of Medicine, Johns Hopkins Howard County Medical Center, Columbia, MD, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Medicine, University of Michigan, Columbia, MI, United States
| | - Shudan Wang
- Division of Rheumatology, Department of Medicine, Montefiore Medical Center / Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Stea ED, D'Ettorre G, Mitrotti A, Gesualdo L. The complement system in the pathogenesis and progression of kidney diseases: What doesn't kill you makes you older. Eur J Intern Med 2024; 124:22-31. [PMID: 38461065 DOI: 10.1016/j.ejim.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/11/2024]
Abstract
The Complement System is an evolutionarily conserved component of immunity that plays a key role in host defense against infections and tissue homeostasis. However, the dysfunction of the Complement System can result in tissue damage and inflammation, thereby contributing to the development and progression of various renal diseases, ranging from atypical Hemolytic Uremic Syndrome to glomerulonephritis. Therapeutic interventions targeting the complement system have demonstrated promising results in both preclinical and clinical studies. Currently, several complement inhibitors are being developed for the treatment of complement-mediated renal diseases. This review aims to summarize the most recent insights into complement activation and therapeutic inhibition in renal diseases. Furthermore, it offers potential directions for the future rational use of complement inhibitor drugs in the context of renal diseases.
Collapse
Affiliation(s)
- Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | | | - Adele Mitrotti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
17
|
Abedi M, Nili F, Dehkhoda F, Abdollahi A, Salarvand S. Evaluation of C4d expression and staining patterns by immunohistochemistry in renal biopsy samples with focal segmental glomerulosclerosis and minimal change disease. Ann Diagn Pathol 2024; 70:152281. [PMID: 38417352 DOI: 10.1016/j.anndiagpath.2024.152281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
INTRODUCTION C4d is an activation product of lectin pathway of complement. Glomerular deposition of C4d is associated with poor prognosis in different types of immune-related glomerulonephritis. The present study was conducted to investigate expression level of C4d and its staining pattern in renal biopsy of patients with focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) by immunohistochemistry method. MATERIALS AND METHODS In this retrospective cross-sectional study, renal biopsy specimens from 46 samples of MCD, 47 samples of FSGS, and 15 samples without glomerular disease as the controls, were subjected to immunohistochemistry staining with C4d. Demographic characteristics and information obtained from light and electron microscopy (EM) of patients were also extracted from their files. RESULTS C4d positive staining was observed in 97.9 % of FSGS and 43.5 % of MCD samples, which showed a statistically significant difference (P < 0.001). The sensitivity and specificity of C4d expression for diagnosing FSGS were 97.9 % and 56.5 %, respectively. There was no significant correlation between C4d expression and any of the light and electron microscopy findings, including presence of foam cells, mesangial matrix expansion, interstitial fibrosis and tubular atrophy, and basement membrane changes in MCD patients. Also, no significant correlation was observed between C4d expression and clinical symptoms of proteinuria or prolonged high level of creatinine in patients with MCD. DISCUSSION AND CONCLUSION The expression of C4d marker had a good sensitivity and negative predictive value in the diagnosis of FSGS.
Collapse
Affiliation(s)
- Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nili
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Salarvand
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Guo WY, Wang GQ, Kong LQ, Sun LJ, Xu XY, Cheng WR, Dong HR, Cheng H. Complement system is overactivated in patients with IgA nephropathy after COVID-19. Clin Immunol 2024; 263:110232. [PMID: 38701960 DOI: 10.1016/j.clim.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.
Collapse
Affiliation(s)
- Wei-Yi Guo
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Guo-Qin Wang
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Ling-Qiang Kong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Li-Jun Sun
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Xiao-Yi Xu
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Wen-Rong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Hong-Rui Dong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Hong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, China.
| |
Collapse
|
19
|
Antonucci L, Thurman JM, Vivarelli M. Complement inhibitors in pediatric kidney diseases: new therapeutic opportunities. Pediatr Nephrol 2024; 39:1387-1404. [PMID: 37733095 DOI: 10.1007/s00467-023-06120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023]
Abstract
Historically, the complement system (classical, lectin, alternative, and terminal pathways) is known to play a crucial role in the etiopathogenesis of many kidney diseases. Direct or indirect activation in these settings is revealed by consumption of complement proteins at the serum level and kidney tissue deposition seen by immunofluorescence and electron microscopy. The advent of eculizumab has shown that complement inhibitors may improve the natural history of certain kidney diseases. Since then, the number of available therapeutic molecules and experimental studies on complement inhibition has increased exponentially. In our narrative review, we give a summary of the main complement inhibitors that have completed phase II and phase III studies or are currently used in adult and pediatric nephrology. The relevant full-text works, abstracts, and ongoing trials (clinicaltrials.gov site) are discussed. Data and key clinical features are reported for eculizumab, ravulizumab, crovalimab, avacopan, danicopan, iptacopan, pegcetacoplan, and narsoplimab. Many of these molecules have been shown to be effective in reducing proteinuria and stabilizing kidney function in different complement-mediated kidney diseases. Thanks to their efficacy and target specificity, these novel drugs may radically improve the outcome of complement-mediated kidney diseases, contributing to an improvement in our understanding of their underlying pathophysiology.
Collapse
Affiliation(s)
- Luca Antonucci
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
- Ph.D. Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), University of Rome Tor Vergata, Rome, Italy
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Marina Vivarelli
- Division of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
20
|
Watanabe-Kusunoki K, Anders HJ. Balancing efficacy and safety of complement inhibitors. J Autoimmun 2024; 145:103216. [PMID: 38552408 DOI: 10.1016/j.jaut.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/15/2024]
Abstract
Complement inhibitors have been approved for several immune-mediated diseases and they are considered the next paradigm-shifting approach in the treatment of glomerulonephritis. The hierarchical organization of the complement system offers numerous molecular targets for therapeutic intervention. However, complement is an integral element of host defense and therefore complement inhibition can be associated with serious infectious complications. Here we give a closer look to the hierarchical complement system and how interfering with proximal versus distal or selective versus unselective molecular targets could determine efficacy and safety. Furthermore, we propose to consider the type of disease, immunological activity, and patient immunocompetence when stratifying patients, e.g., proximal/unselective targets for highly active and potentially fatal diseases while distal and selective targets may suit more chronic disease conditions with low or moderate disease activity requiring persistent complement blockade in patients with concomitant immunodeficiency. Certainly, there exists substantial promise for anti-complement therapeutics. However, balancing efficacy and safety will be key to establish powerful treatment effects with minimal adverse events, especially when complement blockade is continued over longer periods of time in chronic disorders.
Collapse
Affiliation(s)
- Kanako Watanabe-Kusunoki
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany; Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hans-Joachim Anders
- Renal Division, Department of Medicine IV, Ludwig-Maximilians (LMU) University Hospital, LMU Munich, Germany.
| |
Collapse
|
21
|
Reily C, Moldoveanu Z, Pramparo T, Hall S, Huang ZQ, Rice T, Novak L, Komers R, Jenkinson CP, Novak J. Sparsentan ameliorates glomerular hypercellularity and inflammatory-gene networks induced by IgA1-IgG immune complexes in a mouse model of IgA nephropathy. Am J Physiol Renal Physiol 2024; 326:F862-F875. [PMID: 38511222 PMCID: PMC11381021 DOI: 10.1152/ajprenal.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/07/2024] [Accepted: 03/02/2024] [Indexed: 03/22/2024] Open
Abstract
IgA nephropathy (IgAN) is characterized by glomerular deposition of immune complexes (ICs) consisting of IgA1 with O-glycans deficient in galactose (Gd-IgA1) and Gd-IgA1-specific IgG autoantibodies. These ICs induce kidney injury, and in the absence of disease-specific therapy, up to 40% of patients with IgAN progress to kidney failure. IgA1 with its clustered O-glycans is unique to humans, which hampered development of small-animal models of IgAN. Here, we used a model wherein engineered ICs (EICs) formed from human Gd-IgA1 and recombinant human IgG autoantibody are injected into nude mice to induce glomerular injury mimicking human IgAN. In this model, we assessed the protective effects of sparsentan, a single-molecule dual endothelin angiotensin receptor antagonist (DEARA) versus vehicle on EIC-induced glomerular proliferation and dysregulation of gene expression in the kidney. Oral administration of sparsentan (60 or 120 mg/kg daily) to mice intravenously injected with EIC attenuated the EIC-induced glomerular hypercellularity. Furthermore, analysis of changes in the whole kidney transcriptome revealed that key inflammatory and proliferative biological genes and pathways that are upregulated in this EIC model of IgAN were markedly reduced by sparsentan, including complement genes, integrin components, members of the mitogen-activated protein kinase family, and Fc receptor elements. Partial overlap between mouse and human differentially expressed genes in IgAN further supported the translational aspect of the immune and inflammatory components from our transcriptional findings. In conclusion, our data indicate that in the mouse model of IgAN, sparsentan targets immune and inflammatory processes leading to protection from mesangial hypercellularity.NEW & NOTEWORTHY The mechanisms by which deposited IgA1 immune complexes cause kidney injury during early phases of IgA nephropathy are poorly understood. We used an animal model we recently developed that involves IgA1-IgG immune complex injections and determined pathways related to the induced mesangioproliferative changes. Treatment with sparsentan, a dual inhibitor of endothelin type A and angiotensin II type 1 receptors, ameliorated the induced mesangioproliferative changes and the associated alterations in the expression of inflammatory genes and networks.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tiziano Pramparo
- Travere Therapeutics Incorporated, San Diego, California, United States
| | - Stacy Hall
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zhi-Qiang Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Terri Rice
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Radko Komers
- Travere Therapeutics Incorporated, San Diego, California, United States
| | - Celia P Jenkinson
- Travere Therapeutics Incorporated, San Diego, California, United States
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
22
|
Chiarenza DS, Verrina EE, La Porta E, Caridi G, Ghiggeri GM, Mortari G, Lugani F, Angeletti A, Bigatti C. Biologics and Non-Biologics Immunosuppressive Treatments for IgA Nephropathy in Both Adults and Children. J Clin Med 2024; 13:2465. [PMID: 38730994 PMCID: PMC11084942 DOI: 10.3390/jcm13092465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Immunoglobulin A nephropathy represents the most prevalent cause of glomerulonephritis worldwide and may lead to renal failure in a relevant number of cases in both paediatric and adult subjects. Although their pathogenesis is still largely unclear, evidence of immune abnormalities provides the background for the use of immunosuppressive drugs, such as corticosteroids, calcineurin inhibitors, and antiproliferative and alkylating agents. Unfortunately, these treatments fail to achieve a sustained remission in a significant percentage of affected patients and are burdened by significant toxicities. Recent developments of new biologics, including anti-BAFF/APRIL inhibitors and molecules targeting complement components, offered the opportunity to selectively target immune cell subsets or activation pathways, leading to more effective and safer hypothesis-driven treatments. However, studies testing new biologic agents in IgAN should also consider paediatric populations to address the unique needs of children and close the therapeutic gap between adult and paediatric care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (D.S.C.); (E.E.V.); (E.L.P.); (G.C.); (G.M.G.); (G.M.); (F.L.); (C.B.)
| | | |
Collapse
|
23
|
Gao MZ, Xu LL, Li Y, Wang X, Chen P, Shi SF, Liu LJ, Lv JC, Hong FY, Zhang H, Zhou XJ. Hepatitis B Virus Status and Clinical Outcomes in IgA Nephropathy. Kidney Int Rep 2024; 9:1057-1066. [PMID: 38765575 PMCID: PMC11101714 DOI: 10.1016/j.ekir.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Immunoglobulin A nephropathy (IgAN) has been reported to coexist with hepatitis B virus (HBV) infection. Despite the clinical significance of this association, there is a lack of comprehensive research investigating the impact of various common conditions following HBV infection and the potential influence of anti-HBV therapy on the progression of IgAN. Methods We investigated 3 distinct states of HBV infection, including chronic HBV infection, resolved HBV infection, and the deposition of hepatitis B antigens in renal tissue, in a follow-up database of 1961 patients with IgAN. IgAN progression was defined as a loss of estimated glomerular filtration rate (eGFR) >40%. Multivariable cause-specific hazards models to analyze the relationship between HBV states and IgAN progression. Results Chronic HBV infection was identified as an independent risk factor for IgAN progression, supported by both prematching analysis (hazard ratio [HR], 1.61; 95% confidence interval [CI], 1.06-2.44; P = 0.024) and propensity-score matching analysis (HR, 1.74; 95% CI 1.28-2.37; P < 0.001). Conversely, resolved HBV infection showed no significant association with IgAN progression (HR, 1.01; 95% CI 0.67-1.52; P = 0.969). Moreover, the presence of HBV deposition in the kidneys and the utilization of anti-HBV therapy did not appear to be significant risk factors for renal outcomes (P > 0.05). Conclusion Chronic HBV infection is an independent risk factor for IgAN progression, whereas resolved HBV infection is not. In patients with IgAN, management of concurrent chronic HBV infection should be enhanced. The presence of HBV deposition in the kidneys and the use of anti-HBV medications do not impact the kidney disease progression in patients with IgAN with concurrent HBV infection.
Collapse
Affiliation(s)
- Mei-zhu Gao
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Lin-lin Xu
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Li
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Pei Chen
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Su-fang Shi
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-jun Liu
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji-cheng Lv
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Fu-Yuan Hong
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University, Fuzhou, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu-jie Zhou
- Renal Division, Peking University First Hospital; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
24
|
Xu F, Zhang C, Zhang M, Zhu X, Cheng S, Cheng Z, Zeng C, Jiang S. Evaluation of the significance of complement-related genes mutations in atypical postinfectious glomerulonephritis: a pilot study. Int Urol Nephrol 2024; 56:1475-1485. [PMID: 37845399 PMCID: PMC10924015 DOI: 10.1007/s11255-023-03831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Postinfectious glomerulonephritis with C3-dominant glomerular deposition (C3-PIGN) involves C3-dominant glomerular deposition without immunoglobulin. Atypical C3-PIGN involves persistent hypocomplementemia. We investigated the clinical features and explored complement-related gene mutations in atypical PIGN patients. METHODS We enrolled atypical C3-PIGN patients and collected data regarding the clinical presentation and pathological characteristics and follow-up data. We measured the levels of complement associated antibodies and performed whole-exome sequencing (WES) to detect mutations in complement-related genes. RESULTS The analysis included six atypical C3-PIGN patients. All patients were antistreptolysin-O (ASO) positive. All patients had varying degrees of hematuria, and four patients had proteinuria. None of the patients were positive for complement-related antibodies. All patients possessed mutations of genes related to the complement pathway, including alternative complement pathway genes-CFI, CFH, CFHR3, CFHR5; the lectin pathway gene-MASP2; and the common complement pathway gene-C8A. The rare variant of CFHR3 has been reported in C3 glomerulonephritis. During 56-73 months of follow-up, the levels of urine markers in three patients recovered within 6 months, and the remaining patients had abnormal urine test results over 12 months. Patients who received glucocorticoid therapy recovered faster. CONCLUSIONS Our study suggested that complement-related gene mutations may be an important cause of persistent hypocomplementemia in atypical C3-PIGN patients. In addition to variations in alternate pathway-related genes, we also found variations in lectin pathway-related genes, especially MASP2 genes. Although the overall prognosis was good, atypical C3-PIGN patients exhibited a longer period for recovery. Our results suggested that atypical C3-PIGN patients should receive more medical attention and need testing for mutations in complement-related genes.
Collapse
Affiliation(s)
- Feng Xu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Changming Zhang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Xiaodong Zhu
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Shuiqin Cheng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Zhen Cheng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Caihong Zeng
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China
| | - Song Jiang
- National Clinical Research Center for Kidney Disease, Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210018, Jiangsu, China.
| |
Collapse
|
25
|
Zhang Q, Pan H, Bian XY, Yu JH, Wu LL, Chen YD, Li L, Ji LX, Yu YL, Han F, Huang J, Wang YF, Yang Y. Crescent calculator: A webtool enabling objective decision-making for assessment of IgA nephropathy immune activity throughout the disease course. Clin Chim Acta 2024; 555:117783. [PMID: 38272251 DOI: 10.1016/j.cca.2024.117783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
IgA nephropathy (IgAN) is an immune-mediated glomerulonephritis, posing a challenge for the long-term management. It is crucial to monitor the disease's activity over the disease course. Crescent lesions have been known as an active lesion associated with immune activity. We aimed to develop the Crescent Calculator to aid clinicians in making timely and well-informed decisions throughout the long-term disease course, such as renal biopsies and immunosuppressive therapy. 1,761 patients with biopsy-proven IgAN were recruited from four medical centers in Zhejiang Province, China. 16.9% presented crescent lesions. UPCR, URBC, eGFR and C4 were independently associated with the crescent lesions. By incorporating these variables, the Crescent Calculator was constructed to estimate the likelihood of crescent lesions. The predictor achieved AUC values of over 0.82 in two independent testing datasets. In addition, to fulfill varied clinical needs, multiple classification modes were established. The Crescent Calculator was developed to estimate the risk of crescent lesions for patients with IgAN, assisting clinicians in making timely, objective, and well-informed decisions regarding the need for renal biopsies and more appropriate use of immunosuppressive therapy in patients with IgAN.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang University Belt and Road International School of Medicine, Yiwu, China
| | - Hong Pan
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang University Belt and Road International School of Medicine, Yiwu, China
| | - Xue-Yan Bian
- Department of Nephrology, Ningbo First Hospital, Ningbo, China
| | - Jin-Han Yu
- Warshel Institute for Computational Biology and School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Long-Long Wu
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang University Belt and Road International School of Medicine, Yiwu, China
| | - Yi-Dan Chen
- Warshel Institute for Computational Biology and School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Li Li
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang University Belt and Road International School of Medicine, Yiwu, China
| | - Ling-Xi Ji
- Warshel Institute for Computational Biology and School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Ya-Li Yu
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang University Belt and Road International School of Medicine, Yiwu, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jian Huang
- Department of Nephrology, Jinhua Municipal Central Hospital, Jinhua, China.
| | - Yong-Fei Wang
- Warshel Institute for Computational Biology and School of Medicine, The Chinese University of Hong Kong, Shenzhen, China; Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yi Yang
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang University Belt and Road International School of Medicine, Yiwu, China.
| |
Collapse
|
26
|
Zhuang Y, Lu H, Li J. Advances in the treatment of IgA nephropathy with biological agents. Chronic Dis Transl Med 2024; 10:1-11. [PMID: 38450299 PMCID: PMC10914012 DOI: 10.1002/cdt3.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/08/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease, and the "four-hit" theory represents its currently accepted pathogenic mechanism. Mucosal immunity triggered by infections in the respiratory tract, intestines, or other areas leads to antigen presentation, T cell stimulation, B cell maturation, and the production of IgA-producing plasma cells. The proteins B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are involved in this process, and alternative complement and lectin pathway activation are also part of the pathogenic mechanism. Kidney Disease Improving Global Outcomes guidelines indicate that a specific effective treatment for IgAN is lacking, with renin-angiotensin-aldosterone system inhibitors being the primary therapy. Recent research shows that biological agents can significantly reduce proteinuria, stabilize the estimated glomerular filtration rate, and reverse some pathological changes, such as endocapillary proliferation and crescent formation. There are four main categories of biological agents used to treat IgA nephropathy, specifically anti-CD20 monoclonal antibodies, anti-BLyS or APRIL monoclonal antibodies, monoclonal antibodies targeting both BLyS and APRIL (telitacicept and atacicept), and monoclonal antibodies inhibiting complement system activation (narsoplimab and eculizumab). However, further research on the dosages, treatment duration, long-term efficacy, and safety of these biological agents is required.
Collapse
Affiliation(s)
- Yongze Zhuang
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou General Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| | - Hailing Lu
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou General Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| | - Junxia Li
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou General Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
27
|
Chang CH, Lee CC, Chen YC, Fan PC, Chu PH, Chu LJ, Yu JS, Chen HW, Yang CW, Chen YT. Identification of Endothelial Cell Protein C Receptor by Urinary Proteomics as Novel Prognostic Marker in Non-Recovery Kidney Injury. Int J Mol Sci 2024; 25:2783. [PMID: 38474029 DOI: 10.3390/ijms25052783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Acute kidney injury is a common and complex complication that has high morality and the risk for chronic kidney disease among survivors. The accuracy of current AKI biomarkers can be affected by water retention and diuretics. Therefore, we aimed to identify a urinary non-recovery marker of acute kidney injury in patients with acute decompensated heart failure. We used the isobaric tag for relative and absolute quantification technology to find a relevant marker protein that could divide patients into control, acute kidney injury with recovery, and acute kidney injury without recovery groups. An enzyme-linked immunosorbent assay of the endothelial cell protein C receptor (EPCR) was used to verify the results. We found that the EPCR was a usable marker for non-recovery renal failure in our setting with the area under the receiver operating characteristics 0.776 ± 0.065; 95%CI: 0.648-0.905, (p < 0.001). Further validation is needed to explore this possibility in different situations.
Collapse
Affiliation(s)
- Chih-Hsiang Chang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Pei-Chun Fan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medicine Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiao-Wei Chen
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Ting Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
28
|
Lim RS, Yeo SC, Barratt J, Rizk DV. An Update on Current Therapeutic Options in IgA Nephropathy. J Clin Med 2024; 13:947. [PMID: 38398259 PMCID: PMC10889409 DOI: 10.3390/jcm13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) remains the leading cause of primary glomerular disease worldwide. Outcomes are poor with high rates of progressive chronic kidney disease and kidney failure, which contributes to global healthcare costs. Although this disease entity has been described, there were no disease-specific treatments until recently, with the current standard of care focusing on optimal supportive measures including lifestyle modifications and optimization of the renin-angiotensin-aldosterone blockade. However, with significant advances in the understanding of the pathogenesis of IgAN in the past decade, and the acceptance of surrogate outcomes for accelerated drug approval, there have been many new investigational agents tested to target this disease. As these agents become available, we envision a multi-pronged treatment strategy that simultaneously targets the consequences of ongoing nephron loss, stopping any glomerular inflammation, inhibiting pro-fibrotic signals in the glomerulus and tubulo-interstitium, and inhibiting the production of pathogenic IgA molecules. This review is an update on a previous review published in 2021, and we aim to summarize the developments and updates in therapeutic strategies in IgAN and highlight the promising discoveries that are likely to add to our armamentarium.
Collapse
Affiliation(s)
- Regina Shaoying Lim
- Department of Renal Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (R.S.L.); (S.C.Y.)
| | - See Cheng Yeo
- Department of Renal Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (R.S.L.); (S.C.Y.)
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK;
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK
| | - Dana V. Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, ZRB 614, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Kee YK, Lee J, Nam BY, Joo YS, Kang SW, Huh KH, Park JT. Donor fat-to-muscle ratio and kidney transplant outcomes: A proposition of metabolic memory. Diabetes Metab Res Rev 2024; 40:e3781. [PMID: 38367259 DOI: 10.1002/dmrr.3781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
AIMS The impact of donor abdominal fat-to-muscle ratio (FMR) on kidney transplant (KT) outcomes was assessed. Given the transient nature of the donor's metabolic environment in transplant recipients, this study investigated the capacity of body composition to induce metabolic memory effects. MATERIALS AND METHODS KT patients (n = 895) who received allografts from living donors (2003-2013) were included. Donor fat and muscle were quantified using pre-KT abdominal computed tomography scans. Patients were categorised into donor FMR tertiles and followed up for graft outcomes. Additionally, genome-wide DNA methylation analysis was performed on 28 kidney graft samples from KT patients in the low- and high-FMR groups. RESULTS Mean recipient age was 42.9 ± 11.4 years and 60.9% were males. Donor FMR averaged 1.67 ± 0.79. Over a median of 120.9 ± 42.5 months, graft failure (n = 127) and death-censored graft failure (n = 109) were more frequent in the higher FMR tertiles. Adjusted hazard ratios for the highest versus lowest FMR tertile were 1.71 (95% CI, 1.06-2.75) for overall graft failure and 1.90 (95% CI, 1.13-3.20) for death-censored graft failure. Genome-wide DNA methylation analysis identified 58 differentially methylated regions (p < 0.05, |Δβ| > 0.2) and 35 genes showed differential methylation between the high- (FMR >1.91) and low-FMR (FMR <1.27) groups. CONCLUSIONS Donors with increased fat and reduced muscle composition may negatively impact kidney allograft survival in recipients, possibly through the transmission of epigenetic changes, implying a body-composition-related metabolic memory effect.
Collapse
Affiliation(s)
- Youn Kyung Kee
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Juhan Lee
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Young Su Joo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Kyu Ha Huh
- Department of Surgery, The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| |
Collapse
|
30
|
Caster DJ, Lafayette RA. The Treatment of Primary IgA Nephropathy: Change, Change, Change. Am J Kidney Dis 2024; 83:229-240. [PMID: 37742867 DOI: 10.1053/j.ajkd.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023]
Abstract
IgA nephropathy (IgAN) is the most common glomerular disease in the world. However, the approach to treatment remains controversial. There has been an explosion of clinical trials over the past decade both to further examine corticosteroid use and usher in additional treatment considerations, including 2 newly approved therapies for IgAN. Sodium glucose cotransporter 2 inhibitors are proving to be effective therapy across proteinuric chronic kidney diseases, and IgAN is not likely to be an exception. Further supportive agents are looking highly promising and so are novel agents that specifically focus on the pathophysiology of this disease, including endothelin blockade, complement inhibition, and B-cell targeted strategies. We suggest a present-day approach to treatment of individuals with IgAN, expose the limitations in our knowledge, and discuss new treatments that may arise, hoping they come with evidence about optimal utilization. Change appears to be inevitable for our approach to the treatment of IgA nephropathy. This is truly an exciting and optimistic time.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, University of Louisville, Louisville, Kentucky
| | - Richard A Lafayette
- Division of Nephrology, Stanford University Medical Center, Stanford, California.
| |
Collapse
|
31
|
Dobó J, Kocsis A, Farkas B, Demeter F, Cervenak L, Gál P. The Lectin Pathway of the Complement System-Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems. Int J Mol Sci 2024; 25:1566. [PMID: 38338844 PMCID: PMC10855846 DOI: 10.3390/ijms25031566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Collapse
Affiliation(s)
- József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Bence Farkas
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| | - Flóra Demeter
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - László Cervenak
- Cell Biology and Cell Therapy Group, Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary; (F.D.); (L.C.)
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, 1117 Budapest, Hungary; (J.D.); (A.K.); (B.F.)
| |
Collapse
|
32
|
Hou X, Liang Y, Zhang W, Li R. The Clinical and Pathological Effects of Serum C3 Level and Mesangial C3 Intensity in Patients with IgA Nephropathy. Anal Cell Pathol (Amst) 2024; 2024:8889306. [PMID: 38204800 PMCID: PMC10776196 DOI: 10.1155/2024/8889306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Objective To investigate the clinical and pathological effects of serum C3 level, mesangial C3 deposition intensity and blood lipid on IgA nephropathy. Methods According to the deposition intensity of immunofluorescence (IF) complement C3 in mesangial region, a total of 151 patients were divided into: (1) negative group (65 cases), (2) weak positive group (51 cases), and (3) strong positive group (35 cases). According to the level of serum C3, the patients were divided into two groups: (1) 33 patients with decreased serum C3 (<85 mg/dL); (2) 118 patients with normal serum C3. The clinicopathological data of the patients were analyzed retrospectively according to the groups. Results (1) With the increase of C3 deposition in mesangial region, the mean value of serum C3 level decreased, and the difference was statistically significant (P=0.001). (2) Compared with the normal serum C3 group, the blood urea nitrogen (BUN), serum creatinine (Scr), and albumin (Alb) in the serum C3 decreased group were higher, and the differences were statistically significant (P < 0.05), while the fasting blood glucose (FBG), low-density lipoprotein (LDL), triglyceride and 24-hr urinary protein (24hUTP) were lower, which difference was statistically significant (P < 0.05). (3) Compared with negative group and weak positive group, BUN, uric acid (UA), and Scr were higher in the strong positive group with C3 deposition, while eGFR was lower, with statistical significance (P < 0.05). However, C3 deposition in the mesangial region was related to T and enhanced mesangial C3 deposition was associated with more severe tubular atrophy and/or interstitial fibrosis, with statistically significant differences (P=0.001). Conclusion Patients with strong mesangial C3 deposition and elevated lipid levels had more severe tubule atrophy and/or interstitial fibrosis, as well as more severe pathological lesions, suggesting that activation of the complement system is involved in the pathogenesis of IgA nephropathy and increases the metabolic burden of the kidney.
Collapse
Affiliation(s)
- Xiaoyue Hou
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yanan Liang
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Weiwei Zhang
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Rong Li
- Department of Nephrology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
33
|
Liu MY, Yu XJ, Wang SX, Li Y, Xing GL, Chen M, Zhou FD, Zhao MH. Characteristics of Complement Protein Deposition in Proliferative Glomerulonephritis with Monoclonal Immunoglobulin Deposition. Clin J Am Soc Nephrol 2023; 18:1573-1582. [PMID: 37713183 PMCID: PMC10723927 DOI: 10.2215/cjn.0000000000000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Hypocomplementemia and complement co-deposition with monoclonal immunoglobulins in glomeruli are not rare in proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID). Deposition of monoclonal immunoglobulins in glomeruli has been suggested to activate complement and cause kidney injury. However, the profiles of complement activation in PGNMID and their clinical and pathologic significance need to be clarified. METHODS Forty-six patients with PGNMID were enrolled. Proteomic analysis of glomeruli using laser microdissection and mass spectrometry was performed for ten patients with PGNMID to determine the composition of glomerular deposits. Kidney deposition of complement components was detected by immunohistochemistry and immunofluorescence. Urinary and plasma levels of complement components were measured by an enzyme-linked immunosorbent assay. Group differences were assessed using t tests or Mann-Whitney U tests depending on the distribution. Correlation analysis was performed using Spearman rank correlation or Pearson correlation. RESULTS Laser microdissection and mass spectrometry-based proteomic analysis showed that complement components were the most enriched proteins deposited in the glomeruli of patients with PGNMID. Glomerular deposition of C3c, C4d, and C5b-9 was detected in most patients. Levels of urinary and plasma C3a, C5a, soluble C5b-9, C4d, Bb, and C1q as well as urinary mannose-binding lectin were significantly higher in patients with PGNMID compared with healthy controls. The intensity of C3c and C4d deposition in glomeruli correlated with serum creatinine and the percentage of crescents, respectively. Furthermore, levels of urinary complement components correlated positively with serum creatinine, urinary protein excretion, percentage of crescents, and global glomerulosclerosis in kidney biopsies, whereas plasma levels of most complement components did not show a significant correlation with clinicopathologic parameters. In multivariable analysis, a higher level of urinary C4d was identified as an independent risk factor of kidney failure. CONCLUSIONS The complement system was found to be overactivated in PGNMID, and levels of urinary complements correlated with disease severity. A higher level of urinary C4d was identified as an independent risk factor of kidney failure.
Collapse
Affiliation(s)
- Meng-yao Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Xiao-juan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Su-xia Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Laboratory of Electron Microscopy, Pathological Centre, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-lan Xing
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Fu-de Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Renal Pathology Center, Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
34
|
Caravaca-Fontán F, Gutiérrez E, Sevillano ÁM, Praga M. Targeting complement in IgA nephropathy. Clin Kidney J 2023; 16:ii28-ii39. [PMID: 38053977 PMCID: PMC10695513 DOI: 10.1093/ckj/sfad198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 12/07/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Recent years have witnessed significant improvements in the understanding of the pathogenesis of IgAN and particularly, the pathogenic role of complement activation. The alternative complement pathway is the major complement cascade activator in IgAN, and glomerular C3 deposition has been shown to correlate with disease progression. In addition, several studies have provided insight into the pathogenic role of factor H-related proteins -1 and -5 in IgAN, as independent players in complement dysregulation. The lectin pathway has also been shown to be associated with the severity of IgAN. Glomerular deposition of C4d has been associated with increased histologic disease activity, faster decline in estimated glomerular filtration rate and higher risk of kidney failure. On the other hand, although overlooked in the Oxford classification, numerous studies have shown that the coexistence of thrombotic microangiopathy in IgAN is a significant indicator of a poorer prognosis. All the breakthroughs in the understanding of the contributing role of complement in IgAN have paved the way for the development of new complement-targeted therapies in this disease. Several ongoing trials are evaluating the efficacy of new agents against factor B (iptacopan, Ionis-FB-LRX), C3 (pegcetacoplan), factor D (vemircopan, pelecopan), C5 (ravulizumab, cemdisiran) and C5a receptor 1 (avacopan). In this study, we provide a comprehensive review of the role of complement in IgAN, including the emerging mechanisms of complement activation and the promising potential of complement inhibitors as a viable treatment option for IgAN.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Ángel M Sevillano
- Department of Nephrology, Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
35
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
36
|
Cattran DC, Floege J, Coppo R. Evaluating Progression Risk in Patients With Immunoglobulin A Nephropathy. Kidney Int Rep 2023; 8:2515-2528. [PMID: 38106572 PMCID: PMC10719597 DOI: 10.1016/j.ekir.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The highly variable rate of decline in kidney function in patients with immunoglobulin A nephropathy (IgAN) provides a major clinical challenge. Predicting which patients will progress to kidney failure, and how quickly, is difficult. Multiple novel therapies are likely to be approved in the short-term, but clinicians lack the tools to identify patients most likely to benefit from specific treatments at the right time. Noninvasive and validated markers for selecting at-risk patients and longitudinal monitoring are urgently needed. This review summarizes what is known about demographic, clinical, and histopathologic prognostic markers in the clinician's toolkit, including the International IgAN Prediction Tool. We also briefly review what is known on these topics in children and adolescents with IgAN. Although helpful, currently used markers leave clinicians heavily reliant on histologic features from the diagnostic kidney biopsy and standard clinical data to guide treatment choice, and very few noninvasive markers reflect treatment efficacy over time. Novel prognostic and predictive markers are under clinical investigation, with considerable progress being made in markers of complement activation. Other areas of research are the interplay between gut microbiota and galactose-deficient IgA1 expression; microRNAs; imaging; artificial intelligence; and markers of fibrosis. Given the rate of therapeutic advancement, the remaining gaps in biomarker research need to be addressed. We finish by describing our route to clinical utility of predictive and prognostic markers in IgAN. This route will provide us with the chance to improve IgAN prognosis by using robust, clinically practical markers to inform patient care.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
37
|
Kang Y, Xu B, Shi S, Zhou X, Chen P, Liu L, Li Y, Leng Y, Lv J, Zhu L, Zhang H. Mesangial C3 Deposition, Complement-Associated Variant, and Disease Progression in IgA Nephropathy. Clin J Am Soc Nephrol 2023; 18:1583-1591. [PMID: 37651123 PMCID: PMC10723908 DOI: 10.2215/cjn.0000000000000290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND IgA nephropathy is the most common primary GN worldwide, with dominant deposition of IgA and co-deposits of complement component 3 (C3). Phenotypes and progression of IgA nephropathy varies among different ethnic populations, while patients with IgA nephropathy from Asia showed more severe clinical phenotypes, active kidney lesions, and rapid progression. Our previous genome-wide association study identified complement factor H ( CFH ) variant rs6677604, tightly linked with the deletion of CFH -related protein 3 and CFH -related protein 1 genes ( ΔCFHR3-1 ), as IgA nephropathy susceptible variant, and additionally revealed its effect on complement regulation in IgA nephropathy. METHODS To further explore the effect of rs6677604 on IgA nephropathy progression, here we enrolled a Chinese IgA nephropathy cohort of 1781 patients with regular follow-up for analysis. The rs6677604 genotype was measured, and the genotype-phenotype correlation was analyzed using the t test, the chi-squared test, or the nonparametric test, and the association between rs6677604 genotype or mesangial C3 deposition and IgA nephropathy prognosis was analyzed using Kaplan-Meier analysis and Cox regression. RESULTS We found that patients with rs6677604-GG genotype had a stronger intensity of mesangial C3 deposition than those with the rs6677604-AA/AG genotype. Patients with IgA nephropathy who had stronger intensity of C3 deposition manifested with more severe clinical and pathological manifestations, including lower eGFR and higher Oxford-M/S/T/C (mesangial hypercellularity, endocapillary cellularity, segmental sclerosis, interstitial fibrosis/tubular atrophy, and crescent) scores. In the survival analysis, stronger intensity of mesangial C3 deposition, but not rs6677604-GG genotypes, was associated with poor long-term kidney outcome in IgA nephropathy. CONCLUSIONS We found that in Chinese patients with IgA nephropathy, variant rs6677604 was associated with mesangial C3 deposition, and mesangial C3 deposition, but not rs6677604, was associated with IgA nephropathy severity and progression.
Collapse
Affiliation(s)
- Yuqi Kang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; Peking University Institute of Nephrology, Beijing, China; Key Laboratory of Renal Disease (Peking University), Beijing, China; National Health Commission, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China; and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Duval A, Caillard S, Frémeaux-Bacchi V. The complement system in IgAN: mechanistic context for therapeutic opportunities. Nephrol Dial Transplant 2023; 38:2685-2693. [PMID: 37385820 DOI: 10.1093/ndt/gfad140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The complement system plays a crucial role in innate immunity, providing essential defense against pathogens. However, uncontrolled or prolonged activation of the complement cascade can significantly contribute to kidney damage, especially in cases of glomerulonephritis. Immunoglobulin A nephropathy (IgAN), the most prevalent form of primary glomerulonephritis, has growing evidence supporting the involvement of complement alternative and lectin pathways. In fact, patients with IgAN experience complement activation within their kidney tissue, which may be involved in the development of glomerular damage and the progression of IgAN. Complement activation has emerged as a significant area of interest in IgAN, with numerous complement-targeting agents currently being explored within this field. Nevertheless, the exact mechanisms of complement activation and their role in IgAN progression require comprehensive elucidation. This review seeks to contextualize the proposed mechanisms of complement activation within the various stages ("hits") of IgAN pathogenesis, while also addressing the clinical implications and anticipated outcomes of complement inhibition in IgAN.
Collapse
Affiliation(s)
- Anna Duval
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology, Dialysis and Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Véronique Frémeaux-Bacchi
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
- Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
39
|
Stamellou E, Seikrit C, Tang SCW, Boor P, Tesař V, Floege J, Barratt J, Kramann R. IgA nephropathy. Nat Rev Dis Primers 2023; 9:67. [PMID: 38036542 DOI: 10.1038/s41572-023-00476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Collapse
Affiliation(s)
- Eleni Stamellou
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Seikrit
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Peter Boor
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Vladimir Tesař
- Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
40
|
Skitchenko R, Modrusan Z, Loboda A, Kopp JB, Winkler CA, Sergushichev A, Gupta N, Stevens C, Daly MJ, Shaw A, Artomov M. CR1 variants contribute to FSGS susceptibility across multiple populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.20.23298462. [PMID: 38076851 PMCID: PMC10705641 DOI: 10.1101/2023.11.20.23298462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of nephrotic syndrome with an annual incidence in the United States in African-Americans compared to European-Americans of 24 cases and 5 cases per million, respectively. Among glomerular diseases in Europe and Latin-America, FSGS was the second most frequent diagnosis, and in Asia the fifth. We expand previous efforts in understanding genetics of FSGS by performing a case-control study involving ethnically-diverse groups FSGS cases (726) and a pool of controls (13,994), using panel sequencing of approximately 2,500 podocyte-expressed genes. Through rare variant association tests, we replicated known risk genes - KANK1, COL4A4, and APOL1. A novel significant association was observed for the gene encoding complement receptor 1 (CR1). High-risk rare variants in CR1 in the European-American cohort were commonly observed in Latin- and African-Americans. Therefore, a combined rare and common variant analysis was used to replicate the CR1 association in non-European populations. The CR1 risk variant, rs17047661, gives rise to the Sl1/Sl2 (R1601G) allele that was previously associated with protection against cerebral malaria. Pleiotropic effects of rs17047661 may explain the difference in allele frequencies across continental ancestries and suggest a possible role for genetically-driven alterations of adaptive immunity in the pathogenesis of FSGS.
Collapse
Affiliation(s)
- Rostislav Skitchenko
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Zora Modrusan
- Research Biology, Genentech Inc., San Francisco, CA, USA
| | - Alexander Loboda
- ITMO University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Broad Institute, Cambridge, MA, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Cheryl A. Winkler
- Molecular Genetic Epidemiology Studies Section, National Cancer Institute (NCI), Frederick, Maryland, USA
| | | | | | | | - Mark J. Daly
- Broad Institute, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Andrey Shaw
- Research Biology, Genentech Inc., San Francisco, CA, USA
| | - Mykyta Artomov
- Broad Institute, Cambridge, MA, USA
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
41
|
Kohan DE, Barratt J, Heerspink HJ, Campbell KN, Camargo M, Ogbaa I, Haile-Meskale R, Rizk DV, King A. Targeting the Endothelin A Receptor in IgA Nephropathy. Kidney Int Rep 2023; 8:2198-2210. [PMID: 38025243 PMCID: PMC10658204 DOI: 10.1016/j.ekir.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and carries a substantial risk of kidney failure. New agency-approved therapies, either specifically for IgAN or for chronic kidney disease (CKD) in general, hold out hope for mitigating renal deterioration in patients with IgAN. The latest addition to this therapeutic armamentarium targets the endothelin-A receptor (ETAR). Activation of ETAR on multiple renal cell types elicits a host of pathophysiological effects, including vasoconstriction, cell proliferation, inflammation, apoptosis, and fibrosis. Blockade of ETAR is renoprotective in experimental models of IgAN and reduces proteinuria in patients with IgAN. This review discusses the evidence supporting the use of ETAR blockade in IgAN as well as addressing the potential role for this class of agents among the current and emerging therapies for treating this disorder.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health, Salt Lake City, Utah, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kirk N. Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Ike Ogbaa
- Chinook Therapeutics, Seattle, Washington, USA
| | | | - Dana V. Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew King
- Chinook Therapeutics, Seattle, Washington, USA
| |
Collapse
|
42
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
43
|
Amatruda M, Carucci NS, Chimenz R, Conti G. Immunoglobulin A vasculitis nephritis: Current understanding of pathogenesis and treatment. World J Nephrol 2023; 12:82-92. [PMID: 37766840 PMCID: PMC10520755 DOI: 10.5527/wjn.v12.i4.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 09/20/2023] Open
Abstract
The clinical spectrum of immunoglobulin A vasculitis nephritis (IgAVN) ranges from the relatively common transitory microscopic hematuria and/or low-grade proteinuria to nephritic or nephrotic syndrome, rapidly progressive glomerulonephritis, or even renal failure. Clinical and experimental studies have shown a multifactor pathogenesis: Infection triggers, impaired glycosylation of IgA1, complement activation, Toll-like-receptor activation and B cell proliferation. This knowledge can identify IgAVN patients at a greater risk for adverse outcome and increase the evidence for treatment recommendations.
Collapse
Affiliation(s)
- Michela Amatruda
- Pediatric Nephrology and Rheumatology Unit, AOU G Martino, University of Messina, Messina 98125, Italy
| | - Nicolina Stefania Carucci
- Pediatric Nephrology and Rheumatology Unit, AOU G Martino, University of Messina, Messina 98125, Italy
| | - Roberto Chimenz
- Pediatric Nephrology and Rheumatology Unit, AOU G Martino, University of Messina, Messina 98125, Italy
| | - Giovanni Conti
- Pediatric Nephrology and Rheumatology Unit, AOU G Martino, University of Messina, Messina 98125, Italy
| |
Collapse
|
44
|
Tesař V, Radhakrishnan J, Charu V, Barratt J. Challenges in IgA Nephropathy Management: An Era of Complement Inhibition. Kidney Int Rep 2023; 8:1730-1740. [PMID: 37705895 PMCID: PMC10496078 DOI: 10.1016/j.ekir.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common glomerular disease worldwide, with an estimated annual incidence of 25 per million adults. Despite optimized supportive care, some patients fail to achieve disease control and suffer progressive deterioration of kidney function. In this subpopulation of patients, the Kidney Disease: Improving Global Outcomes 2021 guidelines recommend consideration of corticosteroids; however, their use is associated with significant side effects. Ongoing clinical trials are expected to identify corticosteroid-sparing therapies to help improve treatment and prognosis for patients with IgAN. It has been well-documented that the complement system plays a significant role in IgAN pathogenesis, and several complement inhibitors are now entering late-stage clinical development. This review evaluates what we know about the role of complement in the pathophysiology of IgAN and considers how the availability of targeted complement inhibitors may impact future clinical practice. Key knowledge gaps are evaluated, and research opportunities are recommended to help guide clinical decision-making and optimize patient outcomes. Such gaps include evaluating the relative contribution of the alternative and lectin pathways to disease pathogenesis, and the importance of determining the dominant pathway driving IgAN progression. Continued research into the staining of complement proteins in kidney biopsies and identifying targeted biomarkers to assess disease progression and treatment responses will also be needed to support the implementation of newer therapies in clinical practice. Considering the future horizons for enhancing the care of patients with IgAN, tackling the outstanding challenges now will help prepare for the best possible future outcomes.
Collapse
Affiliation(s)
- Vladimir Tesař
- Department of Nephrology, Charles University, Prague, Czech Republic
| | | | - Vivek Charu
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
45
|
Zanoni F, Abinti M, Belingheri M, Castellano G. Present and Future of IgA Nephropathy and Membranous Nephropathy Immune Monitoring: Insights from Molecular Studies. Int J Mol Sci 2023; 24:13134. [PMID: 37685941 PMCID: PMC10487514 DOI: 10.3390/ijms241713134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
IgA Nephropathy (IgAN) and Membranous Nephropathy (MN) are primary immune-mediated glomerular diseases with highly variable prognosis. Current guidelines recommend that greater immunologic activity and worse prognosis should guide towards the best treatment in an individualized approach. Nevertheless, proteinuria and glomerular filtration rate, the current gold standards for prognosis assessment and treatment guidance in primary glomerular diseases, may be altered with chronic damage and nephron scarring, conditions that are not related to immune activity. In recent years, thanks to the development of new molecular technologies, among them genome-wide genotyping, RNA sequencing techniques, and mass spectrometry, we have witnessed an outstanding improvement in understanding the pathogenesis of IgAN and MN. In addition, recent genome-wide association studies have suggested potential targets for immunomodulating agents, stressing the need for the identification of specific biomarkers of immune activity. In this work, we aim to review current evidence and recent progress, including the more recent use of omics techniques, in the identification of potential biomarkers for immune monitoring in IgAN and MN.
Collapse
Affiliation(s)
- Francesca Zanoni
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Matteo Abinti
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mirco Belingheri
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Giuseppe Castellano
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
46
|
Cheung CK, Dormer JP, Barratt J. The role of complement in glomerulonephritis-are novel therapies ready for prime time? Nephrol Dial Transplant 2023; 38:1789-1797. [PMID: 36307926 DOI: 10.1093/ndt/gfac296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 08/01/2023] Open
Abstract
The complement system plays a key pathogenic role in glomerular diseases with a diverse range of aetiologies, including C3 glomerulopathy, immunoglobulin A nephropathy, membranous nephropathy, ANCA-associated vasculitis and lupus nephritis. Several novel therapies targeting complement activity have recently been developed, which have now been approved or are in the late stages of clinical development. In this review, potential benefits and challenges of targeting the complement system in glomerular disease are discussed. We summarize current understanding of the role of complement, and the novel targeted therapies that are being developed for the treatment of glomerular disease.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - John P Dormer
- Department of Histopathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
47
|
Guo Y, Zhang H, Yu X. A bibliometric analysis of complement in IgA nephropathy from 1991 to 2022. Front Pharmacol 2023; 14:1200193. [PMID: 37576817 PMCID: PMC10414182 DOI: 10.3389/fphar.2023.1200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: IgA nephropathy is a common glomerular disease on a global scale, which has resulted in significant economic burdens. The complement system plays a vital role in enhancing the efficacy of antibodies and phagocytic cells in eliminating microbes and damaged cells, and promoting inflammation. Complement activation has been found to contribute to the progression of various renal diseases, including IgA nephropathy. Methods: In this study, a thorough analysis was conducted on publications related to complement in IgAN from 1991 to 2022, retrieved from the Web of Science Core Collection and Scopus database. The analysis focused on various aspects such as annual publications, country, institution, author, journal, keywords, and co-cited references, utilizing Citespace and Vosviewer. Results: A total of 819 publications were obtained, and while there were slight fluctuations in annual publications, an overall upward trend was observed. China, Japan and the United States were the leading countries in terms of publications, with China having the highest number of publications (201). Collaborative network analysis revealed that England, University of Alabama Birmingham, and Robert J Wyatt were the most influential country, institution, and author, respectively, in this field of research. Furthermore, the analysis of references and keywords indicated that complement activation contributes to IgAN, and immunosuppression in IgAN are a hot topic of research. Discussion: This study identifies current research hotspots and advanced tendencies in the study of complement in IgAN, providing scholars with crucial directions in this research area.
Collapse
Affiliation(s)
- Yun Guo
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Xueqing Yu
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
- Department of Nephrology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangzhou, China
| |
Collapse
|
48
|
Puapatanakul P, Banjongjit A, Kanjanabuch T, Surintrspanont J, Iampenkhae K, Praditpornsilpa K, Eiam-Ong S, Boonpucknavig V. Clinicopathological Characteristics and Impacts on Clinical Outcomes of Thrombotic Microangiopathy Lesions in Patients with Immunoglobulin A Nephropathy in Thailand. Am J Nephrol 2023; 54:308-318. [PMID: 37429271 DOI: 10.1159/000531693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION More reports of thrombotic microangiopathy (TMA) in immunoglobulin A (IgA) nephropathy suggest its association with poor clinical outcomes. However, the prevalence and clinical significance of TMA in IgA nephropathy have not been widely studied in different populations. METHODS Kidney biopsies of all patients with primary IgA nephropathy from 1995 to 2015 at the King Chulalongkorn Memorial Hospital, Thailand, were retrospectively reviewed and reclassified by two pathologists following the Oxford MEST-C classification. TMA lesions were detected based solely on light microscopic findings. Associations between the presence of TMA and clinical data, other pathologic findings, and clinical outcomes were studied. RESULTS Among 267 patients with primary IgA nephropathy, 166 had adequate clinical data and kidney tissues for the analysis. TMA was observed in 21 patients (13%) and was associated with higher mean arterial pressure (MAP), history of malignant hypertension, higher proteinuria, and lower estimated glomerular filtration rate (eGFR) at diagnosis compared to those without TMA. According to the Oxford MEST-C classification, TMA showed a significant association with severe tubular atrophy/interstitial fibrosis (T2) but not with mesangial hypercellularity (M1), endocapillary hypercellularity (E1), segmental glomerulosclerosis (S1), or crescents (C1-2). After a median follow-up of 50 months, patients with TMA had a significantly higher risk of progression to end-stage kidney disease (ESKD) (hazard ratio [HR] 5.8, 95% confidence interval [CI]: 3.1-10.9) and all-cause mortality (HR 3.4, 95% CI: 1.3-8.8). After adjusting for baseline eGFR, MAP, proteinuria, and other pathological lesions, TMA remained an independent predictor of ESKD (adjusted HR 2.4, 95% CI: 1.1-5.4). CONCLUSIONS Kidney TMA in IgA nephropathy is associated with advanced disease stages, carries a poor prognosis, and thus should be considered in the pathological classification of IgA nephropathy.
Collapse
Affiliation(s)
- Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Athiphat Banjongjit
- Nephrology Unit, Department of Medicine, Vichaiyut Hospital, Bangkok, Thailand,
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jerasit Surintrspanont
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kroonpong Iampenkhae
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | |
Collapse
|
49
|
Petrou D, Kalogeropoulos P, Liapis G, Lionaki S. IgA Nephropathy: Current Treatment and New Insights. Antibodies (Basel) 2023; 12:40. [PMID: 37366657 PMCID: PMC10294861 DOI: 10.3390/antib12020040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
IgA Nephropathy (IgAN) is the most common cause of primary glomerulonephritis worldwide. Despite the histopathologic hallmark of mesangial IgA deposition, IgAN is a heterogenous autoimmune disease not only in terms of clinical presentation but also in long-term disease progression. The pathogenesis of the disease is complex and includes the generation of circulating IgA immune complexes with chemical and biological characteristics that favor mesangial deposition and reaction to mesangial under-glycosylated IgA1 accumulation, which leads to tissue injury with glomerulosclerosis and interstitial fibrosis. Patients with proteinuria over 1 g, hypertension, and impaired renal function at diagnosis are considered to be at high risk for disease progression and end-stage kidney disease (ESKD). Glucocorticoids have been the mainstay of treatment for these patients for years, but without long-term benefit for renal function and accompanied by several adverse events. A better understanding of the pathophysiology of IgAN in recent years has led to the development of several new therapeutic agents. In this review, we summarize the current therapeutic approach for patients with IgAN as well as all novel investigational agents.
Collapse
Affiliation(s)
- Dimitra Petrou
- Department of Nephrology, Second Department of Propaedeutic Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Petros Kalogeropoulos
- Department of Nephrology, Second Department of Propaedeutic Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - George Liapis
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sophia Lionaki
- Department of Nephrology, Second Department of Propaedeutic Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
50
|
Barratt J, Lafayette RA, Zhang H, Tesar V, Rovin BH, Tumlin JA, Reich HN, Floege J. IgA Nephropathy: the Lectin Pathway and Implications for Targeted Therapy. Kidney Int 2023:S0085-2538(23)00395-2. [PMID: 37263354 DOI: 10.1016/j.kint.2023.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Many patients with IgA nephropathy (IgAN) progress to end-stage kidney disease even with optimal supportive care. An improved understanding of the pathophysiology of IgAN in recent years has led to the investigation of targeted therapies with acceptable tolerability that may address the underlying causes of IgAN or the pathogenesis of kidney injury. The complement system - particularly the lectin and alternative pathways of complement - have emerged as key mediators of kidney injury in IgAN and possible targets for investigational therapy. This review will focus on the lectin pathway. Examination of kidney biopsies has consistently shown glomerular deposition of mannan-binding lectin (one of six pattern-recognition molecules that activate the lectin pathway) together with IgA1 in up to 50% of patients with IgAN. Glomerular deposition of pattern-recognition molecules for the lectin pathway is associated with more severe glomerular damage and more severe proteinuria and hematuria. Emerging research suggests that the lectin pathway may also contribute to tubulointerstitial fibrosis in IgAN, and that collectin-11 is a key mediator of this association. This review summarizes the growing scientific and clinical evidence supporting the role of the lectin pathway in IgAN and examines the possible therapeutic role of lectin pathway inhibition for these patients.
Collapse
Affiliation(s)
| | | | - Hong Zhang
- Peking University Institute of Nephrology, Beijing, China
| | - Vladimir Tesar
- Charles University and General University Hospital, Prague, Czech Republic
| | - Brad H Rovin
- The Ohio State University Wexner Medical Center, Columbus OH, USA
| | | | - Heather N Reich
- University of Toronto and University Health Network, Toronto ON, Canada
| | | |
Collapse
|