1
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zheng Z, Xu J, Mao Y, Mei Z, Zhu J, Lan P, Wu X, Xu S, Zhang M. Sulforaphane improves post-resuscitation myocardial dysfunction by inhibiting cardiomyocytes ferroptosis via the Nrf2/IRF1/GPX4 pathway. Biomed Pharmacother 2024; 179:117408. [PMID: 39244999 DOI: 10.1016/j.biopha.2024.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Ferroptosis is an important type of cell death contributing to myocardial dysfunction induced by whole body ischemia reperfusion following cardiac arrest (CA) and resuscitation. Sulforaphane (SFN), known as the activator of the nuclear factor E2-related factor 2 (Nrf2), has been proven to effectively alleviate regional myocardial ischemia reperfusion injury. The present study was designed to investigate whether SFN could improve post-resuscitation myocardial dysfunction by inhibiting cardiomyocytes ferroptosis and its potential regulatory mechanism. METHODS AND RESULTS An in vivo pig model of CA and resuscitation was established. Hypoxia/reoxygenation (H/R)-stimulated AC16 cardiomyocytes was constructed as an in vitro model to simulate the process of CA and resuscitation. In vitro experiment, SFN reduced ferroptosis-related ferrous iron, lipid reactive oxygen species, and malondialdehyde, increased glutathione, and further promoted cell survival after H/R stimulation in AC16 cardiomyocytes. Mechanistically, the activation of Nrf2 with the SFN decreased interferon regulatory factor 1 (IRF1) expression, then reduced its binding to the promoter of glutathione peroxidase 4 (GPX4), and finally recovered the latter's transcription after H/R stimulation in AC16 cardiomyocytes. In vivo experiment, SFN reversed abnormal expression of IRF1 and GPX4, inhibited cardiac ferroptosis, and improved myocardial dysfunction after CA and resuscitation in pigs. CONCLUSIONS SFN could effectively improve myocardial dysfunction after CA and resuscitation, in which the mechanism was potentially related to the inhibition of cardiomyocytes ferroptosis through the regulation of Nrf2/IRF1/GPX4 pathway.
Collapse
Affiliation(s)
- Zhongjun Zheng
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Yi Mao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, The First People's Hospital of Wenling, Taizhou, China
| | - Zhihan Mei
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Tiantai People's Hospital of Zhejiang Province, Taizhou, China
| | - Jinjiang Zhu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Emergency Medicine, Yiwu Central Hospital, Jinhua, China
| | - Pin Lan
- Department of Emergency Medicine, Lishui Central Hospital, Lishui, China
| | - Xianlong Wu
- Department of Emergency Medicine, Taizhou First People's Hospital, Taizhou, China
| | - Shanxiang Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China; Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Nelson P, Dugbartey GJ, McFarlane L, McLeod P, Major S, Jiang J, O'Neil C, Haig A, Sener A. Effect of Sodium Thiosulfate Pre-Treatment on Renal Ischemia-Reperfusion Injury in Kidney Transplantation. Int J Mol Sci 2024; 25:9529. [PMID: 39273476 PMCID: PMC11395123 DOI: 10.3390/ijms25179529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
We recently reported in a rat model of kidney transplantation that the addition of sodium thiosulfate (STS) to organ preservation solution improved renal graft quality and prolonged recipient survival. The present study investigates whether STS pre-treatment would produce a similar effect. In vitro, rat kidney epithelial cells were treated with 150 μM STS before and/or during exposure to hypoxia followed by reoxygenation. In vivo, donor rats were treated with PBS or 2.4 mg/kg STS 30 min before donor kidneys were procured and stored in UW or UW+150 μM STS solution at 4 °C for 24 h. Renal grafts were then transplanted into bilaterally nephrectomised recipient rats which were then sacrificed on post-operative day 3. STS pre-treatment significantly reduced cell death compared to untreated and other treated cells in vitro (p < 0.05), which corresponded with our in vivo result (p < 0.05). However, no significant differences were observed in other parameters of tissue injury. Our results suggest that STS pre-treatment may improve renal graft function after transplantation.
Collapse
Affiliation(s)
- Pierce Nelson
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - George J Dugbartey
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Western University, London, ON N6A 5A5, Canada
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra P.O. Box LG43, Ghana
| | - Liam McFarlane
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Patrick McLeod
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Sally Major
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Jifu Jiang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
| | - Caroline O'Neil
- The Molecular Pathology Core, Robarts Research Institute, London, ON N6A 5A5, Canada
| | - Aaron Haig
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 5A5, Canada
| | - Alp Sener
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Center, Western University, London, ON N6A 5A5, Canada
- London Health Sciences Center, Department of Surgery, Western University, London, ON N6A 5A5, Canada
| |
Collapse
|
4
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
5
|
Jia M, Li L, Chen R, Du J, Qiao Z, Zhou D, Liu M, Wang X, Wu J, Xie Y, Sun Y, Zhang Y, Wang Z, Zhang T, Hu H, Sun J, Tang W, Yi F. Targeting RNA oxidation by ISG20-mediated degradation is a potential therapeutic strategy for acute kidney injury. Mol Ther 2023; 31:3034-3051. [PMID: 37452495 PMCID: PMC10556188 DOI: 10.1016/j.ymthe.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Oxidative stress plays a central role in the pathophysiology of acute kidney injury (AKI). Although RNA is one of the most vulnerable cell components to oxidative damage, it is unclear whether RNA oxidation is involved in the pathogenesis of AKI. In this study, we found that the level of RNA oxidation was significantly enhanced in kidneys of patients with acute tubular necrosis (ATN) and in the renal tubular epithelial cells (TECs) of mice with AKI, and oxidized RNA overload resulted in TEC injury. We further identified interferon-stimulated gene 20 (ISG20) as a novel regulator of RNA oxidation in AKI. Tubule-specific deficiency of ISG20 significantly aggravated renal injury and RNA oxidation in the ischemia/reperfusion-induced AKI mouse model and ISG20 restricted RNA oxidation in an exoribonuclease activity-dependent manner. Importantly, overexpression of ISG20 protected against oxidized RNA overproduction and renal ischemia/reperfusion injury in mice and ameliorated subsequent protein aggresome accumulation, endoplasmic reticulum stress, and unfolded protein response. Thus, our findings provide direct evidence that RNA oxidation contributes to the pathogenesis of AKI and that ISG20 importantly participates in the degradation of oxidized RNA, suggesting that targeting ISG20-handled RNA oxidation may be an innovative therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Meng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Liang Li
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ruiqi Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Junyao Du
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Zhe Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Di Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jichao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Ziying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan 250012, China
| | - Huili Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Sun S, Chen R, Dou X, Dai M, Long J, Wu Y, Lin Y. Immunoregulatory mechanism of acute kidney injury in sepsis: A Narrative Review. Biomed Pharmacother 2023; 159:114202. [PMID: 36621143 DOI: 10.1016/j.biopha.2022.114202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Sepsis acute kidney injury (SAKI) is a common complication of sepsis, accounting for 26-50 % of all acute kidney injury (AKI). AKI is an independent risk factor for increased mortality risk in patients with sepsis. The excessive inflammatory cascade reaction in SAKI is one of the main causes of kidney damage. Both the innate immune system and the adaptive immune system are involved in the inflammation process of SAKI. Under the action of endotoxin, neutrophils, monocytes, macrophages, T cells and other complex immune network reactions occur, and a large number of endogenous inflammatory mediators are released, resulting in the amplification and loss of control of the inflammatory response. The study of immune cells in SAKI will help improve the understanding of the immune mechanisms of SAKI, and will lay a foundation for the development of new diagnostic and therapeutic targets. This article reviews the role of known immune mechanisms in the occurrence and development of SAKI, with a view to finding new targets for SAKI treatment.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Alfaro R, Martínez-Banaclocha H, Llorente S, Jimenez-Coll V, Galián JA, Botella C, Moya-Quiles MR, Parrado A, Muro-Perez M, Minguela A, Legaz I, Muro M. Computational Prediction of Biomarkers, Pathways, and New Target Drugs in the Pathogenesis of Immune-Based Diseases Regarding Kidney Transplantation Rejection. Front Immunol 2022; 12:800968. [PMID: 34975915 PMCID: PMC8714745 DOI: 10.3389/fimmu.2021.800968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background The diagnosis of graft rejection in kidney transplantation (KT) patients is made by evaluating the histological characteristics of biopsy samples. The evolution of omics sciences and bioinformatics techniques has contributed to the advancement in searching and predicting biomarkers, pathways, and new target drugs that allow a more precise and less invasive diagnosis. The aim was to search for differentially expressed genes (DEGs) in patients with/without antibody-mediated rejection (AMR) and find essential cells involved in AMR, new target drugs, protein-protein interactions (PPI), and know their functional and biological analysis. Material and Methods Four GEO databases of kidney biopsies of kidney transplantation with/without AMR were analyzed. The infiltrating leukocyte populations in the graft, new target drugs, protein-protein interactions (PPI), functional and biological analysis were studied by different bioinformatics tools. Results Our results show DEGs and the infiltrating leukocyte populations in the graft. There is an increase in the expression of genes related to different stages of the activation of the immune system, antigenic presentation such as antibody-mediated cytotoxicity, or leukocyte migration during AMR. The importance of the IRF/STAT1 pathways of response to IFN in controlling the expression of genes related to humoral rejection. The genes of this biological pathway were postulated as potential therapeutic targets and biomarkers of AMR. These biological processes correlated showed the infiltration of NK cells and monocytes towards the allograft. Besides the increase in dendritic cell maturation, it plays a central role in mediating the damage suffered by the graft during AMR. Computational approaches to the search for new therapeutic uses of approved target drugs also showed that imatinib might theoretically be helpful in KT for the prevention and/or treatment of AMR. Conclusion Our results suggest the importance of the IRF/STAT1 pathways in humoral kidney rejection. NK cells and monocytes in graft damage have an essential role during rejection, and imatinib improves KT outcomes. Our results will have to be validated for the potential use of overexpressed genes as rejection biomarkers that can be used as diagnostic and prognostic markers and as therapeutic targets to avoid graft rejection in patients undergoing kidney transplantation.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Victor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Antonio Parrado
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Muro-Perez
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), University of Murcia, Murcia, Spain
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
8
|
He T, Yang L, Wu D. Effect of interferon regulatory factor 2 on inflammatory response and oxidative stress in lipopolysaccharide-induced acute kidney injury. Drug Dev Res 2022; 83:940-951. [PMID: 35088417 DOI: 10.1002/ddr.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Interferon regulatory factor (IRF) 2 plays an important role in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). In this study, we explored the effects of IRF2 on apoptosis, inflammation, and oxidative stress in AKI C57BL/6 male mouse model and HEK293 cells following LPS treatment. To determine the effect of IRF2, short hairpin RNAs in mice and small interfering RNAs in cells were used to knockdown IRF2 expression. IRF2 expression, apoptosis, and severity of inflammatory and oxidative stress in mice and cells were measured. IRF2 levels were upregulated in LPS-treated mice and cells. IRF2 knockdown suppressed the levels of creatinine, blood urea nitrogen, and kidney injury molecule 1 and decreased the renal injury score in mice. Furthermore, IRF2 knockdown inhibited apoptosis and decreased the levels of inflammatory, reactive oxygen species (ROS), and malondialdehyde (MDA), but increased superoxide dismutase (SOD) levels in mice and cells. Furthermore, we found that the Janus kinase (JAK)/ signal transducer and activator of transcription pathway activated by LPS was inhibited by knockdown of IRF2, and enhanced by IRF2 overexpression. IRF2 overexpression increased cell apoptosis, inflammation, and ROS and MDA levels, and decreased SOD levels. However, the effect of IRF2 overexpression was reversed by the JAK inhibitor tofacitinib. Knockdown of IRF2 reduced LPS-induced renal tissue injury in vivo and in vitro through anti-inflammatory and antioxidant stress effects.
Collapse
Affiliation(s)
- Tianwei He
- Department of Nephrology, The Yantai Yuhuangding Hospital, Yantai, China
| | - Lina Yang
- Department of Nephrology, The Yantai Yuhuangding Hospital, Yantai, China
| | - Daoxu Wu
- Department of Nephrology, The Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
9
|
Jiang W, Chen G, Pu J. The transcription factor interferon regulatory factor-1 is an endogenous mediator of myocardial ischemia reperfusion injury. Cell Biol Int 2022; 46:63-72. [PMID: 34658101 DOI: 10.1002/cbin.11713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Myocardial ischemia reperfusion (MIR) injury negatively affects the prognosis of acute myocardial infarction (AMI), while effective suppression of MIR injury remains a largely unmet clinical need. Interferon regulatory factors (IRF) are key players in chronic cardiac disorders such as cardiac remodeling. However, their roles in acute MIR injury remain largely unknown. In the current study, microarray data indicated that IRF1 expression was consistently changed in the human ischemic heart and ischemic reperfused mouse heart. Western blot analysis confirmed the expression alterations of IRF1 in ischemic reperfused mouse heart. Cardiac-specific IRF1 knockdown significantly decreased infarct size, improved cardiac function, and suppressed myocardial apoptosis after MIR injury. Conversely, cardiac-specific IRF1 overexpression significantly promoted MIR injury. Further investigation revealed that IRF1 transcriptionally regulated the expression of inducible nitric oxide synthase (iNOS), and augmented oxidative stress. Taken together, we presented the first direct evidence that IRF1 served as a mediator of MIR injury, and IRF1 may represent a potential therapeutic target for alleviating MIR injury.
Collapse
Affiliation(s)
- Wenlong Jiang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Guoxiong Chen
- Department of Cardiology, Zhoushan Hospital, Zhejiang, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
10
|
Jankowski J, Lee HK, Wilflingseder J, Hennighausen L. JAK inhibitors dampen activation of interferon-activated transcriptomes and the SARS-CoV-2 receptor ACE2 in human renal proximal tubules. iScience 2021; 24:102928. [PMID: 34345808 PMCID: PMC8321697 DOI: 10.1016/j.isci.2021.102928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
SARS-CoV-2 infections initiate cytokine storms and activate genetic programs leading to progressive hyperinflammation in multiple organs of patients with COVID-19. While it is known that COVID-19 impacts kidney function, leading to increased mortality, cytokine response of renal epithelium has not been studied in detail. Here, we report on the genetic programs activated in human primary proximal tubule (HPPT) cells by interferons and their suppression by ruxolitinib, a Janus kinase (JAK) inhibitor used in COVID-19 treatment. Integration of our data with those from patients with acute kidney injury and COVID-19, as well as other tissues, permitted the identification of kidney-specific interferon responses. Additionally, we investigated the regulation of the recently discovered isoform (dACE2) of the angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor. Using ChIP-seq, we identified candidate interferon-activated enhancers controlling the ACE2 locus, including the intronic dACE2 promoter. Taken together, our study provides an in-depth understanding of genetic programs activated in kidney cells. We provide transcriptomic and epigenetic data sets for human renal proximal tubules Cytokine stimulation induces distinct genetic pathways in the kidney Short isoform of ACE2, dACE2, is expressed in renal proximal tubules Type I interferons increase dACE2, but not full ACE2 expression
Collapse
Affiliation(s)
- Jakub Jankowski
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Building 8, Room 101, 8 Center Dr, Bethesda, MD 20892, USA.,Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Building 8, Room 101, 8 Center Dr, Bethesda, MD 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Building 8, Room 101, 8 Center Dr, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Song YC, Liu R, Li RH, Xu F. Dexmedetomidine Exerts Renal Protective Effect by Regulating the PGC-1α/STAT1/IRF-1 Axis. Nephron Clin Pract 2021; 145:528-539. [PMID: 33965939 DOI: 10.1159/000514532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is the main cause of acute kidney injury (AKI), and its incidence and mortality increase year by year in the population. Dexmedetomidine (DEX) can improve AKI by regulating inflammation and oxidative stress, but its mechanism is still unclear. METHODS A hypoxia/reoxygenation (H/R) model of HK-2 cells and a kidney I/R model of C57BL/6J mice were established. In the experiment, cells were transfected with sh-PGC-1α to inhibit PGC-1α expression. The changes of ROS level and mitochondrial membrane potential (MMP) were analyzed. HE staining was used to assess kidney damage in mice. Concentration of kidney injury markers serum creatinine and blood urea nitrogen and expression of inflammatory factors were detected by ELISA. qPCR analysis was used to detect mRNA levels of related proteins in cells and mouse kidney tissues. The protein intracellular content and phosphorylation levels were determined by Western blotting. RESULT The production of inflammatory factors and ROS was increased in HK-2 cells treated with H/R, while MMP, cell viability, and mitochondrial-related protein levels were decreased. DEX attenuated pathological changes induced by H/R, while knockdown of PGC-1α eliminated the mitigation effect. DEX inhibited the damage of I/R to the kidneys of mice and increased the expression of mitochondrial-related proteins and PGC-1α in the kidneys, while inhibiting the phosphorylation of STAT1 and the expression of IRF-1. CONCLUSIONS DEX appears to inhibit mitochondrial damage and cellular inflammation by upregulating PGC-1α to affect STAT1 phosphorylation level and IRF-1 expression, thereby preventing AKI.
Collapse
Affiliation(s)
- Ying-Chun Song
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ran Liu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ru-Hong Li
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Fei Xu
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
12
|
Habib R. Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 2021; 7:e06441. [PMID: 33732942 PMCID: PMC7944035 DOI: 10.1016/j.heliyon.2021.e06441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) in the first line defense system of our bodies; they are widely expressed on leukocytes and kidney epithelial cells. Infections due to pathogens or danger signals from injured tissues often activate several TLRs and these receptors mediate their signal transduction through the activation of transcription factors that regulate the expression of cytokine interleukin-1β (IL-1β), type I interferons (IFNs), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) dependent cytokines and chemokines. Acute kidney injury (AKI) involves early Toll-like receptors driven immunopathology, while resolution of inflammation is needed for rapid regeneration of injured tubular cells. Despite their well known function in the progression of inflammation; interestingly, activation of TLRs also has been implicated in renal epithelial repair through the induction of certain interleukins and improvement in autophagy mechanism. Studies have found that although the blockade of TLRs during the early injury phase of renal tissues prevented tubular necrosis, suppression of interleukins production and impaired kidney regeneration due to their blockade has been observed during the healing phase of tissue. Taken together, these results suggest that the two danger response programs of renal cells i.e. renal inflammation and regeneration may link at the level of TLRs. This review aims to emphasize on the role of TLRs signaling in different acute kidney injury phases. Understanding of these pathways may turn out to be effective as therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, 74200, Pakistan
| |
Collapse
|
13
|
Jankowski J, Lee HK, Wilflingseder J, Hennighausen L. Interferon-regulated genetic programs and JAK/STAT pathway activate the intronic promoter of the short ACE2 isoform in renal proximal tubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.15.426908. [PMID: 33501441 PMCID: PMC7836111 DOI: 10.1101/2021.01.15.426908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFNα and IFNβ, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.
Collapse
Affiliation(s)
- Jakub Jankowski
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Wilflingseder
- Department of Physiology and Pathophysiology, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, U.S. National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Feng W, Ying WZ, Li X, Curtis LM, Sanders PW. Renoprotective effect of Stat1 deletion in murine aristolochic acid nephropathy. Am J Physiol Renal Physiol 2021; 320:F87-F96. [PMID: 33283645 PMCID: PMC7847048 DOI: 10.1152/ajprenal.00401.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/14/2023] Open
Abstract
Injured tubule epithelium stimulates a profibrotic milieu that accelerates loss of function in chronic kidney disease (CKD). This study tested the role of signal transducer and activator of transcription 1 (STAT1) in the progressive loss of kidney function in aristolochic acid (AA) nephropathy, a model of CKD. Mean serum creatinine concentration increased in wild-type (WT) littermates treated with AA, whereas Stat1-/- mice were protected. Focal increases in the apical expression of kidney injury molecule (KIM)-1 were observed in the proximal tubules of WT mice with AA treatment but were absent in Stat1-/- mice in the treatment group as well as in both control groups. A composite injury score, an indicator of proximal tubule injury, was reduced in Stat1-/- mice treated with AA. Increased expression of integrin-β6 and phosphorylated Smad2/3 in proximal tubules as well as interstitial collagen and fibronectin were observed in WT mice following AA treatment but were all decreased in AA-treated Stat1-/- mice. The data indicated that STAT1 activation facilitated the development of progressive kidney injury and interstitial fibrosis in AA nephropathy.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xingsheng Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lisa M Curtis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
15
|
Li Y, Liu Y, Huang Y, Yang K, Xiao T, Xiong J, Wang K, Liu C, He T, Yu Y, Han W, Wang Y, Bi X, Zhang J, Huang Y, Zhang B, Zhao J. IRF-1 promotes renal fibrosis by downregulation of Klotho. FASEB J 2020; 34:4415-4429. [PMID: 31965641 DOI: 10.1096/fj.201902446r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/13/2020] [Indexed: 01/06/2023]
Abstract
Although the key role of renal fibrosis in the progression of chronic kidney disease (CKD) is well known, the causes of renal fibrosis are not fully clarified. In this study, interferon regulatory factor 1 (IRF-1), a mammalian transcription factor, was highly expressed in fibrotic kidney of CKD patients. Concordantly, the expression level of IRF-1 was significantly elevated in the kidney of unilateral ureteral obstruction (UUO) and Adriamycin nephropathy (ADR) mice. In tubular epithelial cells, overexpression of IRF-1 could induce profibrotic markers expression, which accompanied by dramatic downregulation of Klotho, an important inhibitor of renal fibrosis. Luciferase reporter analysis and ChIP assay revealed that IRF-1 repressed Klotho expression by downregulation of C/EBP-β, which regulates Klotho gene transcription via directly binding to its promoter. Further investigation showed that tumor necrosis factor-alpha may be an important inducement for the increase of IRF-1 in tubular epithelial cells after UUO and genetic deletion of IRF-1 attenuated renal fibrosis in UUO mice. Hence, these findings demonstrate that IRF-1 contributes to the pathogenesis of renal fibrosis by downregulation of Klotho, and suppresses IRF-1 may be a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Yan Li
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tangli Xiao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kailong Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ting He
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanlin Yu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenhao Han
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingbo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yunjian Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
16
|
Zhu C, Zhu Y, Pan H, Chen Z, Zhu Q. Current Progresses of Functional Nanomaterials for Imaging Diagnosis and Treatment of Melanoma. Curr Top Med Chem 2019; 19:2494-2506. [PMID: 31642783 DOI: 10.2174/1568026619666191023130524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Melanoma is a malignant skin tumor that results in poor disease prognosis due to unsuccessful
treatment options. During the early stages of tumor progression, surgery is the primary approach
that assures a good outcome. However, in the presence of metastasis, melanoma hasbecome almost
immedicable, since the tumors can not be removed and the disease recurs easily in a short period of
time. However, in recent years, the combination of nanomedicine and chemotherapeutic drugs has offered
promising solutions to the treatment of late-stage melanoma. Extensive studies have demonstrated
that nanomaterials and their advanced applications can improve the efficacy of traditional chemotherapeutic
drugs in order to overcome the disadvantages, such as drug resistance, low drug delivery rate and
reduced targeting to the tumor tissue. In the present review, we summarized the latest progress in imaging
diagnosis and treatment of melanoma using functional nanomaterials, including polymers,
liposomes, metal nanoparticles, magnetic nanoparticles and carbon-based nanoparticles. These
nanoparticles are reported widely in melanoma chemotherapy, gene therapy, immunotherapy, photodynamic
therapy, and hyperthermia.
Collapse
Affiliation(s)
- Congcong Zhu
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yunjie Zhu
- Cellular Biomedicine Group Inc., Shanghai 201210, China
| | - Huijun Pan
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Zhongjian Chen
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Dermatology Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
17
|
Zhao C, Mirando AC, Sové RJ, Medeiros TX, Annex BH, Popel AS. A mechanistic integrative computational model of macrophage polarization: Implications in human pathophysiology. PLoS Comput Biol 2019; 15:e1007468. [PMID: 31738746 PMCID: PMC6860420 DOI: 10.1371/journal.pcbi.1007468] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Macrophages respond to signals in the microenvironment by changing their functional phenotypes, a process known as polarization. Depending on the context, they acquire different patterns of transcriptional activation, cytokine expression and cellular metabolism which collectively constitute a continuous spectrum of phenotypes, of which the two extremes are denoted as classical (M1) and alternative (M2) activation. To quantitatively decode the underlying principles governing macrophage phenotypic polarization and thereby harness its therapeutic potential in human diseases, a systems-level approach is needed given the multitude of signaling pathways and intracellular regulation involved. Here we develop the first mechanism-based, multi-pathway computational model that describes the integrated signal transduction and macrophage programming under M1 (IFN-γ), M2 (IL-4) and cell stress (hypoxia) stimulation. Our model was calibrated extensively against experimental data, and we mechanistically elucidated several signature feedbacks behind the M1-M2 antagonism and investigated the dynamical shaping of macrophage phenotypes within the M1-M2 spectrum. Model sensitivity analysis also revealed key molecular nodes and interactions as targets with potential therapeutic values for the pathophysiology of peripheral arterial disease and cancer. Through simulations that dynamically capture the signal integration and phenotypic marker expression in the differential macrophage polarization responses, our model provides an important computational basis toward a more quantitative and network-centric understanding of the complex physiology and versatile functions of macrophages in human diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Adam C. Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thalyta X. Medeiros
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- Divison of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Brian H. Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- Divison of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Wu H, Lai CF, Chang-Panesso M, Humphreys BD. Proximal Tubule Translational Profiling during Kidney Fibrosis Reveals Proinflammatory and Long Noncoding RNA Expression Patterns with Sexual Dimorphism. J Am Soc Nephrol 2019; 31:23-38. [PMID: 31537650 DOI: 10.1681/asn.2019040337] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Proximal tubule injury can initiate CKD, with progression rates that are approximately 50% faster in males versus females. The precise transcriptional changes in this nephron segment during fibrosis and potential differences between sexes remain undefined. METHODS We generated mice with proximal tubule-specific expression of an L10a ribosomal subunit protein fused with enhanced green fluorescent protein. We performed unilateral ureteral obstruction surgery on four male and three female mice to induce inflammation and fibrosis, collected proximal tubule-specific and bulk cortex mRNA at day 5 or 10, and sequenced samples to a depth of 30 million reads. We applied computational methods to identify sex-biased and shared molecular responses to fibrotic injury, including up- and downregulated long noncoding RNAs (lncRNAs) and transcriptional regulators, and used in situ hybridization to validate critical genes and pathways. RESULTS We identified >17,000 genes in each proximal tubule group, including 145 G-protein-coupled receptors. More than 700 transcripts were differentially expressed in the proximal tubule of males versus females. The >4000 genes displaying altered expression during fibrosis were enriched for proinflammatory and profibrotic pathways. Our identification of nearly 150 differentially expressed proximal tubule lncRNAs during fibrosis suggests they may have unanticipated regulatory roles. Network analysis prioritized proinflammatory and profibrotic transcription factors such as Irf1, Nfkb1, and Stat3 as drivers of fibrosis progression. CONCLUSIONS This comprehensive transcriptomic map of the proximal tubule revealed sexually dimorphic gene expression that may reflect sex-related disparities in CKD, proinflammatory gene modules, and previously unappreciated proximal tubule-specific bidirectional lncRNA regulation.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology.,Departments of Medicine and
| | - Chun-Fu Lai
- Division of Nephrology.,Departments of Medicine and.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipai, Taiwan
| | | | - Benjamin D Humphreys
- Division of Nephrology, .,Departments of Medicine and.,Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
19
|
Gentile P, Garcovich S. Concise Review: Adipose-Derived Stem Cells (ASCs) and Adipocyte-Secreted Exosomal microRNA (A-SE-miR) Modulate Cancer Growth and proMote Wound Repair. J Clin Med 2019; 8:jcm8060855. [PMID: 31208047 PMCID: PMC6616456 DOI: 10.3390/jcm8060855] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been routinely used from several years in regenerative surgery without any definitive statement about their potential pro-oncogenic or anti-oncogenic role. ASCs has proven to favor tumor progression in several experimental cancer models, playing a central role in regulating tumor invasiveness and metastatic potential through several mechanisms, such as the paracrine release of exosomes containing pro-oncogenic molecules and the induction of epithelial-mesenchymal transition. However, the high secretory activity and the preferential tumor-targeting make also ASCs a potentially suitable vehicle for delivery of new anti-cancer molecules in tumor microenvironment. Nanotechnologies, viral vectors, drug-loaded exosomes, and micro-RNAs (MiR) represent additional new tools that can be applied for cell-mediated drug delivery in a tumor microenvironment. Recent studies revealed that the MiR play important roles in paracrine actions on adipose-resident macrophages, and their dysregulation has been implicated in the pathogenesis of obesity, diabetes, and diabetic complications as wounds. Numerous MiR are present in adipose tissues, actively participating in the regulation of adipogenesis, adipokine secretion, inflammation, and inter-cellular communications in the local tissues. These results provide important insights into Adipocyte-secreted exosomal microRNA (A-SE-MiR) function and they suggest evaluating the potential role of A-SE-MiR in tumor progression, the mechanisms underlying ASCs-cancer cell interplay and clinical safety of ASCs-based therapies.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
20
|
Gcm1 is involved in cell proliferation and fibrosis during kidney regeneration after ischemia-reperfusion injury. Sci Rep 2019; 9:7883. [PMID: 31133638 PMCID: PMC6536531 DOI: 10.1038/s41598-019-44161-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/10/2019] [Indexed: 12/27/2022] Open
Abstract
In acute kidney injury (AKI), the S3 segment of the proximal tubule is particularly damaged, as it is most vulnerable to ischemia. However, this region is also involved in renal tubular regeneration. To deeply understand the mechanism of the repair process after ischemic injury in AKI, we focused on glial cells missing 1 (Gcm1), which is one of the genes expressed in the S3 segment. Gcm1 is essential for the development of the placenta, and Gcm1 knockout (KO) is embryonically lethal. Thus, the function of Gcm1 in the kidney has not been analyzed yet. We analyzed the function of Gcm1 in the kidney by specifically knocking out Gcm1 in the kidney. We created an ischemia-reperfusion injury (IRI) model to observe the repair process after AKI. We found that Gcm1 expression was transiently increased during the recovery phase of IRI. In Gcm1 conditional KO mice, during the recovery phase of IRI, tubular cell proliferation reduced and transforming growth factor-β1 expression was downregulated resulting in a reduction in fibrosis. In vitro, Gcm1 overexpression promoted cell proliferation and upregulated TGF-β1 expression. These findings indicate that Gcm1 is involved in the mechanisms of fibrosis and cell proliferation after ischemic injury of the kidney.
Collapse
|
21
|
Assadiasl S, Shahi A, Salehi S, Afzali S, Amirzargar A. Interferon regulatory factors: Where to stand in transplantation. Transpl Immunol 2018; 51:76-80. [PMID: 30336215 DOI: 10.1016/j.trim.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/23/2023]
Abstract
Interferon regulatory factors (IRFs) are implicated in regulating inflammatory responses to pathogens and alloantigens. Since transplantation is usually accompanied by ischemia reperfusion injury (IRI), acute and chronic rejections, as well as immunodeficiency due to immunosuppressive drugs, IRFs seem to play a considerable role in allograft outcome. For instance, IRF-1 has been shown to be involved in pathogenesis of IRI; however, IRF-2 exhibits an opposite function. Some IRF-3 and 5 SNPs are associated with better or worse graft survival rates. Of note, IRF-4 inhibition has resulted in improved transplant outcomes. Herein we review available studies about IRFs influence on various stages of transplantation.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Development of new method to enrich human iPSC-derived renal progenitors using cell surface markers. Sci Rep 2018; 8:6375. [PMID: 29686294 PMCID: PMC5913312 DOI: 10.1038/s41598-018-24714-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
Cell therapy using renal progenitors differentiated from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) has the potential to significantly reduce the number of patients receiving dialysis therapy. However, the differentiation cultures may contain undifferentiated or undesired cell types that cause unwanted side effects, such as neoplastic formation, when transplanted into a body. Moreover, the hESCs/iPSCs are often genetically modified in order to isolate the derived renal progenitors, hampering clinical applications. To establish an isolation method for renal progenitors induced from hESCs/iPSCs without genetic modifications, we screened antibodies against cell surface markers. We identified the combination of four markers, CD9−CD140a+CD140b+CD271+, which could enrich OSR1+SIX2+ renal progenitors. Furthermore, these isolated cells ameliorated renal injury in an acute kidney injury (AKI) mouse model when used for cell therapy. These cells could contribute to the development of hiPSC-based cell therapy and disease modeling against kidney diseases.
Collapse
|
23
|
Kolb AL, Corridon PR, Zhang S, Xu W, Witzmann FA, Collett JA, Rhodes GJ, Winfree S, Bready D, Pfeffenberger ZJ, Pomerantz JM, Hato T, Nagami GT, Molitoris BA, Basile DP, Atkinson SJ, Bacallao RL. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. J Am Soc Nephrol 2018; 29:1154-1164. [PMID: 29371417 DOI: 10.1681/asn.2017060675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.
Collapse
Affiliation(s)
- Alexander L Kolb
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Research Division, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | | | - Shijun Zhang
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana
| | | | | | | | | | - Seth Winfree
- Division of Nephrology.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Devin Bready
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Division of Nephrology
| | | | | | | | - Glenn T Nagami
- Division of Nephrology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and.,Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Bruce A Molitoris
- Division of Nephrology.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Simon J Atkinson
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Division of Nephrology
| | - Robert L Bacallao
- Research Division, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; .,Division of Nephrology
| |
Collapse
|
24
|
Chistiakov DA, Myasoedova VA, Revin VV, Orekhov AN, Bobryshev YV. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. Immunobiology 2017; 223:101-111. [PMID: 29032836 DOI: 10.1016/j.imbio.2017.10.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/03/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytes control the body homeostasis through the involvement in resolving tissue injury and further wound healing. Indeed, local tissue microenvironmental changes can significantly influence the functional behavior of monocytes and macrophages. Such microenvironmental changes for example occur in an atherosclerotic plaque during all progression stages. In response to exogenous stimuli, macrophages show a great phenotypic plasticity and heterogeneity. Exposure of monocytes to inflammatory or anti-inflammatory conditions also induces predominant differentiation to proinflammatory (M1) or anti-inflammatory (M2) macrophage subsets and phenotype switch between macrophage subsets. The phenotype transition is accompanied with great changes in the macrophage transcriptome and regulatory networks. Interferon-regulatory factors (IRFs) play a key role in hematopoietic development of monocytes, their differentiation to macrophages, and regulating macrophage maturation, phenotypic polarization, phenotypic switch, and function. Of 9 IRFs, at least 3 (IRF-1, IRF-5, and IRF-8) are involved in the commitment of proinflammatory M1 whereas IRF-3 and IRF-4 control M2 polarization. The role of IRF-2 is context-dependent. The IRF impact on macrophage phenotype plasticity and heterogeneity is complex and involves activating and repressive function in triggering transcription of target genes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center of Psychiatry and Narcology, Moscow, Russia; Department of Molecular Genetic Diagnostics and Cell Biology, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Veronika A Myasoedova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Victor V Revin
- Biological Faculty, N.P. Ogaryov Mordovian State University, Republic of Mordovia, Saransk 430005, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia.
| |
Collapse
|
25
|
Choi S, Park H, Jung S, Kim EK, Cho ML, Min JK, Moon SJ, Lee SM, Cho JH, Lee DH, Nam JH. Therapeutic Effect of Exogenous Truncated IK Protein in Inflammatory Arthritis. Int J Mol Sci 2017; 18:E1976. [PMID: 28906466 PMCID: PMC5618625 DOI: 10.3390/ijms18091976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
Inhibitor K562 (IK) protein was first isolated from the culture medium of K562, a leukemia cell line. It is known to be an inhibitory regulator of interferon-γ-induced major histocompatibility complex class (MHC) II expression. Previously, we found that transgenic (Tg) mice constitutively expressing truncated IK (tIK) showed reduced numbers of pathogenic Th1 and Th17 cells, which are known to be involved in the development of rheumatoid arthritis (RA). Here, we investigated whether exogenous tIK protein has a therapeutic effect in arthritis in disease models and analyzed its mechanism. Exogenous tIK protein was produced in an insect expression system and applied to the collagen antibody-induced arthritis (CAIA) mouse disease model. Injection of tIK protein alleviated the symptoms of arthritis in the CAIA model and reduced Th1 and Th17 cell populations. In addition, treatment of cultured T cells with tIK protein induced expression of A20, a negative regulator of nuclear factor-κB (NFκB)-induced inflammation, and reduced expression of several transcription factors related to T cell activation. We conclude that exogenous tIK protein has the potential to act as a new therapeutic agent for RA patients, because it has a different mode of action to biopharmaceutical agents, such as tumor necrosis factor antagonists, that are currently used to treat RA.
Collapse
Affiliation(s)
- Seulgi Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| | - HyeLim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| | - SeoYeon Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Jun-Ki Min
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Sang-Myeong Lee
- Department of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Jang-Hee Cho
- Biomaterials Research Center, Cellinbio, Suwon 16680, Korea.
| | - Dong-Hee Lee
- Biomaterials Research Center, Cellinbio, Suwon 16680, Korea.
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| |
Collapse
|
26
|
Zhao B, Lu Q, Cheng Y, Belcher JM, Siew ED, Leaf DE, Body SC, Fox AA, Waikar SS, Collard CD, Thiessen-Philbrook H, Ikizler TA, Ware LB, Edelstein CL, Garg AX, Choi M, Schaub JA, Zhao H, Lifton RP, Parikh CR. A Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms for Acute Kidney Injury. Am J Respir Crit Care Med 2017; 195:482-490. [PMID: 27576016 DOI: 10.1164/rccm.201603-0518oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Acute kidney injury is a common and severe complication of critical illness and cardiac surgery. Despite significant attempts at developing treatments, therapeutic advances to attenuate acute kidney injury and expedite recovery have largely failed. OBJECTIVES Identifying genetic loci associated with increased risk of acute kidney injury may reveal novel pathways for therapeutic development. METHODS We conducted an exploratory genome-wide association study to identify single-nucleotide polymorphisms associated with genetic susceptibility to in-hospital acute kidney injury. MEASUREMENTS AND MAIN RESULTS We genotyped 609,508 single-nucleotide polymorphisms and performed genotype imputation in 760 acute kidney injury cases and 669 controls. We then evaluated polymorphisms that showed the strongest association with acute kidney injury in a replication patient population containing 206 cases with 1,406 controls. We observed an association between acute kidney injury and four single-nucleotide polymorphisms at two independent loci on metaanalysis of discovery and replication populations. These include rs62341639 (metaanalysis P = 2.48 × 10-7; odds ratio [OR], 0.64; 95% confidence interval [CI], 0.55-0.76) and rs62341657 (P = 3.26 × 10-7; OR, 0.65; 95% CI, 0.55-0.76) on chromosome 4 near APOL1-regulator IRF2, and rs9617814 (metaanalysis P = 3.81 × 10-6; OR, 0.70; 95% CI, 0.60-0.81) and rs10854554 (P = 6.53 × 10-7; OR, 0.67; 95% CI, 0.57-0.79) on chromosome 22 near acute kidney injury-related gene TBX1. CONCLUSIONS Our findings reveal two genetic loci that are associated with acute kidney injury. Additional studies should be conducted to functionally evaluate these loci and to identify other common genetic variants contributing to acute kidney injury.
Collapse
Affiliation(s)
- Bixiao Zhao
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Qiongshi Lu
- 2 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Yuwei Cheng
- 3 Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Justin M Belcher
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,6 Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
| | - Edward D Siew
- 7 Division of Nephrology and Hypertension and.,8 Vanderbilt Center for Kidney Disease, and.,9 Vanderbilt Integrated Program for Acute Kidney Injury Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Simon C Body
- 11 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Amanda A Fox
- 12 Department of Anesthesiology and Pain Management and.,13 McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Charles D Collard
- 14 Department of Anesthesiology, Baylor St. Luke's Medical Center and the Texas Heart Institute, Houston, Texas
| | - Heather Thiessen-Philbrook
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,15 Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - T Alp Ikizler
- 7 Division of Nephrology and Hypertension and.,8 Vanderbilt Center for Kidney Disease, and.,9 Vanderbilt Integrated Program for Acute Kidney Injury Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- 16 Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | | | - Amit X Garg
- 15 Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada.,18 Division of Nephrology, Department of Medicine and Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada.,19 Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada; and
| | - Murim Choi
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | | | - Hongyu Zhao
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,2 Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Richard P Lifton
- 1 Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,20 Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Chirag R Parikh
- 4 Program of Applied Translational Research and.,5 Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut.,6 Clinical Epidemiology Research Center, Veterans Affairs Medical Center, West Haven, Connecticut
| | | |
Collapse
|
27
|
Yan R, van Meurs M, Popa ER, Jongman RM, Zwiers PJ, Niemarkt AE, Kuiper T, Kamps JA, Heeringa P, Zijlstra JG, Molema G, Moser J. Endothelial Interferon Regulatory Factor 1 Regulates Lipopolysaccharide-Induced VCAM-1 Expression Independent of NFκB. J Innate Immun 2017; 9:546-560. [PMID: 28658674 DOI: 10.1159/000477211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a severe systemic inflammatory response to infection. Endothelial activation and dysfunction play a critical role in the pathophysiology of sepsis and represent an important therapeutic target to reduce sepsis mortality. Interferon regulatory factor 1 (IRF-1) was recently identified as a downstream target of TNF-α-mediated signal transduction in endothelial cells. The aim of this study was to explore the importance of IRF-1 as a regulator of lipopolysaccharide (LPS)-induced endothelial proinflammatory activation. We found that renal IRF-1 was upregulated by LPS in vivo as well as in LPS-stimulated endothelial cells in vitro. Furthermore, we identified intracellular retinoic acid inducible gene-I (RIG-I) as a regulator of LPS-mediated IRF-1 induction. IRF-1 depletion specifically resulted in diminished induction of VCAM-1 in response to LPS, but not of E-selectin or ICAM-1, which was independent of NFκB signaling. When both IRF-1 and the RIG-I adapter protein mitochondrial antiviral signaling (MAVS) were absent, VCAM-1 induction was not additionally inhibited, suggesting that MAVS and IRF-1 reside in the same signaling pathway. Surprisingly, E-selectin and IL-6 induction were no longer inhibited by MAVS knockdown when IRF-1 was also absent, revealing a redundant endothelial activation pathway. In summary, we report an IRF-1-mediated proinflammatory signaling pathway that specifically regulates LPS-mediated VCAM-1 expression, independent of NFκB.
Collapse
Affiliation(s)
- Rui Yan
- Medical Biology Section, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Differential gene and lncRNA expression in the lower thoracic spinal cord following ischemia/reperfusion-induced acute kidney injury in rats. Oncotarget 2017; 8:53465-53481. [PMID: 28881824 PMCID: PMC5581123 DOI: 10.18632/oncotarget.18584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/21/2017] [Indexed: 12/28/2022] Open
Abstract
We used high-throughput RNA sequencing to analyze differential gene and lncRNA expression patterns in the lower thoracic spinal cord during ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) in rats. We observed that of 32662 mRNAs, 4296 out were differentially expressed in the T8-12 segments of the spinal cord upon I/R-induced AKI. Among these, 62 were upregulated and 34 were downregulated in response to I/R (FDR < 0.05, |log2FC| > 1). Further, 52 differentially expressed lncRNAs (35 upregulated and 17 downregulated) were identified among 3849 lncRNA transcripts. The differentially expressed mRNAs were annotated as “biological process,” “cellular components” and “molecular functions” through gene ontology enrichment analysis. KEGG pathway enrichment analysis showed that cell cycle and renin-angiotensin pathways were upregulated in response to I/R, while protein digestion and absorption, hedgehog, neurotrophin, MAPK, and PI3K-Akt signaling were downregulated. The RNA-seq data was validated by qRT-PCR and western blot analyses of select mRNAs and lncRNAs. We observed that Bax, Caspase-3 and phospho-AKT were upregulated and Bcl-2 was downregulated in the spinal cord in response to renal injury. We also found negative correlations between three lncRNAs (TCONS_00042175, TCONS_00058568 and TCONS_00047728) and the degree of renal injury. These findings provide evidence for differential expression of lncRNAs and mRNAs in the lower thoracic spinal cord following I/R-induced AKI in rats and suggest potential clinical applicability.
Collapse
|
29
|
Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin 2017; 38:445-458. [PMID: 28260801 DOI: 10.1038/aps.2016.162] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022] Open
Abstract
When ischemic stroke occurs, oxygen and energy depletion triggers a cascade of events, including inflammatory responses, glutamate excitotoxicity, oxidative stress, and apoptosis that result in a profound brain injury. The inflammatory response contributes to secondary neuronal damage, which exerts a substantial impact on both acute ischemic injury and the chronic recovery of the brain function. Microglia are the resident immune cells in the brain that constantly monitor brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce both detrimental and neuroprotective mediators, and the balance of the two counteracting mediators determines the fate of injured neurons. The activation of microglia is defined as either classic (M1) or alternative (M2): M1 microglia secrete pro-inflammatory cytokines (TNFα, IL-23, IL-1β, IL-12, etc) and exacerbate neuronal injury, whereas the M2 phenotype promotes anti-inflammatory responses that are reparative. It has important translational value to regulate M1/M2 microglial activation to minimize the detrimental effects and/or maximize the protective role. Here, we discuss various regulators of microglia/macrophage activation and the interaction between microglia and neurons in the context of ischemic stroke.
Collapse
|
30
|
AbdulHameed MDM, Ippolito DL, Stallings JD, Wallqvist A. Mining kidney toxicogenomic data by using gene co-expression modules. BMC Genomics 2016; 17:790. [PMID: 27724849 PMCID: PMC5057266 DOI: 10.1186/s12864-016-3143-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Background Acute kidney injury (AKI) caused by drug and toxicant ingestion is a serious clinical condition associated with high mortality rates. We currently lack detailed knowledge of the underlying molecular mechanisms and biological networks associated with AKI. In this study, we carried out gene co-expression analyses using DrugMatrix—a large toxicogenomics database with gene expression data from rats exposed to diverse chemicals—and identified gene modules associated with kidney injury to probe the molecular-level details of this disease. Results We generated a comprehensive set of gene co-expression modules by using the Iterative Signature Algorithm and found distinct clusters of modules that shared genes and were associated with similar chemical exposure conditions. We identified two module clusters that showed specificity for kidney injury in that they 1) were activated by chemical exposures causing kidney injury, 2) were not activated by other chemical exposures, and 3) contained known AKI-relevant genes such as Havcr1, Clu, and Tff3. We used the genes in these AKI-relevant module clusters to develop a signature of 30 genes that could assess the potential of a chemical to cause kidney injury well before injury actually occurs. We integrated AKI-relevant module cluster genes with protein-protein interaction networks and identified the involvement of immunoproteasomes in AKI. To identify biological networks and processes linked to Havcr1, we determined genes within the modules that frequently co-express with Havcr1, including Cd44, Plk2, Mdm2, Hnmt, Macrod1, and Gtpbp4. We verified this procedure by showing that randomized data did not identify Havcr1 co-expression genes and that excluding up to 10 % of the data caused only minimal degradation of the gene set. Finally, by using an external dataset from a rat kidney ischemic study, we showed that the frequently co-expressed genes of Havcr1 behaved similarly in a model of non-chemically induced kidney injury. Conclusions Our study demonstrated that co-expression modules and co-expressed genes contain rich information for generating novel biomarker hypotheses and constructing mechanism-based molecular networks associated with kidney injury. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3143-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD, 21702, USA
| | - Danielle L Ippolito
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Jonathan D Stallings
- U.S. Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, MD, 21702, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD, 21702, USA.
| |
Collapse
|
31
|
Han X, Wang Y, Zhang X, Qin Y, Qu B, Wu L, Ma J, Zhou Z, Qian J, Dai M, Tang Y, Chan EKL, Harley JB, Zhou S, Shen N. MicroRNA-130b Ameliorates Murine Lupus Nephritis Through Targeting the Type I Interferon Pathway on Renal Mesangial Cells. Arthritis Rheumatol 2016; 68:2232-43. [PMID: 27111096 DOI: 10.1002/art.39725] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Xiao Han
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Xiaoyan Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Lingling Wu
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhenyuan Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Min Dai
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | | | - John B. Harley
- Cincinnati Children's Hospital Medical Center and Cincinnati VA Medical Center; Cincinnati Ohio
| | - Shiyu Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, and Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Nan Shen
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Institute of Rheumatology, Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, and Shanghai Jiao Tong University School of Medicine, Shanghai, China, and Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| |
Collapse
|
32
|
Chia SL, Tay CY, Setyawati MI, Leong DT. Decoupling the Direct and Indirect Biological Effects of ZnO Nanoparticles Using a Communicative Dual Cell-Type Tissue Construct. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:647-657. [PMID: 26670581 DOI: 10.1002/smll.201502306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/04/2015] [Indexed: 06/05/2023]
Abstract
While matter at the nanoscale can be manipulated, the knowledge of the interactions between these nanoproducts and the biological systems remained relatively laggard. Current nanobiology study is rooted on in vitro study using conventional 2D cell culture model. A typical study employs monolayer cell culture that simplifies the real context of which to measure any nanomaterial effect; unfortunately, this simplification also demonstrated the limitations of 2D cell culture in predicting the actual biological response of some tissues. In fact, some of the characteristics of tissue such as spatial arrangement of cells and cell-cell interaction, which are simplified in 2D cell culture model, play important roles in how cells respond to a stimulus. To more accurately recapitulate the features and microenvironment of tissue for nanotoxicity assessments, an improved organotypic-like in vitro multicell culture system to mimic the kidney endoepithelial bilayer is introduced. Results showed that important nano-related parameters such as the diffusion, direct and indirect toxic effects of ZnO nanoparticles can be studied by combining this endoepithelial bilayer tissue model and traditional monolayer culture setting.
Collapse
Affiliation(s)
- Sing Ling Chia
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, Nanyang Avenue, Singapore, 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
33
|
Lim R, Tran HT, Liong S, Barker G, Lappas M. The Transcription Factor Interferon Regulatory Factor-1 (IRF1) Plays a Key Role in the Terminal Effector Pathways of Human Preterm Labor1. Biol Reprod 2016; 94:32. [DOI: 10.1095/biolreprod.115.134726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022] Open
|
34
|
Toyohara T, Mae SI, Sueta SI, Inoue T, Yamagishi Y, Kawamoto T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, Sato-Otsubo A, Takahashi K, Sato Y, Yamaji N, Ogawa S, Yamanaka S, Osafune K. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Transl Med 2015. [PMID: 26198166 DOI: 10.5966/sctm.2014-0219] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. SIGNIFICANCE This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases.
Collapse
Affiliation(s)
- Takafumi Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Shin-Ichi Sueta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Tatsuyuki Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Yukiko Yamagishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Tatsuya Kawamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Tomoko Kasahara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Azusa Hoshina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Hiromi Tanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Aiko Sato-Otsubo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Yasunori Sato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Noboru Yamaji
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Seishi Ogawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| |
Collapse
|
35
|
No evidence for a genetic association of IRF4 with systemic lupus erythematosus in a Chinese population. Z Rheumatol 2015; 73:565-70. [PMID: 24292686 DOI: 10.1007/s00393-013-1279-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with immunological defects caused by abnormal immune regulation and excessive production of autoantibodies. Interferon regulatory factor 4 (IRF4) as a lymphocyte-restricted member of the IRF family is expressed exclusively in immune system cells and is essential for the development of T helper-2 (Th2) cells, IL17-producing T helper (Th17) cells, and IL9-producing T helper (Th9) cells. Some studies have shown that IRF4 is important in the development of autoimmune diseases. The role of IRF4 in human SLE has not been extensively studied. This article will discuss the relationship between the IRF4 gene polymorphism (single nucleotide polymorphism rs872071) and the susceptibility to SLE in a Chinese Han population. A case-control study was performed with 663 SLE patients and 658 healthy controls. The results showed that IRF4 gene polymorphism (rs872071) was not significantly different between SLE patients and healthy controls [A/G vs. G/G: p = 0.543, odds ratio (OR) = 0.872, 95 % confidence interval (CI) 0.562-1.355; G vs. A: p = 0.512, OR = 1.058, 95 % CI 0.893-1.254; A/A + A/G vs. G/G: p = 0.475, OR = 0.857, 95 % CI 0.562-1.308]. Similarly, in a subgroup analysis of clinical manifestation of lupus nephritis (LN), no significant differences were found between the non-LN group and the LN group (G/G vs. A/G vs. A/A: χ(2) = 0.611, p = 0.631; G vs. A: χ(2) = 0.411, p = 0.521).These findings suggest that the IRF4 gene polymorphism is not associated with SLE in a Chinese Han population; further studies are needed to establish the role of IRF4 in SLE with a larger sample size.
Collapse
|
36
|
Wermuth PJ, Jimenez SA. The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med 2015; 4:2. [PMID: 25852818 PMCID: PMC4384891 DOI: 10.1186/s40169-015-0047-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/15/2022] Open
Abstract
The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations.
Collapse
Affiliation(s)
- Peter J Wermuth
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Bluemle Life Science Building Suite 509, 233 South 10th Street, Philadelphia, PA 19107-5541 USA
| |
Collapse
|
37
|
The regulation role of interferon regulatory factor-1 gene and clinical relevance. Hum Immunol 2014; 75:1110-4. [DOI: 10.1016/j.humimm.2014.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022]
|
38
|
Checkpoint kinase Chk2 controls renal Cyp27b1 expression, calcitriol formation, and calcium-phosphate metabolism. Pflugers Arch 2014; 467:1871-80. [PMID: 25319519 DOI: 10.1007/s00424-014-1625-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023]
Abstract
Checkpoint kinase 2 (Chk2) is the main effector kinase of ataxia telangiectasia mutated (ATM) and responsible for cell cycle regulation. ATM signaling has been shown to upregulate interferon-regulating factor-1 (IRF-1), a transcription factor also expressed in the kidney. Calcitriol (1,25 (OH)2D3), a major regulator of mineral metabolism, is generated by 25-hydroxyvitamin D 1α-hydroxylase in the kidney. Since 25-hydroxyvitamin D 1α-hydroxylase expression is enhanced by IRF-1, the present study explored the role of Chk2 for calcitriol formation and mineral metabolism. Chk2-deficient mice (chk2 (-/-)) were compared to wild-type mice (chk2 (+/+)). Transcript levels of renal 25-hydroxyvitamin D 1α-hydroxylase, Chk2, and IRF-1 were determined by RT-PCR; Klotho expression by Western blotting; bone density by μCT analysis; serum or plasma 1,25 (OH)2D3, PTH, and C-terminal FGF23 concentrations by immunoassays; and serum, fecal, and urinary calcium and phosphate concentrations by photometry. The renal expression of IRF-1 and 25-hydroxyvitamin D 1α-hydroxylase as well as serum 1,25 (OH)2D3 and FGF23 levels were significantly lower in chk2 (-/-) mice compared to chk2 (+/+) mice. Plasma PTH was not different between the genotypes. Renal calcium and phosphate excretion were significantly higher in chk2 (-/-) mice than in chk2 (+/+) mice despite hypophosphatemia and normocalcemia. Bone density was not different between the genotypes. We conclude that Chk2 regulates renal 25-hydroxyvitamin D 1α-hydroxylase expression thereby impacting on calcium and phosphate metabolism.
Collapse
|
39
|
Patschan D, Müller GA. Acute kidney injury. J Inj Violence Res 2014; 7:19-26. [PMID: 25618438 PMCID: PMC4288292 DOI: 10.5249/jivr.v7i1.604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/09/2014] [Indexed: 01/07/2023] Open
Abstract
Acute kidney injury is a frequent and serious complication in hospitalized patients. Mortality rates have not substantially been decreased during the last 20 years. In most patients AKI results from transient renal hypoperfusion or ischemia. The consequences include tubular cell dysfunction/damage, inflammation of the organ, and post-ischemic microvasculopathy. The two latter events perpetuate kidney damage in AKI. Clinical manifestations result from diminished excretion of water, electrolytes, and endogenous / exogenous waste products. Patients are endangered by cardiovascular complications such as hypertension, heart failure, and arrhythmia. In addition, the whole organism may be affected by systemic toxification (uremia). The diagnostic approach in AKI involves several steps with renal biopsy inevitable in some patients. The current therapy focuses on preventing further kidney damage and on treatment of complications. Different pharmacological strategies have failed to significantly improve prognosis in AKI. If dialysis treatment becomes mandatory, intermittent and continuous renal replacement therapies are equally effective. Thus, new therapies are urgently needed in order to reduce short- and long-term outcome in AKI. In this respect, stem cell-based regimens may offer promising perspectives.
Collapse
Affiliation(s)
| | - Gerhard Anton Müller
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Göttingen, Germany. ,
| |
Collapse
|
40
|
Fina BL, Lombarte M, Rigalli JP, Rigalli A. Fluoride increases superoxide production and impairs the respiratory chain in ROS 17/2.8 osteoblastic cells. PLoS One 2014; 9:e100768. [PMID: 24964137 PMCID: PMC4071036 DOI: 10.1371/journal.pone.0100768] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/01/2014] [Indexed: 01/24/2023] Open
Abstract
It is known that fluoride produces oxidative stress. Inflammation in bone tissue and an impairment of the respiratory chain of liver have been described in treatments with fluoride. Whether the impairment of the respiratory chain and oxidative stress are related is not known. The aim of this work was to study the effects of fluoride on the production of superoxide radical, the function of the respiratory chain and the increase in oxidative stress in ROS 17/2.8 osteoblastic cells. We measured the effect of fluoride (100 µM) on superoxide production, oxygen consumption, lipid peroxidation and antioxidant enzymes activities of cultured cells following the treatment with fluoride. Fluoride decreased oxygen consumption and increased superoxide production immediately after its addition. Furthermore, chronic treatment with fluoride increased oxidative stress status in osteoblastic cells. These results indicate that fluoride could damage bone tissue by inhibiting the respiratory chain, increasing the production of superoxide radicals and thus of the others reactive oxygen species.
Collapse
Affiliation(s)
- Brenda Lorena Fina
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Santa Fe, Argentina
- * E-mail:
| | - Mercedes Lombarte
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Santa Fe, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Santa Fe, Argentina
| | - Alfredo Rigalli
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Santa Fe, Argentina
| |
Collapse
|
41
|
Virzì GM, Day S, de Cal M, Vescovo G, Ronco C. Heart-kidney crosstalk and role of humoral signaling in critical illness. Crit Care 2014; 18:201. [PMID: 24393300 PMCID: PMC4059499 DOI: 10.1186/cc13177] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Organ failure in the heart or kidney can initiate various complex metabolic, cell-mediated and humoral pathways affecting distant organs, contributing to the high therapeutic costs and significantly higher morbidity and mortality. The universal outreach of cells in an injured state has myriad consequences to distant organ cells and their milieu. Heart performance and kidney function are closely interconnected and communication between these organs occurs through a variety of bidirectional pathways. The term cardiorenal syndrome (CRS) is often used to describe this condition and represents an important model for exploring the pathophysiology of cardiac and renal dysfunction. Clinical evidence suggests that tissue injury in both acute kidney injury and heart failure has immune-mediated inflammatory consequences that can initiate remote organ dysfunction. Acute cardiorenal syndrome (CRS type 1) and acute renocardiac syndrome (CRS type 3) are particularly relevant in high-acuity medical units. This review briefly summarizes relevant research and focuses on the role of signaling in heart-kidney crosstalk in the critical care setting.
Collapse
Affiliation(s)
- Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
- IRRIV – International Renal Resarch Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Sonya Day
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
- IRRIV – International Renal Resarch Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
- IRRIV – International Renal Resarch Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
| | - Giorgio Vescovo
- Internal Medicine, San Bortolo Hospital, Vicenza, Via Giustiniani, Padua 35128, Italy
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, International Renal Research Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
- IRRIV – International Renal Resarch Institute Vicenza, Via Rodolfi 37, Vicenza 36100, Italy
| |
Collapse
|
42
|
Interferon-regulatory factors determine macrophage phenotype polarization. Mediators Inflamm 2013; 2013:731023. [PMID: 24379524 PMCID: PMC3863528 DOI: 10.1155/2013/731023] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 01/09/2023] Open
Abstract
The mononuclear phagocyte system regulates tissue homeostasis as well as all phases of tissue injury and repair. To do so changing tissue environments alter the phenotype of tissue macrophages to assure their support for sustaining and amplifying their respective surrounding environment. Interferon-regulatory factors are intracellular signaling elements that determine the maturation and gene transcription of leukocytes. Here we discuss how several among the 9 interferon-regulatory factors contribute to macrophage polarization.
Collapse
|
43
|
Nagi-Miura N, Okuzaki D, Torigata K, Sakurai MA, Ito A, Ohno N, Nojima H. CAWS administration increases the expression of interferon γ and complement factors that lead to severe vasculitis in DBA/2 mice. BMC Immunol 2013; 14:44. [PMID: 24063402 PMCID: PMC3876726 DOI: 10.1186/1471-2172-14-44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
Background Candida albicans water-soluble fraction (CAWS), a mannoprotein-β-glucan complex obtained from the culture supernatant of C. albicans NBRC1385, causes CAWS-mediated vasculitis (CAWS-vasculitis) in B6 and DBA/2 mice with mild and lethal symptoms, respectively. Why CAWS is lethal only in DBA/2 mice remains unknown. Results We performed DNA microarray analyses using mRNA obtained from peripheral blood mononuclear cells (PBMCs) of B6 and DBA/2 mice and compared their respective transcriptomes. We found that the mRNA levels of interferon-γ (Ifng) and several genes that regulate the complement system, such as C3, C4, Cfb, Cfh, and Fcna, were increased dramatically only in DBA/2 mice at 4 and 8 weeks after CAWS administration. The dramatic increase was confirmed by quantitative real-time polymerase chain reactions (qRT-PCR). Moreover, mRNA levels of immune-related genes, such as Irf1, Irf7, Irf9, Cebpb, Ccl4, Itgam, Icam1, and IL-12rb1, whose expression levels are known to be increased by Ifng, were also increased, but only in DBA/2 mice. By contrast, the mRNA level of Dectin-2, the critical receptor for the α-mannans of CAWS, was increased slightly and similarly in both B6 and DBA/2 mice after CAWS administration. Conclusions Taken together, our results suggest that CAWS administration induces Dectin-2 mediated CAWS-vasculitis in both B6 and DBA/2 mice and the expression of Ifng, but only in DBA/2 mice, which led to increased expression of C3, C4, Cfb, Cfh, and Fcna and an associated increase in lethality in these mice. This model may contribute to our understanding of the pathogenesis of severe human vasculitis.
Collapse
Affiliation(s)
- Noriko Nagi-Miura
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0329, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Bomsztyk K, Flanagin S, Mar D, Mikula M, Johnson A, Zager R, Denisenko O. Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-α gene in acute kidney injury. PLoS One 2013; 8:e70322. [PMID: 23936185 PMCID: PMC3728219 DOI: 10.1371/journal.pone.0070322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As a consequence of acute kidney injury (AKI), proximal tubular cells hyperrespond to endotoxin (lipopolysaccharide, LPS) by exaggerated renal Tnf-α Production. This LPS hyperresponsiveness is transcriptionally mediated. The epigenetic pathways that control these responses are unknown. METHODS/FINDINGS We applied multiplex chromatin immunoprecipitation platform (Matrix ChIP) to explore epigenetic pathways that underlie endotoxin hyperresponsiveness in the setting of preceding unilateral renal ischemia/reperfusion (I/R) in mouse AKI model. Endotoxin exposure after I/R resulted in enhanced transcription, manifested by hyperresponsive recruitment of RNA polymerase II (Pol II) at the Tnf-α gene. At this locus, LPS but not I/R increased levels of Pol II C-terminal domain (CTD) phosho-serine2 &5 and induced dephosphorylation of the transcription-repressive histone H4 phospho-serine-1. In contrast, I/R but not LPS increased the transcription-permissive histone phosphorylation (H3 phospho-serine-10, H3.3 phospho-serine-31) at the Tnf-α gene. In agreement with these observations, I/R but not LPS increased activity of cognate kinases (Erk1/2, Msk1/2 and Aurora A) at the Tnf-α locus. Cross-talk of histone phosphorylation and acetylation synergize to active gene expression. I/R and LPS increased histone acetylation. (H3K9/14Ac, H4K5/8/12/16Ac, H2KA5Ac, H2BK4/7Ac). Levels of some histone acetyltransferases at this gene (PCAF and MOF) were increased by I/R but not by LPS, while others were induced by either I/R or LPS and exhibited endotoxin hyperresponsive patterns (GCN5, CBP and p300). The adaptor protein 14-3-3 couples histone phosphorylation with acetylation, and tethers chromatin modifiers/transcription elongation factors to target genes. Both I/R and LPS increased levels of 14-3-3 and several chromatin/transcription modifiers (BRD4, BRG1, HP-1γ and IKKα) at the Tnf-α gene, all exhibiting endotoxin hyperresponsive recruitment patterns similar to Pol II. CONCLUSIONS Our results suggest that I/R and LPS differentially trigger phosphorylation (Pol II and histone) and acetylation (histone) epigenetic pathways that interact at the Tnf-α gene to generate endotoxin hyperresponse in AKI.
Collapse
Affiliation(s)
- Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Winterberg PD, Wang Y, Lin KM, Hartono JR, Nagami GT, Zhou XJ, Shelton JM, Richardson JA, Lu CY. Reactive oxygen species and IRF1 stimulate IFNα production by proximal tubules during ischemic AKI. Am J Physiol Renal Physiol 2013; 305:F164-72. [PMID: 23657854 PMCID: PMC3725662 DOI: 10.1152/ajprenal.00487.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023] Open
Abstract
We previously reported that expression of the transcription factor interferon regulatory factor 1 (IRF1) is an early, critical maladaptive signal expressed by renal tubules during murine ischemic acute kidney injury (AKI). We now show that IRF1 mediates signals from reactive oxygen species (ROS) generated during ischemic AKI and that these signals ultimately result in production of α-subtypes of type I interferons (IFNαs). We found that genetic knockout of the common type I IFN receptor (IFNARI-/-) improved kidney function and histology during AKI. There are major differences in the spatial-temporal production of the two major IFN subtypes, IFNβ and IFNαs: IFNβ expression peaks at 4 h, earlier than IFNαs, and continues at the same level at 24 h; expression of IFNαs also increases at 4 h but continues to increase through 24 h. The magnitude of the increase in IFNαs relative to baseline is much greater than that of IFNβ. We show by immunohistology and study of isolated cells that IFNβ is produced by renal leukocytes and IFNαs are produced by renal tubules. IRF1, IFNαs, and IFNARI were found on the same renal tubules during ischemic AKI. Furthermore, we found that ROS induced IFNα expression by renal tubules in vitro. This expression was inhibited by small interfering RNA knockdown of IRF1. Overexpression of IRF1 resulted in the production of IFNαs. Furthermore, we found that IFNα stimulated production of maladaptive proinflammatory CXCL2 by renal tubular cells. Altogether our data support the following autocrine pathway in renal tubular cells: ROS > IRF1 > IFNα > IFNARI > CXCL2.
Collapse
Affiliation(s)
- Pamela D Winterberg
- Department of Pediatrics, Nephrology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lech M, Anders HJ. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta Mol Basis Dis 2012; 1832:989-97. [PMID: 23246690 DOI: 10.1016/j.bbadis.2012.12.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022]
Abstract
Certain macrophage phenotypes contribute to tissue fibrosis, but why? Tissues host resident mononuclear phagocytes for their support to maintain homeostasis. Upon injury the changing tissue microenvironment alters their phenotype and primes infiltrating monocytes toward pro-inflammatory macrophages. Several mechanisms contribute to their deactivation and macrophage priming toward anti-inflammatory and pro-regenerative macrophages that produce multiple cytokines that display immunosuppressive as well as pro-regeneratory effects, such as IL-10 and TGF-beta1. Insufficient parenchymal repair creates a tissue microenvironment that becomes dominated by multiple growth factors that promote the pro-fibrotic macrophage phenotype that itself produces large amounts of such growth factors that further support fibrogenesis. However, the contribution of resident mononuclear phagocytes to physiological extracellular matrix turnover implies also their fibrolytic effects in the late stage of tissue scaring. Fibrolytic macrophages break down fibrous tissue, but their phenotypic characteristics remain to be described in more detail. Together, macrophages contribute to tissue fibrosis because the changing tissue environments prime them to assist and orchestrate all phases of tissue injury and repair. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Maciej Lech
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians Universität München, Germany.
| | | |
Collapse
|
47
|
Salame M, Padulla GA, Muradás RR, Machado G, Braun SK, Santos KRD, Mussio AV, Konopka CL. Nefropatia isquêmica. J Vasc Bras 2012. [DOI: 10.1590/s1677-54492012000400010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A doença renal isquêmica ou nefropatia isquêmica relacionada à doença renovascular pode evoluir de forma rápida e progressiva para a insuficiência renal crônica. É fundamental a identificação e o tratamento precoces desta condição clínica, prevenindo a ocorrência de doença renal em estágio terminal, com consequente necessidade de terapia de substituição renal. Há uma década, o controle da hipertensão renovascular era o objetivo primário no manejo de pacientes com doença renovascular. Atualmente, a meta está dirigida principalmente para a estabilização e a melhora da função renal, além do controle dos níveis pressóricos.
Collapse
|
48
|
Acute kidney injury: a conspiracy of Toll-like receptor 4 on endothelia, leukocytes, and tubules. Pediatr Nephrol 2012; 27:1847-54. [PMID: 22033798 PMCID: PMC3523189 DOI: 10.1007/s00467-011-2029-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023]
Abstract
Ischemic acute kidney injury (AKI) contributes to considerable morbidity and mortality in hospitalized patients and can contribute to rejection during kidney transplantation. Maladaptive immune responses can exacerbate injury, and targeting these responses holds promise as therapy for AKI. In the last decade, a number of molecules and receptors were identified in the innate immune response to ischemia-reperfusion injury. This review primarily focuses on one pathway that leads to maladaptive inflammation: toll-like receptor 4 (TLR4) and one of its ligands, high mobility group box protein 1 (HMGB1). The temporal-spatial roles and potential therapeutics targeting this particular receptor-ligand interaction are also explored.
Collapse
|
49
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
50
|
Sabbahy ME, Vaidya VS. Ischemic kidney injury and mechanisms of tissue repair. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:606-18. [PMID: 21197658 PMCID: PMC3087860 DOI: 10.1002/wsbm.133] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute kidney injury (AKI) may result from ischemia or by the use of nephrotoxic agents. The incidence of AKI is variable, depends on comorbidities, and ranges from 5 to 35% in all hospitalized patients. The mechanisms of kidney injury exist within a large network of signaling pathways driven by interplay of inflammatory cytokines/chemokines, reactive oxygen species (ROS), and apoptotic factors. The effects and progression of injury overlap extensively with the remarkable ability of the kidney to repair itself both by intrinsic and extrinsic mechanisms that involve specific cell receptors/ligands as well as possible paracrine influences. The fact that kidney injury is usually part of a generalized comorbid condition makes it all the more challenging in terms of assessment of severity. In this review, we attempt to analyze the mechanisms of ischemic injury and repair in acute and chronic kidney disease from the perspectives of both preclinical and human studies.
Collapse
Affiliation(s)
- Marwa El Sabbahy
- Laboratory of Kidney Toxicology and Regeneration, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| | - Vishal S. Vaidya
- Laboratory of Kidney Toxicology and Regeneration, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA, USA
| |
Collapse
|