1
|
Prat-Duran J, De Araujo IBBA, Juste N, Pinilla E, Rios FJ, Montezano AC, Touyz RM, Simonsen U, Nørregaard R, Buus NH. Pharmacological modulation of transglutaminase 2 in the unilateral ureteral obstruction mouse model. Eur J Pharmacol 2024; 984:177037. [PMID: 39369875 DOI: 10.1016/j.ejphar.2024.177037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation. METHODS We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements. RESULTS Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers. CONCLUSION Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.
Collapse
Affiliation(s)
| | | | - Nina Juste
- Department of Biomedicine, Health, Aarhus University, Denmark
| | | | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ulf Simonsen
- Department of Biomedicine, Health, Aarhus University, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Henrik Buus
- Department of Biomedicine, Health, Aarhus University, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Alabi BA, Nku-Ekpang OA, Lawal SK, Iwalewa EO, Omobowale T, Ajike R, Lawal RA. Mitigative role of cysteamine against unilateral renal reperfusion injury in Wistar rats. Front Pharmacol 2024; 15:1456903. [PMID: 39372204 PMCID: PMC11450295 DOI: 10.3389/fphar.2024.1456903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Background Ischemia-reperfusion injury (IRI) is unavoidable during kidney transplant and it is responsible for delayed or non-function after kidney transplantation. Cysteamine is the standard drug in the management of nephropathic cystinosis and its extra-renal complications. Thus, we designed this study to investigate its potential against renal reperfusion injury. Results Significant elevation of H2O2, MDA, and nitrite and reduced GPx, GSH, and protein thiol in the Ischemia-reperfusion injury rats was reversed by cysteamine (50 and 100 mg/kg). Serum MPO, TNF-α, IL-1β, creatinine, and AOPP were significantly elevated in IRI while rats treated with cysteamine revealed a significant decrease (p < 0.05) in the activities of these pro-inflammatory and renal injury markers. Conclusion Based on its activity against inflammation, apoptosis, and free radical-induced stress, cysteamine has great potential to be used as a kidney transplant pre-operative drug to prevent renal reperfusion injury.
Collapse
Affiliation(s)
- Babatunde Adebola Alabi
- Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
- Department of Pharmacy, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | - Okot-Asi Nku-Ekpang
- Department of Physiology, University of Calabar, Calabar, Cross River, Nigeria
| | | | | | - Temidayo Omobowale
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Richard Ajike
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo, Nigeria
| | | |
Collapse
|
3
|
Li SS, Liu QJ, Bao JX, Lu MT, Deng BQ, Li WW, Cao CC. Counteracting TGM2 by a Fibroin peptide ameliorated Adriamycin-induced nephropathy via regulation of lipid metabolism through PANX1-PPAR α/PANK1 pathway. Transl Res 2024; 271:26-39. [PMID: 38734063 DOI: 10.1016/j.trsl.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to β-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Qiao-Juan Liu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Xin Bao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Meng-Ting Lu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Bing-Quan Deng
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Chun Cao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Rossi MN, Matteo V, Diomedi-Camassei F, De Leo E, Devuyst O, Lamkanfi M, Caiello I, Loricchio E, Bellomo F, Taranta A, Emma F, De Benedetti F, Prencipe G. Nlrp2 deletion ameliorates kidney damage in a mouse model of cystinosis. Front Immunol 2024; 15:1373224. [PMID: 38633264 PMCID: PMC11021658 DOI: 10.3389/fimmu.2024.1373224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.
Collapse
Affiliation(s)
- Marianna Nicoletta Rossi
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Valentina Matteo
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesca Diomedi-Camassei
- Department of Laboratories, Pathology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Ester De Leo
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Ivan Caiello
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Elena Loricchio
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesco Bellomo
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Anna Taranta
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Fabrizio De Benedetti
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Roma, Italy
| |
Collapse
|
5
|
Dai B, Su Q, Liu X, Mi X, Dou L, Zhou D, Su Y, Shen T, Zhang Y, Xu W, Tan X, Wang D. 2, 2-dimethylthiazolidine hydrochloride protects against experimental contrast-induced acute kidney injury via inhibition of tubular ferroptosis. Biochem Biophys Res Commun 2023; 679:15-22. [PMID: 37659274 DOI: 10.1016/j.bbrc.2023.08.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) has become the third leading cause of AKI acquired in hospital, lacking of effective interventions. In the study, we identified the renal beneficial role of 2, 2-dimethylthiazolidine hydrochloride (DMTD), a safer compound which is readily hydrolyzed to cysteamine, in the rodent model of CI-AKI. Our data showed that administration of DMTD attenuated the impaired renal function and tubular injury induced by the contrast agent. Levels of MDA, 4-hydroxynonenal, ferrous iron and morphological signs showed that contrast agent induced ferroptosis, which could be inhibited in the DMTD group. In vitro, DMTD suppressed ferroptosis induced by ioversol in the cultured tubular cells. Treatment of DMTD upregulated glutathione (GSH) and glutathione peroxidase 4 (GPX4). Moreover, we found that DMTD promoted the ubiquitin-mediated proteasomal degradation of Keap1, and thus increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Mechanistically, increase of the ubiquitylation degradation of Keap1 mediates the upregulated effect of DMTD on Nrf2. Consequently, activated Nrf2/Slc7a11 results in the increase of GSH and GPX4, and therefore leads to the inhibition of ferroptosis. Herein, we imply DMTD as a potential therapeutic agent for the treatment of CI-AKI.
Collapse
Affiliation(s)
- Bo Dai
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Qiuyue Su
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Xuan Liu
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Xue Mi
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Lin Dou
- Departments of Intensive Care Unit, Tianjin First Central Hospital, Tianjin, 300072, China
| | - Donghui Zhou
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Yu Su
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Tianyu Shen
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Yuying Zhang
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Wenqing Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300072, China
| | - Xiaoyue Tan
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China
| | - Dekun Wang
- Department of Pathology, Medical School of Nankai University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Fraser-Pitt D, Mercer DK, Francis ML, Toledo-Aparicio D, Smith DW, O'Neil DA. Cysteamine-mediated blockade of the glycine cleavage system modulates epithelial cell inflammatory and innate immune responses to viral infection. Biochem Biophys Res Commun 2023; 677:168-181. [PMID: 37597441 DOI: 10.1016/j.bbrc.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transient blockade of glycine decarboxylase (GLDC) can restrict de novo pyrimidine synthesis, which is a well-described strategy for enhancing the host interferon response to viral infection and a target pathway for some licenced anti-inflammatory therapies. The aminothiol, cysteamine, is produced endogenously during the metabolism of coenzyme A, and is currently being investigated in a clinical trial as an intervention in community acquired pneumonia resulting from viral (influenza and SARS-CoV-2) and bacterial respiratory infection. Cysteamine is known to inhibit both bacterial and the eukaryotic host glycine cleavage systems via competitive inhibition of GLDC at concentrations, lower than those required for direct antimicrobial or antiviral activity. Here, we demonstrate for the first time that therapeutically achievable concentrations of cysteamine can inhibit glycine utilisation by epithelial cells and improve cell-mediated responses to infection with respiratory viruses, including human coronavirus 229E and Influenza A. Cysteamine reduces interleukin-6 (IL-6) and increases the interferon-λ (IFN-λ) response to viral challenge and in response to liposomal polyinosinic:polycytidylic acid (poly I:C) simulant of RNA viral infection.
Collapse
Affiliation(s)
- Douglas Fraser-Pitt
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom.
| | - Derry K Mercer
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom; Bioaster, LYON (headquarters) 40, Avenue Tony Garnier, 69007, Lyon, France
| | - Marie-Louise Francis
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - David Toledo-Aparicio
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Daniel W Smith
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| | - Deborah A O'Neil
- NovaBiotics Ltd, Silverburn Crescent, Bridge of Don, Aberdeen, AB23 8EW, United Kingdom
| |
Collapse
|
7
|
Lee CM. A Review on the Antimutagenic and Anticancer Effects of Cysteamine. Adv Pharmacol Pharm Sci 2023; 2023:2419444. [PMID: 37731680 PMCID: PMC10508993 DOI: 10.1155/2023/2419444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. First-line treatments usually include surgery, radiotherapy, and/or systemic therapy. These methods can be associated with serious adverse events and can be toxic to healthy cells. Despite the new advances in cancer therapies, there is still a continuous need for safe and effective therapeutic agents. Cysteamine is an aminothiol endogenously synthetized by human cells during the degradation of coenzyme-A. It has been safely used in humans for the treatment of several pathologies including cystinosis and neurodegenerative diseases. Cysteamine has been shown to be a potent antimutagenic, anticarcinogenic, and antimelanoma in various in vitro and in vivo studies, but a review on these aspects of cysteamine's use in medicine is lacking in the current literature. The efficacy of cysteamine has been shown in vitro and in vivo for the treatment of different types of cancer, such as gastrointestinal cancer, pancreatic cancer, sarcomas, hepatocellular carcinoma, and melanoma, leading to the significant reduction of lesions and/or the increase of survival time. Although the mechanisms of action are not fully understood, possible explanations are (i) free radical scavenging, (ii) alteration of the tumor cell proliferation by affecting nucleic acid and protein synthesis or inhibition of DNA synthesis, and (iii) hormone regulation. In conclusion, regarding the high safety profile of cysteamine and the current literature data presented in this article, cysteamine might be considered as an interesting molecule for the prevention and the treatment of cancer. Further clinical studies should be performed to support these data in humans.
Collapse
Affiliation(s)
- Chun-Man Lee
- Frimley Health NHS Foundation Trust, Portsmouth Road, Frimley, Camberley GU16 7UJ, UK
| |
Collapse
|
8
|
Xie X, Lou H, Shi Y, Gan G, Deng H, Ma X, Meng M, Gao X. A network pharmacological-based study of the mechanism of Liuwei Dihuang pill in the treatment of chronic kidney disease. Medicine (Baltimore) 2023; 102:e33727. [PMID: 37171332 PMCID: PMC10174353 DOI: 10.1097/md.0000000000033727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease that poses a huge economic burden to society. Liuwei Dihuanng pill is an effective treatment for chronic kidney disease, but its treatment mechanism is unclear. The rapid development of network pharmacology has provided new strategies for studying Chinese medicine. METHOD The traditional Chinese medicine systems pharmacology database and analysis platform was used to obtain the bioactive components and targets of Liuwei Dihuanng pill. The sources for the CKD-related targets were then obtained from the Genecards, OMIM, TTD, and DisGeNET databases. R was used to identify the intersecting genes for Liuwei Dihuang pill and CKD-related targets. Analysis of protein-protein interactions (PPI) was performed using STRING, and PPI networks and drug-component-target networks were constructed using Cytoscape software. Kyoto encyclopedia of genes and genomes pathway and gene ontology enrichment analyses were performed using R. Finally, molecular docking was performed to determine the binding activity between bioactive components and the targets. RESULT After screening and data de-duplication of 74 active components, 209 drug targets, and 14,794 disease targets, a total of 204 drug-disease targets were acquired. Subsequently, a drug-component-target network and PPI network were established. The primary components of Liuwei Dihuang pill included quercetin, stigmasterol, kaempferol, beta-sitosterol, tetrahydroalstonine, kadsurenone, hederagenin, hancinone C, diosgenin, and sitosterol. In addition, JUN, AKT1, TP53, RELA, MAPK1, FOS, TNF, IL6, ESR1, and RXRA were identified as the main targets. Gene ontology function enrichment analysis revealed that these targets were involved in reactive oxygen species metabolic processes, responses to metal ions and to chemical stimuli, G protein-coupled amine receptor activity, and nuclear factor receptor activity. Kyoto encyclopedia of genes and genomes enrichment analysis showed that these targets were involved in the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. Molecular docking results indicated good binding activity between the core targets and core components. CONCLUSION The potential mechanism of Liuwei Dihuanng pill in the treatment of CKD was preliminarily discussed in this study, providing a theoretical basis and evidence for further experimental research.
Collapse
Affiliation(s)
- Xi Xie
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongjun Lou
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ye Shi
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Guang Gan
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hanqing Deng
- The First Clinical Medical College of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xinwei Ma
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Mingfang Meng
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xi Gao
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Aihara S, Torisu K, Hirashima Y, Kitazono T, Nakano T. Acrolein produced during acute kidney injury promotes tubular cell death. Biochem Biophys Res Commun 2023; 666:137-145. [PMID: 37187091 DOI: 10.1016/j.bbrc.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Acute kidney injury is an important global health concern as it is associated with high morbidity and mortality. Polyamines, essential for cell growth and proliferation, are known to inhibit cardiovascular disease. However, under conditions of cellular damage, toxic acrolein is produced from polyamines by the enzyme spermine oxidase (SMOX). We used a mouse renal ischemia-reperfusion model and human proximal tubule cells (HK-2) to investigate whether acrolein exacerbates acute kidney injury by renal tubular cell death. Acrolein visualized by acroleinRED was increased in ischemia-reperfusion kidneys, particularly in tubular cells. When HK-2 cells were cultured under 1% oxygen for 24 h, then switched to 21% oxygen for 24 h (hypoxia-reoxygenation), acrolein accumulated and SMOX mRNA and protein levels were increased. Acrolein induced cell death and fibrosis-related TGFB1 mRNA in HK-2 cells. Administration of the acrolein scavenger cysteamine suppressed the acrolein-induced upregulation of TGFB1 mRNA. Cysteamine also inhibited a decrease in the mitochondrial membrane potential observed by MitoTrackerCMXRos, and cell death induced by hypoxia-reoxygenation. The siRNA-mediated knockdown of SMOX also suppressed hypoxia-reoxygenation-induced acrolein accumulation and cell death. Our study suggests that acrolein exacerbates acute kidney injury by promoting tubular cell death during ischemia-reperfusion injury. Treatment to control the accumulation of acrolein might be an effective therapeutic option for renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Integrated Therapy for Chronic Kidney Disease, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yutaro Hirashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| |
Collapse
|
10
|
Veys K, Zadora W, Hohenfellner K, Bockenhauer D, Janssen MCH, Niaudet P, Servais A, Topaloglu R, Besouw M, Novo R, Haffner D, Kanzelmeyer N, Pape L, Wühl E, Harms E, Awan A, Sikora P, Ariceta G, van den Heuvel B, Levtchenko E. Outcome of infantile nephropathic cystinosis depends on early intervention, not genotype: A multicenter sibling cohort study. J Inherit Metab Dis 2023; 46:43-54. [PMID: 36117148 DOI: 10.1002/jimd.12562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Infantile nephropathic cystinosis (INC) is an inheritable lysosomal storage disorder characterized by lysosomal cystine accumulation, progressive kidney disease, and multiple extrarenal complications (ERCs). Cysteamine postpones the onset of end-stage kidney disease (ESKD) and reduces the incidence of ERCs; however, cysteamine is generally initiated upon establishment of the renal Fanconi syndrome (FS) and partial loss of kidney function, whereas data on long-term effects of cysteamine administered from neonatal age are lacking. An international multicenter retrospective cohort study of siblings with INC was set up to investigate the outcome in relation to age at initiation of cysteamine versus CTNS genotype, with attention to patients treated with cysteamine from neonatal age. None of the siblings treated from neonatal age (n = 9; age 10 ± 6 years) had reached ESKD, while 22% of their index counterparts (n = 9; age 14 ± 5 years) had commenced renal replacement therapy. Siblings treated with cysteamine from the onset of symptoms at a younger age compared with their index counterparts, reached ESKD at a significant older age (13 ± 3 vs. 10 ± 3 years, p = 0.002). In contrast, no significant difference in ERCs was observed between sibling and index patients, independently from the age at initiation of cysteamine. The CTNS genotype had no impact on the overall outcome in this cohort. In INC, presymptomatic treatment with cysteamine results in a better renal outcome in comparison to treatment initiated from the onset of symptoms. This justifies including cystinosis into newborn screening programs. SYNOPSIS: In infantile nephropathic cystinosis, presymptomatic treatment with cysteamine improves the renal outcome which justifies the inclusion of cystinosis into newborn screening programs.
Collapse
Affiliation(s)
- Koenraad Veys
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Ward Zadora
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Detlef Bockenhauer
- Department of Pediatric Nephrology, Great Ormond Street Hospital for Sick Children NHS Foundation Trust (GOSH) and Department of Renal Medicine, University College London, London, UK
| | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patrick Niaudet
- Department of Pediatric Nephrology, Hôpital Necker-Enfants Malades, Paris, France
| | - Aude Servais
- Department of Adult Nephrology and Transplantation, Hôpital Necker, Paris, France
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Martine Besouw
- Department of Pediatric Nephrology, University of Groningen, Groningen, The Netherlands
| | - Robert Novo
- Pediatric Nephrology, Hôpital Jeanne de Flandre, University Hospital Lille, Lille, France
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Lars Pape
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Erik Harms
- Children's University Hospital Münster, Münster, Germany
| | - Atif Awan
- Paediatric Nephrology and Transplantation, Temple Street Children's University Hospital, Dublin, Ireland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Gema Ariceta
- Department of Pediatric Nephrology, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Bert van den Heuvel
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development & Regeneration, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Chen C, Zheng Y, Li X, Zhang L, Liu K, Sun S, Zhong Z, Hu H, Liu F, Xiong G, Liao X, Lu H, Bi Y, Chen J, Cao Z. Cysteamine affects skeletal development and impairs motor behavior in zebrafish. Front Pharmacol 2022; 13:966710. [PMID: 36059963 PMCID: PMC9437517 DOI: 10.3389/fphar.2022.966710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Cysteamine is a kind of feed additive commonly used in agricultural production. It is also the only targeted agent for the treatment of cystinosis, and there are some side effects in clinical applications. However, the potential skeletal toxicity remains to be further elucidated. In this study, a zebrafish model was for the first time utilized to synthetically appraise the skeletal developmental defects induced by cysteamine. The embryos were treated with 0.35, 0.70, and 1.05 mM cysteamine from 6 h post fertilization (hpf) to 72 hpf. Substantial skeletal alterations were manifested as shortened body length, chondropenia, and abnormal somite development. The results of spontaneous tail coiling at 24 hpf and locomotion at 120 hpf revealed that cysteamine decreased behavioral abilities. Moreover, the level of oxidative stress in the skeleton ascended after cysteamine exposure. Transcriptional examination showed that cysteamine upregulated the expression of osteoclast-related genes but did not affect osteoblast-related genes expression. Additionally, cysteamine exposure caused the downregulation of the Notch signaling and activating of Notch signaling partially attenuated skeletal defects. Collectively, our study suggests that cysteamine leads to skeletal developmental defects and reduces locomotion activity. This hazard may be associated with cysteamine-mediated inhibition of the Notch signaling and disorganization of notochordal cells due to oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Chao Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yongliang Zheng
- Department of Hematology, Affiliated Hospital of Jinggangshan University, Ji’an, JX, China
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi’an, China
| | - Xue Li
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kangyu Liu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sujie Sun
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zilin Zhong
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongmei Hu
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Jianjun Chen
- Birth Defects Group, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Pediatrics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji’an, JX, China
- *Correspondence: Zigang Cao, ; Jianjun Chen, ; Yanlong Bi,
| |
Collapse
|
12
|
Khanna K, Raymond W, Jin J, Charbit AR, Gitlin I, Tang M, Werts AD, Barrett EG, Cox JM, Birch SM, Martinelli R, Sperber HS, Franz S, Duff T, Hoffmann M, Healy AM, Oscarson S, Pöhlmann S, Pillai SK, Simmons G, Fahy JV. Exploring antiviral and anti-inflammatory effects of thiol drugs in COVID-19. Am J Physiol Lung Cell Mol Physiol 2022; 323:L372-L389. [PMID: 35762590 PMCID: PMC9448286 DOI: 10.1152/ajplung.00136.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group (“thiol drugs”) may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.
Collapse
Affiliation(s)
- Kritika Khanna
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Wilfred Raymond
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Jing Jin
- Vitalant Research Institute, San Francisco, California, United States
| | - Annabelle R Charbit
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Irina Gitlin
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy and Sleep and the Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Adam D Werts
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Edward G Barrett
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Jason M Cox
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Sharla M Birch
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Rachel Martinelli
- Vitalant Research Institute, San Francisco, California, United States
| | - Hannah S Sperber
- Vitalant Research Institute, San Francisco, California, United States
| | - Sergej Franz
- Vitalant Research Institute, San Francisco, California, United States
| | - Thomas Duff
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Ireland.,SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, California, United States.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, United States.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States
| | - John V Fahy
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States.,Division of Pulmonary, Critical Care, Allergy and Sleep and the Department of Medicine, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
13
|
Moon JJ, Choi Y, Kim KH, Seo A, Kwon S, Kim YC, Kim DK, Kim YS, Yang SH. Inhibiting Transglutaminase 2 Mediates Kidney Fibrosis via Anti-Apoptosis. Biomedicines 2022; 10:biomedicines10061345. [PMID: 35740367 PMCID: PMC9220123 DOI: 10.3390/biomedicines10061345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Transglutaminase 2 (TG2) is a calcium-dependent transamidating acyltransferase enzyme of the protein-glutamine γ-glutamyltransferase family implicated in kidney injury. In this study, we identified associations between TG2 and chronic kidney disease (CKD) identified by visualizing TG2 in kidney biopsy samples derived from CKD patients using immunohistochemistry and measuring the plasma TG2 concentrations. Our study revealed a connection between TG2 and the pathological markers of kidney disease. We showed high plasma TG2 levels in samples from patients with advanced CKD. In addition, we observed an increase in TG2 expression in tissues concomitant with advanced CKD in human samples. Moreover, we investigated the effect of TG2 inhibition on kidney injury using cystamine, a well-known competitive inhibitor of TG2. TG2 inhibition reduced apoptosis and accumulation of extracellular molecules (ECM) such as fibronectin and pro-inflammatory cytokine IL-8. Collectively, the increased expression of TG2 that was observed in advanced CKD, hence inhibiting TG2 activity, could protect kidney cells from ECM molecule accumulation, apoptosis, and inflammatory responses, thereby preventing kidney fibrosis.
Collapse
Affiliation(s)
- Jong-Joo Moon
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Yejin Choi
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Kyu-Hyeon Kim
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Areum Seo
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
| | - Yong-Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
| | - Dong-Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Yon-Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Seung-Hee Yang
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-1724
| |
Collapse
|
14
|
Ram C, Gairola S, Syed AM, Kulhari U, Kundu S, Mugale MN, Murty US, Sahu BD. Biochanin A alleviates unilateral ureteral obstruction-induced renal interstitial fibrosis and inflammation by inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis in mice. Life Sci 2022; 298:120527. [PMID: 35378138 DOI: 10.1016/j.lfs.2022.120527] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
AIMS Tubulointerstitial fibrosis, a frequent complication of chronic kidney disease (CKD) is a major public health issue. Biochanin A (BCA), an isoflavone, has numerous pharmacological activities. However, its effect on renal fibrosis and underlying molecular mechanism has not yet been clarified. This study explored the effect of BCA on renal tubulointerstitial fibrosis and inflammation in mice. MAIN METHODS The mouse model of unilateral ureteral obstruction (UUO) in vivo and transforming growth factor (TGF)-β1 activated renal fibroblast (NRK 49F) cells in vitro model were used to assess the antifibrotic effect of BCA. Biochemical analysis, histopathology, western blotting, and immunofluorescent staining methods were performed to elucidate the mechanism of BCA. KEY FINDINGS In vitro, BCA suppressed the expression of fibrogenic proteins in TGF-β1-activated renal fibroblasts. The treatment with BCA displayed less tubular injury, prevented the aberrant accumulation of extracellular matrix (ECM) components, and inhibited the TGF-β1/Smad2/3 signaling axis in the kidneys. Furthermore, BCA impeded the phosphorylation of NF-kB(p65) and blunted the expression of inflammatory genes in the obstructed kidneys. The UUO induced expressions of nod-like receptor protein 3 (NLRP3), active caspase 1, interleukin(IL)-18, and IL-1β proteins were decreased in the BCA treated groups. We also found the increased expression of redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) proteins in BCA treated groups compared to the UUO control. SIGNIFICANCE These findings indicate that BCA has a therapeutic benefit against renal fibrosis, and the ameliorative effect is mediated via inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis.
Collapse
Affiliation(s)
- Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow 226 031, India
| | | | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India.
| |
Collapse
|
15
|
Elmonem MA, Veys KRP, Prencipe G. Nephropathic Cystinosis: Pathogenic Roles of Inflammation and Potential for New Therapies. Cells 2022; 11:cells11020190. [PMID: 35053306 PMCID: PMC8773784 DOI: 10.3390/cells11020190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023] Open
Abstract
The activation of several inflammatory pathways has recently been documented in patients and different cellular and animal models of nephropathic cystinosis. Upregulated inflammatory signals interact with many pathogenic aspects of the disease, such as enhanced oxidative stress, abnormal autophagy, inflammatory cell recruitment, enhanced cell death, and tissue fibrosis. Cysteamine, the only approved specific therapy for cystinosis, ameliorates many but not all pathogenic aspects of the disease. In the current review, we summarize the inflammatory mechanisms involved in cystinosis and their potential impact on the disease pathogenesis and progression. We further elaborate on the crosstalk between inflammation, autophagy, and apoptosis, and discuss the potential of experimental drugs for suppressing the inflammatory signals in cystinosis.
Collapse
Affiliation(s)
- Mohamed A. Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo 11628, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
- Correspondence:
| | - Koenraad R. P. Veys
- Laboratory of Pediatric Nephrology, Department of Development & Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Pediatrics, AZ Delta Campus, 8820 Torhout, Belgium
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| |
Collapse
|
16
|
Atallah C, Viennet C, Robin S, Ibazizen S, Greige-Gerges H, Charcosset C. Effect of cysteamine hydrochloride-loaded liposomes on skin depigmenting and penetration. Eur J Pharm Sci 2022; 168:106082. [PMID: 34822973 DOI: 10.1016/j.ejps.2021.106082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Skin hyperpigmentation is caused by an excessive production of melanin. Cysteamine, an aminothiol compound physiologically synthetized in human body cells, is known as depigmenting agent. The aim of this study was to evaluate the depigmenting activity and skin penetration of liposome formulations encapsulating cysteamine hydrochloride. First, cysteamine hydrochloride-loaded liposomes were prepared and characterized for their size, polydispersity index, zeta potential and the encapsulation efficiency of the active molecule. The stability of cysteamine hydrochloride in the prepared liposome formulations in suspension and freeze-dried forms was then assessed. The in vitro cytotoxicity of cysteamine and cysteamine-loaded liposome suspensions (either original or freeze-dried) was evaluated in B16 murine melanoma cells. The measurement of melanin and tyrosinase activities was assessed after cells treatment with free and encapsulated cysteamine. The antioxidant activity of the free and encapsulated cysteamine was evaluated by the measurement of ROS formation in treated cells. The ex vivo human skin penetration study was also performed using Franz diffusion cell. The stability of cysteamine hydrochloride was improved after encapsulation in liposomal suspension. In addition, for the liposome re-suspended after freeze-drying, a significant increase of vesicle stability was observed. The free and the encapsulated cysteamine in suspension (either original or freeze-dried) did not show any cytotoxic effect, inhibited the melanin synthesis as well as the tyrosinase activity. An antioxidant activity was observed for the free and the encapsulated cysteamine hydrochloride. The encapsulation enhanced the skin penetration of cysteamine hydrochloride. The penetration of this molecule was better for the re-suspended freeze-dried form than the original liposomal suspension where the drug was found retained in the epidermis layer of the skin.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon; Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutiques (LAGEPP), Université Claude Bernard Lyon 1, France
| | - Celine Viennet
- UMR 1098 RIGHT INSERM EFS BFC, DImaCell Imaging Ressource Center, University of Bourgogne Franche-Comté, Besançon, 25000, France
| | - Sophie Robin
- Bioexigence SAS, Espace Lafayette, Besançon, France
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon
| | - Catherine Charcosset
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutiques (LAGEPP), Université Claude Bernard Lyon 1, France.
| |
Collapse
|
17
|
Vaisbich MH, Caires Ferreira J, Price H, Young KD, Sile S, Checani G, Langman CB. Cysteamine bitartrate delayed-release capsules control leukocyte cystine levels and promote statural growth and kidney health in an open-label study of treatment-naïve patients <6 years of age with nephropathic cystinosis. JIMD Rep 2022; 63:66-79. [PMID: 35028272 PMCID: PMC8743345 DOI: 10.1002/jmd2.12260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease that is characterized by accumulation of cysteine and formation of crystals within cells of different organs and tissues causing systemic manifestations in childhood that include poor linear growth, ocular involvement, hypothyroidism, and progressive kidney disease. This study was a long-term, prospective open-label evaluation of twice-daily delayed release (DR) cysteamine capsules in cystinosis patients <6 years of age who were naïve to any form of cysteamine treatment. Fifteen treatment-naïve patients <6 years old (mean age 2.2 ± 1.0 years, 53% male, 73% White) were enrolled and treated with DR-cysteamine capsules for up to 18 months. Patients had clinically meaningful decreases in WBC cysteine concentration during treatment (3.2 ± 3.0 nmol ½ cystine/mg protein at Day 1 to 0.8 ± 0.8 nmol ½ cystine/mg protein at study exit), and anthropometric data improvements were consistently observed in height, weight and body surface area. Additionally, estimated glomerular filtration rate increased from 55.93 ± 22.43 ml/min/1.73 m2 at baseline to 63.79 ± 21.44 ml/min/1.73 m2 at study exit. Pharmacokinetic/Pharmacodynamic results support the use of the same starting, escalation, and maintenance doses according to body surface for children aged <6 years that are currently recommended in adults and older children. All patients experienced ≥1 adverse event(s) with vomiting (80%) and upper respiratory tract infection (53%) most frequently reported. Based on our study, patients <6 years of age with nephropathic cystinosis without prior treatment can safely and effectively initiate treatment with DR-cysteamine, a delayed-release form of cysteamine bitartrate that can be given every 12 h.
Collapse
Affiliation(s)
| | - Juliana Caires Ferreira
- Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP)São PauloBrazil
| | - Heather Price
- Ann & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Kyleen D. Young
- Ann & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Saba Sile
- Horizon Therapeutics plcDeerfieldIllinoisUSA
| | | | - Craig B. Langman
- Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
18
|
Okamura DM, Brewer CM, Wakenight P, Bahrami N, Bernardi K, Tran A, Olson J, Shi X, Yeh SY, Piliponsky A, Collins SJ, Nguyen ED, Timms AE, MacDonald JW, Bammler TK, Nelson BR, Millen KJ, Beier DR, Majesky MW. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 2021; 24:103269. [PMID: 34849462 PMCID: PMC8609232 DOI: 10.1016/j.isci.2021.103269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrosis-driven solid organ failure is an enormous burden on global health. Spiny mice (Acomys) are terrestrial mammals that can regenerate severe skin wounds without scars to avoid predation. Whether spiny mice also regenerate internal organ injuries is unknown. Here, we show that despite equivalent acute obstructive or ischemic kidney injury, spiny mice fully regenerate nephron structure and organ function without fibrosis, whereas C57Bl/6 or CD1 mice progress to complete organ failure with extensive renal fibrosis. Two mechanisms for vertebrate regeneration have been proposed that emphasize either extrinsic (pro-regenerative macrophages) or intrinsic (surviving cells of the organ itself) controls. Comparative transcriptome analysis revealed that the Acomys genome appears poised at the time of injury to initiate regeneration by surviving kidney cells, whereas macrophage accumulation was not detected until about day 7. Thus, we provide evidence for rapid activation of a gene expression signature for regenerative wound healing in the spiny mouse kidney.
Collapse
Affiliation(s)
- Daryl M. Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Chris M. Brewer
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Paul Wakenight
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Nadia Bahrami
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Kristina Bernardi
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Amy Tran
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Jill Olson
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Xiaogang Shi
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Szu-Ying Yeh
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Adrian Piliponsky
- Center for Immunity & Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Sarah J. Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Elizabeth D. Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Andrew E. Timms
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James W. MacDonald
- Department of Environmental & Occupational Health, University of Washington, Seattle, WA 98195, USA
| | - Theo K. Bammler
- Department of Environmental & Occupational Health, University of Washington, Seattle, WA 98195, USA
| | - Branden R. Nelson
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Kathleen J. Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrated Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - David R. Beier
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - Mark W. Majesky
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Khanna K, Raymond W, Jin J, Charbit AR, Gitlin I, Tang M, Werts AD, Barrett EG, Cox JM, Birch SM, Martinelli R, Sperber HS, Franz S, Pillai S, Healy AM, Duff T, Oscarson S, Hoffmann M, Pöhlmann S, Simmons G, Fahy JV. Thiol drugs decrease SARS-CoV-2 lung injury in vivo and disrupt SARS-CoV-2 spike complex binding to ACE2 in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33330868 PMCID: PMC7743076 DOI: 10.1101/2020.12.08.415505] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group (“thiol drugs”), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells. Pseudoviruses carrying variant spikes were less efficiently inhibited as compared to pseudotypes bearing an ancestral spike, but the most potent drugs still inhibited the Delta variant in the low millimolar range. IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. In hamsters infected with SARS-CoV-2, intraperitoneal (IP) cysteamine decreased neutrophilic inflammation and alveolar hemorrhage in the lungs but did not decrease viral infection, most likely because IP delivery could not achieve millimolar concentrations in the airways. These data show that thiol drugs inhibit SARS-CoV-2 infection in vitro and reduce SARS-CoV-2-related lung injury in vivo and provide strong rationale for trials of systemically delivered thiol drugs as COVID-19 treatments. We propose that antiviral effects of thiol drugs in vivo will require delivery directly to the airways to ensure millimolar drug concentrations and that thiol drugs with lower thiol pKa values are most likely to be effective. The effect of cysteamine to decrease SARS-CoV-2 pneumonia in vivo and of multiple thiol drugs to inhibit SARS-CoV-2 infection in vitro provides rationale for clinical trials of thiol drugs in COVID-19.
Collapse
|
20
|
Afolabi O, Alabi B, Omobowale T, Oluranti O, Iwalewa O. Cysteamine mitigates torsion/detorsion-induced reperfusion injury via inhibition of apoptosis, oxidative stress and inflammatory responses in experimental rat model. Andrologia 2021; 54:e14243. [PMID: 34498746 DOI: 10.1111/and.14243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress, inflammation and apoptosis are major pathways in pathophysiology of testicular torsion/detorsion (TTDT) reperfusion injury. This study evaluated the antioxidant, anti-inflammatory and anti-apoptotic role of cysteamine in TTDT-induced injury. Male Wistar rats (n = 32) were grouped into four (n = 8): sham, ischaemia-reperfusion injury (IRI), cysteamine (100 mg/kg and 200 mg/kg) for in vivo study. Samples were taken for biomolecular and histological evaluation 48 hr after detorsion. Tissue SOD, GPx, GSH, GST activity, total thiol, H2 O2 and MDA were assessed. Serum levels of NO, MPO, TNF-alpha and IL-6 and sperm motility, count and viability were assessed. Caspase-3 and bax were evaluated by immunohistochemistry. Significant difference was set as p < .05. Significant increase in H2 O2, MDA and nitrite but reduction in SOD, GPx, GSH, GST and total thiol in the testicular tissue of IRI rats was reversed by cysteamine. Serum MPO and TNF-α were significantly elevated in RI, while treated-RI rats showed decrease (p < .05) in tissue level of the inflammation markers. Reduced sperm motility in RI was significantly reversed by cysteamine. Increased tissue expression of bax and caspase-3 was reversed by cysteamine. Cysteamine protected the testis against reperfusion injury through anti-inflammatory, antioxidant effects and inhibition of apoptosis in rats.
Collapse
Affiliation(s)
- Oladele Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Babatunde Alabi
- Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | | | | | - Olugbenga Iwalewa
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Science, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
21
|
Huang S, Wu Z, Huang Z, Hao X, Zhang L, Hu C, Wei J, Deng J, Tan C. Maternal supply of cysteamine alleviates oxidative stress and enhances angiogenesis in porcine placenta. J Anim Sci Biotechnol 2021; 12:91. [PMID: 34372937 PMCID: PMC8353810 DOI: 10.1186/s40104-021-00609-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress in placenta is associated with the occurrence of adverse pregnancy outcomes in sow, but there are few satisfactory treatment strategies for these conditions. This study investigated the potential of cysteamine (CS) as an antioxidant protectant for regulating the reproductive performance, redox status, and placental angiogenesis of sows. METHODS The placental oxidative stress status and vascular density of piglets with different birth weights: < 1.0 kg (low birth weight, LBW) and 1.4-1.6 kg (normal birth weight, NBW) were evaluated, followed by allotting 84 sows to four treatments (n = 21) and feeding them with a basal diet supplemented with 0, 100, 300, or 500 mg/kg of CS from d 85 of gestation to d 21 of lactation, respectively. Placenta, serum, and colostrum samples of sows or piglets were collected, and the characteristics of sows and piglets were recorded. Furthermore, the in vivo results were validated using porcine vascular endothelial cells (PVECs). RESULTS Compared with the NBW placentae, the LBW placentae showed increased oxidative damage and were vulnerable to angiogenesis impairment. Particularly, H2O2-induced oxidative stress prompted intracellular reactive oxygen species generation and inhibited the tube formation and migration of PVECs as well as the expression of vascular endothelial growth factor-A (VEGF-A) in vitro. However, dietary CS supplementation can alleviate oxidative stress and improve the reproductive performance of sows. Specifically, compared with the control group, dietary 100 mg/kg CS could (1) decrease the stillbirth and invalid rates, and increase both the piglet birth weight in the low yield sows and the placental efficiency; (2) increase glutathione and reduce malondialdehyde in both the serum and the colostrum of sows; (3) increase the levels of total antioxidant capacity and glutathione in LBW placentae; (4) increase the vascular density, the mRNA level of VEGF-A, and the immune-staining intensity of platelet endothelial cell adhesion molecule-1 in the LBW placentae. Furthermore, the in vitro experiment indicated that CS pre-treatment could significantly reverse the NADPH oxidase 2-ROS-mediated inactivation of signal transducer and activator of transcription-3 (Stat3) signaling pathway induced by H2O2 inhibition of the proliferation, tube formation, and migration of PVECs. Meanwhile, inhibition of Stat3 significantly decreased the cell viability, tube formation and the VEGF-A protein level in CS pretreated with H2O2-cultured PVECs. CONCLUSIONS The results indicated that oxidative stress and impaired angiogenesis might contribute to the occurrence of LBW piglets during pregnancy, but CS supplementation at 100 mg/kg during late gestation and lactation of sows could alleviate oxidative stress and enhance angiogenesis in placenta, thereby increasing birth weight in low yield sows and reducing stillbirth rate. The in vitro data showed that the underlying mechanism for the positive effects of CS might be related to the activation of Stat3 in PVECs.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jianfu Wei
- Guangzhou DaBeiNong Agri-animal Huabandry Science and Technology Co., Ltd., Guangzhou, 510642, Guangdong, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
22
|
Wang S, Bai M, Xu K, Shao Y, Yang Z, Xiong X, Huang R, Li Y, Liu H. Effects of Coated Cysteamine on Oxidative Stress and Inflammation in Weaned Pigs. Animals (Basel) 2021; 11:ani11082217. [PMID: 34438677 PMCID: PMC8388385 DOI: 10.3390/ani11082217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to explore the effects of dietary coated cysteamine on oxidative stress and inflammation in diquat-induced weaning pigs. Twenty-four pigs were randomly assigned to three dietary groups with eight replicates: the control (fed base diet), diquat (fed base diet), and coated cysteamine + diquat groups (fed 80 mg/kg cysteamine). The experiment was conducted for 21 d, and consisted of a pre-starter period (14 d) and a starter period (7 d). Coated cysteamine treatment significantly increased (p < 0.05) the final weight and average daily gain (ADG) in pigs. The contents of alkaline phosphatase (ALP), immunoglobulin G (IgG), serine (Ser), and isoleucine (Ile) were elevated (p < 0.05) while the contents of albumin (ALB) and aspartic acid (Asp) were reduced (p < 0.05) in the serum after coated cysteamine supplementation. Coated cysteamine supplementation resulted in greater (p < 0.05) serum superoxide dismutase (SOD) activity, the expression of interleukin-10 (IL-10) mRNA in the colon, and the CuSOD mRNA expression in the jejunum (p < 0.05) and colon (p = 0.073). Coated cysteamine supplementation showed an increasing trend in villus height (p = 0.060), villus height/crypt depth (V/C) (p = 0.056), the expression levels of zonula occludens-1 (ZO-1) mRNA (p = 0.061), and Occludin mRNA (p = 0.074) in the jejunum. In summary, dietary supplementation with coated cysteamine improves the intestinal barrier function of the jejunum by increasing the immunoglobulin content and the relative expression of intestinal immune factor mRNA in pigs while alleviating oxidative stress and inflammatory reactions caused by diquat.
Collapse
Affiliation(s)
- Shanshan Wang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Miaomiao Bai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
| | - Yirui Shao
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
| | - Zhe Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
| | - Ruilin Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
| | - Yao Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.L.); (H.L.)
| | - Hongnan Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.W.); (M.B.); (K.X.); (Y.S.); (X.X.); (R.H.)
- Correspondence: (Y.L.); (H.L.)
| |
Collapse
|
23
|
Nishida K, Watanabe H, Murata R, Tokumaru K, Fujimura R, Oshiro S, Nagasaki T, Miyahisa M, Hiramoto Y, Nosaki H, Imafuku T, Maeda H, Fukagawa M, Maruyama T. Recombinant Long-Acting Thioredoxin Ameliorates AKI to CKD Transition via Modulating Renal Oxidative Stress and Inflammation. Int J Mol Sci 2021; 22:ijms22115600. [PMID: 34070521 PMCID: PMC8199127 DOI: 10.3390/ijms22115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara 259-1193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| |
Collapse
|
24
|
Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139:111386. [PMID: 34243594 DOI: 10.1016/j.biopha.2021.111386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological response in a broad range of prevalent chronic kidney diseases and ultimately leads to renal failure and death. Although RIF causes a high morbi-mortality worldwide, effective therapeutic drugs are urgently needed. Myofibroblasts are identified as the main effector during the process of RIF. Multiple types of cells, including fibroblasts, epithelial cells, endothelial cells, macrophages and pericytes, contribute to renal myofibroblasts origin, and lots of mediators, including signaling pathways (Transforming growth factor-β1, mammalian target of rapamycin and reactive oxygen species) and epigenetic modifications (Histone acetylation, microRNA and long non-coding RNA) are participated in renal myofibroblasts activation during renal fibrogenesis, suggesting that these mediators may be the promising targets for treating RIF. In addition, many small molecules show profound therapeutic effects on RIF by suppressing the origin and activation of renal myofibroblasts. Taken together, the review focuses on the mechanisms of the origin and activation of renal myofibroblasts in RIF and the small molecules against them improving RIF, which will provide a new insight for RIF therapy.
Collapse
|
25
|
Hassan NME, Shehatou GSG, Kenawy HI, Said E. Dasatinib mitigates renal fibrosis in a rat model of UUO via inhibition of Src/STAT-3/NF-κB signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103625. [PMID: 33617955 DOI: 10.1016/j.etap.2021.103625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This research aimed to investigate the reno-protective impact of the tyrosine kinase inhibitor dasatinib (DAS) against renal fibrosis induced by unilateral ureteral obstruction (UUO) in rats. DAS administration improved renal function and mitigated renal oxidative stress with paralleled reduction in the ligated kidney mass index, significant retraction in renal histopathological alterations and suppression of renal interstitial fibrosis. Nevertheless, DAS administration attenuated renal expression of phosphorylated Src (p-Src), Abelson (c-Abl) tyrosine kinases, nuclear factor-kappaB (NF-κB) p65, and phosphorylated signal transducer and activator of transcription-3 (p-STAT-3)/STAT-3 with paralleled reduction in renal contents of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1). DAS diminished interstitial macrophage infiltration and decreased renal profibrotic transforming growth factor-β1 (TGF-β1) levels and suppressed interstitial expression of renal α-smooth muscle actin (α-SMA) and fibronectin. Collectively, DAS slowed the progression of renal interstitial fibrosis, possibly via attenuating renal oxidative stress, impairing Src/STAT-3/NF-κB signaling, and reducing renal inflammation.
Collapse
Affiliation(s)
- Nabila M E Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Hany Ibrahim Kenawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
26
|
Fenofibrate Protects Cardiomyocytes from Hypoxia/Reperfusion- and High Glucose-Induced Detrimental Effects. PPAR Res 2021; 2021:8895376. [PMID: 33505452 PMCID: PMC7811426 DOI: 10.1155/2021/8895376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023] Open
Abstract
Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu2+/Zn2+ and SOD Mn2+), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.
Collapse
|
27
|
Unterschemmann K, Ehrmann A, Herzig I, Andreevski AL, Lustig K, Schmeck C, Eitner F, Grundmann M. Pharmacological inhibition of Vanin-1 is not protective in models of acute and chronic kidney disease. Am J Physiol Renal Physiol 2021; 320:F61-F73. [PMID: 33196323 DOI: 10.1152/ajprenal.00373.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key concept in basic, translational, and clinical research to understand the pathophysiology of various disorders, including cardiovascular and renal diseases. Although attempts to directly reduce oxidative stress with redox-active substances have until now largely failed to prove clinical benefit, indirect approaches to combat oxidative stress enzymatically have gained further attention as potential therapeutic strategies. The pantetheinase Vanin-1 is expressed on kidney proximal tubular cells, and its reaction product cysteamine is described to negatively affect redox homeostasis by inhibiting the replenishment of cellular antioxidative glutathione stores. Vanin-1-deficient mice were shown to be protected against oxidative stress damage. The aim of this study was to elucidate whether pharmacological inhibition of Vanin-1 protects mice from oxidative stress-related acute or chronic kidney injury as well. By studying renal ischemia-reperfusion injury in Col4α3-/- (Alport syndrome) mice and in vitro hypoxia-reoxygenation in human proximal tubular cells we found that treatment with a selective and potent Vanin-1 inhibitor resulted in ample inhibition of enzymatic activity in vitro and in vivo. However, surrogate parameters of metabolic and redox homeostasis were only partially and insufficiently affected. Consequently, apoptosis and reactive oxygen species level in tubular cells as well as overall kidney function and fibrotic processes were not improved by Vanin-1 inhibition. We thus conclude that Vanin-1 functionality in the context of cardiovascular diseases needs further investigation and the biological relevance of pharmacological Vanin-1 inhibition for the treatment of kidney diseases remains to be proven.
Collapse
MESH Headings
- Acute Kidney Injury/enzymology
- Acute Kidney Injury/genetics
- Acute Kidney Injury/pathology
- Acute Kidney Injury/prevention & control
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Apoptosis/drug effects
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Line
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Disease Models, Animal
- Enzyme Inhibitors/pharmacokinetics
- Enzyme Inhibitors/pharmacology
- Fibrosis
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Humans
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nephritis, Hereditary/enzymology
- Nephritis, Hereditary/genetics
- Nephritis, Hereditary/pathology
- Nephritis, Hereditary/prevention & control
- Oxidative Stress/drug effects
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
- Reperfusion Injury/enzymology
- Reperfusion Injury/genetics
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Mice
Collapse
Affiliation(s)
| | | | - Ina Herzig
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal, Germany
| | | | - Klemens Lustig
- Research and Early Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Carsten Schmeck
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Wuppertal, Germany
| |
Collapse
|
28
|
Zhou L, Li T, Sun Y, Tian H, Gao C, Liu C, Kong L, Zhang G, Shi T. Mechanistic scrutiny of the oxidations of thiol‐containing drugs cysteamine and
d
‐penicillamine by
cis
‐diamminetetrachloroplatinum(IV). INT J CHEM KINET 2020. [DOI: 10.1002/kin.21464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Zhou
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| | - Tiejian Li
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
- Shandong New Time Pharmaceutical Co., Ltd. Feixian Shandong Province 273400 China
| | - Ying Sun
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
| | - Hongwu Tian
- Shandong New Time Pharmaceutical Co., Ltd. Feixian Shandong Province 273400 China
| | - Cunxiu Gao
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
| | - Chunli Liu
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| | - Lingli Kong
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| | - Guimin Zhang
- National Engineering Technology Center of Chirality Pharmaceuticals Lunan Pharmaceutical Group Co., Ltd. Linyi Shandong Province 276006 China
- Shandong New Time Pharmaceutical Co., Ltd. Feixian Shandong Province 273400 China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science Zaozhuang University Zaozhuang Shandong Province 277160 China
| |
Collapse
|
29
|
Prat-Duran J, Pinilla E, Nørregaard R, Simonsen U, Buus NH. Transglutaminase 2 as a novel target in chronic kidney disease - Methods, mechanisms and pharmacological inhibition. Pharmacol Ther 2020; 222:107787. [PMID: 33307141 DOI: 10.1016/j.pharmthera.2020.107787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023]
Abstract
Chronic kidney disease (CKD) is a global health problem with a prevalence of 10-15%. Progressive fibrosis of the renal tissue is a main feature of CKD, but current treatment strategies are relatively unspecific and delay, but do not prevent, CKD. Exploration of novel pharmacological targets to inhibit fibrosis development are therefore important. Transglutaminase 2 (TG2) is known to be central for extracellular collagenous matrix formation, but TG2 is a multifunctional enzyme and novel research has broadened our view on its extra- and intracellular actions. TG2 exists in two conformational states with different catalytic properties as determined by substrate availability and local calcium concentrations. The open conformation of TG2 depends on calcium and has transamidase activity, central for protein modification and cross-linking of extracellular protein components, while the closed conformation is a GTPase involved in transmembrane signaling processes. We first describe different methodologies to assess TG2 activity in renal tissue and cell cultures such as biotin cadaverine incorporation. Then we systematically review animal CKD models and preliminary studies in humans (with diabetic, IgA- and chronic allograft nephropathy) to reveal the role of TG2 in renal fibrosis. Mechanisms behind TG2 activation, TG2 externalization dependent on Syndecan-4 and interactions between TG and profibrotic molecules including transforming growth factor β and the angiotensin II receptor are discussed. Pharmacological TG2 inhibition shows antifibrotic effects in CKD. However, the translation of TG2 inhibition to treat CKD in patients is a challenge as clinical information is limited, and further studies on pharmacokinetics and efficacy of the individual compounds are required.
Collapse
Affiliation(s)
| | | | | | - Ulf Simonsen
- Institute of Biomedicine, Health, Aarhus University, Denmark
| | - Niels Henrik Buus
- Institute of Biomedicine, Health, Aarhus University, Denmark; Department of Renal Medicine, Aarhus University Hospital, Denmark.
| |
Collapse
|
30
|
Paul BD, Snyder SH. Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. Front Neurol 2019; 10:1315. [PMID: 31920936 PMCID: PMC6920251 DOI: 10.3389/fneur.2019.01315] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Current medications for neurodegenerative and neuropsychiatric diseases such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and Schizophrenia mainly target disease symptoms. Thus, there is an urgent need to develop novel therapeutics that can delay, halt or reverse disease progression. AD, HD, PD, and schizophrenia are characterized by elevated oxidative and nitrosative stress, which play a central role in pathogenesis. Clinical trials utilizing antioxidants to counter disease progression have largely been unsuccessful. Most antioxidants are relatively non-specific and do not adequately target neuroprotective pathways. Accordingly, a search for agents that restore redox balance as well as halt or reverse neuronal loss is underway. The small molecules, cysteamine, the decarboxylated derivative of the amino acid cysteine, and cystamine, the oxidized form of cysteamine, respectively, mitigate oxidative stress and inflammation and upregulate neuroprotective pathways involving brain-derived neurotrophic factor (BDNF) and Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Cysteamine can traverse the blood brain barrier, a desirable characteristic of drugs targeting neurodegeneration. This review addresses recent developments in the use of these aminothiols to counter neurodegeneration and neuropsychiatric deficits.
Collapse
Affiliation(s)
- Bindu D Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solomon H Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Xiao Y, Zhang Z, Fu Y, Shan H, Cui S, Wu J. GSTA3 regulates TGF- β1-induced renal interstitial fibrosis in NRK-52E cells as a component of the PI3K-Keap1/Nrf2 pathway. J Int Med Res 2019; 47:5787-5801. [PMID: 31617428 PMCID: PMC6862875 DOI: 10.1177/0300060519876796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective To evaluate the effect of GSTA3 within the PI3K–Keap1/Nrf2 pathway in renal interstitial fibrosis (RIF). Methods An in vitro RIF model with TGF-β1 stimulation in NRK-52E cells was established to identify potential signaling pathways that modulate GSTA3. Changes in GSTA3 expression were observed in the RIF model after silencing or enhancing Nrf2 expression. Changes in GSTA3, Keap1, and Nrf2 expression were detected after blocking the upstream of the Keap1/Nrf2 signaling pathway (including MAPK and PI3K/Akt). The effect of Nrf2 on GSTA3 expression was evaluated by overexpressing Nrf2. Results Protein and mRNA levels of GSTA3, FN, Nrf2, and Keap1 were significantly increased after TGF-β1 stimulation. GSTA3 was also upregulated following overexpression of Nrf2. TGF-β1 activated the PI3K/Akt signaling pathway, leading to RIF. After blocking this pathway, the production of superoxide dismutase, reactive oxygen species, and fibronectin were reduced. The MAPK pathway was not involved in the development of RIF via regulating GSTA3 expression. Conclusions The PI3K–KEAP1/Nrf2–GSTA3 signaling pathway is a possible mechanism of resisting external stimulation of renal fibrosis factors, regulating oxidative stress, and preventing RIF.
Collapse
Affiliation(s)
- Yun Xiao
- Division of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Zhang
- Division of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyu Fu
- Division of Endocrinology and Metabolism, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huizhi Shan
- Division of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sini Cui
- Division of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Wu
- Division of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
32
|
Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:585-604. [PMID: 31399986 DOI: 10.1007/978-981-13-8871-2_29] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress results from the disruption of the redox system marked by a notable overproduction of reactive oxygen species. There are four major sources of reactive oxygen species, including NADPH oxidases, mitochondria, nitric oxide synthases, and xanthine oxidases. It is well known that renal abnormalities trigger the production of reactive oxygen species by diverse mechanisms under various pathologic stimuli, such as acute kidney injury, chronic kidney disease, nephrotic syndrome, and metabolic disturbances. Mutually, accumulating evidences have identified that oxidative stress plays an essential role in tubulointerstitial fibrosis by myofibroblast activation as well as in glomerulosclerosis by mesangial sclerosis, podocyte abnormality, and parietal epithelial cell injury. Given the involvement of oxidative stress in renal fibrosis, therapies targeting oxidative stress seem promising in renal fibrosis management. In this review, we sketch the updated knowledge of the mechanisms of oxidative stress generation during renal diseases, the pathogenic processes of oxidative stress elicited renal fibrosis and treatments targeting oxidative stress during tubulointerstitial fibrosis and glomerulosclerosis.
Collapse
|
33
|
Diao W, Chen W, Cao W, Yuan H, Ji H, Wang T, Chen W, Zhu X, Zhou H, Guo H, Zhao X. Astaxanthin protects against renal fibrosis through inhibiting myofibroblast activation and promoting CD8+ T cell recruitment. Biochim Biophys Acta Gen Subj 2019; 1863:1360-1370. [DOI: 10.1016/j.bbagen.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
|
34
|
Boosting GSH Using the Co-Drug Approach: I-152, a Conjugate of N-acetyl-cysteine and β-mercaptoethylamine. Nutrients 2019; 11:nu11061291. [PMID: 31181621 PMCID: PMC6627109 DOI: 10.3390/nu11061291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and β-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.
Collapse
|
35
|
Guha S, Konkwo C, Lavorato M, Mathew ND, Peng M, Ostrovsky J, Kwon YJ, Polyak E, Lightfoot R, Seiler C, Xiao R, Bennett M, Zhang Z, Nakamaru-Ogiso E, Falk MJ. Pre-clinical evaluation of cysteamine bitartrate as a therapeutic agent for mitochondrial respiratory chain disease. Hum Mol Genet 2019; 28:1837-1852. [PMID: 30668749 PMCID: PMC6522065 DOI: 10.1093/hmg/ddz023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cysteamine bitartrate is a US Food and Drug Administration-approved therapy for nephropathic cystinosis also postulated to enhance glutathione biosynthesis. We hypothesized this antioxidant effect may reduce oxidative stress in primary mitochondrial respiratory chain (RC) disease, improving cellular viability and organismal health. Here, we systematically evaluated the therapeutic potential of cysteamine bitartrate in RC disease models spanning three evolutionarily distinct species. These pre-clinical studies demonstrated the narrow therapeutic window of cysteamine bitartrate, with toxicity at millimolar levels directly correlating with marked induction of hydrogen peroxide production. Micromolar range cysteamine bitartrate treatment in Caenorhabditis elegans gas-1(fc21) RC complex I (NDUFS2-/-) disease invertebrate worms significantly improved mitochondrial membrane potential and oxidative stress, with corresponding modest improvement in fecundity but not lifespan. At 10 to 100 μm concentrations, cysteamine bitartrate improved multiple RC complex disease FBXL4 human fibroblast survival, and protected both complex I (rotenone) and complex IV (azide) Danio rerio vertebrate zebrafish disease models from brain death. Mechanistic profiling of cysteamine bitartrate effects showed it increases aspartate levels and flux, without increasing total glutathione levels. Transcriptional normalization of broadly dysregulated intermediary metabolic, glutathione, cell defense, DNA, and immune pathways was greater in RC disease human cells than in C. elegans, with similar rescue in both models of downregulated ribosomal and proteasomal pathway expression. Overall, these data suggest cysteamine bitartrate may hold therapeutic potential in RC disease, although not through obvious modulation of total glutathione levels. Careful consideration is required to determine safe and effective cysteamine bitartrate concentrations to further evaluate in clinical trials of human subjects with primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Sujay Guha
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chigoziri Konkwo
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Neal D Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Min Peng
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julian Ostrovsky
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Young-Joon Kwon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erzsebet Polyak
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard Lightfoot
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christoph Seiler
- Aquatics Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Statistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael Bennett
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhe Zhang
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
36
|
Effects of long-term cysteamine treatment in patients with cystinosis. Pediatr Nephrol 2019; 34:571-578. [PMID: 29260317 PMCID: PMC6394685 DOI: 10.1007/s00467-017-3856-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/05/2017] [Accepted: 11/16/2017] [Indexed: 01/10/2023]
Abstract
Cystinosis is a rare autosomal-recessive lysosomal storage disease with high morbidity and mortality. It is caused by mutations in the CTNS gene that encodes the cystine transporter, cystinosin, which leads to lysosomal cystine accumulation. Patients with infantile nephropathic cystinosis, the most common and most severe clinical form of cystinosis, commonly present with renal Fanconi syndrome by 6-12 months of age, and without specific treatment, almost all will develop end-stage renal disease (ESRD) by 10-12 years of age. Early corneal cystine crystal deposition is a hallmark of the disease. Cystinosis also presents with gastrointestinal symptoms (e.g., vomiting, decreased appetite, and feeding difficulties) and severe growth retardation and may affect several other organs over time, including the eye, thyroid gland, gonads, pancreas, muscles, bone marrow, liver, nervous system, lungs, and bones. Cystine-depleting therapy with cysteamine orally is the only specific targeted therapy available for managing cystinosis and needs to be combined with cysteamine eye drops for corneal disease involvement. In patients with early treatment initiation and good compliance to therapy, long-term cysteamine treatment delays progression to ESRD, significantly improves growth, decreases the frequency and severity of extrarenal complications, and is associated with extended life expectancy. Therefore, early diagnosis of cystinosis and adequate life-long treatment with cysteamine are essential for preventing end-organ damage and improving the overall prognosis in these patients.
Collapse
|
37
|
Sharifian R, Okamura DM, Denisenko O, Zager RA, Johnson A, Gharib SA, Bomsztyk K. Distinct patterns of transcriptional and epigenetic alterations characterize acute and chronic kidney injury. Sci Rep 2018; 8:17870. [PMID: 30552397 PMCID: PMC6294783 DOI: 10.1038/s41598-018-35943-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are considered early and late phases of a pathologic continuum of interconnected disease states. Although changes in gene expression patterns have recently been elucidated for the transition of AKI to CKD, the epigenetic regulation of key kidney injury related genes remains poorly understood. We used multiplex RT-qPCR, ChIP-qPCR and integrative analysis to compare transcriptional and epigenetic changes at renal disease-associated genes across mouse AKI and CKD models. These studies showed that: (i) there are subsets of genes with distinct transcriptional and epigenetically profiles shared by AKI and CKD but also subsets that are specific to either the early or late stages of renal injury; (ii) differences in expression of a small number of genes is sufficient to distinguish AKI from CKD; (iii) transcription plays a key role in the upregulation of both AKI and CKD genes while post-transcriptional regulation appears to play a more significant role in decreased expression of both AKI and CKD genes; and (iv) subsets of transcriptionally upregulated genes share epigenetic similarities while downregulated genes do not. Collectively, our study suggests that identified common transcriptional and epigenetic profiles of kidney injury loci could be exploited for therapeutic targeting in AKI and CKD.
Collapse
Affiliation(s)
- Roya Sharifian
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Daryl M Okamura
- Seattle Children's Research Institute, Center for Developmental Biology & Regenerative Medicine, University of Washington, Seattle, WA, 98105, USA
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA
| | - Richard A Zager
- The Fred Hutchinson Cancer Research Center Seattle, Seattle, WA, 98109, USA
| | - Ali Johnson
- The Fred Hutchinson Cancer Research Center Seattle, Seattle, WA, 98109, USA
| | - Sina A Gharib
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA.,Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, 98109, USA
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
38
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
39
|
Lv W, Booz GW, Fan F, Wang Y, Roman RJ. Oxidative Stress and Renal Fibrosis: Recent Insights for the Development of Novel Therapeutic Strategies. Front Physiol 2018; 9:105. [PMID: 29503620 PMCID: PMC5820314 DOI: 10.3389/fphys.2018.00105] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a significant worldwide healthcare problem. Regardless of the initial injury, renal fibrosis is the common final pathway leading to end stage renal disease. Although the underlying mechanisms are not fully defined, evidence indicates that besides inflammation, oxidative stress plays a crucial role in the etiology of renal fibrosis. Oxidative stress results from an imbalance between the production of free radicals that are often increased by inflammation and mitochondrial dysfunction, and reduced anti-oxidant defenses. Several studies have demonstrated that oxidative stress may occur secondary to activation of transforming growth factor β1 (TGF-β1) activity, consistent with its role to increase nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity. A number of other oxidative stress-related signal pathways have also been identified, such as nuclear factor erythroid-2 related factor 2 (Nrf2), the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase 1-phosphodiesterase (cGMP-cGK1-PDE) signaling pathway, and the peroxisome proliferator-activated receptor gamma (PPARγ) pathway. Several antioxidant and renoprotective agents, including cysteamine bitartrate, epoxyeicosatrienoic acids (EETs), and cytoglobin (Cygb) have demonstrated ameliorative effects on renal fibrosis in preclinical or clinical studies. The mechanism of action of many traditional Chinese medicines used to treat renal disorders is based on their antioxidant properties, which could form the basis for new therapeutic approaches. This review focuses on the signaling pathways triggered by oxidative stress that lead to renal fibrosis and provides an update on the development of novel anti-oxidant therapies for CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
40
|
Yokoyama C, Sueyoshi Y, Ema M, Mori Y, Takaishi K, Hisatomi H. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol Lett 2017; 14:6066-6070. [PMID: 29113247 DOI: 10.3892/ol.2017.6931] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/13/2017] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) are generated in the cell through multiple mechanisms. Intracellular ROS are rapidly detoxified by various enzymatic and non-enzymatic mechanisms; however, disruption of the oxidant-antioxidant balance causes oxidative stress and elicits cell damage. The oxidative stress induced by chemotherapy is known to cause side effects in patients with cancer. However, few studies have examined whether anticancer drugs induce oxidative stress in cancer cells. Furthermore, the precise mechanism by which anticancer drugs induce the generation of ROS remains unclear. In the present study, to investigate whether anticancer drugs induce oxidative stress, DLD-1 human colorectal cancer cells were treated with 20 different anticancer drugs and then stained with CellROX® ROS detection reagent. Furthermore, an oxygen radical absorbance capacity assay in the presence of copper was performed to estimate the oxidative activities of the anticancer drugs in the absence of cells. The data of the present study using assay methods in the presence and absence of cells suggest that nimustine, actinomycin D, doxorubicin, mitomycin C, mitoxantrone, carmofur, gemcitabine, mercaptopurine, camptothecin, paclitaxel, vinblastine, and vinorelbine are able to induce oxidative stress.
Collapse
Affiliation(s)
- Chikako Yokoyama
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.,Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Sciences, Seikei University, Musashino, Tokyo 180-8633, Japan
| | - Yuto Sueyoshi
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Sciences, Seikei University, Musashino, Tokyo 180-8633, Japan
| | - Mika Ema
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Sciences, Seikei University, Musashino, Tokyo 180-8633, Japan
| | - Yumi Mori
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Sciences, Seikei University, Musashino, Tokyo 180-8633, Japan
| | - Kazuto Takaishi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Hisashi Hisatomi
- Laboratory of Cellular and Molecular Biochemistry, Department of Materials and Life Sciences, Seikei University, Musashino, Tokyo 180-8633, Japan
| |
Collapse
|
41
|
Bernardi S, Toffoli B, Bossi F, Candido R, Stenner E, Carretta R, Barbone F, Fabris B. Circulating osteoprotegerin is associated with chronic kidney disease in hypertensive patients. BMC Nephrol 2017; 18:219. [PMID: 28683789 PMCID: PMC5500921 DOI: 10.1186/s12882-017-0625-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Background Osteoprotegerin (OPG) is a glycoprotein that plays an important regulatory role in the skeletal, vascular, and immune system. It has been shown that OPG predicts chronic kidney disease (CKD) in diabetic patients. We hypothesized that OPG could be a risk marker of CKD development also in non-diabetic hypertensive patients. Methods A case-control study was carried out to measure circulating OPG levels in 42 hypertensive patients with CKD and in 141 hypertensive patients without CKD. A potential relationship between OPG and the presence of CKD was investigated and a receiver-operating characteristic (ROC) curve was designed thereafter to identify a cut-off value of OPG that best explained the presence of CKD. Secondly, to evaluate whether OPG increase could affect the kidney, 18 C57BL/6J mice were randomized to be treated with saline or recombinant OPG every 3 weeks for 12 weeks. Results Circulating OPG levels were significantly higher in hypertensive patients with CKD, and there was a significant inverse association between OPG and renal function, that was independent from other variables. ROC analysis showed that OPG levels had a high statistically predictive value on CKD in hypertensive patients, which was greater than that of hypertension. The OPG best cut-off value associated with CKD was 1109.19 ng/L. In the experimental study, OPG delivery significantly increased the gene expression of pro-inflammatory and pro-fibrotic mediators, as well as the glomerular nitrosylation of proteins. Conclusions This study shows that OPG is associated with CKD in hypertensive patients, where it might have a higher predictive value than that of hypertension for CKD development. Secondly, we found that OPG delivery significantly increased the expression of molecular pathways involved in kidney damage. Further longitudinal studies are needed not only to evaluate whether OPG predicts CKD development but also to clarify whether OPG should be considered a risk factor for CKD. Electronic supplementary material The online version of this article (doi:10.1186/s12882-017-0625-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, Trieste, 34100, Italy. .,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Strada di Fiume, Trieste, 34100, Italy.
| | - Barbara Toffoli
- IRCCS Burlo Garofolo, Via dell'Istria, Trieste, 34100, Italy
| | - Fleur Bossi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, Trieste, 34100, Italy
| | - Riccardo Candido
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Strada di Fiume, Trieste, 34100, Italy
| | - Elisabetta Stenner
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Strada di Fiume, Trieste, 34100, Italy
| | - Renzo Carretta
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, Trieste, 34100, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Strada di Fiume, Trieste, 34100, Italy
| | - Fabio Barbone
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, Trieste, 34100, Italy.,IRCCS Burlo Garofolo, Via dell'Istria, Trieste, 34100, Italy
| | - Bruno Fabris
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, Trieste, 34100, Italy.,Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Strada di Fiume, Trieste, 34100, Italy
| |
Collapse
|
42
|
Musso G, De Michieli F, Bongiovanni D, Parente R, Framarin L, Leone N, Berrutti M, Gambino R, Cassader M, Cohney S, Paschetta E. New Pharmacologic Agents That Target Inflammation and Fibrosis in Nonalcoholic Steatohepatitis-Related Kidney Disease. Clin Gastroenterol Hepatol 2017; 15:972-985. [PMID: 27521506 DOI: 10.1016/j.cgh.2016.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Epidemiologic data show an association between the prevalence and severity of nonalcoholic fatty liver disease and the incidence and stage of chronic kidney disease (CKD); furthermore, nonalcoholic steatohepatitis (NASH)-related cirrhosis has a higher risk of renal failure, a greater necessity for simultaneous liver-kidney transplantation, and a poorer renal outcome than cirrhosis of other etiologies even after simultaneous liver-kidney transplantation. These data suggest that NASH and CKD share common proinflammatory and profibrotic mechanisms of progression, which are targeted incompletely by current treatments. We reviewed therapeutic approaches to late preclinical/early clinical stage of development in NASH and/or CKD, focusing on anti-inflammatory and antifibrotic treatments, which could slow the progression of both disease conditions. Renin inhibitors and angiotensin-converting enzyme-2 activators are new renin-angiotensin axis modulators that showed incremental advantages over angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers in preclinical models. Novel, potent, and selective agonists of peroxisome proliferator-activated receptors and of farnesoid X receptor, designed to overcome limitations of older compounds, showed promising results in clinical trials. Epigenetics, heat stress response, and common effectors of redox regulation also were subjected to intensive research, and the gut was targeted by several approaches, including synbiotics, antilipopolysaccharide antibodies, Toll-like receptor-4 antagonists, incretin mimetics, and fibroblast growth factor 19 analogs. Promising anti-inflammatory therapies include inhibitors of NOD-like receptor family, pyrin domain containing 3 inflammasome, of nuclear factor-κB, and of vascular adhesion protein-1, chemokine antagonists, and solithromycin, and approaches targeting common profibrogenic pathways operating in the liver and the kidney include galectin-3 antagonists, and inhibitors of rho-associated protein kinase and of epidermal growth factor activation. The evidence, merits, and limitations of each approach for the treatment of NASH and CKD are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Leone
- Gradenigo Hospital, University of Turin, Turin, Italy
| | - Mara Berrutti
- Gradenigo Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Solomon Cohney
- Department of Nephrology, Royal Melbourne and Western Hospital, Victoria, University of Melbourne, Australia
| | | |
Collapse
|
43
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
44
|
Proteomic Analysis of Non-depleted Serum Proteins from Bottlenose Dolphins Uncovers a High Vanin-1 Phenotype. Sci Rep 2016; 6:33879. [PMID: 27667588 PMCID: PMC5036180 DOI: 10.1038/srep33879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
Targeted approaches have been widely used to help explain physiological adaptations, but few studies have used non-targeted omics approaches to explore differences between diving marine mammals and terrestrial mammals. A rank comparison of undepleted serum proteins from common bottlenose dolphins (Tursiops truncatus) and pooled normal human serum led to the discovery of 11 proteins that appeared exclusive to dolphin serum. Compared to the comprehensive human plasma proteome, 5 of 11 serum proteins had a differential rank greater than 200. One of these proteins, Vanin-1, was quantified using parallel reaction monitoring in dolphins under human care and free-ranging dolphins. Dolphin serum Vanin-1 ranged between 31–106 μg/ml, which is 20–1000 times higher than concentrations reported for healthy humans. Serum Vanin-1 was also higher in dolphins under human care compared to free-ranging dolphins (64 ± 16 vs. 47 ± 12 μg/ml P < 0.05). Vanin-1 levels positively correlated with liver enzymes AST and ALT, and negatively correlated with white blood cell counts and fibrinogen in free-ranging dolphins. Major differences exist in the circulating blood proteome of the bottlenose dolphin compared to terrestrial mammals and exploration of these differences in bottlenose dolphins and other marine mammals may identify veiled protective strategies to counter physiological stress.
Collapse
|
45
|
Ivanova EA, van den Heuvel LP, Elmonem MA, De Smedt H, Missiaen L, Pastore A, Mekahli D, Bultynck G, Levtchenko EN. Altered mTOR signalling in nephropathic cystinosis. J Inherit Metab Dis 2016; 39:457-464. [PMID: 26909499 DOI: 10.1007/s10545-016-9919-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 11/27/2022]
Abstract
Lysosomes play a central role in regulating autophagy via activation of mammalian target of rapamycin complex 1 (mTORC1). We examined mTORC1 signalling in the lysosomal storage disease nephropathic cystinosis (MIM 219800), in which accumulation of autophagy markers has been previously demonstrated. Cystinosis is caused by mutations in the lysosomal cystine transporter cystinosin and initially affects kidney proximal tubules causing renal Fanconi syndrome, followed by a gradual development of end-stage renal disease and extrarenal complications. Using proximal tubular kidney cells obtained from healthy donors and from cystinotic patients, we demonstrate that cystinosin deficiency is associated with a perturbed mTORC1 signalling, delayed reactivation of mTORC1 after starvation and abnormal lysosomal retention of mTOR during starvation. These effects could not be reversed by treatment with cystine-depleting drug cysteamine. Altered mTORC1 signalling can contribute to the development of proximal tubular dysfunction in cystinosis and points to new possibilities in therapeutic intervention through modulation of mTORC-dependent signalling cascades.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Growth and Regeneration, KU Leuven and University Hospitals Leuven, UZ Herestraat 49, 3000, Leuven, Belgium
| | - Lambertus P van den Heuvel
- Department of Growth and Regeneration, KU Leuven and University Hospitals Leuven, UZ Herestraat 49, 3000, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohamed A Elmonem
- Department of Growth and Regeneration, KU Leuven and University Hospitals Leuven, UZ Herestraat 49, 3000, Leuven, Belgium
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Anna Pastore
- Laboratory of Proteomics and Metabolomics, Children's Hospital and Research Institute "Bambino Gesù" IRCCS, Rome, Italy
| | - Djalila Mekahli
- Department of Growth and Regeneration, KU Leuven and University Hospitals Leuven, UZ Herestraat 49, 3000, Leuven, Belgium
| | - Greet Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Elena N Levtchenko
- Department of Growth and Regeneration, KU Leuven and University Hospitals Leuven, UZ Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
46
|
Qiao X, Wang L, Wang Y, Zhao N, Zhang R, Han W, Peng Z. Intermedin is upregulated and attenuates renal fibrosis by inhibition of oxidative stress in rats with unilateral ureteral obstruction. Nephrology (Carlton) 2016; 20:820-31. [PMID: 26014968 DOI: 10.1111/nep.12520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 01/13/2023]
Abstract
AIM Transforming growth factor-β1 (TGF-β1) plays a pivotal role in the progression of renal fibrosis. Reactive oxygen species mediate profibrotic action of TGF-β1. Intermedin (IMD) has been shown to inhibit oxidative stress, but its role in renal fibrosis remains unclear. Here, we investigated the effects of IMD on renal fibrosis in a rat model of unilateral ureteral obstruction (UUO). METHODS The expression of IMD and its receptors, calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP1/2/3), in the obstructed kidney was detected by real-time polymerase chain reaction (PCR), western blotting and immunohistochemistry. To evaluate the effects of IMD on renal fibrosis, we locally overexpressed exogenous IMD in the obstructed kidney using an ultrasound-microbubble-mediated delivery system. Renal fibrosis was determined by Masson trichrome staining. The expression of TGF-β1, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA) and fibronectin was measured. Smad2/3 activation and macrophage infiltration were evaluated. We also studied oxidative stress by measuring superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. RESULTS mRNA and protein expression of IMD increased after UUO. CRLR, RAMP1, RAMP2 and RAMP3 were also induced by ureteral obstruction. IMD overexpression remarkably attenuated UUO-induced tubular injury and blunted fibrotic response as shown by decreased interstitial collagen deposition and downregulation of fibronectin. Macrophage infiltration, α-SMA and CTGF upregulation caused by UUO were all relieved by IMD, whereas TGF-β1 upregulation and Smad2/3 activation were not affected. Meanwhile, we noted increased oxidative stress in obstruction, which was also attenuated by IMD gene delivery. CONCLUSIONS Our results indicate that IMD is upregulated after UUO. IMD plays a protective role in renal fibrosis via its antioxidant effects.
Collapse
Affiliation(s)
- Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Kidney Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Kidney Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ning Zhao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruijing Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weixia Han
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiqiang Peng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Kidney Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
47
|
Synthesis, Crystal Structure, Spectroscopic Properties, and Interaction with Ct-DNA of Zn(II) with 2-Aminoethanethiol Hydrochloride Ligand. Bioinorg Chem Appl 2016; 2016:2691253. [PMID: 26977140 PMCID: PMC4764736 DOI: 10.1155/2016/2691253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/29/2015] [Accepted: 01/14/2016] [Indexed: 11/18/2022] Open
Abstract
The zinc(II) complex (C2H6NS)2Zn·ZnCl2 was synthesized with 2-aminoethanethiol hydrochloride and zinc sulfate heptahydrate as the raw materials in aqueous solution. The composition and structure of the complex were characterized by elemental analysis, infrared spectra, single crystal X-ray diffraction, and thermogravimetry. The crystal structure of the zinc(II) complex belongs to monoclinic system, space group P 21/n, with cell parameters of a = 0.84294(4), b = 0.83920(4), c = 1.65787(8) nm, Z = 2, and D = 2.041 g/cm3. In this paper, the interaction of complex with Ct-DNA was investigated by UV-visible and viscosimetric techniques. Upon addition of the complex, important changes were observed in the characteristic UV-Vis bands (hyperchromism) of calf thymus DNA and some changes in specific viscosity. The experimental results showed that the complex is bound to DNA intercalative (intercalation binding).
Collapse
|
48
|
Synthesis of diacylated γ-glutamyl-cysteamine prodrugs, and in vitro evaluation of their cytotoxicity and intracellular delivery of cysteamine. Eur J Med Chem 2016; 109:206-15. [DOI: 10.1016/j.ejmech.2015.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/28/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022]
|
49
|
Fierro-Fernández M, Miguel V, Lamas S. Role of redoximiRs in fibrogenesis. Redox Biol 2015; 7:58-67. [PMID: 26654978 PMCID: PMC4683389 DOI: 10.1016/j.redox.2015.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis can be defined as an excessive accumulation of extracellular matrix (ECM) components, ultimately leading to stiffness, scarring and devitalized tissue. MicroRNAs (miRNAs) are short, 19-25 nucleotides (nt), non-coding RNAs involved in the post-transcriptional regulation of gene expression. Recently, miRNAs have also emerged as powerful regulators of fibrotic processes and have been termed "fibromiRs". Oxidative stress represents a self-perpetuating mechanism in fibrogenesis. MiRNAs can also influence the expression of genes responsible for the generation of reactive oxygen species (ROS) and antioxidant defence and are termed "redoximiRs". Here, we review the current knowledge of mechanisms by which "redoximiRs" regulate fibrogenesis. This new set of miRNAs may be called "redoxifibromiRs".
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
50
|
Okamura DM, Pennathur S. The balance of powers: Redox regulation of fibrogenic pathways in kidney injury. Redox Biol 2015; 6:495-504. [PMID: 26448394 PMCID: PMC4600846 DOI: 10.1016/j.redox.2015.09.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress plays a central role in the pathogenesis of diverse chronic inflammatory disorders including diabetic complications, cardiovascular disease, aging, and chronic kidney disease (CKD). Patients with moderate to advanced CKD have markedly increased levels of oxidative stress and inflammation that likely contribute to the unacceptable high rates of morbidity and mortality in this patient population. Oxidative stress is defined as an imbalance of the generation of reactive oxygen species (ROS) in excess of the capacity of cells/tissues to detoxify or scavenge them. Such a state of oxidative stress may alter the structure/function of cellular macromolecules and tissues that eventually leads to organ dysfunction. The harmful effects of ROS have been largely attributed to its indiscriminate, stochastic effects on the oxidation of protein, lipids, or DNA but in many instances the oxidants target particular amino acid residues or lipid moieties. Oxidant mechanisms are intimately involved in cell signaling and are linked to several key redox-sensitive signaling pathways in fibrogenesis. Dysregulation of antioxidant mechanisms and overproduction of ROS not only promotes a fibrotic milieu but leads to mitochondrial dysfunction and further exacerbates kidney injury. Our studies support the hypothesis that unique reactive intermediates generated in localized microenvironments of vulnerable tissues such as the kidney activate fibrogenic pathways and promote end-organ damage. The ability to quantify these changes and assess response to therapies will be pivotal in understanding disease mechanisms and monitoring efficacy of therapy.
Collapse
Affiliation(s)
- Daryl M Okamura
- Seattle Children's Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Subramaniam Pennathur
- University of Michigan, Department of Medicine, Division of Nephrology, Ann Arbor, MI, USA
| |
Collapse
|