1
|
Ren Y, Wang Z, You L, Zhou J, Huang H, Chang S, Wu Y, Xue J. Gut-derived trimethylamine N-oxide promotes CCR2-mediated macrophage infiltration in acute kidney injury. Nephrol Dial Transplant 2024; 39:1876-1889. [PMID: 38587855 DOI: 10.1093/ndt/gfae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Inflammation is crucial in the development of acute kidney injury (AKI) and subsequent chronic kidney disease (CKD) following renal ischaemia-reperfusion (IR) injury. Gut microbiota metabolites trigger inflammation and affect IR-induced renal damage. Yet the driving factors and mechanisms are unclear. Trimethylamine N-oxide (TMAO), a gut-derived choline metabolite, is a strong pro-inflammatory factor that increases in patients with AKI and CKD. We hypothesized that TMAO can promote renal injury caused by IR. METHODS Mice subjected to unilateral renal IR to induce AKI and CKD were fed a high-choline diet to observe the effects of TMAO on kidney inflammation, fibrosis and macrophage dynamics. RESULTS A choline-rich diet altered the gut microbiota and elevated TMAO levels, exacerbating IR-induced AKI and subsequent CKD. Single-cell analysis identified a distinct subset of CCR2+ macrophages derived from monocytes as key responders to TMAO, intensifying immune cell interactions and worsening renal injury. TMAO promoted sustained CCR2 expression after IR, increasing macrophage infiltration. CCR2 deletion and antagonist RS-102895 improved TMAO-induced inflammation and fibrosis and alleviated renal injury induced by IR. CONCLUSIONS Our study provides valuable insights into the link between TMAO and IR-induced renal inflammation and fibrosis, emphasizing the critical role of TMAO-mediated macrophage infiltration via CCR2 as a key therapeutic target in the acute and chronic phases after IR.
Collapse
Affiliation(s)
- Yuan Ren
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Zuoyuan Wang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Li You
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Zhou
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
- Division of Nephrology of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haowen Huang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Sansi Chang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanhao Wu
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Xue
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li X, Yao C, Lan DM, Wang Y, Qi SC. Porphyromonas gingivalis Induces Chronic Kidney Disease through Crosstalk between the NF-κB/NLRP3 Pathway and Ferroptosis in GMCs. Curr Med Sci 2024; 44:932-946. [PMID: 39446285 DOI: 10.1007/s11596-024-2923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Porphyromonas gingivalis (P.gingivalis) is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases, including chronic kidney disease (CKD), but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear. METHODS In this study, an animal model of oral P.gingivalis administration and glomerular mesangial cells (GMCs) cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed. After seven weeks of P.gingivalis gavaged, peripheral blood was collected to detect the changes in renal function. By collecting the teeth and kidneys of mice, H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice, PAS staining was used to analyze glomerular lesions. The supernatant of macrophages was treated with 5% P.gingivalis supernatant. H&E staining, IHC, Western blot and RT-PCR were applied to analyze renal inflammatory factors, macrophage M1 polarization, NF-κB, NLRP3 and ferroptosis changes in vitro. RESULTS We found that oral P.gingivalis administration induced CKD in mice. P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation, which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs. By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs, cell viability and the inflammatory response were partially alleviated in vitro. CONCLUSION We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NF κB/NLRP3 pathway and ferroptosis in GMCs. Overall, our study suggested that periodontitis can promote the pathogenesis of CKD in mice, which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD. P.gingivalis promotes ferroptosis in kidneys and accelerates the progression of CKD through NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China
| | - Chao Yao
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Dong-Mei Lan
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Yan Wang
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, China.
| | - Sheng-Cai Qi
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
| |
Collapse
|
3
|
Wang Y, Zhang J, Yang Z, Li C, Zhang C, Sun S, Jiao Z, Che G, Gao H, Liu J, Li J. Ocotillol-Type Pseudoginsenoside-F11 Alleviates Lipopolysaccharide-Induced Acute Kidney Injury through Regulation of Macrophage Function by Suppressing the NF-κB/NLRP3/IL-1β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20496-20512. [PMID: 39239930 DOI: 10.1021/acs.jafc.4c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. The inflammatory response is the fundamental pathologic alteration throughout AKI, regardless of the various causal factors. Macrophages are the main immune cells involved in the inflammatory microenvironment in AKI. Consequently, targeting macrophages might become a novel strategy for the treatment of AKI. In this study, we demonstrated that pseudoginsenoside-F11 (PF11), a distinctive component of Panax quinquefolius L., regulated macrophage function and protected renal tubular epithelial cells TCMK-1 from lipopolysaccharide (LPS) in vitro. PF11 also alleviated renal injuries in an LPS-induced AKI mouse model, decreased the levels of inflammatory cytokines, reduced macrophage inflammatory infiltration, and promoted the polarization of M1 macrophages to M2c macrophages with suppression of the nuclear factor-κB/NOD-like receptor thermal protein domain-associated protein 3/interleukin-1β (NF-κB/NLRP3/IL-1β) signaling pathway. To further investigate whether this nephroprotective effect of PF11 is mediated by macrophages, we performed macrophage depletion by injection of clodronate liposomes in mice. Macrophage depletion abolished PF11's ability to protect against LPS-induced kidney damage with downregulating the NF-κB/NLRP3/IL-1β signaling pathway. In summary, this is the first study providing data on the efficacy and mechanism of PF11 in the treatment of AKI by regulating macrophage function.
Collapse
Affiliation(s)
- Yaru Wang
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jinyu Zhang
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Zhuo Yang
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Changcheng Li
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Chenming Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Shengkai Sun
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Ziyan Jiao
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Guanghua Che
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Hang Gao
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
4
|
Lee K, Jang HR, Rabb H. Lymphocytes and innate immune cells in acute kidney injury and repair. Nat Rev Nephrol 2024:10.1038/s41581-024-00875-5. [PMID: 39095505 DOI: 10.1038/s41581-024-00875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Acute kidney injury (AKI) is a common and serious disease entity that affects native kidneys and allografts but for which no specific treatments exist. Complex intrarenal inflammatory processes driven by lymphocytes and innate immune cells have key roles in the development and progression of AKI. Many studies have focused on prevention of early injury in AKI. However, most patients with AKI present after injury is already established. Increasing research is therefore focusing on mechanisms of renal repair following AKI and prevention of progression from AKI to chronic kidney disease. CD4+ and CD8+ T cells, B cells and neutrophils are probably involved in the development and progression of AKI, whereas regulatory T cells, double-negative T cells and type 2 innate lymphoid cells have protective roles. Several immune cells, such as macrophages and natural killer T cells, can have both deleterious and protective effects, depending on their subtype and/or the stage of AKI. The immune system not only participates in injury and repair processes during AKI but also has a role in mediating AKI-induced distant organ dysfunction. Targeted manipulation of immune cells is a promising therapeutic strategy to improve AKI outcomes.
Collapse
Affiliation(s)
- Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Cell and Gene Therapy Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hamid Rabb
- Nephrology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Chen Z, Chen C, Lai K, Wu C, Wu F, Chen Z, Ye K, Xie J, Ma H, Chen H, Wang Y, Xu Y. GSDMD and GSDME synergy in the transition of acute kidney injury to chronic kidney disease. Nephrol Dial Transplant 2024; 39:1344-1359. [PMID: 38244230 DOI: 10.1093/ndt/gfae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND AND HYPOTHESIS Acute kidney injury (AKI) could progress to chronic kidney disease (CKD) and the AKI-CKD transition has major clinical significance. A growing body of evidence has unveiled the role of pyroptosis in kidney injury. We postulate that GSDMD and GSDME exert cumulative effects on the AKI-CKD transition by modulating different cellular responses. METHODS We established an AKI-CKD transition model induced by folic acid in wildtype (WT), Gsdmd-/-, Gsdme-/-, and Gsdmd-/-Gsdme-/- mice. Tubular injury, renal fibrosis and inflammatory responses were evaluated. In vitro studies were conducted to investigate the interplay among tubular cells, neutrophils, and macrophages. RESULTS Double deletion of Gsdmd and Gsdme conferred heightened protection against AKI, mitigating inflammatory responses, including the formation of neutrophil extracellular traps (NETs), macrophage polarization and differentiation, and ultimately renal fibrosis, compared with wildtype mice and mice with single deletion of either Gsdmd or Gsdme. Gsdme, but not Gsdmd deficiency, shielded tubular cells from pyroptosis. GSDME-dependent tubular cell death stimulated NETs formation and prompted macrophage polarization towards a pro-inflammatory phenotype. Gsdmd deficiency suppressed NETs formation and subsequently hindered NETs-induced macrophage-to-myofibroblast transition (MMT). CONCLUSION GSDMD and GSDME collaborate to contribute to AKI and subsequent renal fibrosis induced by folic acid. Synchronous inhibition of GSDMD and GSDME could be an innovative therapeutic strategy for mitigating the AKI-CKD transition.
Collapse
Affiliation(s)
- Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Xiong W, Tang J, Yu H, Luo Y, Yu M, Li Y. Emodin inhibits M1 macrophage activation that related to acute and chronic kidney injury through EGFR/MAPK pathway. Funct Integr Genomics 2024; 24:131. [PMID: 39078513 DOI: 10.1007/s10142-024-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Macrophages are the main inflammatory cells involved in kidney injury and play a significant role in the development of acute kidney injury (AKI) and progression of chronic kidney disease (CKD). Emodin is believed to stabilize macrophage homeostasis under pathological conditions. The objective of this study aimed to explore the underlying mechanisms and effects of Emodin on M1 macrophages. METHODS Network pharmacology methods were used to predict target proteins associated with renal injury and identify the pathways affected by emodin. RAW264.7 macrophages were induced into M1 polarization using LPS and then treated with emodin at 20, 40, and 80 µM. The effects of emodin on cell viability, cytokines (IL-1β, IL-6, TNF-α), M1 macrophage markers (F4/80 + CD86+), and the EGFR/MAPK pathway were evaluated. Additionally, we transfected RAW264.7 cells with an EGFR shRNA interference lentivirus to assess its effects on RAW264.7 cells function and MAPK pathway. After RAW264.7 cells were passaged to expanded culture and transfected with EGFR-interfering plasmid, macrophages were induced to polarize towards M1 with LPS and then treated with 80 µM emodin. CKD modeling was performed to test how emodin is regulated during CKD. RESULTS There are 15 common targets between emodin and kidney injury, of which the EGFR/MAPK pathway is the pathway through which emodin affects macrophage function. Emodin significantly reduced the levels of IL-6, IL-1β and TNF-α (p < 0.05) and the ratio of M1 macrophage surface markers F4/80 + CD86+ (p < 0.01) in the supernatant of RAW264.7 cells in a dose-dependent manner. Furthermore, the inhibitory effect of emodin on RAW264.7 cells was achieved by interfering with the EGFR/MAPK pathway. Moreover, emodin also affected the mRNA and protein expression of EGFR and Ras, leading to a decrease in the rate of M1 macrophages, thus inhibiting the pro-inflammatory effect of M1 macrophages. The addition of emodin reduced the rate of M1 macrophages in CKD and inhibited the further polarization of M1 macrophages, thus maintaining the pro-inflammatory and anti-inflammatory homeostasis in CKD, and these effects were achieved by emodin through the control of the EGRF/ERK pathway. CONCLUSION Emodin attenuates M1 macrophage polarization and pro-inflammatory responses via the EGFR/MAPK signalling pathway. And the addition of emodin maintains pro- and anti-inflammatory homeostasis, which is important for maintaining organ function and tissue repair.
Collapse
Affiliation(s)
- Weijian Xiong
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Jing Tang
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Yan Luo
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Minghuan Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Ying Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
7
|
Zhang D, Jiang H, Yang X, Zheng S, Li Y, Liu S, Xu X. Traditional Chinese Medicine and renal regeneration: experimental evidence and future perspectives. Chin Med 2024; 19:77. [PMID: 38831435 PMCID: PMC11149241 DOI: 10.1186/s13020-024-00935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Repair of acute kidney injury (AKI) is a typical example of renal regeneration. AKI is characterized by tubular cell death, peritubular capillary (PTC) thinning, and immune system activation. After renal tubule injury, resident renal progenitor cells, or renal tubule dedifferentiation, give rise to renal progenitor cells and repair the damaged renal tubule through proliferation and differentiation. Mesenchymal stem cells (MSCs) also play an important role in renal tubular repair. AKI leads to sparse PTC, affecting the supply of nutrients and oxygen and indirectly aggravating AKI. Therefore, repairing PTC is important for the prognosis of AKI. The activation of the immune system is conducive for the body to clear the necrotic cells and debris generated by AKI; however, if the immune activation is too strong or lengthy, it will cause damage to renal tubule cells or inhibit their repair. Macrophages have been shown to play an important role in the repair of kidney injury. Traditional Chinese medicine (TCM) has unique advantages in the treatment of AKI and a series of studies have been conducted on the topic in recent years. Herein, the role of TCM in promoting the repair of renal injury and its molecular mechanism is discussed from three perspectives: repair of renal tubular epithelial cells, repair of PTC, and regulation of macrophages to provide a reference for the treatment and mechanistic research of AKI.
Collapse
Affiliation(s)
- Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Urinary Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sanxia Zheng
- Pediatric Department, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Shandong Key Laboratory of Dominant Diseases of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
8
|
Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, Liu J, Tao S, Fu P, Ma L. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun 2024; 15:3200. [PMID: 38615014 PMCID: PMC11016098 DOI: 10.1038/s41467-024-47315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/25/2024] [Indexed: 04/15/2024] Open
Abstract
Histone lysine crotonylation (Kcr), as a posttranslational modification, is widespread as acetylation (Kac); however, its roles are largely unknown in kidney fibrosis. In this study, we report that histone Kcr of tubular epithelial cells is abnormally elevated in fibrotic kidneys. By screening these crotonylated/acetylated factors, a crotonyl-CoA-producing enzyme ACSS2 (acyl-CoA synthetase short chain family member 2) is found to remarkably increase histone 3 lysine 9 crotonylation (H3K9cr) level without influencing H3K9ac in kidneys and tubular epithelial cells. The integrated analysis of ChIP-seq and RNA-seq of fibrotic kidneys reveal that the hub proinflammatory cytokine IL-1β, which is regulated by H3K9cr, play crucial roles in fibrogenesis. Furthermore, genetic and pharmacologic inhibition of ACSS2 both suppress H3K9cr-mediated IL-1β expression, which thereby alleviate IL-1β-dependent macrophage activation and tubular cell senescence to delay renal fibrosis. Collectively, our findings uncover that H3K9cr exerts a critical, previously unrecognized role in kidney fibrosis, where ACSS2 represents an attractive drug target to slow fibrotic kidney disease progression.
Collapse
Affiliation(s)
- Lingzhi Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Ting Xiang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Jingjing Guo
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Fan Guo
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Yiting Wu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Han Feng
- Tulane Research and Innovation for Arrhythmia Discoveries-TRIAD Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jing Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Sibei Tao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China.
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, and National Key Laboratory of Kidney Diseases, Chengdu, China.
| |
Collapse
|
9
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhang J, Jiang J, Wang B, Wang Y, Qian Y, Suo J, Li Y, Peng Z. SAP130 released by ferroptosis tubular epithelial cells promotes macrophage polarization via Mincle signaling in sepsis acute kidney injury. Int Immunopharmacol 2024; 129:111564. [PMID: 38320352 DOI: 10.1016/j.intimp.2024.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Bingqing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yue Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yaoyao Qian
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, Hubei, China.
| |
Collapse
|
11
|
Maryam B, Smith ME, Miller SJ, Natarajan H, Zimmerman KA. Macrophage Ontogeny, Phenotype, and Function in Ischemia Reperfusion-Induced Injury and Repair. KIDNEY360 2024; 5:459-470. [PMID: 38297436 PMCID: PMC11000738 DOI: 10.34067/kid.0000000000000376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 β , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.
Collapse
Affiliation(s)
- Bibi Maryam
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Morgan E. Smith
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sarah J. Miller
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariharasudan Natarajan
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kurt A. Zimmerman
- Division of Nephrology, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
12
|
Zeng J, Zhang Y, Huang C. Macrophages polarization in renal inflammation and fibrosis animal models (Review). Mol Med Rep 2024; 29:29. [PMID: 38131228 PMCID: PMC10784723 DOI: 10.3892/mmr.2023.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic kidney disease (CKD) is a significant public health concern. Renal fibrosis is the final common pathway in the progression of kidney diseases, irrespective of the initial injury. Substantial evidence underscores the pivotal role of renal inflammation in the genesis of renal fibrosis. The presence of macrophages within normal renal tissue is significantly increased within diseased renal tissue, indicative of their crucial regulatory function in inflammation and fibrosis. Macrophages manifest a high degree of heterogeneity, exhibiting distinct phenotypic and functional traits in response to diverse stimuli within the local microenvironment in various types of kidney diseases. Broadly, macrophages are categorized into two principal groups: Classically activated, designated as M1 macrophages and alternatively activated, designated as M2 macrophages. A number of experimental models are widely used to study the underlying mechanisms driving renal inflammation and fibrosis progression. The present review delineated the phenotypic and functional attributes of macrophages present in diverse induced models, analyzing their disposition in relation to M1 and M2 polarization states.
Collapse
Affiliation(s)
- Ji Zeng
- Department of Pharmacy, Ma'anshan City Hospital of Traditional Chinese Medicine, Ma'anshan, Anhui 243000, P.R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
13
|
Chen M, Zhao S, Chen P, Zhao D, Wang L, Chen Z. A Novel Predictive Model for Acute Kidney Injury Following Surgery of the Aorta. Rev Cardiovasc Med 2024; 25:54. [PMID: 39077356 PMCID: PMC11263166 DOI: 10.31083/j.rcm2502054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 07/31/2024] Open
Abstract
Background Acute kidney injury (AKI) frequently occurs after aortic surgery and has a significant impact on patient outcomes. Early detection or prediction of AKI is crucial for timely interventions. This study aims to develop and validate a novel model for predicting AKI following aortic surgery. Methods We enrolled 156 patients who underwent on-pump aortic surgery in our hospital from February 2023 to April 2023. Postoperative levels of eight cytokines related to macrophage polarization analyzed using a multiplex cytokine assay. All-subset regression was used to select the optimal cytokines to predict AKI. A logistic regression model incorporating the selected cytokines was used for internal validation in combination with a bootstrapping technique. The model's ability to discriminate between cases of AKI and non-AKI was assessed using receiver operating characteristic (ROC) curve analysis. Results Of the 156 patients, 109 (69.87%) developed postoperative AKI. Interferon-gamma (IFN- γ ) and interleukin-4 (IL-4) were identified as candidate AKI predictors. The cytokine-based model including IFN- γ and IL-4 demonstrated excellent discrimination (C-statistic: 0.90) and good calibration (Brier score: 0.11). A clinical nomogram was generated, and decision curve analysis revealed that the cytokine-based model outperformed the clinical factor-based model in terms of net benefit. Moreover, both IFN- γ and IL-4 emerged as independent risk factors for AKI. Patients in the second and third tertiles of IFN- γ and IL-4 concentrations had a significantly higher risk of severe AKI, a higher likelihood of requiring renal replacement therapy, or experiencing in-hospital death. These patients also had extended durations of mechanical ventilation and intensive care unit stays, compared with those in the first tertile (all p for group trend < 0.001). Conclusions We successfully established a novel and powerful predictive model for AKI, and demonstrating the significance of IFN- γ and IL-4 as valuable clinical markers. These cytokines not only predict the risk of AKI following aortic surgery but are also linked to adverse in-hospital outcomes. This model offers a promising avenue for the early identification of high-risk patients, potentially improving clinical decision-making and patient care.
Collapse
Affiliation(s)
- Mingjian Chen
- Department of Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China
| | - Sheng Zhao
- Department of Cardiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China
| | - Pengfei Chen
- Department of Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China
| | - Diming Zhao
- Department of Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China
| | - Liqing Wang
- Department of Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100037 Beijing, China
| | - Zhaoyang Chen
- Cardiology Department, Heart Center of Fujian Province, Union Hospital, Fujian Medical University, 350000 Fuzhou, Fujian, China
| |
Collapse
|
14
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
15
|
Wen Y, Lu X, Privratsky JR, Ren J, Ali S, Yang B, Rudemiller NP, Zhang J, Nedospasov SA, Crowley SD. TNF- α from the Proximal Nephron Exacerbates Aristolochic Acid Nephropathy. KIDNEY360 2024; 5:44-56. [PMID: 37986166 PMCID: PMC10833606 DOI: 10.34067/kid.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Key Points Proximal tubular TNF aggravates kidney injury and fibrogenesis in aristolochic acid nephropathy. Tubular TNF disrupts the cell cycle in injured tubular epithelial cells. TNF-mediated toxic renal injury is independent of systemic immune responses. Background Aristolochic acid nephropathy (AAN) presents with tubular epithelial cell (TEC) damage and tubulointerstitial inflammation. Although TNF-α regulates cell apoptosis and inflammatory responses, the effects of tubular TNF in the progression of AAN require elucidation. Methods Floxed TNF mice on the 129/SvEv background were crossed with PEPCK-Cre mice to generate PEPCK-Cre + TNF flox/flox (TNF PTKO) mice or bred with Ksp-Cre mice to generate KSP-Cre + TNF flox/flox (TNF DNKO) mice. TNF PTKO, TNF DNKO, and wild-type controls (Cre negative littermates) were subjected to acute and chronic AAN. Results Deletion of TNF in the proximal but not distal nephron attenuated kidney injury, renal inflammation, and tubulointerstitial fibrosis after acute or chronic aristolochic acid (AA) exposure. The TNF PTKO mice did not have altered numbers of infiltrating myeloid cells in AAN kidneys. Nevertheless, kidneys from AA-treated TNF PTKO mice had reduced levels of proteins involved in regulated cell death, higher proportions of TECs in the G0/G1 phase, and reduced TEC proportions in the G2/M phase. Pifithrin-α , which restores the cell cycle, abrogated differences between the wild-type and PTKO cohorts in G2/M phase arrest of TECs and kidney fibrosis after AA exposure. Conclusions TNF from the proximal but not the distal nephron propagates kidney injury and fibrogenesis in AAN in part by inducing G2/M cell cycle arrest of TECs.
Collapse
Affiliation(s)
- Yi Wen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Jamie R. Privratsky
- Department of Anesthesiology, Durham VA and Duke University Medical Center, Durham, North Carolina
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Saba Ali
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Bo Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Nathan P. Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Jiandong Zhang
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Institute of Cell Biology and Neurobiology, Universitatsmedizin, Berlin, Germany
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| |
Collapse
|
16
|
Hu J, Zhang X, Ma F, Huang C, Jiang Y. LncRNA CASC2 Alleviates Renal Interstitial Inflammation and Fibrosis through MEF2C Downregulation-Induced Hinderance of M1 Macrophage Polarization. Nephron Clin Pract 2023; 148:245-263. [PMID: 38142674 DOI: 10.1159/000531919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/25/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.
Collapse
Affiliation(s)
- Jinping Hu
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Ma
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yali Jiang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Liu Y, Kors L, Butter LM, Stokman G, Claessen N, Zuurbier CJ, Girardin SE, Leemans JC, Florquin S, Tammaro A. NLRX1 Prevents M2 Macrophage Polarization and Excessive Renal Fibrosis in Chronic Obstructive Nephropathy. Cells 2023; 13:23. [PMID: 38201227 PMCID: PMC10778504 DOI: 10.3390/cells13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease often leads to kidney dysfunction due to renal fibrosis, regardless of the initial cause of kidney damage. Macrophages are crucial players in the progression of renal fibrosis as they stimulate inflammation, activate fibroblasts, and contribute to extracellular matrix deposition, influenced by their metabolic state. Nucleotide-binding domain and LRR-containing protein X (NLRX1) is an innate immune receptor independent of inflammasomes and is found in mitochondria, and it plays a role in immune responses and cell metabolism. The specific impact of NLRX1 on macrophages and its involvement in renal fibrosis is not fully understood. METHODS To explore the specific role of NLRX1 in macrophages, bone-marrow-derived macrophages (BMDMs) extracted from wild-type (WT) and NLRX1 knockout (KO) mice were stimulated with pro-inflammatory and pro-fibrotic factors to induce M1 and M2 polarization in vitro. The expression levels of macrophage polarization markers (Nos2, Mgl1, Arg1, and Mrc1), as well as the secretion of transforming growth factor β (TGFβ), were measured using RT-PCR and ELISA. Seahorse-based bioenergetics analysis was used to assess mitochondrial respiration in naïve and polarized BMDMs obtained from WT and NLRX1 KO mice. In vivo, WT and NLRX1 KO mice were subjected to unilateral ureter obstruction (UUO) surgery to induce renal fibrosis. Kidney injury, macrophage phenotypic profile, and fibrosis markers were assessed using RT-PCR. Histological staining (PASD and Sirius red) was used to quantify kidney injury and fibrosis. RESULTS Compared to the WT group, an increased gene expression of M2 markers-including Mgl1 and Mrc1-and enhanced TGFβ secretion were found in naïve BMDMs extracted from NLRX1 KO mice, indicating functional polarization towards the pro-fibrotic M2 subtype. NLRX1 KO naïve macrophages also showed a significantly enhanced oxygen consumption rate compared to WT cells and increased basal respiration and maximal respiration capacities that equal the level of M2-polarized macrophages. In vivo, we found that NLRX1 KO mice presented enhanced M2 polarization markers together with enhanced tubular injury and fibrosis demonstrated by augmented TGFβ levels, fibronectin, and collagen accumulation. CONCLUSIONS Our findings highlight the unique role of NLRX1 in regulating the metabolism and function of macrophages, ultimately protecting against excessive renal injury and fibrosis in UUO.
Collapse
Affiliation(s)
- Ye Liu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lotte Kors
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Loes M. Butter
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Geurt Stokman
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Coert J. Zuurbier
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Jaklien C. Leemans
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Fang H, Xu S, Wang Y, Yang H, Su D. Endogenous stimuli-responsive drug delivery nanoplatforms for kidney disease therapy. Colloids Surf B Biointerfaces 2023; 232:113598. [PMID: 37866237 DOI: 10.1016/j.colsurfb.2023.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Kidney disease is one of the most life-threatening health problems, affecting millions of people in the world. Commonly used steroids and immunosuppressants often fall exceptionally short of outcomes with inescapable systemic toxicity. With the booming research in nanobiotechnology, stimuli-responsive nanoplatform has come an appealing therapeutic strategy for kidney disease. Endogenous stimuli-responsive materials have shown profuse promise owing to their enhanced spatiotemporal control and precise to the location of the lesion. This review focuses on recent advances stimuli-responsive drug delivery nano-architectonics for kidney disease. First, a brief introduction of pathogenesis of kidney disease and pathological microenvironment were provided. Then, various endogenous stimulus involved in drug delivery nanoplatforms including pH, ROS, enzymes, and glucose were categorized based on the pathological mechanisms of kidney disease. Next, we separately summarized literature examples of endogenous stimuli-responsive nanomaterials, and outlined the design strategies and response mechanisms. Finally, the paper was concluded by discussing remaining challenges and future perspectives of endogenous stimuli-responsive drug delivery nanoplatform for expediting the speed of development and clinical applications.
Collapse
Affiliation(s)
- Hufeng Fang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Yu Wang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213100, China.
| |
Collapse
|
19
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
20
|
Chen X, Hocher CF, Shen L, Krämer BK, Hocher B. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench. Am J Physiol Cell Physiol 2023; 325:C661-C681. [PMID: 37519230 DOI: 10.1152/ajpcell.00177.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Large placebo-controlled clinical trials have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) delay the deterioration of renal function and reduce cardiovascular events in a glucose-independent manner, thereby ultimately reducing mortality in patients with chronic kidney disease (CKD) and/or heart failure. These existing clinical data stimulated preclinical studies aiming to understand the observed clinical effects. In animal models, it was shown that the beneficial effect of SGLT2i on the tubuloglomerular feedback (TGF) improves glomerular pressure and reduces tubular workload by improving renal hemodynamics, which appears to be dependent on salt intake. High salt intake might blunt the SGLT2i effects on the TGF. Beyond the salt-dependent effects of SGLT2i on renal hemodynamics, SGLT2i inhibited several key aspects of macrophage-mediated renal inflammation and fibrosis, including inhibiting the differentiation of monocytes to macrophages, promoting the polarization of macrophages from a proinflammatory M1 phenotype to an anti-inflammatory M2 phenotype, and suppressing the activation of inflammasomes and major proinflammatory factors. As macrophages are also important cells mediating atherosclerosis and myocardial remodeling after injury, the inhibitory effects of SGLT2i on macrophage differentiation and inflammatory responses may also play a role in stabilizing atherosclerotic plaques and ameliorating myocardial inflammation and fibrosis. Recent studies suggest that SGLT2i may also act directly on the Na+/H+ exchanger and Late-INa in cardiomyocytes thus reducing Na+ and Ca2+ overload-mediated myocardial damage. In addition, the renal-cardioprotective mechanisms of SGLT2i include systemic effects on the sympathetic nervous system, blood volume, salt excretion, and energy metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Carl-Friedrich Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Klinik für Innere Medizin, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China
- IMD Institut für Medizinische Diagnostik Berlin-Potsdam GbR, Berlin, Germany
| |
Collapse
|
21
|
Huang F, Ren X, Yuan B, Yang W, Xu L, Zhang J, Zhang H, Geng M, Li X, Zhang F, Xu J, Zhu W, Ren S, Meng L, Lu S. Systemic Mutation of Ncf1 Ameliorates Obstruction-Induced Renal Fibrosis While Macrophage-Rescued NCF1 Further Alleviates Renal Fibrosis. Antioxid Redox Signal 2023. [PMID: 37392014 DOI: 10.1089/ars.2022.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Aims: NCF1, a subunit of the NADPH oxidase 2 (NOX2), first described the expression in neutrophils and macrophages and participated in the pathogenesis from various systems. However, there are controversial findings on the role of NCF1 in different kinds of kidney diseases. In this study, we aim to pinpoint the specific role of NCF1 in the progression of renal fibrosis induced by obstruction. Results: In this study, NCF1 expression was upregulated in kidney biopsies of chronic kidney disease patients. The expression level of all subunits of the NOX2 complex was also significantly increased in the unilateral ureteral obstruction (UUO) kidney. Then, we used wild-type mice and Ncf1 mutant mice (Ncf1m1j mice) to perform UUO-induced renal fibrosis. Results demonstrated that Ncf1m1j mice exhibited mild renal fibrosis but increased macrophages count and CD11b+Ly6Chi macrophage proportion. Next, we compared the renal fibrosis degree between Ncf1m1j mice and Ncf1 macrophage-rescued mice (Ncf1m1j.Ncf1Tg-CD68 mice). We found that rescuing NCF1 expression in macrophages further alleviated renal fibrosis and decreased macrophage infiltration in the UUO kidney. In addition, flow cytometry data showed fewer CD11b+Ly6Chi macrophages in the kidney of the Ncf1m1j.Ncf1Tg-CD68 group than the Ncf1m1j group. Innovation: We first used the Ncf1m1j mice and Ncf1m1j.Ncf1Tg-CD68 mice to detect the role of NCF1 in the pathological process of renal fibrosis induced by obstruction. Also, we found that NCF1 expressed in different cell types exerts opposing effects on obstructive nephropathy. Conclusion: Taken together, our findings support that systemic mutation of Ncf1 ameliorates renal fibrosis induced by obstruction, and rescuing NCF1 in macrophages further alleviates renal fibrosis.
Collapse
Affiliation(s)
- Fumeng Huang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Xiaomin Ren
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bingyu Yuan
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenbo Yang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lexuan Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haonan Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Manman Geng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fujun Zhang
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Shuting Ren
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shemin Lu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Bordoni L, Kristensen AM, Sardella D, Kidmose H, Pohl L, Krag SRP, Schiessl IM. Longitudinal tracking of acute kidney injury reveals injury propagation along the nephron. Nat Commun 2023; 14:4407. [PMID: 37479698 PMCID: PMC10362041 DOI: 10.1038/s41467-023-40037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
Acute kidney injury (AKI) is an important risk factor for chronic kidney disease (CKD), but the underlying mechanisms of failed tubule repair and AKI-CKD transition are incompletely understood. In this study, we aimed for dynamic tracking of tubule injury and remodeling to understand if focal injury upon AKI may spread over time. Here, we present a model of AKI, in which we rendered only half of the kidney ischemic. Using serial intravital 2-photon microscopy and genetic identification of cycling cells, we tracked dynamic tissue remodeling in post- and non-ischemic kidney regions simultaneously and over 3 weeks. Spatial and temporal analysis of cycling cells relative to initial necrotic cell death demonstrated pronounced injury propagation and expansion into non-necrotic tissue regions, which predicted tubule atrophy with epithelial VCAM1 expression. In summary, our longitudinal analyses of tubule injury, remodeling, and fate provide important insights into AKI pathology.
Collapse
Affiliation(s)
- Luca Bordoni
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Donato Sardella
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hanne Kidmose
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
23
|
Mapuskar KA, Vasquez-Martinez G, Mayoral-Andrade G, Tomanek-Chalkley A, Zepeda-Orozco D, Allen BG. Mitochondrial Oxidative Metabolism: An Emerging Therapeutic Target to Improve CKD Outcomes. Biomedicines 2023; 11:1573. [PMID: 37371668 DOI: 10.3390/biomedicines11061573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) predisposes one toward end-stage renal disease (ESRD) and its associated morbidity and mortality. Significant metabolic perturbations in conjunction with alterations in redox status during CKD may induce increased production of reactive oxygen species (ROS), including superoxide (O2●-) and hydrogen peroxide (H2O2). Increased O2●- and H2O2 may contribute to the overall progression of renal injury as well as catalyze the onset of comorbidities. In this review, we discuss the role of mitochondrial oxidative metabolism in the pathology of CKD and the recent developments in treating CKD progression specifically targeted to the mitochondria. Recently published results from a Phase 2b clinical trial by our group as well as recently released data from a ROMAN: Phase 3 trial (NCT03689712) suggest avasopasem manganese (AVA) may protect kidneys from cisplatin-induced CKD. Several antioxidants are under investigation to protect normal tissues from cancer-therapy-associated injury. Although many of these antioxidants demonstrate efficacy in pre-clinical models, clinically relevant novel compounds that reduce the severity of AKI and delay the progression to CKD are needed to reduce the burden of kidney disease. In this review, we focus on the various metabolic pathways in the kidney, discuss the role of mitochondrial metabolism in kidney disease, and the general involvement of mitochondrial oxidative metabolism in CKD progression. Furthermore, we present up-to-date literature on utilizing targets of mitochondrial metabolism to delay the pathology of CKD in pre-clinical and clinical models. Finally, we discuss the current clinical trials that target the mitochondria that could potentially be instrumental in advancing the clinical exploration and prevention of CKD.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Gabriela Vasquez-Martinez
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Gabriel Mayoral-Andrade
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ann Tomanek-Chalkley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, College of Medicine, Columbus, OH 43210, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Gui Y, Palanza Z, Fu H, Zhou D. Acute kidney injury in diabetes mellitus: Epidemiology, diagnostic, and therapeutic concepts. FASEB J 2023; 37:e22884. [PMID: 36943403 PMCID: PMC10602403 DOI: 10.1096/fj.202201340rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Acute kidney injury (AKI) and diabetes mellitus (DM) are public health problems that cause a high socioeconomic burden worldwide. In recent years, the landscape of AKI etiology has shifted: Emerging evidence has demonstrated that DM is an independent risk factor for the onset of AKI, while an alternative perspective considers AKI as a bona fide complication of DM. Therefore, it is necessary to systematically characterize the features of AKI in DM. In this review, we summarized the epidemiology of AKI in DM. While focusing on circulation- and tissue-specific microenvironment changes after DM, we described the active cellular and molecular mechanisms of increased kidney susceptibility to AKI under DM stress. We also reviewed the current diagnostic and therapeutic strategies for AKI in DM recommended in the clinic. Updated recognition of the epidemiology, pathophysiology, diagnosis, and medications of AKI in DM is believed to reveal a path to mitigate the frequency of AKI and DM comorbidity that will ultimately improve the quality of life in DM patients.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
25
|
Zhao ZB, Marschner JA, Iwakura T, Li C, Motrapu M, Kuang M, Popper B, Linkermann A, Klocke J, Enghard P, Muto Y, Humphreys BD, Harris HE, Romagnani P, Anders HJ. Tubular Epithelial Cell HMGB1 Promotes AKI-CKD Transition by Sensitizing Cycling Tubular Cells to Oxidative Stress: A Rationale for Targeting HMGB1 during AKI Recovery. J Am Soc Nephrol 2023; 34:394-411. [PMID: 36857499 PMCID: PMC10103235 DOI: 10.1681/asn.0000000000000024] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 10/22/2022] [Indexed: 01/22/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.
Collapse
Affiliation(s)
- Zhi Bo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Julian A. Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Takamasa Iwakura
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Manga Motrapu
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, LMU München, Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Klocke
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri
| | - Helena Erlandsson Harris
- Departments of Rheumatology and of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paola Romagnani
- Department of Experimental and Biomedical Sciences "Mario Serio" and Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany
| |
Collapse
|
26
|
Guo C, Fan Y, Cheng J, Deng Y, Zhang X, Chen Y, Jing H, Li W, Liu P, Xie J, Ning W, Chen H, Zhou J. AFM negatively regulates the infiltration of monocytes to mediate sepsis-associated acute kidney injury. Front Immunol 2023; 14:1049536. [PMID: 36793712 PMCID: PMC9922996 DOI: 10.3389/fimmu.2023.1049536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis is organ dysfunction due to the host's deleterious response to infection, and the kidneys are one of the organs damaged in common sepsis. Sepsis-associated acute kidney injury (SA-AKI) increases the mortality in patients with sepsis. Although a substantial volume of research has improved the prevention and treatment of the disease, SA-SKI is still a significant clinical concern. Purpose Aimed to use weighted gene co-expression network analysis (WGCNA) and immunoinfiltration analysis to study SA-AKI-related diagnostic markers and potential therapeutic targets. Methods Immunoinfiltration analysis was performed on SA-AKI expression datasets from the Gene Expression Synthesis (GEO) database. A weighted gene co-expression network analysis (WGCNA) analysis was performed on immune invasion scores as trait data, and modules associated with immune cells of interest were identified as hub modules. Screening hub geneset in the hub module using protein-protein interaction (PPI) network analysis. The hub gene was identified as a target by intersecting with significantly different genes screened by differential expression analysis and validated using two external datasets. Finally, the correlation between the target gene, SA-AKI, and immune cells was verified experimentally. Results Green modules associated with monocytes were identified using WGCNA and immune infiltration analysis. Differential expression analysis and PPI network analysis identified two hub genes (AFM and GSTA1). Further validation using additional AKI datasets GSE30718 and GSE44925 showed that AFM was significantly downregulated in AKI samples and correlated with the development of AKI. The correlation analysis of hub genes and immune cells showed that AFM was significantly associated with monocyte infiltration and hence, selected as a critical gene. In addition, Gene single-enrichment analysis (GSEA) and PPI analyses results showed that AFM was significantly related to the occurrence and development of SA-AKI. Conclusions AFM is inversely correlated with the recruitment of monocytes and the release of various inflammatory factors in the kidneys of AKI. AFM can be a potential biomarker and therapeutic target for monocyte infiltration in sepsis-related AKI.
Collapse
Affiliation(s)
- Caiyun Guo
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People's Hospital of Kashgar, Xinjiang, China,Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Jiurong Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yingdong Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiangsheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjun Ning
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Jun Zhou,
| |
Collapse
|
27
|
Tan RZ, Li JC, Zhu BW, Huang XR, Wang HL, Jia J, Zhong X, Liu J, Wang L, Lan HY. Neuropeptide Y protects kidney from acute kidney injury by inactivating M1 macrophages via the Y1R-NF-κB-Mincle-dependent mechanism. Int J Biol Sci 2023; 19:521-536. [PMID: 36632461 PMCID: PMC9830509 DOI: 10.7150/ijbs.80200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Neuropeptide Y (NPY) is produced by the nerve system and may contribute to the progression of CKD. The present study found the new protective role for NPY in AKI in both patients and animal models. Interestingly, NPY was constitutively expressed in blood and resident kidney macrophages by co-expressing NPY and CD68+ markers, which was lost in patients and mice with AKI-induced by cisplatin. Unexpectedly, NPY was renoprotective in AKI as mice lacking NPY developed worse renal necroinflammation and renal dysfunction in cisplatin and ischemic-induced AKI. Importantly, NPY was also a therapeutic agent for AKI because treatment with exogenous NPY dose-dependently inhibited cisplatin-induced AKI. Mechanistically, NPY protected kidney from AKI by inactivating M1 macrophages via the Y1R-NF-κB-Mincle-dependent mechanism as deleting or silencing NPY decreased Y1R but increased NF-κB-Mincle-mediated M1macrophage activation and renal necroinflammation, which were reversed by addition of NPY or by silencing Mincle but promoted by blocking Y1R with BIBP 3226. Thus, NPY is renoprotective and may be a novel therapeutic agent for AKI. NPY may act via Y1R to protect kidney from AKI by blocking NF-κB-Mincle-mediated M1 macrophage activation and renal necroinflammation.
Collapse
Affiliation(s)
- Rui-zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Jian-chun Li
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Bing-wen Zhu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, 510080, China
| | - Hong-lian Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian Liu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China.,✉ Corresponding authors: Hui Yao Lan, Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China, E-mail: ; and Li Wang, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China, E-mail:
| | - Hui-yao Lan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, 510080, China.,✉ Corresponding authors: Hui Yao Lan, Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China, E-mail: ; and Li Wang, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China, E-mail:
| |
Collapse
|
28
|
Torrico S, Hotter G, Játiva S. Development of Cell Therapies for Renal Disease and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms232415943. [PMID: 36555585 PMCID: PMC9783572 DOI: 10.3390/ijms232415943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of renal disease is gradually increasing worldwide, and this condition has become a major public health problem because it is a trigger for many other chronic diseases. Cell therapies using multipotent mesenchymal stromal cells, hematopoietic stem cells, macrophages, and other cell types have been used to induce regeneration and provide a cure for acute and chronic kidney disease in experimental models. This review describes the advances in cell therapy protocols applied to acute and chronic kidney injuries and the attempts to apply these treatments in a clinical setting.
Collapse
Affiliation(s)
- Selene Torrico
- M2rlab-XCELL, 28010 Madrid, Spain
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 50018 Zaragoza, Spain
- Correspondence: (G.H.); (S.J.)
| | - Soraya Játiva
- M2rlab-XCELL, 28010 Madrid, Spain
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- Correspondence: (G.H.); (S.J.)
| |
Collapse
|
29
|
Czopek A, Moorhouse R, Gallacher PJ, Pugh D, Ivy JR, Farrah TE, Godden E, Hunter RW, Webb DJ, Tharaux PL, Kluth DC, Dear JW, Bailey MA, Dhaun N. Endothelin blockade prevents the long-term cardiovascular and renal sequelae of acute kidney injury in mice. Sci Transl Med 2022; 14:eabf5074. [PMID: 36516266 DOI: 10.1126/scitranslmed.abf5074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is common and associated with increased risks of cardiovascular and chronic kidney disease. Causative molecular/physiological pathways are poorly defined. There are no therapies to improve long-term outcomes. An activated endothelin system promotes cardiovascular and kidney disease progression. We hypothesized a causal role for this in the transition of AKI to chronic disease. Plasma endothelin-1 was threefold higher; urine endothelin-1 was twofold higher; and kidney preproendothelin-1, endothelin-A, and endothelin-B receptor message up-regulated in patients with AKI. To show causality, AKI was induced in mice by prolonged ischemia with a 4-week follow-up. Ischemic injury resulted in hypertension, endothelium-dependent and endothelium-independent macrovascular and microvascular dysfunction, and an increase in circulating inflammatory Ly6Chigh monocytes. In the kidney, we observed fibrosis, microvascular rarefaction, and inflammation. Administration of endothelin-A antagonist, but not dual endothelin-A/B antagonist, normalized blood pressure, improved macrovascular and microvascular function, and prevented the transition of AKI to CKD. Endothelin-A blockade reduced circulating and renal proinflammatory Ly6Chigh monocytes and B cells, and promoted recruitment of anti-inflammatory Ly6Clow monocytes to the kidney. Blood pressure reduction alone provided no benefits; blood pressure reduction alongside blockade of the endothelin system was as effective as endothelin-A antagonism in mitigating the long-term sequelae of AKI in mice. Our studies suggest up-regulation of the endothelin system in patients with AKI and show in mice that existing drugs that block the endothelin system, particularly those coupling vascular support and anti-inflammatory action, can prevent the transition of AKI to chronic kidney and cardiovascular disease.
Collapse
Affiliation(s)
- Alicja Czopek
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Rebecca Moorhouse
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Peter J Gallacher
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Dan Pugh
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Jessica R Ivy
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Tariq E Farrah
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Emily Godden
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert W Hunter
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - David J Webb
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France
| | - David C Kluth
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - James W Dear
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre of Research Excellence, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Department of Renal Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK.,Paris Cardiovascular Research Centre (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France
| |
Collapse
|
30
|
Fu J, Sun Z, Wang X, Zhang T, Yuan W, Salem F, Yu SMW, Zhang W, Lee K, He JC. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int 2022; 102:1291-1304. [PMID: 36108806 PMCID: PMC9691617 DOI: 10.1016/j.kint.2022.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
The pathogenesis of diabetic kidney disease (DKD) involves multifactorial processes that converge to initiate and advance the disease. Although DKD is not typically classified as an inflammatory glomerular disease, mounting evidence supports the involvement of kidney inflammation as a key contributor in DKD pathogenesis, particularly through macrophages. However, detailed identification and corresponding phenotypic changes of macrophages in DKD remain poorly understood. To capture the gene expression changes in specific macrophage cell subsets in early DKD, we performed single-cell transcriptomic analysis of CD45-enriched kidney immune cells from type 1 diabetic OVE26 mice at two time points during the disease development. We also undertook a focused analysis of mononuclear phagocytes (macrophages and dendritic cells). Our results show increased resident and infiltrating macrophage subsets in the kidneys of mice with diabetes over time, with heightened expression of pro-inflammatory or anti-inflammatory genes in a subset-specific manner. Further analysis of macrophage polarization states in each subset in the kidneys showed changes consistent with the continuum of activation and differentiation states, with gene expression tending to shift toward undifferentiated phenotypes but with increased M1-like inflammatory phenotypes over time. By deconvolution analysis of RNAseq samples and by immunostaining of biopsies from patients with DKD, we further confirmed a differential expression of select genes in specific macrophage subsets essentially recapitulating the studies in mice. Thus, our study provides a comprehensive analysis of macrophage transcriptomic profiles in early DKD that underscores the dynamic macrophage phenotypes in disease progression.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xuan Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Department of Medicine, Shanghai First People Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Weijie Yuan
- Division of Nephrology, Department of Medicine, Shanghai First People Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel Mon-Wei Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J Peters VA Medical Center at Bronx, Bronx, New York, USA.
| |
Collapse
|
31
|
Yu Y, Li X, Han S, Zhang J, Wang J, Chai J. miR-181c, a potential mediator for acute kidney injury in a burn rat model with following sepsis. Eur J Trauma Emerg Surg 2022; 49:1035-1045. [PMID: 36227355 DOI: 10.1007/s00068-022-02124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND The miRNA profile is changed after burn or sepsis and is involved in regulating inflammatory reactions. However, the function and molecular mechanism of miRNAs in regulating burn sepsis-induced acute kidney injury (AKI) are still unclear. METHODS In this study, animal and cell sepsis models were established after burned rats were injected with lipopolysaccharide (LPS) or NRK-52E cells treated with LPS, respectively. Cytokine expression, inflammatory cell infiltration, serum creatinine (Scr) and kidney injury molecule-1 (KIM-1) levels were analysed after the indicated treatments. RESULTS Burn sepsis increased the expression of inflammatory factors (TNF-α and IL-1β) and chemokines (MIP-1α, MIP-2 and MCP-1). Moreover, burn sepsis promoted macrophage and neutrophil infiltration into the kidney and upregulated the levels of Scr and KIM-1 in the kidney and urine. Ectopic expression of miR-181c significantly reduced LPS-induced TLR4 protein expression, suppressed KIM-1 mRNA levels and subsequently inhibited the activation of inflammatory genes (TNF-α and IL-1β) and chemokine genes (MIP-1α, MIP-2 and MCP-1). CONCLUSIONS Our results demonstrated that miR-181c could suppress TLR4 expression, reduce inflammatory factor and chemokine secretion, mitigate inflammatory cell infiltration into the kidney and downregulate KIM-1 expression, which might ultimately attenuate burn sepsis-induced AKI.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiao Li
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shaofang Han
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiake Chai
- The Fourth Medical Center of PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
32
|
Wang F, Otsuka T, Adelnia F, Takahashi K, Delgado R, Harkins KD, Zu Z, de Caestecker MP, Harris RC, Gore JC, Takahashi T. Multiparametric magnetic resonance imaging in diagnosis of long-term renal atrophy and fibrosis after ischemia reperfusion induced acute kidney injury in mice. NMR IN BIOMEDICINE 2022; 35:e4786. [PMID: 35704387 PMCID: PMC10805124 DOI: 10.1002/nbm.4786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, whileR 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , andR 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated.R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because onlyR 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.
Collapse
Affiliation(s)
- Feng Wang
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tadashi Otsuka
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
| | - Fatemeh Adelnia
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mark P. de Caestecker
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology and Radiological Sciences,
Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Engineering, Vanderbilt
University, Nashville, TN 37232
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt
University Medical Center, Nashville, TN 37232
- Vanderbilt O’Brien Kidney Research Center,
Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
33
|
Srivastava A, Tomar B, Sharma P, Kumari S, Prakash S, Rath SK, Kulkarni OP, Gupta SK, Mulay SR. RIPK3-MLKL signaling activates mitochondrial CaMKII and drives intrarenal extracellular matrix production during CKD. Matrix Biol 2022; 112:72-89. [PMID: 35964866 DOI: 10.1016/j.matbio.2022.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
Abstract
Intrarenal extracellular matrix production is a prevalent feature of all forms of chronic kidney disease (CKD). The transforming growth factor-beta (TGFβ) is believed to be a major driver of extracellular matrix production. Nevertheless, anti-TGFβ therapies have consistently failed to reduce extracellular matrix production in CKD patients indicating the need for novel therapeutic strategies. We have previously shown that necroinflammation contributes to acute kidney injury. Here, we show that chronic/persistent necroinflammation drives intrarenal extracellular matrix production during CKD. We found that renal expression of receptor-interacting protein kinase-1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) increases with the expansion of intrarenal extracellular matrix production and declined kidney function in both humans and mice. Furthermore, we found that TGFβ exposure induces the translocation of RIPK3 and MLKL to mitochondria resulting in mitochondrial dysfunction and ROS production. Mitochondrial ROS activates the serine-threonine kinase calcium/calmodulin-dependent protein kinases-II (CaMKII) that increases phosphorylation of Smad2/3 and subsequent production of alpha-smooth muscle actin (αSMA), collagen (Col) 1α1, etc. in response to TGFβ during the intrarenal extracellular matrix production. Consistent with this, deficiency or knockdown of RIPK3 or MLKL as well as pharmacological inhibition of RIPK1, RIPK3, and CaMKII prevents the intrarenal extracellular matrix production in oxalate-induced CKD and unilateral ureteral obstruction (UUO). Together, RIPK1, RIPK3, MLKL, CaMKII, and Smad2/3 are molecular targets to inhibit intrarenal extracellular matrix production and preserve kidney function during CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, 500078, India
| | - Sunaina Kumari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shakti Prakash
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, 500078, India
| | - Shashi Kumar Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
34
|
Gadde S, Kalluru R, Cherukuri SP, Chikatimalla R, Dasaradhan T, Koneti J. Atrial Fibrillation in Chronic Kidney Disease: An Overview. Cureus 2022; 14:e27753. [PMID: 36106212 PMCID: PMC9445413 DOI: 10.7759/cureus.27753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a condition that can be caused due to any etiology leading to structural damage to the kidney, which can be measured by a decrease in estimated glomerular filtration rate (eGFR) and the presence of damage biomarkers for more than three months. This article has discussed the causal relationship between atrial fibrillation (AF) and CKD, a few of them being inflammation, renin-angiotensin-aldosterone system (RAAS) activation, anemia, and uremia associated with CKD. This review mentioned the clinical impact of the presence of AF in CKD patients. The presence of AF in CKD patients aggravates the renal dysfunction, which in turn adds to the generation of AF. This article explores the various pharmacological and interventional treatment modalities, including antiarrhythmics, anticoagulants, and cardiac ablation, and their complications, leading to restricted usage in CKD patients.
Collapse
|
35
|
Xie X, Yang X, Wu J, Tang S, Yang L, Fei X, Wang M. Exosome from indoleamine 2,3-dioxygenase-overexpressing bone marrow mesenchymal stem cells accelerates repair process of ischemia/reperfusion-induced acute kidney injury by regulating macrophages polarization. Stem Cell Res Ther 2022; 13:367. [PMID: 35902956 PMCID: PMC9331485 DOI: 10.1186/s13287-022-03075-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) can repair itself completely. However, most moderate and severe patients undergoing IRI-AKI progress to chronic kidney disease due to incomplete repair. The present study is aimed to investigate the role of bone marrow mesenchymal stem cell-derived exosomes (MSC-Exo) with indoleamine 2,3-dioxygenase (IDO) overexpression on incomplete repair in mice after IRI. METHODS IRI mice was established by clamping the unilateral renal pedicles and challenged with MSC-Exo. Blood biochemical indexes and inflammation factors contents were measured by ELISA assay. Histopathological examinations were monitored by HE, Masson, Immunohistochemical and TUNEL staining. Immunofluorescence, flow cytometry and immunoblotting were used to detect the polarization of macrophages, respectively. RESULTS As compared to sham operation mice, IRI mice showed high contents of serum BUN and Scr, and more severe damaged kidney tissues on days 1 and 3, which all gradually declined over time, showing the lowest level on day 7 after injury. Once treated with MSCs-Exo that could directly transfer to kidney tubular cells, the restoration of kidney functions significantly accelerated by contrast to IRI mice, and the promotive effects were more obvious in IDO-overexpressed MSCs-Exo (MSCs-Exo-IDO)-treated IRI mice. Furthermore, MSCs-Exo-IDO administration also accelerated renal tubular cells proliferation, restrained tubular cells apoptosis, fibrosis and inflammation factor secretions during self-repair process compared to IRI mice, whose effects were higher than MSCs-Exo-NC-challenged IRI mice and IDO overexpressing plasmid-injected IRI mice. Mechanistically, MSCs-Exo-NC and MSCs-Exo-IDO exposure promoted the polarization from M1 macrophage to M2 macrophage, leading to more anti-inflammatory factors production, and subsequently altered the inflammatory microenvironment of renal tubular cells, which facilitated the self-repair process in mice after IRI. CONCLUSION MSCs-derived exosome accelerated renal self-repair in IRI mice by activating M2 macrophages polarization, which effects were amplified by IDO overexpression in MSCs. Potentially, genetically modified MSCs-Exo is an effective approach to improve renal self-repair in IRI-AKI mice.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiu Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Junxia Wu
- Department of Nephrology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shengjie Tang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - LiLi Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiao Fei
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
36
|
Chen H, Liu N, Zhuang S. Macrophages in Renal Injury, Repair, Fibrosis Following Acute Kidney Injury and Targeted Therapy. Front Immunol 2022; 13:934299. [PMID: 35911736 PMCID: PMC9326079 DOI: 10.3389/fimmu.2022.934299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a renal disease with a high incidence and mortality. Currently, there are no targeted therapeutics for preventing and treating AKI. Macrophages, important players in mammalian immune response, are involved in the multiple pathological processes of AKI. They are dynamically activated and exhibit a diverse spectrum of functional phenotypes in the kidney after AKI. Targeting the mechanisms of macrophage activation significantly improves the outcomes of AKI in preclinical studies. In this review, we summarize the role of macrophages and the underlying mechanisms of macrophage activation during kidney injury, repair, regeneration, and fibrosis and provide strategies for macrophage-targeted therapies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
37
|
Goto H, Nakashima M, Nakashima H, Noguchi M, Imakiire T, Oshima N, Kinoshita M, Kumagai H. Heat acclimation ameliorated heat stress-induced acute kidney injury and prevented changes in kidney macrophages and fibrosis. Am J Physiol Renal Physiol 2022; 323:F243-F254. [PMID: 35796461 PMCID: PMC9394728 DOI: 10.1152/ajprenal.00065.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heatstroke can cause acute kidney injury (AKI), which reportedly progresses to chronic kidney disease. Kidney macrophages may be involved in such injury. Although heat acclimation (HA) provides thermal resilience, its renoprotective effect and mechanism remain unclear. To investigate heat stress-induced kidney injuries in mice and the mitigating effect of HA on them, male C57/BL6J mice were exposed to heat stress (40℃, 1 h), with or without 5-day HA (38℃, 3 h/day) prior to heat stress. Heat stress damaged kidney proximal tubules with elevation of urinary kidney injury molecule-1 (KIM-1). Kidney fibrosis was observed on day 7 and correlated with the urinary KIM-1 levels on day 3. Kidney resident macrophages decreased on day 1, whereas the number of infiltrating macrophages in the kidney did not change. Both subsets of macrophages polarized to the pro-inflammatory M1 phenotype on day 1; however, they polarized to the anti-inflammatory M2 phenotype on day 7. HA significantly ameliorated heat stress-induced proximal tubular damage and kidney fibrosis. HA substantially increased heat shock protein 70 (Hsp70) expression in the tubules before heat stress and reduced an elevation of cleaved caspase-3 expression after heat stress. HA also induced the Hsp70 expression of resident macrophages and prevented heat stress-induced changes in both subsets of kidney macrophages. These results provide pathophysiological data supporting the renoprotective effect of HA. Further studies are needed to confirm that HA can prevent kidney damage due to heat stress in humans.
Collapse
Affiliation(s)
- Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Midori Noguchi
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
38
|
Deng J, Wu Z, He Y, Lin L, Tan W, Yang J. Interaction Between Intrinsic Renal Cells and Immune Cells in the Progression of Acute Kidney Injury. Front Med (Lausanne) 2022; 9:954574. [PMID: 35872775 PMCID: PMC9300888 DOI: 10.3389/fmed.2022.954574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
A growing number of studies have confirmed that immune cells play various key roles in the pathophysiology of acute kidney injury (AKI) development. After the resident immune cells and intrinsic renal cells are damaged by ischemia and hypoxia, drugs and toxins, more immune cells will be recruited to infiltrate through the release of chemokines, while the intrinsic cells promote macrophage polarity conversion, and the immune cells will promote various programmed deaths, phenotypic conversion and cycle arrest of the intrinsic cells, ultimately leading to renal impairment and fibrosis. In the complex and dynamic immune microenvironment of AKI, the bidirectional interaction between immune cells and intrinsic renal cells affects the prognosis of the kidney and the progression of fibrosis, and determines the ultimate fate of the kidney.
Collapse
Affiliation(s)
- Junhui Deng
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun He
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Lirong Lin
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang ;
| |
Collapse
|
39
|
Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 2022; 131:155194. [PMID: 35346693 DOI: 10.1016/j.metabol.2022.155194] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a global public health concern associated with high morbidity and mortality. Although advances in medical management have improved the in-hospital mortality of severe AKI patients, the renal prognosis for AKI patients in the later period is not encouraging. Recent epidemiological investigations have indicated that AKI significantly increases the risk for the development of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in the future, further contributing to the economic burden on health care systems. The transition of AKI to CKD is complex and often involves multiple mechanisms. Recent studies have suggested that renal tubular epithelial cells (TECs) are more prone to metabolic reprogramming during AKI, in which the metabolic process in the TECs shifts from fatty acid β-oxidation (FAO) to glycolysis due to hypoxia, mitochondrial dysfunction, and disordered nutrient-sensing pathways. This change is a double-edged role. On the one hand, enhanced glycolysis acts as a compensation pathway for ATP production; on the other hand, long-term shut down of FAO and enhanced glycolysis lead to inflammation, lipid accumulation, and fibrosis, contributing to the transition of AKI to CKD. This review discusses developments and therapies focused on the metabolic reprogramming of TECs during AKI, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
40
|
Sahu RK, Xavier S, Chauss D, Wang L, Chew C, Taylor R, Stallcup WB, Ma JZ, Kazemian M, Afzali B, Köhl J, Portilla D. Folic acid-mediated fibrosis is driven by C5a receptor 1-mediated activation of kidney myeloid cells. Am J Physiol Renal Physiol 2022; 322:F597-F610. [PMID: 35379003 PMCID: PMC9054266 DOI: 10.1152/ajprenal.00404.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that increased expression and activation of kidney cell complement components play an important role in the pathogenesis of renal scarring. Here, we used floxed green fluorescent protein (GFP)-C5a receptor 1 (C5aR1) knockin mice (GFP-C5ar1fl/fl) and the model of folic acid (FA)-induced kidney injury to define the cell types and potential mechanisms by which increased C5aR1 activation leads to fibrosis. Using flow cytometry and confocal microscopy, we identified macrophages as the major interstitial cell type showing increased expression of C5aR1 in FA-treated mice. C5ar1fl/fl.Lyz2Cre+/- mice, in which C5aR1 has been specifically deleted in lysozyme M-expressing myeloid cells, experienced reduced fibrosis compared with control C5ar1fl/fl mice. Examination of C5aR1-expressing macrophage transcriptomes by gene set enrichment analysis demonstrated that these cells were enriched in pathways corresponding to the complement cascade, collagen formation, and the NABA matrisome, strongly pointing to their critical roles in tissue repair/scarring. Since C5aR1 was also detected in a small population of platelet-derived growth factor receptor-β+ GFP+ cells, we developed C5ar1fl/fl.Foxd1Cre+/- mice, in which C5aR1 is deleted specifically in pericytes, and found reduced FA-induced fibrosis. Primary cell cultures of platelet-derived growth factor receptor-β+ pericytes isolated from FA-treated C5ar1fl/fl.Foxd1Cre+/- mice showed reduced secretion of several cytokines, including IL-6 and macrophage inflammatory protein-2, compared with pericytes isolated from FA-treated control GFP-C5ar1fl/fl mice. Collectively, these data imply that C5a/C5aR1 axis activation primarily in interstitial cells contributes to the development of renal fibrosis.NEW & NOTEWORTHY This study used novel green fluorescent protein C5a receptor 1 floxed mice and the model of folic acid-mediated kidney fibrosis to demonstrate the pathogenic role of increased expression of this complement receptor on macrophages.
Collapse
Affiliation(s)
- Ranjit K Sahu
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Sandhya Xavier
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana
| | - Claude Chew
- Flow Cytometry Core, University of Virginia, Charlottesville, Virginia
| | - Ronald Taylor
- Department of Biochemistry, University of Virginia, Charlottesville, Virginia
| | - William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Tumor Microenvironment and Cancer Immunology Program, La Jolla, California
| | - Jennie Z Ma
- Division of Biostatistics, Department of Public Health, University of Virginia, Charlottesville, Virginia
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Didier Portilla
- Department of Medicine and Center for Immunity and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
41
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
42
|
Zoubiri H, Tahar A, AitAbderrhmane S, Saidani M, Koceir EA. Oral Cholecalciferol Supplementation in Sahara Black People with Chronic Kidney Disease Modulates Cytokine Storm, Oxidative Stress Damage and Athero-Thromboembolic Risk. Nutrients 2022; 14:nu14112285. [PMID: 35684085 PMCID: PMC9182799 DOI: 10.3390/nu14112285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 25-hydroxyvitamin D3 (25OHD3) deficiency in chronic kidney disease (CKD) is associated with immune system dysfunction (pro-inflammatory cytokines storm) through macrophages renal infiltration, oxidative stress (OxS) damage and athero-thromboembolic risk. Conversely, cholecalciferol supplementation (25OHD-S) prevents kidney fibrosis by inhibition of vascular calcification and nephrotic apoptosis (nephrons reduction). The objective of this study was to investigate the pleiotropic effects of 25OHD-S on immunomodulation, antioxidant status and in protecting against thromboembolic events in deficiency CKD Black and White individuals living in the Southern Sahara (SS). The oral 25OHD-S was evaluated in 60,000 IU/month/36 weeks versus in 2000 IU/day/24 weeks in Black (n = 156) and White (n = 150). Total serum vitamin D was determined by liquid chromatography-tandem mass spectrometry. All biomarkers of pro-inflammatory cytokines (PIC) were assessed by ELISA tests. OxS markers were assessed by Randox kits. Homocysteine and lipoproteine (a) were evaluated by biochemical methods as biomarkers of atherothromboembolic risk. All statistical analyses were performed with Student’s t-test and one-way ANOVA. The Pearson test was used to calculate the correlation coefficient. The means will be significantly different at a level of p value < 0.05. Multiple logistic regressions were performed using Epi-info and Statview software. Vitamin D deficiency alters the PIC profile, OxS damage and atherothrombogenic biomarkers in both SS groups in the same manner; however, these disorders are more acute in Black compared to White SS individuals. The results showed that the serum 25OHD3 concentrations became normal (>75 nmol/L or >30 ng/mL) in the two groups. We have shown that the dose and duration of 25OHD-S treatment are not similar in Black SS residents compared to White SS subjects, whilst the same inhabit the south Sahara environment. It appears that a high dose intermittent over a long period (D60: 36 weeks) was more efficient in Black people; while a lower dose for a short time is sufficient (D2: 24 weeks) in their White counterparts. The oral 25OHD-S attenuates PIC overproduction and OxS damage, but does not reduce athero-thromboembolic risk, particularly in Black SS residents.
Collapse
Affiliation(s)
- Houda Zoubiri
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Biology and Physiology Laboratory, Ecole Nationale Supérieure de Kouba, Algiers 16308, Algeria
| | - Amina Tahar
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
| | | | - Messaoud Saidani
- Clinical Nephrology Exploration Dialysis and Kidney Transplantation Unit, University Hospital Center of Beni Messous, Algiers 16014, Algeria;
| | - Elhadj-Ahmed Koceir
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Correspondence: ; Tel.: +213-6-66-74-27-70; Fax: +213-(0)21-24-72-17
| |
Collapse
|
43
|
Driving role of macrophages in transition from acute kidney injury to chronic kidney disease. Chin Med J (Engl) 2022; 135:757-766. [PMID: 35671177 PMCID: PMC9276339 DOI: 10.1097/cm9.0000000000002100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-based therapy for preventing AKI-to-CKD transition is also discussed.
Collapse
|
44
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving HR. A systematic review and meta-analyses of interleukin-1 receptor associated kinase 3 (IRAK3) action on inflammation in in vivo models for the study of sepsis. PLoS One 2022; 17:e0263968. [PMID: 35167625 PMCID: PMC8846508 DOI: 10.1371/journal.pone.0263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. Methods This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. Results The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. Conclusions A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Collapse
Affiliation(s)
- Trang H. Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| |
Collapse
|
45
|
Molecular Mechanisms of Kidney Injury and Repair. Int J Mol Sci 2022; 23:ijms23031542. [PMID: 35163470 PMCID: PMC8835923 DOI: 10.3390/ijms23031542] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) will become the fifth global cause of death by 2040, thus emphasizing the need to better understand the molecular mechanisms of damage and regeneration in the kidney. CKD predisposes to acute kidney injury (AKI) which, in turn, promotes CKD progression. This implies that CKD or the AKI-to-CKD transition are associated with dysfunctional kidney repair mechanisms. Current therapeutic options slow CKD progression but fail to treat or accelerate recovery from AKI and are unable to promote kidney regeneration. Unraveling the cellular and molecular mechanisms involved in kidney injury and repair, including the failure of this process, may provide novel biomarkers and therapeutic tools. We now review the contribution of different molecular and cellular events to the AKI-to-CKD transition, focusing on the role of macrophages in kidney injury, the different forms of regulated cell death and necroinflammation, cellular senescence and the senescence-associated secretory phenotype (SAPS), polyploidization, and podocyte injury and activation of parietal epithelial cells. Next, we discuss key contributors to repair of kidney injury and opportunities for their therapeutic manipulation, with a focus on resident renal progenitor cells, stem cells and their reparative secretome, certain macrophage subphenotypes within the M2 phenotype and senescent cell clearance.
Collapse
|
46
|
Zhang B, Xue Y, Zhao J, Jiang H, Zhu J, Yin H, Qiu Y, Hu A, Xu L, Song Y, Wang X. Shionone Attenuates Sepsis-Induced Acute Kidney Injury by Regulating Macrophage Polarization via the ECM1/STAT5 Pathway. Front Med (Lausanne) 2022; 8:796743. [PMID: 35141243 PMCID: PMC8818860 DOI: 10.3389/fmed.2021.796743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Backgrounds To date, there are no specific drugs approved for the treatment of sepsis associated acute kidney injury (AKI). Shionone is a natural component with anti-inflammatory activity. In this study, we sought to determine the functional role of Shionone in sepsis-induced AKI. Methods Animal models of AKI were constructed by cecum ligation and puncture (CLP) surgery. C57BL/6 mice were randomly assigned to the Sham, CLP, 10 mg/kg DXM, 50 mg/kg Shionone and 100 mg/kg Shionone groups. RAW264.7 treated with lipopolysaccharides (LPS) was used as an in vitro sepsis model and cells were divided into control, LPS, 1 μg/mL Shionone and 2 μg/mL Shionone groups. The pathological status was assessed by Hematoxylin-Eosin (HE) staining assay, protein expressions were detected by immunofluorescence staining and Western blot, macrophage typing was detected by flow, and the levels of pro-inflammatory factors (IL-6, IL-12, IL-1β, TNF-α) and anti-inflammatory factors (IL-10 and TGF-β) were measured using the corresponding kits. Results ECM1 is highly expressed in tissue-infiltrating macrophages under inflammatory conditions. It has been observed that Shionone inhibits the expression of ECM1 and attenuates sepsis-induced injury in kidney and inflammatory factor levels in serum. In addition, Shionone may reduce inflammatory factor levels through the promotion of M2 macrophages by GM-CSF/STAT5/Arg1 pathway to alleviate sepsis induced inflammation in vitro. Conclusion These findings demonstrate that Shionone can alleviate sepsis-induced AKI by promoting M2 macrophage polarization through regulating the ECM1/STAT5 pathway.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Xue
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Jin Zhao
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Huojun Jiang
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Jiaoli Zhu
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Hao Yin
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional and Western Medicine, Suzhou, China
| | - Yizhen Qiu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Aihao Hu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Lingqi Xu
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Song
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
- Yi Song
| | - Xin Wang
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional and Western Medicine, Suzhou, China
- *Correspondence: Xin Wang
| |
Collapse
|
47
|
Ribeiro A, Dobosz E, Krill M, Köhler P, Wadowska M, Steiger S, Schmaderer C, Koziel J, Lech M. Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Cells 2022; 11:cells11030397. [PMID: 35159206 PMCID: PMC8834155 DOI: 10.3390/cells11030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Sterile inflammation either resolves the initial insult or leads to tissue damage. Kidney ischemia/reperfusion injury (IRI) is associated with neutrophilic infiltration, enhanced production of inflammatory mediators, accumulation of necrotic cells and tissue remodeling. Macrophage-dependent microenvironmental changes orchestrate many features of the immune response and tissue regeneration. The activation status of macrophages is influenced by extracellular signals, the duration and intensity of the stimulation, as well as various regulatory molecules. The role of macrophage-derived monocyte chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, in kidney ischemia-reperfusion injury (IRI) and recovery from sterile inflammation remains unresolved. In this study, we showed that macrophage-specific Mcpip1 deletion significantly affects the kidney phenotype. Macrophage-specific Mcpip1 transgenic mice displayed enhanced inflammation and loss of the tubular compartment upon IRI. We showed that MCPIP1 modulates sterile inflammation by negative regulation of Irf4 expression and accumulation of IRF4+ cells in the tissue and, consequently, suppresses the post-ischemic kidney immune response. Thus, we identified MCPIP1 as an important molecular sentinel of immune homeostasis in experimental acute kidney injury (AKI) and renal fibrosis.
Collapse
Affiliation(s)
- Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Moritz Krill
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Paulina Köhler
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Stefanie Steiger
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Correspondence:
| |
Collapse
|
48
|
Yang F, Chen J, Huang XR, Yiu WH, Yu X, Tang SCW, Lan HY. Regulatory role and mechanisms of myeloid TLR4 in anti-GBM glomerulonephritis. Cell Mol Life Sci 2021; 78:6721-6734. [PMID: 34568976 PMCID: PMC8558180 DOI: 10.1007/s00018-021-03936-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
Myeloid cells and TLR4 play a critical role in acute kidney injury. This study investigated the regulatory role and mechanisms of myeloid TLR4 in experimental anti-glomerular basement membrane (GBM) glomerulonephritis (GN). Anti-GBM GN was induced in tlr4flox/flox and tlr4flox/flox−lysM−cre mice by intravenous injection of the sheep anti-mouse GBM antibody. Compared to control mice, conditional disruption of tlr4 from myeloid cells, largely macrophages (> 85%), suppressed glomerular crescent formation and attenuated progressive renal injury by lowering serum creatinine and 24-h urine protein excretion while improving creatinine clearance. Mechanistically, deletion of myeloid tlr4 markedly inhibited renal infiltration of macrophages and T cells and resulted in a shift of infiltrating macrophages from F4/80+iNOS+ M1 to F4/80+CD206+ M2 phenotype and inhibited the upregulation of renal proinflammatory cytokines IL-1β and MCP-1. Importantly, deletion of myeloid tlr4 suppressed T cell-mediated immune injury by shifting Th1 (CD4+IFNγ+) and Th17 (CD4+IL-17a+) to Treg (CD4+CD25+FoxP3+) immune responses. Transcriptome analysis also revealed that disrupted myeloid TLR4 largely downregulated genes involving immune and cytokine-related pathways. Thus, myeloid TLR4 plays a pivotal role in anti-GBM GN by immunological switching from M1 to M2 and from Th1/Th17 to Treg and targeting myeloid TLR4 may be a novel therapeutic strategy for immune-mediated kidney diseases.
Collapse
Affiliation(s)
- Fuye Yang
- Department of Nephrology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, People's Republic of China
| | - Jiaoyi Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, People's Republic of China
| | - Xiao Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, People's Republic of China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080, People's Republic of China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, 510080, People's Republic of China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, People's Republic of China. .,The CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
49
|
Xu L. The Role of Myeloid Cells in Acute Kidney Injury and Kidney Repair. KIDNEY360 2021; 2:1852-1864. [PMID: 35372990 PMCID: PMC8785849 DOI: 10.34067/kid.0000672021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/17/2021] [Indexed: 02/04/2023]
Abstract
AKI remains highly prevalent, yet no optimal therapy is available to prevent it or promote recovery after initial insult. Experimental studies have demonstrated that both innate and adaptive immune responses play a central role during AKI. In response to injury, myeloid cells are first recruited and activated on the basis of specific signals from the damaged microenvironment. The subsequent recruitment and activation state of the immune cells depends on the stage of injury and recovery, reflecting a dynamic and diverse spectrum of immunophenotypes. In this review, we highlight our current understanding of the mechanisms by which myeloid cells contribute to injury, repair, and fibrosis after AKI.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
50
|
Chade AR, Engel JE, Hall ME, Eirin A, Bidwell GL. Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis. Am J Physiol Renal Physiol 2021; 321:F411-F423. [PMID: 34396789 DOI: 10.1152/ajprenal.00158.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a high cardiovascular mortality. CKD and heart failure (HF) coexist in up to 50% of patients, and both associate with inflammation. We aimed to define the cardiac phenotype of a novel swine model of CKD and test the hypothesis that inflammation of renal origin propels the development of precursors of HF in CKD. CKD was induced in 14 pigs, which were followed for 14 wk. Renal (multidetector computed tomography) and cardiac (echocardiography) hemodynamics were quantified before and 8 wk after single intrarenal administration of placebo or a biopolymer-fused peptide inhibitor of NF-κB that blocks NF-κB activity and decreases inflammatory activity (SynB1-ELP-p50i). Blood was collected to quantify cytokines (TNF-α, monocyte chemoattractant protein-1, and interleukins), markers of inflammation (C-reactive protein), and biomarkers of HF (atrial and brain natriuretic peptides). Pigs were then euthanized, and kidneys and hearts were studied ex vivo. Normal pigs were used as time-matched controls. Renal dysfunction in CKD was accompanied by cardiac hypertrophy and fibrosis, diastolic dysfunction, increased renal and cardiac expression of TNF-α, monocyte chemoattractant protein-1, and interleukins, canonical and noncanonical mediators of NF-κB signaling, circulating inflammatory factors, and biomarkers of HF. Notably, most of these changes were improved after intrarenal SynB1-SynB1-ELP-p50i, although cardiac inflammatory signaling remained unaltered. The translational traits of this model support its use as a platform to test novel technologies to protect the kidney and heart in CKD. A targeted inhibition of renal NF-κB signaling improves renal and cardiac function, suggesting an inflammatory renal-cardio axis underlying early HF pathophysiology in CKD.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a progressive disorder with high cardiovascular morbidity and mortality. This work supports the role of inflammatory cytokines of renal origin in renal-cardio pathophysiology in CKD and that the heart may be a target. Furthermore, it supports the feasibility of a new strategy in a translational fashion, using targeted inhibition of renal NF-κB signaling to offset the development of cardiac injury in CKD.
Collapse
Affiliation(s)
- Alejandro R Chade
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jason E Engel
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael E Hall
- Department of Physiology and Biophysics, grid.410721.1University of Mississippi Medical Center, Jackson, Mississippi.,Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pharmacology and Experimental Therapeutics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|