1
|
Wu A, Wolley MJ, Vesey D, Terker AS, Welling PA, Fenton RA, Stowasser M. Plasma Potassium Negatively Correlates With Sodium Chloride Cotransporter Abundance and Phosphorylation in Urinary Extracellular Vesicles From Patients With Chronic Kidney Disease. Nephrology (Carlton) 2025; 30:e70017. [PMID: 40084744 PMCID: PMC11907743 DOI: 10.1111/nep.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
AIM Using urinary extracellular vesicles (uEVs), we have demonstrated the functional 'renal-K switch' mechanism (the WNK-SPAK-NCC pathway) in both healthy subjects and those with primary aldosteronism. The close relationship between blood pressure and CKD has led to the hypothesis that high potassium intake may be reno-protective through the same mechanism. This study used uEVs to evaluate whether plasma potassium negatively correlates with NCC and its phosphorylation (pNCC) in patients with CKD. METHODS Morning blood and second morning urine were collected on a single occasion between 8 and 11 AM from patients with various CKD stages. Plasma potassium levels were assessed by a local pathology laboratory. uEVs were obtained by progressive ultracentrifugation, and NCC and pNCC were analysed by western blotting. RESULTS Correlation analyses among 23 patients with CKD revealed the abundance of NCC (R2 = 0.46, p = 0.0003) and pNCC (R2 = 0.30, p = 0.0067) strongly and negatively correlate with plasma potassium. The negative correlations persist among 18 patients who did not receive SGLT2 inhibitors or K-binders (NCC: R2 = 0.5, p = 0.002; pNCC: R2 = 0.30, p = 0.03) and the negative trends remain among 5 patients who received either SGLT2 inhibitors or K-binders (NCC: R2 = 0.64, p = 0.11; pNCC: R2 = 0.42, p = 0.24). CONCLUSION In patients with CKD, there are negative correlations between NCC and pNCC in uEVs and plasma potassium, which appear independent of eGFR. This suggests that the mechanism at play is distinct from the overall kidney function, and potassium supplement within a safe level may assist in natriuresis and improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, The University of Queensland Frazer Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Martin J Wolley
- Endocrine Hypertension Research Centre, The University of Queensland Frazer Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
- Department of Nephrology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - David Vesey
- Translational Research Institute, The University of Queensland Centre for Kidney Disease Research, Brisbane, Australia
| | - Andrew S Terker
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Paul A Welling
- Department of Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael Stowasser
- Endocrine Hypertension Research Centre, The University of Queensland Frazer Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
2
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
3
|
Harita Y. Urinary extracellular vesicles in childhood kidney diseases. Pediatr Nephrol 2024; 39:2293-2300. [PMID: 38093081 PMCID: PMC11199279 DOI: 10.1007/s00467-023-06243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 06/26/2024]
Abstract
Most biological fluids contain extracellular vesicles (EVs). EVs are surrounded by a lipid bilayer and contain biological macromolecules such as proteins, lipids, RNA, and DNA. They lack a functioning nucleus and are incapable of replicating. The physiological characteristics and molecular composition of EVs in body fluids provide valuable information about the status of originating cells. Consequently, they could be effectively utilized for diagnostic and prognostic applications. Urine contains a heterogeneous population of EVs. To date, these urinary extracellular vesicles (uEVs) have been ignored in the standard urinalysis. In recent years, knowledge has accumulated on how uEVs should be separated and analyzed. It has become clear how uEVs reflect the expression of each molecule in cells in nephron segments and how they are altered in disease states such as glomerular/tubular disorders, rare congenital diseases, acute kidney injury (AKI), and chronic kidney disease (CKD). Significant promise exists for the molecular expression signature of uEVs detected by simple techniques such as enzyme-linked immunosorbent assay (ELISA), making them more applicable in clinical settings. This review presents the current understanding regarding uEVs, emphasizing the potential for non-invasive diagnostics, especially for childhood kidney diseases.
Collapse
Affiliation(s)
- Yutaka Harita
- Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
4
|
Bielopolski D, Musante L, Hoorn EJ, Molina H, Barrows D, Carrol TS, Harding MA, Upson S, Qureshi A, Weder MM, Tobin JN, Kost RG, Erdbrügger U. Effect of the DASH diet on the sodium-chloride cotransporter and aquaporin-2 in urinary extracellular vesicles. Am J Physiol Renal Physiol 2024; 326:F971-F980. [PMID: 38634133 PMCID: PMC11386975 DOI: 10.1152/ajprenal.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day 11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW & NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.
Collapse
Affiliation(s)
- Dana Bielopolski
- The Rockefeller University Center for Clinical and Translational Science, New York, New York, United States
| | - Luca Musante
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, New York, United States
| | - Douglas Barrows
- Bioinformatics Resource Center, Rockefeller University, New York, New York, United States
| | - Thomas S Carrol
- Bioinformatics Resource Center, Rockefeller University, New York, New York, United States
| | - Michael A Harding
- Division of Nephrology, Department of Medicine, University of Virginia at Charlottesville, Charlottesville, Virginia, United States
| | - Samantha Upson
- Division of Nephrology, Department of Medicine, University of Virginia at Charlottesville, Charlottesville, Virginia, United States
| | - Adam Qureshi
- The Rockefeller University Center for Clinical and Translational Science, New York, New York, United States
| | - Max M Weder
- Division of Pulmonology, Department of Medicine, University of Virginia at Charlottesville, Charlottesville, Virginia, United States
| | - Jonathan N Tobin
- The Rockefeller University Center for Clinical and Translational Science, New York, New York, United States
- Clinical Directors Network, New York, New York, United States
| | - Rhonda G Kost
- The Rockefeller University Center for Clinical and Translational Science, New York, New York, United States
| | - U Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia at Charlottesville, Charlottesville, Virginia, United States
| |
Collapse
|
5
|
Bertolone L, Castagna A, Manfredi M, De Santis D, Ambrosani F, Antinori E, Mulatero P, Danese E, Marengo E, Barberis E, Veneri M, Martinelli N, Friso S, Pizzolo F, Olivieri O. Proteomic analysis of urinary extracellular vesicles highlights specific signatures for patients with primary aldosteronism. Front Endocrinol (Lausanne) 2023; 14:1096441. [PMID: 37223008 PMCID: PMC10200877 DOI: 10.3389/fendo.2023.1096441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Background Urinary extracellular vesicles (uEVs) can be released by different cell types facing the urogenital tract and are involved in cellular trafficking, differentiation and survival. UEVs can be easily detected in urine and provide pathophysiological information "in vivo" without the need of a biopsy. Based on these premises, we hypothesized that uEVs proteomic profile may serve as a valuable tool in the differential characterization between Essential Hypertension (EH) and primary aldosteronism (PA). Methods Patients with essential hypertension (EH) and PA were enrolled in the study (EH= 12, PA=24: 11 Bilateral Primary Aldosteronism subtype (BPA) and 13 Aldosterone Producing Adenoma (APA)). Clinical and biochemical parameters were available for all the subjects. UEVs were isolated from urine by ultracentrifugation and analysed by Transmission Electron Microscopy (TEM) and nanotrack particle analysis (NTA). UEVs protein content was investigated through an untargeted MS-based approach. Statistical and network analysis was performed to identify potential candidates for the identification and classification of PA. Results MS analysis provided more than 300 protein identifications. Exosomal markers CD9 and CD63 were detected in all samples. Several molecules characterizing EH vs PA patients as well as BPA and APA subtypes were identified after statistical elaboration and filtering of the results. In particular, some key proteins involved in water reabsorption mechanisms, such as AQP1 and AQP2, were among the best candidates for discriminating EH vs PA, as well as A1AG1 (AGP1). Conclusion Through this proteomic approach, we identified uEVs molecular indicators that can improve PA characterization and help in the gain of insights of the pathophysiological features of this disease. In particular, PA was characterized by a reduction of AQP1 and AQP2 expression as compared with EH.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Domenica De Santis
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Ambrosani
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Elisa Antinori
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Paolo Mulatero
- Department of Medical Sciences, Division of Internal Medicine and Hypertension University of Torino, Torino, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Mariangela Veneri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Simonetta Friso
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Wu A, Wolley MJ, Mayr HL, Cheng L, Cowley D, Li B, Campbell KL, Terker AS, Ellison DH, Welling PA, Fenton RA, Stowasser M. Randomized trial on the effect of oral potassium chloride supplementation on the thiazide-sensitive sodium chloride cotransporter in healthy adults. Kidney Int Rep 2023. [DOI: 10.1016/j.ekir.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
7
|
Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. KIDNEY360 2023; 4:245-257. [PMID: 36821616 PMCID: PMC10103258 DOI: 10.34067/kid.0001892022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are evolving as novel cell mediators, biomarkers, and therapeutic targets in kidney health and disease. They are naturally derived from cells both within and outside the kidney and carry cargo which mirrors the state of the parent cell. Thus, they are potentially more sensitive and disease-specific as biomarkers and messengers in various kidney diseases. Beside their role as novel communicators within the nephron, they likely communicate between different organs affected by various kidney diseases. Study of urinary EVs (uEVs) can help to fill current knowledge gaps in kidney diseases. However, separation and characterization are challenged by their heterogeneity in size, shape, and cargo. Fortunately, more sensitive and direct EV measuring tools are in development. Many clinical syndromes in nephrology from acute to chronic kidney and glomerular to tubular diseases have been studied. Yet, validation of biomarkers in larger cohorts is warranted and simpler tools are needed. Translation from in vitro to in vivo studies is also urgently needed. The therapeutic role of uEVs in kidney diseases has been studied extensively in rodent models of AKI. On the basis of the current exponential growth of EV research, the field of EV diagnostics and therapeutics is moving forward.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Bahena-Lopez JP, Rojas-Vega L, Chávez-Canales M, Bazua-Valenti S, Bautista-Pérez R, Lee JH, Madero M, Vazquez-Manjarrez N, Alquisiras-Burgos I, Hernandez-Cruz A, Castañeda-Bueno M, Ellison DH, Gamba G. Glucose/Fructose Delivery to the Distal Nephron Activates the Sodium-Chloride Cotransporter via the Calcium-Sensing Receptor. J Am Soc Nephrol 2023; 34:55-72. [PMID: 36288902 PMCID: PMC10101570 DOI: 10.1681/asn.2021121544] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/07/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.
Collapse
Affiliation(s)
- Jessica Paola Bahena-Lopez
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Intellectual Property Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Silvana Bazua-Valenti
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rocío Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Ju-Hye Lee
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magdalena Madero
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Natalia Vazquez-Manjarrez
- Nutrition Division, Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ivan Alquisiras-Burgos
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Hernandez-Cruz
- Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- MD/PhD (PECEM) program, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Verlander JW, Lee HW, Wall SM, Harris AN, Weiner ID. The proximal tubule through an NBCe1-dependent mechanism regulates collecting duct phenotypic and remodeling responses to acidosis. Am J Physiol Renal Physiol 2023; 324:F12-F29. [PMID: 36264886 PMCID: PMC9762982 DOI: 10.1152/ajprenal.00175.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023] Open
Abstract
The renal response to acid-base disturbances involves phenotypic and remodeling changes in the collecting duct. This study examines whether the proximal tubule controls these responses. We examined mice with genetic deletion of proteins present only in the proximal tubule, either the A variant or both A and B variants of isoform 1 of the electrogenic Na+-bicarbonate cotransporter (NBCe1). Both knockout (KO) mice have spontaneous metabolic acidosis. We then determined the collecting duct phenotypic responses to this acidosis and the remodeling responses to exogenous acid loading. Despite the spontaneous acidosis in NBCe1-A KO mice, type A intercalated cells in the inner stripe of the outer medullary collecting duct (OMCDis) exhibited decreased height and reduced expression of H+-ATPase, anion exchanger 1, Rhesus B glycoprotein, and Rhesus C glycoprotein. Combined kidney-specific NBCe1-A/B deletion induced similar changes. Ultrastructural imaging showed decreased apical plasma membrane and increased vesicular H+-ATPase in OMCDis type A intercalated cell in NBCe1-A KO mice. Next, we examined the collecting duct remodeling response to acidosis. In wild-type mice, acid loading increased the proportion of type A intercalated cells in the connecting tubule (CNT) and OMCDis, and it decreased the proportion of non-A, non-B intercalated cells in the connecting tubule, and type B intercalated cells in the cortical collecting duct (CCD). These changes were absent in NBCe1-A KO mice. We conclude that the collecting duct phenotypic and remodeling responses depend on proximal tubule-dependent signaling mechanisms blocked by constitutive deletion of proximal tubule NBCe1 proteins.NEW & NOTEWORTHY This study shows that the proximal tubule regulates collecting duct phenotypic and remodeling responses to acidosis.
Collapse
Affiliation(s)
- Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Susan M Wall
- Renal Division, Emory University, Atlanta, Georgia
| | - Autumn N Harris
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Deparment of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
10
|
Friso S, Castagna A, Mango G, Olivieri O, Pizzolo F. Urinary extracellular vesicles carry valuable hints through mRNA for the understanding of endocrine hypertension. Front Endocrinol (Lausanne) 2023; 14:1155011. [PMID: 37065732 PMCID: PMC10096029 DOI: 10.3389/fendo.2023.1155011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Urinary extracellular vesicles (uEVs), released from cells of the urogenital tract organs, carry precious information about originating tissues. The study of molecules transported through uEVs such as proteins, lipids and nucleic acids provides a deeper understanding of the function of the kidney, an organ involved in the pathogenesis of hypertension and a target of hypertension-mediated organ damage. Molecules derived from uEVs are often proposed for the study of disease pathophysiology or as possible disease diagnostic and prognostic biomarkers. Analysis of mRNA loading within uEVs may be a unique and readily obtainable way to assess gene expression patterns of renal cells, otherwise achievable only by an invasive biopsy procedure. Interestingly, the only few studies investigating transcriptomics of hypertension-related genes through the analysis of mRNA from uEVs are inherent to mineralocorticoid hypertension. More specifically, it has been observed that perturbation in human endocrine signalling through mineralcorticoid receptors (MR) activation parallels changes of mRNA transcripts in urine supernatant. Furthermore, an increased copy number of uEVs-extracted mRNA transcripts of the 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene were detected among subjects affected by apparent mineralocorticoid excess (AME), a hypertension-inducing autosomal recessive disorder due to a defective enzyme function. Moreover, by studying uEVs mRNA, it was observed that the renal sodium chloride cotransporter (NCC) gene expression is modulated under different conditions related to hypertension. Following this perspective, we illustrate here the state of the art and the possible future of uEVs transcriptomics towards a deeper knowledge of hypertension pathophysiology and ultimately more tailored investigational, diagnostic-prognostic approaches.
Collapse
|
11
|
Shrivastav S, Lee H, Okamoto K, Lu H, Yoshida T, Latt KZ, Wakashin H, Dalgleish JLT, Koritzinsky EH, Xu P, Asico LD, Chung JY, Hewitt S, Gildea JJ, Felder RA, Jose PA, Rosenberg AZ, Knepper MA, Kino T, Kopp JB. HIV-1 Vpr suppresses expression of the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule. PLoS One 2022; 17:e0273313. [PMID: 36129874 PMCID: PMC9491550 DOI: 10.1371/journal.pone.0273313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.
Collapse
Affiliation(s)
- Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Huiyan Lu
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Hidefumi Wakashin
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - James L. T. Dalgleish
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Erik H. Koritzinsky
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peng Xu
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Stephen Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - John J. Gildea
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robin A. Felder
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, United States of America
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland, United States of America
| | - Tomoshige Kino
- Laboratory for Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Radvanyi Z, Daryadel A, Pastor-Arroyo EM, Hernando N, Wagner CA. Does the composition of urinary extracellular vesicles reflect the abundance of renal Na +/phosphate transporters? Pflugers Arch 2022; 474:1201-1212. [PMID: 36074191 PMCID: PMC9560988 DOI: 10.1007/s00424-022-02744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
Studies addressing homeostasis of inorganic phosphate (Pi) are mostly restricted to murine models. Data provided by genetically modified mice suggest that renal Pi reabsorption is primarily mediated by the Na+/Pi cotransporter NaPi-IIa/Slc34a1, whereas the contribution of NaPi-IIc/Slc34a3 in adult animals seems negligible. However, mutations in both cotransporters associate with hypophosphatemic syndromes in humans, suggesting major inter-species heterogeneity. Urinary extracellular vesicles (UEV) have been proposed as an alternative source to analyse the intrinsic expression of renal proteins in vivo. Here, we analyse in rats whether the protein abundance of renal Pi transporters in UEV correlates with their renal content. For that, we compared the abundance of NaPi-IIa and NaPi-IIc in paired samples from kidneys and UEV from rats fed acutely and chronically on diets with low or high Pi. In renal brush border membranes (BBM) NaPi-IIa was detected as two fragments corresponding to the full-length protein and to a proteolytic product, whereas NaPi-IIc migrated as a single full-length band. The expression of NaPi-IIa (both fragments) in BBM adapted to acute as well to chronic changes of dietary Pi, whereas adaptation of NaPi-IIc was only detected in response to chronic administration. Both transporters were detected in UEV as well. UEV reflected the renal adaptation of the NaPi-IIa proteolytic fragment (but not the full-length protein) upon chronic but not acute dietary changes, while also reproducing the chronic regulation of NaPi-IIc. Thus, the composition of UEV reflects only partially changes in the expression of NaPi-IIa and NaPi-IIc at the BBM triggered by dietary Pi.
Collapse
Affiliation(s)
- Zsuzsi Radvanyi
- National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Eva Maria Pastor-Arroyo
- National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nati Hernando
- National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten Alexander Wagner
- National Center of Competence in Research NCCR Kidney.CH, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Urinary extracellular vesicles: does cargo reflect tissue? Curr Opin Nephrol Hypertens 2022; 31:464-470. [PMID: 35894281 DOI: 10.1097/mnh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To review recent developments in urinary extracellular vesicles (uEVs) to study kidney physiology and disease. RECENT FINDINGS Proteomic analysis in rats showed significant correlations between kidney and uEV protein abundances. Consistent with uEV biogenesis, these correlations were stronger for membrane-associated proteins than for e.g. soluble kinases or E3 ubiquitin ligases. When challenged with a high potassium diet, the physiologically predicted protein changes occurred both in kidney and uEVs, suggesting that analysis of uEVs might be utilized as a proxy or even replacement for tissue analysis. Although kidney-uEV correlations are more difficult to obtain in humans, analysis of uEV cargo from patients with inherited tubulopathies or with primary aldosteronism were also consistent with the predicted changes at the tissue level. The kidney appears to be the main source of uEVs, with a recent study showing that nephron mass determines uEV excretion rate. Therefore, a measure of nephron mass should be included for between-subject comparisons. SUMMARY The overall good correlation between kidney and uEV protein abundances renders uEVs an attractive noninvasive source of biomarkers for studying kidney physiology or disease. However, differences in per-protein kidney-uEV correlations and per-person uEV excretion rates should be considered in uEV biomarker studies.
Collapse
|
14
|
Wu A, Wolley MJ, Fenton RA, Stowasser M. Using human urinary extracellular vesicles to study physiological and pathophysiological states and regulation of the sodium chloride cotransporter. Front Endocrinol (Lausanne) 2022; 13:981317. [PMID: 36105401 PMCID: PMC9465297 DOI: 10.3389/fendo.2022.981317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter (NCC), expressed in the renal distal convoluted tubule, plays a major role in Na+, Cl- and K+ homeostasis and blood pressure as exemplified by the symptoms of patients with non-functional NCC and Gitelman syndrome. NCC activity is modulated by a variety of hormones, but is also influenced by the extracellular K+ concentration. The putative "renal-K+ switch" mechanism is a relatively cohesive model that links dietary K+ intake to NCC activity, and may offer new targets for blood pressure control. However, a remaining hurdle for full acceptance of this model is the lack of human data to confirm molecular findings from animal models. Extracellular vesicles (EVs) have attracted attention from the scientific community due to their potential roles in intercellular communication, disease pathogenesis, drug delivery and as possible reservoirs of biomarkers. Urinary EVs (uEVs) are an excellent sample source for the study of physiology and pathology of renal, urothelial and prostate tissues, but the diverse origins of uEVs and their dynamic molecular composition present both methodological and data interpretation challenges. This review provides a brief overview of the state-of-the-art, challenges and knowledge gaps in current uEV-based analyses, with a focus on the application of uEVs to study the "renal-K+ switch" and NCC regulation. We also provide recommendations regarding biospecimen handling, processing and reporting requirements to improve experimental reproducibility and interoperability towards the realisation of the potential of uEV-derived biomarkers in hypertension and clinical practice.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
- Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Wu A, Wolley MJ, Matthews A, Cowley D, Welling PA, Fenton RA, Stowasser M. In Primary Aldosteronism Acute Potassium Chloride Supplementation Suppresses Abundance and Phosphorylation of the Sodium-Chloride Cotransporter. KIDNEY360 2022; 3:1909-1923. [PMID: 36514401 PMCID: PMC9717638 DOI: 10.34067/kid.0003632022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Background Elevated abundance of sodium-chloride cotransporter (NCC) and phosphorylated NCC (pNCC) are potential markers of primary aldosteronism (PA), but these effects may be driven by hypokalemia. Methods We measured plasma potassium in patients with PA. If potassium was <4.0 mmol/L, patients were given sufficient oral potassium chloride (KCl) over 24 hours to achieve as close to 4.0 mmol/L as possible. Clinical chemistries were assessed, and urinary extracellular vesicles (uEVs) were examined to investigate effects on NCC. Results Among 21 patients with PA who received a median total dose of 6.0 g (2.4-16.8 g) of KCl, increases were observed in plasma potassium (from 3.4 to 4.0 mmol/L; P<0.001), aldosterone (from 305 to 558 pmol/L; P=0.01), and renin (from 1.2 to 2.5 mIU/L; P<0.001), whereas decreases were detected in uEV levels of NCC (median fold change(post/basal) [FC]=0.71 [0.09-1.99]; P=0.02), pT60-NCC (FC=0.84 [0.06-1.66]; P=0.05), and pT55/60-NCC (FC=0.67 [0.08-2.42]; P=0.02). By contrast, in 10 patients with PA who did not receive KCl, there were no apparent changes in plasma potassium, NCC abundance, and phosphorylation status, but increases were observed in plasma aldosterone (from 178 to 418 pmol/L; P=0.006) and renin (from 2.0 to 3.0 mU/L; P=0.009). Plasma potassium correlated inversely with uEV levels of NCC (R 2=0.11; P=0.01), pT60-NCC (R 2=0.11; P=0.01), and pT55/60-NCC (R 2=0.11; P=0.01). Conclusions Acute oral KCl loading replenished plasma potassium in patients with PA and suppressed NCC abundance and phosphorylation, despite a significant rise in plasma aldosterone. This supports the view that potassium supplementation in humans with PA overrides the aldosterone stimulatory effect on NCC. The increased plasma aldosterone in patients with PA without KCl supplementation may be due to aldosterone response to posture challenge.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia,Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Alexandra Matthews
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Diane Cowley
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Paul A. Welling
- Department of Medicine and Physiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, The University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
16
|
Urinary extracellular vesicle mRNA analysis of sodium chloride cotransporter in hypertensive patients under different conditions. J Hum Hypertens 2022:10.1038/s41371-022-00744-3. [PMID: 35978099 DOI: 10.1038/s41371-022-00744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Urinary extracellular vesicles (UEV) mainly derive from cells of the urogenital tract and their cargo (proteins, nucleic acids, lipids, etc.) reflects their cells of origin. Na chloride cotransporter (NCC) is expressed at the kidney level in the distal convoluted tubule, is involved in salt reabsorption, and is the target of the diuretic thiazides. NCC protein has been recognized and quantified in UEV in previous studies; however, UEV NCC mRNA has never been studied. This study aimed to identify and analyze NCC mRNA levels in primary aldosteronism (PA). The rationale for this investigation stems from previous observations regarding NCC (protein) as a possible biomarker for the diagnosis of PA. To evaluate modulations in the expression of NCC, we analyzed NCC mRNA levels in UEV in PA and essential hypertensive (EH) patients under different conditions, that is, before and after saline infusion, anti-aldosterone pharmacological treatment, and adrenal surgery. NCC mRNA was measured by RT-qPCR in all the samples and was regulated by volume expansion. Its response to mineralocorticoid receptor antagonist was correlated with renin, and it was increased in PA patients after adrenalectomy. NCC mRNA is evaluable in UEV and it can provide insights into the pathophysiology of distal convolute tubule in different clinical conditions including PA.
Collapse
|
17
|
Rudolphi CF, Blijdorp CJ, van Willigenburg H, Salih M, Hoorn EJ. Urinary extracellular vesicles and tubular transport. Nephrol Dial Transplant 2022:6659197. [PMID: 35945648 DOI: 10.1093/ndt/gfac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tubular transport is a key function of the kidney to maintain electrolyte and acid-base homeostasis. Urinary extracellular vesicles (uEVs) harbor water, electrolyte, and acid-base transporters expressed at the apical plasma membrane of tubular epithelial cells. Within the uEV proteome, the correlations between kidney and uEV protein abundances are strongest for tubular transporters. Therefore, uEVs offer a non-invasive approach to probe tubular transport in health and disease. Here, we will review how kidney tubular physiology is reflected in uEVs and, conversely, how uEVs may modify tubular transport. Clinically, uEV tubular transporter profiling has been applied to rare diseases such as inherited tubulopathies, but also to more common conditions such as hypertension and kidney disease. Although uEVs hold the promise to advance the diagnosis of kidney disease to the molecular level, several biological and technical complexities still need to be addressed. The future will tell if uEV analysis will mainly be a powerful tool to study tubular physiology in humans or if it will move forward to become a diagnostic bedside test.
Collapse
Affiliation(s)
- Crissy F Rudolphi
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charles J Blijdorp
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hester van Willigenburg
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Wu A, Wolley MJ, Wu Q, Cowley D, Palmfeldt J, Welling PA, Fenton RA, Stowasser M. Acute Intravenous NaCl and Volume Expansion Reduces Sodium-Chloride Cotransporter Abundance and Phosphorylation in Urinary Extracellular Vesicles. KIDNEY360 2022; 3:910-921. [PMID: 36128481 PMCID: PMC9438418 DOI: 10.34067/kid.0000362022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/28/2022] [Indexed: 01/12/2023]
Abstract
Background Sodium chloride (NaCl) loading and volume expansion suppress the renin-angiotensin-aldosterone system to reduce renal tubular reabsorption of NaCl and water, but effects on the sodium-chloride cotransporter (NCC) and relevant renal transmembrane proteins that are responsible for this modulation in humans are less well investigated. Methods We used urinary extracellular vesicles (uEVs) as an indirect readout to assess renal transmembrane proteins involved in NaCl and water homeostasis in 44 patients with hypertension who had repeatedly raised aldosterone/renin ratios undergoing infusion of 2 L of 0.9% saline over 4 hours. Results When measured by mass spectrometry in 13 patients, significant decreases were observed in NCC (median fold change [FC]=0.70); pendrin (FC=0.84); AQP2 (FC=0.62); and uEV markers, including ALIX (FC=0.65) and TSG101 (FC=0.66). Immunoblotting reproduced the reduction in NCC (FC=0.54), AQP2 (FC=0.42), ALIX (FC=0.52), and TSG101 (FC=0.55) in the remaining 31 patients, and demonstrated a significant decrease in phosphorylated NCC (pNCC; FC=0.49). However, after correction for ALIX, the reductions in NCC (FC=0.90) and pNCC (FC=1.00) were no longer apparent, whereas the significant decrease in AQP2 persisted (FC=0.62). Conclusion We conclude that (1) decreases in NCC and pNCC, induced by acute NaCl loading and volume expansion, may be due to diluted post-test urines; (2) the lack of change of NCC and pNCC when corrected for ALIX, despite a fall in plasma aldosterone, may be due to the lack of change in plasma K+; and (3) the decrease in AQP2 may be due to a decrease in vasopressin in response to volume expansion.
Collapse
Affiliation(s)
- Aihua Wu
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Martin J. Wolley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia,Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Diane Cowley
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul A. Welling
- Department of Medicine and Physiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland Diamantina Institute, Greenslopes and Princess Alexandra Hospitals, Brisbane, Australia
| |
Collapse
|
19
|
Kong L, Tang X, Kang Y, Dong L, Tong J, Xu J, Gao PJ, Wang JG, Shen W, Zhu L. The Role of Urinary Extracellular Vesicles Sodium Chloride Cotransporter in Subtyping Primary Aldosteronism. Front Endocrinol (Lausanne) 2022; 13:834409. [PMID: 35444613 PMCID: PMC9013911 DOI: 10.3389/fendo.2022.834409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adrenal venous sampling (AVS) is recognized as the gold standard for subtyping primary aldosteronism (PA), but its invasive nature and technical challenges limit its availability. A recent study reported that sodium chloride cotransporter (NCC) in urinary extracellular vesicles (uEVs) is a promising marker for assessing the biological activity of aldosterone and can be treated as a potential biomarker of PA. The current study was conducted to verify the hypothesis that the expression of NCC and its phosphorylated form (pNCC) in uEVs are different in various subtypes and genotypes of PA and can be used to select AVS candidates. METHODS A total of 50 patients with PA were enrolled in the study. Urinary extracellular vesicles (uEVs) were isolated from spot urine samples using ultracentrifugation. NCC and pNCC expressions were tested in patients diagnosed with PA who underwent AVS. Sanger sequencing of KCNJ5 was performed on DNA extracted from adrenal adenoma. RESULTS pNCC (1.89 folds, P<.0001) and NCC (1.82 folds, P=0.0002) was more abundant in the uEVs in the high lateralization index (h-LI, ≥ 4) group than in the low LI (l-LI, < 4) group. Carriers of the somatic KCNJ5 mutations, compared with non-carriers, had more abundant pNCC expression (2.16 folds, P=0.0039). Positive correlation between pNCC abundance and plasma aldosterone level was found in this study (R = 0.1220, P = 0.0129). CONCLUSIONS The expression of pNCC in uEVs in patients with PA with various subtypes and genotypes was different. It can be used as biomarker of AVS for PA subtyping.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Kang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianhua Tong
- Department of Laboratory Medicine and Central Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianzhong Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-guang Wang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Limin Zhu, ; Weili Shen,
| | - Limin Zhu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Limin Zhu, ; Weili Shen,
| |
Collapse
|
20
|
Perpetuo L, Ferreira R, Thongboonkerd V, Guedes S, Amado F, Vitorino R. Urinary exosomes: Diagnostic impact with a bioinformatic approach. Adv Clin Chem 2022; 111:69-99. [DOI: 10.1016/bs.acc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Castañeda-Bueno M, Ellison DH, Gamba G. Molecular mechanisms for the modulation of blood pressure and potassium homeostasis by the distal convoluted tubule. EMBO Mol Med 2021; 14:e14273. [PMID: 34927382 PMCID: PMC8819348 DOI: 10.15252/emmm.202114273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological and clinical observations have shown that potassium ingestion is inversely correlated with arterial hypertension prevalence and cardiovascular mortality. The higher the dietary potassium, the lower the blood pressure and mortality. This phenomenon is explained, at least in part, by the interaction between salt reabsorption in the distal convoluted tubule (DCT) and potassium secretion in the connecting tubule/collecting duct of the mammalian nephron: In order to achieve adequate K+ secretion levels under certain conditions, salt reabsorption in the DCT must be reduced. Because salt handling by the kidney constitutes the basis for the long‐term regulation of blood pressure, losing salt prevents hypertension. Here, we discuss how the study of inherited diseases in which salt reabsorption in the DCT is affected has revealed the molecular players, including membrane transporters and channels, kinases, and ubiquitin ligases that form the potassium sensing mechanism of the DCT and the processes through which the consequent adjustments in salt reabsorption are achieved.
Collapse
Affiliation(s)
- María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.,Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA.,VA Portland Health Care System, Portland, OR, USA
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City, Mexico
| |
Collapse
|
22
|
Carvajal CA, Tapia-Castillo A, Pérez JA, Fardella CE. Serum Alpha-1-Acid Glycoprotein-1 and Urinary Extracellular Vesicle miR-21-5p as Potential Biomarkers of Primary Aldosteronism. Front Immunol 2021; 12:768734. [PMID: 34804057 PMCID: PMC8603108 DOI: 10.3389/fimmu.2021.768734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension and reaches a prevalence of 6-10%. PA is an endocrine disorder, currently identified as a broad-spectrum phenotype, spanning from normotension to hypertension. In this regard, several studies have made advances in the identification of mediators and novel biomarkers of PA as specific proteins, miRNAs, and lately, extracellular vesicles (EVs) and their cargo. Aim To evaluate lipocalins LCN2 and AGP1, and specific urinary EV miR-21-5p and Let-7i-5p as novel biomarkers for PA. Subjects and Methods A cross-sectional study was performed in 41 adult subjects classified as normotensive controls (CTL), essential hypertensives (EH), and primary aldosteronism (PA) subjects, who were similar in gender, age, and BMI. Systolic (SBP) and diastolic (DBP) blood pressure, aldosterone, plasma renin activity (PRA), and aldosterone to renin ratio (ARR) were determined. Inflammatory parameters were defined as hs-C-reactive protein (hs-CRP), PAI-1, MMP9, IL6, LCN2, LCN2-MMP9, and AGP1. We isolated urinary EVs (uEVs) and measured two miRNA cargo miR-21-5p and Let-7i-5p by Taqman-qPCR. Statistical analyses as group comparisons were performed by Kruskall-Wallis, and discriminatory analyses by ROC curves were performed with SPSS v21 and Graphpad-Prism v9. Results PA and EH subjects have significantly higher SBP and DBP (p <0.05) than the control group. PA subjects have similar hs-CRP, PAI-1, IL-6, MMP9, LCN2, and LCN2-MMP9 but have higher levels of AGP1 (p <0.05) than the CTL&EH group. The concentration and size of uEVs and miRNA Let-7i-5p did not show any difference between groups. In PA, we found significantly lower levels of miR-21-5p than controls (p <0.05). AGP1 was associated with aldosterone, PRA, and ARR. ROC curves detected AUC for AGP1 of 0.90 (IC 95 [0.79 - 1.00], p <0.001), and combination of AGP1 and EV-miR-21-5p showed an AUC of 0.94 (IC 95 [0.85 - 1.00], p<0.001) to discriminate the PA condition from EH and controls. Conclusion Serum AGP1 protein was found to be increased, and miR-21-5p in uEVs was decreased in subjects classified as PA. Association of AGP1 with aldosterone, renin activity, and ARR, besides the high discriminatory capacity of AGP1 and uEV-miR-21-5p to identify the PA condition, place both as potential biomarkers of PA.
Collapse
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Endocrinology, Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.,Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Exosomes and exosomal cargo in urinary extracellular vesicles: novel potential biomarkers for mineralocorticoid-receptor-associated hypertension. Hypertens Res 2021; 44:1668-1670. [PMID: 34599292 DOI: 10.1038/s41440-021-00759-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
|
24
|
Wu Q, Poulsen SB, Murali SK, Grimm PR, Su XT, Delpire E, Welling PA, Ellison DH, Fenton RA. Large-Scale Proteomic Assessment of Urinary Extracellular Vesicles Highlights Their Reliability in Reflecting Protein Changes in the Kidney. J Am Soc Nephrol 2021; 32:2195-2209. [PMID: 34230103 PMCID: PMC8729841 DOI: 10.1681/asn.2020071035] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Urinary extracellular vesicles (uEVs) are secreted into urine by cells from the kidneys and urinary tract. Although changes in uEV proteins are used for quantitative assessment of protein levels in the kidney or biomarker discovery, whether they faithfully reflect (patho)physiologic changes in the kidney is a matter of debate. METHODS Mass spectrometry was used to compare in an unbiased manner the correlations between protein levels in uEVs and kidney tissue from the same animal. Studies were performed on rats fed a normal or high K+ diet. RESULTS Absolute quantification determined a positive correlation (Pearson R=0.46 or 0.45, control or high K+ respectively, P<0.0001) between the approximately 1000 proteins identified in uEVs and corresponding kidney tissue. Transmembrane proteins had greater positive correlations relative to cytoplasmic proteins. Proteins with high correlations (R>0.9), included exosome markers Tsg101 and Alix. Relative quantification highlighted a monotonic relationship between altered transporter/channel abundances in uEVs and the kidney after dietary K+ manipulation. Analysis of genetic mouse models also revealed correlations between uEVs and kidney. CONCLUSION This large-scale unbiased analysis identifies uEV proteins that track the abundance of the parent proteins in the kidney. The data form a novel resource for the kidney community and support the reliability of using uEV protein changes to monitor specific physiologic responses and disease mechanisms.
Collapse
Affiliation(s)
- Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Paul R. Grimm
- Departments of Medicine and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xiao-Tong Su
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paul A. Welling
- Departments of Medicine and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David H. Ellison
- Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
25
|
Sung CC, Chen MH, Lin YC, Lin YC, Lin YJ, Yang SS, Lin SH. Urinary Extracellular Vesicles for Renal Tubular Transporters Expression in Patients With Gitelman Syndrome. Front Med (Lausanne) 2021; 8:679171. [PMID: 34179047 PMCID: PMC8219937 DOI: 10.3389/fmed.2021.679171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The utility of urinary extracellular vesicles (uEVs) to faithfully represent the changes of renal tubular protein expression remains unclear. We aimed to evaluate renal tubular sodium (Na+) or potassium (K+) associated transporters expression from uEVs and kidney tissues in patients with Gitelman syndrome (GS) caused by inactivating mutations in SLC12A3. Methods: uEVs were isolated by ultracentrifugation from 10 genetically-confirmed GS patients. Membrane transporters including Na+-hydrogen exchanger 3 (NHE3), Na+/K+/2Cl− cotransporter (NKCC2), NaCl cotransporter (NCC), phosphorylated NCC (p-NCC), epithelial Na+ channel β (ENaCβ), pendrin, renal outer medullary K1 channel (ROMK), and large-conductance, voltage-activated and Ca2+-sensitive K+ channel (Maxi-K) were examined by immunoblotting of uEVs and immunofluorescence of biopsied kidney tissues. Healthy and disease (bulimic patients) controls were also enrolled. Results: Characterization of uEVs was confirmed by nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting. Compared with healthy controls, uEVs from GS patients showed NCC and p-NCC abundance were markedly attenuated but NHE3, ENaCβ, and pendrin abundance significantly increased. ROMK and Maxi-K abundance were also significantly accentuated. Immunofluorescence of the representative kidney tissues from GS patients also demonstrated the similar findings to uEVs. uEVs from bulimic patients showed an increased abundance of NCC and p-NCC as well as NHE3, NKCC2, ENaCβ, pendrin, ROMK and Maxi-K, akin to that in immunofluorescence of their kidney tissues. Conclusion: uEVs could be a non-invasive tool to diagnose and evaluate renal tubular transporter adaptation in patients with GS and may be applied to other renal tubular diseases.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Min-Hsiu Chen
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Chang Lin
- Division of Cardiovascular Surgery, Department of Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yu-Chun Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Jia Lin
- Deparment of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Sung-Sen Yang
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
27
|
Renal tubular transport protein regulation in primary aldosteronism: can large-scale proteomic analysis offer a new insight? J Hum Hypertens 2021; 35:825-827. [PMID: 33837295 DOI: 10.1038/s41371-021-00537-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
|
28
|
Barros ER, Rigalli JP, Tapia-Castillo A, Vecchiola A, Young MJ, Hoenderop JGJ, Bindels RJM, Fardella CE, Carvajal CA. Proteomic Profile of Urinary Extracellular Vesicles Identifies AGP1 as a Potential Biomarker of Primary Aldosteronism. Endocrinology 2021; 162:6134351. [PMID: 33580265 DOI: 10.1210/endocr/bqab032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Primary aldosteronism (PA) represents 6% to 10% of all essential hypertension patients and is diagnosed using the aldosterone-to-renin ratio (ARR) and confirmatory studies. The complexity of PA diagnosis encourages the identification of novel PA biomarkers. Urinary extracellular vesicles (uEVs) are a potential source of biomarkers, considering that their cargo reflects the content of the parent cell. OBJECTIVE We aimed to evaluate the proteome of uEVs from PA patients and identify potential biomarker candidates for PA. METHODS Second morning spot urine was collected from healthy controls (n = 8) and PA patients (n = 7). The uEVs were isolated by ultracentrifugation and characterized. Proteomic analysis on uEVs was performed using LC-MS Orbitrap. RESULTS Isolated uEVs carried extracellular vesicle markers, showed a round shape and sizes between 50 and 150 nm. The concentration of uEVs showed a direct correlation with urinary creatinine (r = 0.6357; P = 0.0128). The uEV size mean (167 ± 6 vs 183 ± 4nm) and mode (137 ± 7 vs 171 ± 11nm) was significantly smaller in PA patients than in control subjects, but similar in concentration. Proteomic analysis of uEVs from PA patients identified an upregulation of alpha-1-acid glycoprotein 1 (AGP1) in PA uEVs, which was confirmed using immunoblot. A receiver operating characteristic curve analysis showed an area under the curve of 0.92 (0.82 to 1; P = 0.0055). CONCLUSION Proteomic and further immunoblot analyses of uEVs highlights AGP1 as potential biomarker for PA.
Collapse
Affiliation(s)
- Eric R Barros
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Andrea Vecchiola
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Morag J Young
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
| |
Collapse
|
29
|
Ochiai-Homma F, Kuribayashi-Okuma E, Tsurutani Y, Ishizawa K, Fujii W, Odajima K, Kawagoe M, Tomomitsu Y, Murakawa M, Asakawa S, Hirohama D, Nagura M, Arai S, Yamazaki O, Tamura Y, Fujigaki Y, Nishikawa T, Shibata S. Characterization of pendrin in urinary extracellular vesicles in a rat model of aldosterone excess and in human primary aldosteronism. Hypertens Res 2021; 44:1557-1567. [PMID: 34326480 PMCID: PMC8645477 DOI: 10.1038/s41440-021-00710-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Pendrin is a Cl-/HCO3- exchanger selectively present in the intercalated cells of the kidney. Although experimental studies have demonstrated that pendrin regulates blood pressure downstream of the renin-angiotensin-aldosterone system, its role in human hypertension remains unclear. Here, we analyzed the quantitative changes in pendrin in urinary extracellular vesicles (uEVs) isolated from a total of 30 patients with primary aldosteronism (PA) and from a rat model of aldosterone excess. Western blot analysis revealed that pendrin is present in dimeric and monomeric forms in uEVs in humans and rats. In a rodent model that received continuous infusion of aldosterone with or without concomitant administration of the selective mineralocorticoid receptor (MR) antagonist esaxerenone, pendrin levels in uEVs, as well as those of epithelial Na+ channel (ENaC) and Na-Cl-cotransporter (NCC), were highly correlated with renal abundance. In patients with PA, pendrin levels in uEVs were reduced by 49% from baseline by adrenalectomy or pharmacological MR blockade. Correlation analysis revealed that the magnitude of pendrin reduction after treatment significantly correlated with the baseline aldosterone-renin ratio (ARR). Finally, a cross-sectional analysis of patients with PA confirmed a significant correlation between the ARR and pendrin levels in uEVs. These data are consistent with experimental studies showing the role of pendrin in aldosterone excess and suggest that pendrin abundance is attenuated by therapeutic interventions in human PA. Our study also indicates that pendrin analysis in uEVs, along with other proteins, can be useful to understand the pathophysiology of hypertensive disorders.
Collapse
Affiliation(s)
- Fumika Ochiai-Homma
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Emiko Kuribayashi-Okuma
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuya Tsurutani
- grid.410819.50000 0004 0621 5838Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Kenichi Ishizawa
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Wataru Fujii
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kohei Odajima
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Mika Kawagoe
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihiro Tomomitsu
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masataka Murakawa
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinichiro Asakawa
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Daigoro Hirohama
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michito Nagura
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeyuki Arai
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Osamu Yamazaki
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshifuru Tamura
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tetsuo Nishikawa
- grid.410819.50000 0004 0621 5838Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama, Japan
| | - Shigeru Shibata
- grid.264706.10000 0000 9239 9995Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Barreiro K, Dwivedi OP, Leparc G, Rolser M, Delic D, Forsblom C, Groop P, Groop L, Huber TB, Puhka M, Holthofer H. Comparison of urinary extracellular vesicle isolation methods for transcriptomic biomarker research in diabetic kidney disease. J Extracell Vesicles 2020; 10:e12038. [PMID: 33437407 PMCID: PMC7789228 DOI: 10.1002/jev2.12038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Urinary Extracellular Vesicles (uEV) have emerged as a source for biomarkers of kidney damage, holding potential to replace the conventional invasive techniques including kidney biopsy. However, comprehensive studies characterizing uEV isolation methods with patient samples are rare. Here we compared performance of three established uEV isolation workflows for their subsequent use in transcriptomics analysis for biomarker discovery in diabetic kidney disease. We collected urine samples from individuals with type 1 diabetes with macroalbuminuria and healthy controls. We isolated uEV by Hydrostatic Filtration Dialysis (HFD), ultracentrifugation (UC), and a commercial kit- based isolation method (NG), each with different established urine clearing steps. Purified EVs were analysed by electron microscopy, nanoparticle tracking analysis, and Western blotting. Isolated RNAs were subjected to miRNA and RNA sequencing. HFD and UC samples showed close similarities based on mRNA sequencing data. NG samples had a lower number of reads and different mRNA content compared to HFD or UC. For miRNA sequencing data, satisfactory miRNA counts were obtained by all methods, but miRNA contents differed slightly. This suggests that the isolation workflows enrich specific subpopulations of miRNA-rich uEV preparation components. Our data shows that HFD,UC and the kit-based method are suitable methods to isolate uEV for miRNA-seq. However, only HFD and UC were suitable for mRNA-seq in our settings.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Om Prakash Dwivedi
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Marcel Rolser
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre MannheimUniversity of HeidelbergHeidelbergGermany
| | - Carol Forsblom
- Folkhälsan Institute of GeneticsFolkhälsan Research CenterHelsinkiFinland
- Abdominal Center, NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Per‐Henrik Groop
- Folkhälsan Institute of GeneticsFolkhälsan Research CenterHelsinkiFinland
- Abdominal Center, NephrologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Research Program for Clinical and Molecular Metabolism, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Diabetes, Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Leif Groop
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maija Puhka
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Harry Holthofer
- Institute for Molecular Medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
31
|
Wu A, Wolley MJ, Wu Q, Gordon RD, Fenton RA, Stowasser M. The Cl−/HCO3− exchanger pendrin is downregulated during oral co-administration of exogenous mineralocorticoid and KCl in patients with primary aldosteronism. J Hum Hypertens 2020; 35:837-848. [DOI: 10.1038/s41371-020-00439-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
|
32
|
Hunter RW, Bailey MA. Hyperkalemia: pathophysiology, risk factors and consequences. Nephrol Dial Transplant 2020; 34:iii2-iii11. [PMID: 31800080 PMCID: PMC6892421 DOI: 10.1093/ndt/gfz206] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
There have been significant recent advances in our understanding of the mechanisms that maintain potassium homoeostasis and the clinical consequences of hyperkalemia. In this article we discuss these advances within a concise review of the pathophysiology, risk factors and consequences of hyperkalemia. We highlight aspects that are of particular relevance for clinical practice. Hyperkalemia occurs when renal potassium excretion is limited by reductions in glomerular filtration rate, tubular flow, distal sodium delivery or the expression of aldosterone-sensitive ion transporters in the distal nephron. Accordingly, the major risk factors for hyperkalemia are renal failure, diabetes mellitus, adrenal disease and the use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers or potassium-sparing diuretics. Hyperkalemia is associated with an increased risk of death, and this is only in part explicable by hyperkalemia-induced cardiac arrhythmia. In addition to its well-established effects on cardiac excitability, hyperkalemia could also contribute to peripheral neuropathy and cause renal tubular acidosis. Hyperkalemia-or the fear of hyperkalemia-contributes to the underprescription of potentially beneficial medications, particularly in heart failure. The newer potassium binders could play a role in attempts to minimize reduced prescribing of renin-angiotensin inhibitors and mineraolocorticoid antagonists in this context.
Collapse
Affiliation(s)
- Robert W Hunter
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, UK
| |
Collapse
|
33
|
Furusho T, Uchida S, Sohara E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens Res 2020; 43:733-743. [PMID: 32286498 DOI: 10.1038/s41440-020-0437-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Abstract
The distal nephron of the kidney has a central role in sodium and fluid homeostasis, and disruption of this homeostasis due to mutations of with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), or Cullin 3 (CUL3) causes pseudohypoaldosteronism type II (PHAII), an inherited hypertensive disease. WNK1 and WNK4 activate the NaCl cotransporter (NCC) at the distal convoluted tubule through oxidative stress-responsive gene 1 (OSR1)/Ste20-related proline-alanine-rich kinase (SPAK), constituting the WNK-OSR1/SPAK-NCC phosphorylation cascade. The level of WNK protein is regulated through degradation by the CUL3-KLHL3 E3 ligase complex. In the normal state, the activity of WNK signaling in the kidney is physiologically regulated by sodium intake to maintain sodium homeostasis in the body. In patients with PHAII, however, because of the defective degradation of WNK kinases, NCC is constitutively active and not properly suppressed by a high salt diet, leading to abnormally increased salt reabsorption and salt-sensitive hypertension. Importantly, recent studies have demonstrated that potassium intake, insulin, and TNFα are also physiological regulators of WNK signaling, suggesting that they contribute to the salt-sensitive hypertension associated with a low potassium diet, metabolic syndrome, and chronic kidney disease, respectively. Moreover, emerging evidence suggests that WNK signaling also has some unique roles in metabolic, cardiovascular, and immunological organs. Here, we review the recent literature and discuss the molecular mechanisms of the WNK signaling pathway and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
34
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Zachar R, Jensen BL, Svenningsen P. Dietary Na+ intake in healthy humans changes the urine extracellular vesicle prostasin abundance while the vesicle excretion rate, NCC, and ENaC are not altered. Am J Physiol Renal Physiol 2019; 317:F1612-F1622. [DOI: 10.1152/ajprenal.00258.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Low Na+ intake activates aldosterone signaling, which increases renal Na+ reabsorption through increased apical activity of the NaCl cotransporter (NCC) and the epithelial Na+ channel (ENaC). Na+ transporter proteins are excreted in urine as an integral part of cell-derived extracellular vesicles (uEVs). It was hypothesized that Na+ transport protein levels in uEVs from healthy humans reflect their physiological regulation by aldosterone. Urine and plasma samples from 10 healthy men (median age: 22.8 yr) were collected after 5 days on a low-Na+ (70 mmol/day) diet and 5 days on a high-Na+ (250 mmol/day) diet. uEVs were isolated by ultracentrifugation and analyzed by Western blot analysis for EV markers (CD9, CD63, and ALIX), transport proteins (Na+-K+-ATPase α1-subunit, NCC, ENaC α- and γ-subunits, and aquaporin 2), and the ENaC-cleaving protease prostasin. Plasma renin and aldosterone concentrations increased during the low-Na+ diet. uEV size and concentration were not different between diets by tunable resistive pulse sensing. EV markers ALIX and CD9 increased with the low-Na+ diet, whereas CD63 and aquaporin 2 excretion were unchanged. Full-length ENaC γ-subunits were generally not detectable in uEVs, whereas ENaC α-subunits, NCC, and phosphorylated NCC were consistently detected but not changed by Na+ intake. Prostasin increased with low Na+ in uEVs. uEV excretion of transporters was not correlated with blood pressure, urinary Na+ and K+ excretion, plasma renin, or aldosterone. In conclusion, apical Na+ transporter proteins and proteases were excreted in uEVs, and while the excretion rate and size of uEVs were not affected, EV markers and prostasin increased in response to the low-Na+ diet.
Collapse
Affiliation(s)
- Rikke Zachar
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Bazzell BG, Rainey WE, Auchus RJ, Zocco D, Bruttini M, Hummel SL, Byrd JB. Human Urinary mRNA as a Biomarker of Cardiovascular Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002213. [PMID: 30354328 PMCID: PMC6760265 DOI: 10.1161/circgen.118.002213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background mRNA in urine supernatant (US-mRNA) might encode information about renal and cardiorenal pathophysiology, including hypertension. H, whether the US-mRNA transcriptome reflects that of renal tissues and whether changes in renal physiology are detectable using US-mRNA is unknown. Methods We compared transcriptomes of human urinary extracellular vesicles and human renal cortex. To avoid similarities attributable to ubiquitously expressed genes, we separately analyzed ubiquitously expressed and highly kidney-enriched genes. To determine whether US-mRNA reflects changes in renal gene expression, we assayed cell-depleted urine for transcription factor activity of mineralocorticoid receptors (MR) using probe-based quantitative polymerase chain reaction. The urine was collected from prehypertensive individuals (n=18) after 4 days on low-sodium diet to stimulate MR activity and again after suppression of MR activity via sodium infusion. Results In comparing this US-mRNA and human kidney cortex, expression of 55 highly kidney-enriched genes correlated strongly (rs=0.82) while 8457 ubiquitously expressed genes correlated moderately (rs=0.63). Standard renin-angiotensin-aldosterone system phenotyping confirmed the expected response to sodium loading. Cycle threshold values for MR-regulated targets (SCNN1A, SCNN1G, TSC22D3) changed after sodium loading, and MR-regulated targets (SCNN1A, SCNN1G, SGK1, and TSC22D3) correlated significantly with serum aldosterone and inversely with urinary sodium excretion. Conclusions RNA-sequencing of urinary extracellular vesicles shows concordance with human kidney. Perturbation in human endocrine signaling (MR activation) was accompanied by changes in mRNA in urine supernatant. Our findings could be useful for individualizing pharmacological therapy in patients with disorders of mineralocorticoid signaling, such as resistant hypertension. More generally, these insights could be used to noninvasively identify putative biomarkers of disordered renal and cardiorenal physiology.
Collapse
Affiliation(s)
- Brian G Bazzell
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| | - William E Rainey
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Richard J Auchus
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| | | | - Marco Bruttini
- Department of Life Sciences, Università degli Studi di Siena, Italy (M.B.)
| | - Scott L Hummel
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.).,Section of Cardiology, Ann Arbor Veterans Affairs Medical Center, MI (S.L.H.)
| | - James Brian Byrd
- Departments of Internal Medicine, University of Michigan, Ann Arbor (B.G.B., R.J.A., S.L.H., J.B.B.)
| |
Collapse
|
37
|
Blijdorp CJ, Hoorn EJ. Urinary extracellular vesicles: the mothership connection. Am J Physiol Renal Physiol 2019; 317:F648-F649. [DOI: 10.1152/ajprenal.00358.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Sabaratnam R, Geertsen L, Skjødt K, Højlund K, Dimke H, Lund L, Svenningsen P. In human nephrectomy specimens, the kidney level of tubular transport proteins does not correlate with their abundance in urinary extracellular vesicles. Am J Physiol Renal Physiol 2019; 317:F560-F571. [DOI: 10.1152/ajprenal.00242.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human urinary extracellular vesicles (uEVs) contain proteins from all nephron segments. An assumption for years has been that uEVs might provide a noninvasive liquid biopsy that reflect physiological regulation of transporter protein expression in humans. We hypothesized that protein abundance in human kidney tissue and uEVs are directly related and tested this in paired collections of nephrectomy tissue and urine sample from 12 patients. Kidney tissue was fractioned into total kidney protein, crude membrane (plasma membrane and large intracellular vesicles)-enriched, and intracellular vesicle-enriched fractions as well as sections for immunolabeling. uEVs were isolated from spot urine samples. Antibodies were used to quantify six segment-specific proteins [proximal tubule-expressed Na+-phosphate cotransporters (NaPi-2a), thick ascending limb-expressed Tamm-Horsfall protein and renal outer medullary K+ channels, distal convoluted tubule-expressed NaCl cotransporters, intercalated cell-expressed V-type H+-ATPase subunit G3 (ATP6V1G3), and principal cell-expressed aquaporin 2] and three uEV markers (exosomal CD63, microvesicle marker vesicle‐associated membrane protein 3, and β-actin) in each fraction. By Western blot analysis and immunofluorescence labeling, we found significant positive correlations between the abundance of CD63, NaCl cotransporters, aquaporin 2, and ATP6V1G3, respectively, within the different kidney-derived fractions. We detected all nine proteins in uEVs, but their level did not correlate with kidney tissue protein abundance. uEV protein levels showed higher interpatient variability than kidney-derived fractions, indicating that factors, besides kidney protein abundance, contribute to the uEV protein level. Our data suggest that, in a random sample of nephrectomy patients, uEV protein level is not a predictor of kidney protein abundance.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, Section of Molecular Diabetes and Metabolism, Institute of Clinical Research, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Louise Geertsen
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Karsten Skjødt
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Section of Molecular Diabetes and Metabolism, Institute of Clinical Research, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Dimke
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Poulsen SB, Fenton RA. K
+
and the renin–angiotensin–aldosterone system: new insights into their role in blood pressure control and hypertension treatment. J Physiol 2019; 597:4451-4464. [DOI: 10.1113/jp276844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Søren B. Poulsen
- Department of BiomedicineAarhus University Aarhus DK‐8000 Denmark
| | - Robert A. Fenton
- Department of BiomedicineAarhus University Aarhus DK‐8000 Denmark
| |
Collapse
|
40
|
Nomura N, Shoda W, Uchida S. Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin Exp Nephrol 2019; 23:1175-1180. [PMID: 31317362 PMCID: PMC6746677 DOI: 10.1007/s10157-019-01766-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
Abstract
Introduction Potassium (K+) intake is intrinsically linked to blood pressure. High-K+ intake decreases hypertension and associated lower mortality. On the other hand, hyperkalemia causes sudden death with fatal cardiac arrhythmia and is also related to higher mortality. Renal sodium (Na+)–chloride (Cl‒) cotransporter (NCC), expressed in the distal convoluted tubule, is a key molecule in regulating urinary K+ excretion. K+ intake affects the activity of the NCC, which is related to salt-sensitive hypertension. A K+-restrictive diet activates NCC, and K+ loading suppresses NCC. Hyperpolarization caused by decreased extracellular K+ concentration ([K+]ex) increases K+ and Cl‒ efflux, leading to the activation of Cl‒-sensitive with-no-lysine (WNK) kinases and their downstream molecules, including STE20/SPS1-related proline/alanine-rich kinase (SPAK) and NCC. Results We investigated the role of the ClC-K2 Cl‒ channel and its β-subunit, barttin, using barttin hypomorphic (Bsndneo/neo) mice and found that these mice did not show low-K+-induced NCC activation and salt-sensitive hypertension. Additionally, we discovered that the suppression of NCC by K+ loading was regulated by another mechanism, whereby tacrolimus (a calcineurin [CaN] inhibitor) inhibited high-K+-induced NCC dephosphorylation and urinary K+ excretion. The K+ loading and the tacrolimus treatment did not alter the expression of WNK4 and SPAK. The depolarization induced by increased [K+]ex activated CaN, which dephosphorylates NCC. Conclusions We concluded that there were two independent molecular mechanisms controlling NCC activation and K+ excretion. This review summarizes the clinical importance of K+ intake and explains how NCC phosphorylation is regulated by different molecular mechanisms between the low- and the high-K+ condition. Electronic supplementary material The online version of this article (10.1007/s10157-019-01766-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan.
| | - Wakana Shoda
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| |
Collapse
|
41
|
Cheng L, Poulsen SB, Wu Q, Esteva-Font C, Olesen ETB, Peng L, Olde B, Leeb-Lundberg LMF, Pisitkun T, Rieg T, Dimke H, Fenton RA. Rapid Aldosterone-Mediated Signaling in the DCT Increases Activity of the Thiazide-Sensitive NaCl Cotransporter. J Am Soc Nephrol 2019; 30:1454-1470. [PMID: 31253651 DOI: 10.1681/asn.2018101025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The NaCl cotransporter NCC in the kidney distal convoluted tubule (DCT) regulates urinary NaCl excretion and BP. Aldosterone increases NaCl reabsorption via NCC over the long-term by altering gene expression. But the acute effects of aldosterone in the DCT are less well understood. METHODS Proteomics, bioinformatics, and cell biology approaches were combined with animal models and gene-targeted mice. RESULTS Aldosterone significantly increases NCC activity within minutes in vivo or ex vivo. These effects were independent of transcription and translation, but were absent in the presence of high potassium. In vitro, aldosterone rapidly increased intracellular cAMP and inositol phosphate accumulation, and altered phosphorylation of various kinases/kinase substrates within the MAPK/ERK, PI3K/AKT, and cAMP/PKA pathways. Inhibiting GPR30, a membrane-associated receptor, limited aldosterone's effects on NCC activity ex vivo, and NCC phosphorylation was reduced in GPR30 knockout mice. Phosphoproteomics, network analysis, and in vitro studies determined that aldosterone activates EGFR-dependent signaling. The EGFR immunolocalized to the DCT and EGFR tyrosine kinase inhibition decreased NCC activity ex vivo and in vivo. CONCLUSIONS Aldosterone acutely activates NCC to modulate renal NaCl excretion.
Collapse
Affiliation(s)
- Lei Cheng
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Qi Wu
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Emma T B Olesen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Li Peng
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Björn Olde
- Unit of Drug Target Discovery, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - L M Fredrik Leeb-Lundberg
- Unit of Drug Target Discovery, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Trairak Pisitkun
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
42
|
The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway. J Hum Hypertens 2019; 33:508-523. [DOI: 10.1038/s41371-019-0170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
|
43
|
Channavajjhala SK, Bramley R, Peltz T, Oosthuyzen W, Jia W, Kinnear S, Sampson B, Martin N, Hall IP, Bailey MA, Dear JW, Glover M. Urinary Extracellular Vesicle Protein Profiling and Endogenous Lithium Clearance Support Excessive Renal Sodium Wasting and Water Reabsorption in Thiazide-Induced Hyponatremia. Kidney Int Rep 2019; 4:139-147. [PMID: 30596177 PMCID: PMC6308385 DOI: 10.1016/j.ekir.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Thiazide diuretics are among the most widely used antihypertensive medications worldwide. Thiazide-induced hyponatremia (TIH) is 1 of their most clinically significant adverse effects. A priori TIH must result from excessive saliuresis and/or water reabsorption. We hypothesized that pathways regulating the thiazide-sensitive sodium-chloride cotransporter NCC and the water channel aquaporin-2 (AQP2) may be involved. Our aim was to assess whether patients with TIH would show evidence of altered NCC and AQP2 expression in urinary extracellular vesicles (UEVs), and also whether abnormalities of renal sodium reabsorption would be evident using endogenous lithium clearance (ELC). METHODS Blood and urine samples were donated by patients admitted to hospital with acute symptomatic TIH, after recovery to normonatremia, and also from normonatremic controls on and off thiazides. Urinary extracellular vesicles were isolated and target proteins evaluated by western blotting and by nanoparticle tracking analysis. Endogenous lithium clearance was assessed by inductively coupled plasma mass spectrometry. RESULTS Analysis of UEVs by western blotting showed that patients with acute TIH displayed reduced total NCC and increased phospho-NCC and AQP2 relative to appropriate control groups; smaller differences in NCC and AQP2 expression persisted after recovery from TIH. These findings were confirmed by nanoparticle tracking analysis. Renal ELC was lower in acute TIH compared to that in controls and convalescent case patients. CONCLUSION Reduced NCC expression and increased AQP2 expression would be expected to result in saliuresis and water reabsorption in TIH patients. This study raises the possibility that UEV analysis may be of diagnostic utility in less clear-cut cases of thiazide-associated hyponatremia, and may help to identify patients at risk for TIH before thiazide initiation.
Collapse
Affiliation(s)
- Sarath K. Channavajjhala
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
- NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Roger Bramley
- Trace Element Laboratory, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Theresa Peltz
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Wilna Oosthuyzen
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Wenjing Jia
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
- NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Sue Kinnear
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
- NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Barry Sampson
- Trace Element Laboratory, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Nick Martin
- Trace Element Laboratory, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Ian P. Hall
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
- NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| | - Matthew A. Bailey
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - James W. Dear
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mark Glover
- Division of Therapeutics and Molecular Medicine, University of Nottingham, Nottingham, UK
- NIHR-Nottingham Biomedical Research Centre, Nottinghamshire, UK
| |
Collapse
|
44
|
Vaidya A, Mulatero P, Baudrand R, Adler GK. The Expanding Spectrum of Primary Aldosteronism: Implications for Diagnosis, Pathogenesis, and Treatment. Endocr Rev 2018; 39:1057-1088. [PMID: 30124805 PMCID: PMC6260247 DOI: 10.1210/er.2018-00139] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Primary aldosteronism is characterized by aldosterone secretion that is independent of renin and angiotensin II and sodium status. The deleterious effects of primary aldosteronism are mediated by excessive activation of the mineralocorticoid receptor that results in the well-known consequences of volume expansion, hypertension, hypokalemia, and metabolic alkalosis, but it also increases the risk for cardiovascular and kidney disease, as well as death. For decades, the approaches to defining, diagnosing, and treating primary aldosteronism have been relatively constant and generally focused on detecting and treating the more severe presentations of the disease. However, emerging evidence suggests that the prevalence of primary aldosteronism is much greater than previously recognized, and that milder and nonclassical forms of renin-independent aldosterone secretion that impart heightened cardiovascular risk may be common. Public health efforts to prevent aldosterone-mediated end-organ disease will require improved capabilities to diagnose all forms of primary aldosteronism while optimizing the treatment approaches such that the excess risk for cardiovascular and kidney disease is adequately mitigated. In this review, we present a physiologic approach to considering the diagnosis, pathogenesis, and treatment of primary aldosteronism. We review evidence suggesting that primary aldosteronism manifests across a wide spectrum of severity, ranging from mild to overt, that correlates with cardiovascular risk. Furthermore, we review emerging evidence from genetic studies that begin to provide a theoretical explanation for the pathogenesis of primary aldosteronism and a link to its phenotypic severity spectrum and prevalence. Finally, we review human studies that provide insights into the optimal approach toward the treatment of primary aldosteronism.
Collapse
Affiliation(s)
- Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Rene Baudrand
- Program for Adrenal Disorders and Hypertension, Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gail K Adler
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Wardak H, Tutakhel OAZ, Van Der Wijst J. Role of the alternative splice variant of NCC in blood pressure control. Channels (Austin) 2018; 12:346-355. [PMID: 30264650 PMCID: PMC6207291 DOI: 10.1080/19336950.2018.1528820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The renal thiazide-sensitive sodium-chloride cotransporter (NCC), located in the distal convoluted tubule (DCT) of the kidney, plays an important role in blood pressure regulation by fine-tuning sodium excretion. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms, of which only the third isoform (NCC3) has been extensively investigated so far. However, recent studies unraveled the importance of the isoforms 1 and 2, collectively referred to as NCC splice variant (NCCSV), in several (patho)physiological conditions. In the human kidney, NCCSV localizes to the apical membrane of the DCT and could constitute a functional route for renal sodium-chloride reabsorption. Analysis of urinary extracellular vesicles (uEVs), a non-invasive method for measuring renal responses, demonstrated that NCCSV abundance changes in response to acute water loading and correlates with patients’ thiazide responsiveness. Furthermore, a novel phosphorylation site at serine 811 (S811), exclusively present in NCCSV, was shown to play an instrumental role in NCCSV as well as NCC3 function. This review aims to summarize these new insights of NCCSV function in humans that broadens the understanding on NCC regulation in blood pressure control.
Collapse
Affiliation(s)
- Hila Wardak
- a Department of Physiology , Radboud Institute for Molecular Life Sciences, Radboud university medical center , Nijmegen , The Netherland
| | - Omar A Z Tutakhel
- a Department of Physiology , Radboud Institute for Molecular Life Sciences, Radboud university medical center , Nijmegen , The Netherland.,b Department of Translational Metabolic Laboratory , Radboud university medical center , Nijmegen , The Netherlands
| | - Jenny Van Der Wijst
- a Department of Physiology , Radboud Institute for Molecular Life Sciences, Radboud university medical center , Nijmegen , The Netherland
| |
Collapse
|
46
|
Hu CC, Katerelos M, Choy SW, Crossthwaite A, Walker SP, Pell G, Lee M, Cook N, Mount PF, Paizis K, Power DA. Pre-eclampsia is associated with altered expression of the renal sodium transporters NKCC2, NCC and ENaC in urinary extracellular vesicles. PLoS One 2018; 13:e0204514. [PMID: 30248150 PMCID: PMC6152984 DOI: 10.1371/journal.pone.0204514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Pre-eclampsia is a hypertensive disorder of pregnancy characterised by hypertension and sodium retention by the kidneys. To identify changes in sodium uptake proteins in the tubules of the distal nephron, we studied their expression in urinary extracellular vesicles or exosomes (uEVs). Urine was collected from women with pre-eclampsia or during normal pregnancy, and from healthy non-pregnant controls. uEVs were isolated by centrifugation and analyzed by Western blot. Expression, proteolytic cleavage and phosphorylation was determined by densitometric analysis normalized to the exosome marker CD9. Results showed a significant increase in phosphorylation of the activating S130 site in NKCC2, the drug target for frusemide, in women with pre-eclampsia compared with normal pregnant women. Phosphorylation of the activating sites T101/105 in NKCC2 was similar but the activating T60 site in NCC, the drug target for thiazide diuretics, showed significantly less phosphorylation in pre-eclampsia compared with normal pregnancy. Expression of the larger forms of the α subunit of ENaC, the drug target for amiloride, was significantly greater in pre-eclampsia, with more fragmentation of theγ subunit. The differences observed are predicted to increase the activity of NKCC2 and ENaC while reducing that of NCC. This will increase sodium reabsorption, and so contribute to hypertension in pre-eclampsia.
Collapse
Affiliation(s)
- Chih-Chiang Hu
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
| | - Marina Katerelos
- Kidney Laboratory, Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria Australia
| | - Suet-Wan Choy
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Amy Crossthwaite
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Susan P. Walker
- Melbourne Medical School, University of Melbourne, Parkville, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gabrielle Pell
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Mardiana Lee
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Natasha Cook
- Obstetrics and Gynecology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter F. Mount
- Kidney Laboratory, Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria Australia
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Kathy Paizis
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - David A. Power
- Kidney Laboratory, Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria Australia
- Department of Nephrology, Austin Health, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
47
|
Low-protein diet supplemented with ketoacids delays the progression of diabetic nephropathy by inhibiting oxidative stress in the KKAy mice model. Br J Nutr 2017; 119:22-29. [PMID: 29208058 DOI: 10.1017/s0007114517003208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of chronic kidney disease. We aimed to investigate the effect of the low-protein diets (LPD) supplemented with ketoacids (LPD+KA) in KKAy mice, an early type 2 DN model. KKAy mice were treated with normal protein diet (NPD), LPD or LPD+KA from 12 to 24 weeks of age. A period of 12-week treatment with LPD significantly reduced albuminuria as compared with that observed after NPD treatment. Treatment with LPD+KA further reduced albuminuria as compared with that observed with LPD treatment alone. Moreover, LPD treatment reduced mesangial expansion, thickness of glomerular basement membrane and the severity of the podocyte foot process effacement in KKAy mice; these effects were more pronounced in KKAy mice treated with LPD+KA. Both LPD and LPD+KA treatments slightly reduced total body weight, but had no significant effect on kidney weight and blood glucose concentrations when compared with NPD-treated KKAy mice. LPD treatment slightly attenuated oxidative stress in kidneys as compared with that observed in NPD-treated KKAy mice; however, LPD+KA treatment remarkably ameliorated oxidative stress in diabetic kidneys as shown by decreased malondialdehyde concentrations, protein carbonylation, nitrotyrosine expression and increased superoxide dismutase expression. Nutritional therapy using LPD+KA confers additional renal benefits as compared with those of LPD treatment alone in early type 2 DN through inhibition of oxidative stress.
Collapse
|
48
|
Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 2017. [PMID: 29081510 DOI: 10.1038/nrneph.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Collapse
|
49
|
Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 2017; 13:731-749. [PMID: 29081510 DOI: 10.1038/nrneph.2017.148] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Collapse
|
50
|
Hyndman KA, Mironova EV, Giani JF, Dugas C, Collins J, McDonough AA, Stockand JD, Pollock JS. Collecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways. J Am Heart Assoc 2017; 6:e006896. [PMID: 29066445 PMCID: PMC5721879 DOI: 10.1161/jaha.117.006896] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis that high sodium activation of the collecting duct nitric oxide synthase 1β pathway is critical for maintaining sodium homeostasis and for the downregulation of the renin-angiotensin-aldosterone system-epithelial sodium channel axis. METHODS AND RESULTS Male control and collecting duct nitric oxide synthase 1β knockout (CDNOS1KO) mice were placed on low, normal, and high sodium diets for 1 week. In response to the high sodium diet, plasma sodium was significantly increased in control mice and to a significantly greater level in CDNOS1KO mice. CDNOS1KO mice did not suppress plasma aldosterone in response to the high sodium diet, which may be partially explained by increased adrenal AT1R expression. Plasma renin concentration was appropriately suppressed in both genotypes. Furthermore, CDNOS1KO mice had significantly higher intrarenal angiotensin II with high sodium diet, although intrarenal angiotensinogen levels and angiotensin-converting enzyme activity were similar between knockout mice and controls. In agreement with inappropriate renin-angiotensin-aldosterone system activation in the CDNOS1KO mice on a high sodium diet, epithelial sodium channel activity and sodium transporter abundance were significantly higher compared with controls. CONCLUSIONS These data demonstrate that high sodium activation of collecting duct nitric oxide synthase 1β signaling induces suppression of systemic and intrarenal renin-angiotensin-aldosterone system, thereby modulating epithelial sodium channel and other sodium transporter abundance and activity to maintain sodium homeostasis.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Elena V Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Courtney Dugas
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Jessika Collins
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| | - Alicia A McDonough
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL
| |
Collapse
|