1
|
Shen X, Zhao F, Zhao Z, Yu J, Sun Z. Probiotics: A potential strategy for improving diabetes mellitus complicated with cognitive impairment. Microbiol Res 2025; 290:127960. [PMID: 39515265 DOI: 10.1016/j.micres.2024.127960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus (DM) is a common metabolic disease and one of the diseases with the highest number of complications at present. As the disease progresses, patients will gradually develop diabetes-related cognitive decline, mild cognitive impairment (MCI) or even dementia. The occurrence of diabetes-combined cognitive impairment undoubtedly imposes a heavy burden on patients and their families. Current research suggests that risk factors such as blood glucose levels, insulin resistance, oxidative stress and neuroinflammation have an important role in the development of diabetic cognitive impairment (DCI). With the development of technology and in-depth research, the relationship between the two-way communication between the gut and the brain has been gradually revealed, and more studies have found that the gut microbiota plays an important role in the development of DCI. This review explores the feasibility of probiotics as a potential strategy to assist in the improvement of DCI and its potential mechanisms from the perspective of the factors affecting DCI.
Collapse
Affiliation(s)
- Xin Shen
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhixin Zhao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
2
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Ye XX, Jiang QY, Wu MJ, Ye QH, Zheng H. Transplant of fecal microbiota from healthy young mice relieves cognitive defects in late-stage diabetic mice by reducing metabolic disorders and neuroinflammation. Acta Pharmacol Sin 2024; 45:2513-2526. [PMID: 38992120 PMCID: PMC11579283 DOI: 10.1038/s41401-024-01340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Fecal microbiota transplant (FMT) is becoming as a promising area of interest for treating refractory diseases. In this study, we investigated the effects of FMT on diabetes-associated cognitive defects in mice as well as the underlying mechanisms. Fecal microbiota was prepared from 8-week-aged healthy mice. Late-stage type 1 diabetics (T1D) mice with a 30-week history of streptozotocin-induced diabetics were treated with antibiotics for 7 days, and then were transplanted with bacterial suspension (100 μL, i.g.) once a day for 14 days. We found that FMT from healthy young mice significantly alleviated cognitive defects of late-stage T1D mice assessed in Morris water maze test. We revealed that FMT significantly reduced the relative abundance of Gram-negative bacteria in the gut microbiota and enhanced intestinal barrier integrity, mitigating LPS translocation into the bloodstream and NLRP3 inflammasome activation in the hippocampus, thereby reducing T1D-induced neuronal loss and astrocytic proliferation. FMT also reshaped the metabolic phenotypes in the hippocampus of T1D mice especially for alanine, aspartate and glutamate metabolism. Moreover, we showed that application of aspartate (0.1 mM) significantly inhibited NLRP3 inflammasome activation and IL-1β production in BV2 cells under a HG/LPS condition. We conclude that FMT can effectively relieve T1D-associated cognitive decline via reducing the gut-brain metabolic disorders and neuroinflammation, providing a potential therapeutic approach for diabetes-related brain disorders in clinic.
Collapse
Affiliation(s)
- Xian-Xi Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiao-Ying Jiang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meng-Jun Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing-Huai Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Zheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Xing D, Zhang W, Cui W, Yao X, Xiao Y, Chen L, Yuan S, Duan Y, Yu W, Pan P, Lü Y. SIRT4 promotes neuronal apoptosis in models of Alzheimer's disease via the STAT2-SIRT4-mTOR pathway. Am J Physiol Cell Physiol 2024; 326:C1697-C1709. [PMID: 38586875 DOI: 10.1152/ajpcell.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and presents a considerable disease burden. Its pathology involves substantial neuronal loss, primarily attributed to neuronal apoptosis. Although sirtuin 4 (SIRT4) has been implicated in regulating apoptosis in various diseases, the role of SIRT4 in AD pathology remains unclear. The study used APP/PS1 mice as an animal model of AD and amyloid-β (Aβ)1-42-treated HT-22 cells as an AD cell model. SIRT4 expression was determined by quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence. A Sirt4 knockdown model was established by intracranial injection of lentivirus-packaged sh-SIRT4 and cellular lentivirus transfection. Immunohistochemistry and flow cytometry were used to examine Aβ deposition in mice and apoptosis, respectively. Protein expression was assessed by Western blot analysis. The UCSC and JASPAR databases were used to predict upstream transcription factors of Sirt4. Subsequently, the binding of transcription factors to Sirt4 was analyzed using a dual-luciferase assay and chromatin immunoprecipitation. SIRT4 expression was upregulated in both APP/PS1 mice and Aβ-treated HT-22 cells compared with their respective control groups. Sirt4 knockdown in animal and cellular models of AD resulted in reduced apoptosis, decreased Aβ deposition, and amelioration of learning and memory impairments in mice. Mechanistically, SIRT4 modulates apoptosis via the mTOR pathway and is negatively regulated by the transcription factor signal transducer and activator of transcription 2 (STAT2). Our study findings suggest that targeting the STAT2-SIRT4-mTOR axis may offer a new treatment approach for AD.NEW & NOTEWORTHY The study reveals that in Alzheimer's disease models, SIRT4 expression increases, contributing to neuronal apoptosis and amyloid-β deposition. Reducing SIRT4 lessens apoptosis and amyloid-β accumulation, improving memory in mice. This process involves the mTOR pathway, regulated by STAT2 transcription factor. These findings suggest targeting the STAT2-SIRT4-mTOR axis as a potential Alzheimer's treatment strategy.
Collapse
Affiliation(s)
- Dianxia Xing
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Geriatrics, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wenjin Zhang
- Central Laboratory of Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Central Laboratory of Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiuya Yao
- Central Laboratory of Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yaping Xiao
- Department of Pharmacy and Pharmacology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lihua Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyan Duan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Pengfei Pan
- Intensive Care Unit, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Ye M, Liu Y, Wang F, Yang X, Yang X, Gao X, Liu W, Yu J. Polysaccharide extracted from Sarcandra glabra residue attenuate cognitive impairment by regulating gut microbiota in diabetic mice. Int J Biol Macromol 2024; 270:132121. [PMID: 38719002 DOI: 10.1016/j.ijbiomac.2024.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Diabetic encephalopathy (DE), characterized by cognitive impairment, currently lacks targeted treatment. Previous studies have shown that Sarcandra glabra extracted residue polysaccharide (SERP) exhibited hypoglycemic effects either in vitro or in streptozotocin-induced diabetes mice. However, the therapeutic effect of SERP on DE was not elucidated. This study investigated the therapeutic effect of SERP on DE and its underlying mechanism. Our results revealed that SERP regulates glucose and lipid metabolism, improves cognitive function, and exhibits diminished activity post-antibiotic intervention. Importantly, we discovered a novel mechanism by which SERP modulates the gut microbiota, specifically enriching Bacteroidales S24-7, resulting in elevated levels of butyric acid in the intestine. This regulation modulates the intestinal endocrine cell lipid metabolism level, restores damaged intestinal barriers and neural epithelial circuits, thus exhibiting cure effects. Our findings suggest that SERP could become a candidate for treating DE, potentially involving the regulation mechanism of the "microbiota-gut-brain axis". This study underscores the unique therapeutic efficacy of SERP in managing DE, offering fresh drug candidates and innovative treatment strategies for this challenging condition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yameng Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Feng Wang
- Simcere Pharmaceutical Group Limited, Nanjing 210042, PR China
| | - Xiyuchen Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaobing Yang
- Biology and Medicine Department, Jiangsu Industrial Technology Research Institute, Nanjing 210031, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
6
|
Song J, Li M, Kang N, Jin W, Xiao Y, Li Z, Qi Q, Zhang J, Duan Y, Feng X, Lv P. Baicalein ameliorates cognitive impairment of vascular dementia rats via suppressing neuroinflammation and regulating intestinal microbiota. Brain Res Bull 2024; 208:110888. [PMID: 38295883 DOI: 10.1016/j.brainresbull.2024.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.
Collapse
Affiliation(s)
- Jiaxi Song
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Meixi Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Ning Kang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Jin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Zhe Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Qianqian Qi
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Jiayu Zhang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Yaxin Duan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaoxiao Feng
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China; Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China; Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
7
|
Wang Y, Zhang X, Yao Y, Hu S, Wang W, Wang D, Huang C, Liu H, Zhang Q, He T, Wang S, Wu Z, Jiang R, Yang C. Inferior social hierarchy is vulnerable to anxiety-like behavior in chronic pain mice: Potential role of gut microbiota and metabolites. Neurobiol Dis 2024; 191:106402. [PMID: 38184015 DOI: 10.1016/j.nbd.2024.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024] Open
Abstract
Social dominance is a universal phenomenon among grouped animals that profoundly affects survival, health, and reproductive success by determining access to resources, and exerting a powerful influence on subsequent behavior. However, the understanding of pain and anxiety comorbidities in dominant or subordinate animals suffering from chronic pain is not well-defined. Here, we provide evidence that subordinate mice are more susceptible to pain-induced anxiety compared to dominant mice. We propose that the gut microbiota may play a mediating role in this mechanism. Our findings demonstrate that transplantation of fecal microbiota from subordinate mice with chronic inflammatory pain, but not dominant mice, into antibiotics-treated pseudo-germ-free mice significantly amplifies anxiety-like phenotypes, highlighting the critical involvement of gut microbiota in this behavioral response. Using chronic inflammatory pain model, we carried out 16S rRNA sequencing and untargeted metabolomic analyses to explore the relationship between microbiota and metabolites in a stable social hierarchy of mice. Interestingly, anxiety-like behaviors were directly associated with some microbial genera and metabolites, especially bile acid metabolism. Overall, we have demonstrated a close relationship between social status and anxiety susceptibility, highlighting the contributions of gut microbiota and the associated metabolites in the high-anxiety state of subordinate mice with chronic inflammatory pain.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinying Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiting Yao
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chaoli Huang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Teng He
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
8
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Huang H, Zhao T, Li J, Shen J, Xiao R, Ma W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl Microbiol Biotechnol 2023; 107:7251-7267. [PMID: 37733050 DOI: 10.1007/s00253-023-12754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has a major comorbidity known as diabetes-associated cognitive dysfunction (DACD). Studies have demonstrated that the gut microbiota is crucial in mediating the cognitive abnormalities that occur in diabetic individuals. Additionally, changes in dietary fatty acid intake levels, inflammatory cytokines, and microRNAs (miRs) have an effect on cognitive performance. However, further studies are needed to identify the link between gut microbiota and cognition in T2DM patients and the role that the above indicators play in this process. In order to provide a new rationale for the treatment of cognitive dysfunction in diabetes, this study was conducted in the middle-aged and elderly Beijing population to examine the differences in gut microbiota between DACD and T2DM patients as well as to further explore the role of erythrocyte membrane fatty acids, inflammatory cytokines, and miRs in gut microbiota-mediated cognitive impairment. According to the results, the abundance of norank_f_Eubacterium_coprostanoligenes_group, Acidaminococcus, Enterorhabdus, and norank_f_Clostridium_methylpentosum_group was higher in DACD patients compared to T2DM patients at the genus level. Compared with T2DM patients, plasma interleukin-12 (IL-12) concentrations were significantly higher in DACD patients than in T2DM patients, and IL-12 was significantly positively correlated with norank_f_Eubacterium_coprostanoligenes_group. In addition, plasma miR-142-5p was significantly positively correlated with Enterorhabdus and norank_f_Eubacterium_coprostanoligenes_group. We therefore hypothesize that cognitive impairment in T2DM patients is associated with altered gut microbial composition and that the effect of microbiota on cognition may be mediated through IL-12 and miR-142-5p. KEY POINTS: • Type 2 diabetes with or without cognitive impairment differs in gut microbiota. • Differential genera of gut microbiota were associated with inflammatory cytokines. • Differential genera of gut microbiota were associated with plasma microRNAs.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
10
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
11
|
Li J, Zhang F, Zhao L, Dong C. Microbiota-gut-brain axis and related therapeutics in Alzheimer's disease: prospects for multitherapy and inflammation control. Rev Neurosci 2023:revneuro-2023-0006. [PMID: 37076953 DOI: 10.1515/revneuro-2023-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota-gut-brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. "MGBA-based multitherapy" is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient's condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. "MGBA-based multitherapy" offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Feng Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li Zhao
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| | - Chunbo Dong
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian 116011, China
| |
Collapse
|
12
|
Madison CA, Hillbrick L, Kuempel J, Albrecht GL, Landrock KK, Safe S, Chapkin RS, Eitan S. Intestinal epithelium aryl hydrocarbon receptor is involved in stress sensitivity and maintaining depressive symptoms. Behav Brain Res 2023; 440:114256. [PMID: 36528169 PMCID: PMC9839636 DOI: 10.1016/j.bbr.2022.114256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a key regulator in the microbiome-gut-brain axis, and AhR-active microbial metabolites modulate multiple neuronal responses. We recently demonstrated that 3,3'-diindolylmethane (DIM) and 1,4-dihydroxy-2-naphthoic acid (DHNA), two selective AhR modulators (SAhRMs), act as antidepressants in female mice. Thus, to examine the role of intestinal AhR in depression, anxiety, and spatial learning, this study employed transgenic mice in which the AhR was knockout only in the intestinal epithelium (AhRΔIEC). Additionally, this study examined whether the antidepressant effects of dietary DIM and DHNA is mediated by intestinal AhR. AhRΔIEC and WT female mice were fed daily with vehicle, 20 mg/kg DIM or DHNA for three weeks prior to four weeks of unpredictable chronic mild stress (UCMS). Mice were examined for weight gain, anhedonia-like behavior (sucrose preference test), anxiety levels (open field, light/dark, elevated plus maze, novelty-induced hypophagia, and marble burying tests), and spatial learning (Morris water maze). UCMS reduced weight gain in AhRΔIECs, but not WTs. Moreover, UCMS initially reduced sucrose preference in both AhRΔIECs and WTs, but over 4 weeks of UCMS, AhRΔIECs develop resilience to UCMS-induced anhedonia. Additionally, AhRΔIECs exhibit slightly reduced anxiety in certain tests and faster spatial learning. DIM and DHNA acted as antidepressants in both AhRΔIECs and WTs. Thus, this study suggests that intestinal AhR plays differential roles, mitigating stress effects on weight gain, and increasing stress effects on mood. However, the site of antidepressant action of SAhRMs, such as DIM and DHNA, is not dependent on the expression of intestinal AhR.
Collapse
Affiliation(s)
- Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Georgia Lee Albrecht
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Kerstin K Landrock
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Xie Z, Wang X, Luo X, Yan J, Zhang J, Sun R, Luo A, Li S. Activated AMPK mitigates diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis. Biochem Pharmacol 2023; 207:115374. [PMID: 36502872 DOI: 10.1016/j.bcp.2022.115374] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical interest in Type 2 diabetes (T2D)-associated cognitive dysfunction (TDACD) has grown in recent years. However, the precise mechanisms underlying TDACD need to be further elucidated. Ferroptosis was reportedly involved in neurodegenerative diseases and diabetes-related organ injuries; however, its role in TDACD remains elusive. In this study, mice fed with a high-fat-diet combined with streptozotocin (HFD-STZ) were used as a T2D model to assess the role of ferroptosis in cognitive dysfunction. We found that ferroptosis was mainly activated in hippocampal neurons but not in microglia or astrocytes. Accordingly, increased levels of transferrin receptor and decreased levels of ferritin, GPX4, and SLC7A11 were observed in hippocampal neurons. In addition, pre-treatment with liproxstatin-1, a ferroptosis inhibitor, attenuated iron accumulation and oxidative stress response, which resulted in improved cognitive function in the HFD-STZ group. Furthermore, we found that p-AMP-activated protein kinase (AMPK) was decreased in the HFD-STZ group. Pre-treatment with AMPK agonist increased the expression of AMPK and GPX4, but decreased lipocalin 2 (LCN2) in the hippocampus that resulted in improved spatial learning ability in the HFD-STZ group. Taken together, we found that activation of neuronal ferroptosis in the hippocampus contributed to cognitive impairment of HFD-STZ mice. Furthermore, AMPK activation may reduce hippocampal ferroptosis, and consequently improve cognitive performance in diabetic mice.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Chen X, Zhang W, Lin Z, Zheng C, Chen S, Zhou H, Liu Z. Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments. Front Cell Infect Microbiol 2023; 13:1103189. [PMID: 37113132 PMCID: PMC10127103 DOI: 10.3389/fcimb.2023.1103189] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background Recent studies have reported that gut microbiota is closely associated with cognitive fuction. Fecal microbiota transplantation (FMT) may be a potential treatment for cognitive impairment, but its efficacy in patients with cognitive impairment is unknown. Objectives This study aimed to investigate the safety and efficacy of FMT for cognitive impairment treatment. Methods Five patients aged 54-80 years (three women) were enrolled in this single-arm clinical trial from July 2021 to May 2022. The Montreal Cognitive Assessment-B (MoCA-B), Activities of Daily Living (ADL), and the cognitive section of the Alzheimer's Disease Assessment Scale (ADAS-Cog) were assessed at days 0, 30, 60, 90, and 180. Additionally, stool and serum samples were obtained twice before FMT was administered and six months after the treatment. The structure of fecal microbiota was analyzed by 16S RNA gene sequencing. Serum samples were analyzed for metabolomics and lipopolysaccharide (LPS)-binding proteins by liquid chromatography-mass spectrometry and enzyme-linked immunosorbent assay, respectively. Safety was assessed based on adverse events, vital signs, and laboratory parameters during FMT and the follow-up period. Results The MoCA, ADL, and ADAS-Cog scores of patients with mild cognitive impairment (patients C and E) after FMT were improved or maintained compared with those before transplantation. However, patients with severe cognitive impairment (patients A, B, and D) had no worsening of cognitive scores. Fecal microbiota analysis showed that FMT changed the structure of gut microbiota. The results of serum metabolomics analysis suggested that there were significant changes in the serum metabolomics of patients after FMT, with 7 up-regulated and 28 down-regulated metabolites. 3b,12a-dihydroxy-5a-cholanoic acid, 25-acetylvulgaroside, deoxycholic acid, 2(R)-hydroxydocosanoic acid, and P-anisic acid increased, while bilirubin and other metabolites decreased. KEFF pathway analysis indicated that the main metabolic pathways were bile secretion and choline metabolism in cancer. No adverse effects were reported throughout the study. Conclusions In this pilot study, FMT could maintain and improve cognitive function in mild cognitive impairment by changing gut microbiota structure and affecting serum metabolomics. Fecal bacteria capsules were safe. However, further studies are needed to evaluate the safety and efficacy of fecal microbiota transplantation. ClinicalTrials.gov Identifier: CHiCTR2100043548.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhou Liu
- *Correspondence: Haihong Zhou, ; Zhou Liu,
| |
Collapse
|
15
|
Zhou W, Zhan L, Xu H, Zhang L. Structural Alteration of Gut Microbiota During the Amelioration of Chronic Psychological Stress-Aggravated Diabetes-Associated Cognitive Decline by a Traditional Chinese Herbal Formula, ZiBu PiYin Recipe. J Alzheimers Dis 2022; 90:1465-1483. [PMID: 36278351 DOI: 10.3233/jad-220692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic psychological stress (PS) hinders the treatment of diabetes-associated cognitive decline (DACD). However, the impact of chronic PS on the risk of developing DACD remains unclear. There is growing evidence that gut flora interventions are promising targets for treating stress-related diseases. OBJECTIVE We examined whether chronic PS triggers or exacerbates the onset of DACD in rats and aimed to elucidate whether ZiBuPiYin recipe (ZBPYR) prevents and treats chronic PS-aggravated DACD by dynamically maintaining the components of the gut microbiota. METHODS We performed chronic PS (restraint, rotation, and congestion) on ZDF rats to establish a model. Cognitive function was evaluated by behavioral experiments, and activation of the hypothalamic-pituitary-adrenal axis was detected by ELISA. Weekly feces from rats were collected for 16 S RNA sequencing. RESULTS We found that chronic PS promoted cognitive abnormalities and exacerbated DACD phenotypes. Additionally, chronic PS altered intestinal flora diversity, dynamically elevating the abundance of Alistipes and Coprococcus; enriching Module 1 (Dorea, Blautia, Ruminococcus) and Module 48 (Blautia); and inhibiting Module 20 (Lactobacillus, SMB53), and Module 42 (Akkermansia). ZBPYR significantly alleviated hyperglycemia and cognitive impairment in chronic PS-aggravated DACD rats and dynamically reduced the abundance of Alistipes and Coprococcus; significantly enriched Module 3 (Ruminococcus) and Module 45 (Lactobacillus, Coprococcus, SMB53); and suppressed Module 2 (Lactobacillus), Module 16 (Turicibacter, Trichococcus, Lactobacillus, 02d06, Clostridium), Module 23 (Bifidobacterium), and Module 43 (Clostridium). CONCLUSION ZBPYR might prevent and treat chronic PS-aggravated DACD by dynamically regulating Lactobacillus, Alistipes, and Coprococcus.
Collapse
Affiliation(s)
- Wen Zhou
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Centre for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huiying Xu
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Du Y, Li X, An Y, Song Y, Lu Y. Association of gut microbiota with sort-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: A cross-sectional, non-controlled study. Front Nutr 2022; 9:930626. [PMID: 35938126 PMCID: PMC9355148 DOI: 10.3389/fnut.2022.930626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that gut microbiota, short-chain fatty acids (SCFAs), and inflammatory cytokines play important roles in the pathogenesis of diabetic cognitive impairment (DCI). However, little is known about alterations of gut microbiota and SCFA levels as well as the relationships between inflammatory cytokines and cognitive function in Chinese DCI patients. Herein, the differences in the gut microbiota, plasma SCFAs, and inflammatory cytokines in DCI patients and type 2 diabetes mellitus (T2DM) patients were explored. A cross-sectional study of 30 DCI patients and 30 T2DM patients without mild cognitive impairment (MCI) was conducted in Tianjin city, China. The gut microbiota, plasma SCFAs, and inflammatory cytokines were determined using 16S ribosomal RNA (rRNA) gene sequencing, gas chromatography-mass spectrometry (GC-MS), and Luminex immunofluorescence assays, respectively. In addition, the correlation between gut microbiota and DCI clinical characteristics, SCFAs, and inflammatory cytokines was investigated. According to the results, at the genus level, DCI patients presented a greater abundance of Gemmiger, Bacteroides, Roseburia, Prevotella, and Bifidobacterium and a poorer abundance of Escherichia and Akkermansia than T2DM patients. The plasma concentrations of acetic acid, propionic acid, isobutyric acid, and butyric acid plummeted in DCI patients compared to those in T2DM patients. TNF-α and IL-8 concentrations in plasma were significantly higher in DCI patients than in T2DM patients. Moreover, the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in plasma were negatively correlated with TNF-α, while those of acetic acid and butyric acid were negatively correlated with IL-8. Furthermore, the abundance of the genus Alloprevotella was negatively correlated with butyric acid, while that of Holdemanella was negatively correlated with propanoic acid and isobutyric acid. Fusobacterium abundance was negatively correlated with propanoic acid. Clostridium XlVb abundance was negatively correlated with TNF-α, while Shuttleworthia abundance was positively correlated with TNF-α. It was demonstrated that the gut microbiota alterations were accompanied by a change in SCFAs and inflammatory cytokines in DCI in Chinese patients, potentially causing DCI development. These findings might help to identify more effective microbiota-based therapies for DCI in the future.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing, China
| | - Xiaoying Li
- Geriatrics Department, Beijing Jishuitan Hospital, Beijing, China
| | - Yu An
- Endocrinology Department, Beijing Chaoyang Hospital, Beijing, China
| | - Ying Song
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing, China
- *Correspondence: Yanhui Lu
| |
Collapse
|
17
|
Shi J, Yin Q, Zhang L, Wu Y, Yi P, Guo M, Li H, Yuan L, Wang Z, Zhuang P, Zhang Y. Zi Shen Wan Fang Attenuates Neuroinflammation and Cognitive Function Via Remodeling the Gut Microbiota in Diabetes-Induced Cognitive Impairment Mice. Front Pharmacol 2022; 13:898360. [PMID: 35910371 PMCID: PMC9335489 DOI: 10.3389/fphar.2022.898360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background : Cognitive dysfunction is a critical complication of diabetes mellitus, and there are still no clinically approved drugs. Zi Shen Wan Fang (ZSWF) is an optimized prescription composed of Anemarrhenae Rhizoma, Phellodendri Chinensis Cortex, and Cistanches Herba. The purpose of this study is to investigate the effect of ZSWF on DCI and explore its mechanism from the perspective of maintaining intestinal microbial homeostasis in order to find an effective prescription for treating DCI. Methods: The diabetes model was established by a high-fat diet combined with intraperitoneal injections of streptozotocin (STZ, 120 mg/kg) and the DCI model was screened by Morris water maze (MWM) after 8 weeks of continuous hyperglycemic stimulation. The DCI mice were randomly divided into the model group (DCI), the low- and high-ZSWF-dose groups (9.63 g/kg, 18.72 g/kg), the mixed antibiotic group (ABs), and the ZSWF combined with mixed antibiotic group (ZSWF + ABs). ZSWF was administered orally once a day for 8 weeks. Then, cognitive function was assessed using MWM, neuroinflammation and systemic inflammation were analyzed by enzyme-linked immunosorbent assay kits, intestinal barrier integrity was assessed by hematoxylin-eosin (HE) staining and Western blot and high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Furthermore, the alteration to intestinal flora was monitored by 16S rDNA sequencing. Results: ZSWF restored cognitive function in DCI mice and reduced levels of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. Moreover, ZSWF protected the integrity of the intestinal barrier by increasing intestinal ZO-1 and occludin protein expression and decreasing urinary lactulose to mannitol ratio. In addition, ZSWF reshaped the imbalanced gut microbiota in DCI mice by reversing the abundance changes of a wide range of intestinal bacteria at the phyla and genus levels. In contrast, removing gut microbiota with antibiotics partially eliminated the effects of ZSWF on improving cognitive function and reducing inflammation, confirming the essential role of gut microbiota in the improvement of DCI by ZSWF. Conclusion: ZSWF can reverse cognitive impairment in DCI mice by remolding the structure of destructed gut microbiota community, which is a potential Chinese medicine prescription for DCI treatment.
Collapse
Affiliation(s)
- Jiangwei Shi
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengrong Yi
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengqing Guo
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liuyi Yuan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zixuan Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Bi T, Zhang L, Zhan L, Feng R, Zhao T, Ren W, Hang T, Zhou W, Lu X. Integrated Analyses of Microbiomics and Metabolomics Explore the Effect of Gut Microbiota Transplantation on Diabetes-Associated Cognitive Decline in Zucker Diabetic Fatty Rats. Front Aging Neurosci 2022; 14:913002. [PMID: 35721013 PMCID: PMC9204715 DOI: 10.3389/fnagi.2022.913002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes-associated cognitive decline (DACD), one of the complications of type 2 diabetes (T2DM), correlates significantly with the disorder in glycolipid metabolism, insulin/leptin resistance, and accumulation of β-amyloid (Aβ). Although gut microbiota transplantation (GMT), a novel non-invasive physiotherapy strategy, has been a promising intervention to alleviate the symptoms of T2DM, its protective effect on progressive cognitive decline remains elusive. Here, we transplanted the gut microbiota of healthy or cognitive decline donor rats into ZDF or LZ rats, and integrated microbiomics and metabolomics to evaluate the directional effect of the gut microbiota on the recipient rats. The basal metabolism phenotype changed in ZDF rats instead of in LZ rats. One possible mechanism is that the microbiota and metabolites alter the structure of the intestinal tract, stimulate the brain insulin and leptin signaling pathways, and regulate the deposition of Aβ in the brain. It is worth noting that 10 species of genera, such as Parabacteroides, Blautia, and Lactobacillus, can regulate 20 kinds of metabolites, such as propanoic acid, acetic acid, and citramalic acid, and having a significant improvement on the cognitive behavior of ZDF rats. In addition, the correlation analysis indicated the gut microbiota and metabolites are highly associated with host phenotypes affected by GMT. In summary, our study indicates that altering the microbiota-gut-brain axis by reshaping the composition of gut microbiota is a viable strategy that has great potential for improving cognitive function and combatting DACD.
Collapse
Affiliation(s)
- Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Libin Zhan,
| | - Ruiqi Feng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Ren
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Hang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
- Xiaoguang Lu,
| |
Collapse
|
19
|
Hu C, Patil Y, Gong D, Yu T, Li J, Wu L, Liu X, Yu Z, Ma X, Yong Y, Chen J, Gooneratne R, Ju X. Heat Stress-Induced Dysbiosis of Porcine Colon Microbiota Plays a Role in Intestinal Damage: A Fecal Microbiota Profile. Front Vet Sci 2022; 9:686902. [PMID: 35300220 PMCID: PMC8921775 DOI: 10.3389/fvets.2022.686902] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
The pathological mechanisms of gastrointestinal disorders, including inflammatory bowel disease (IBD), in pigs are poorly understood. We report the induction of intestinal inflammation in heat-stressed (HS) pigs, fecal microbiota transplantation from pigs to mice, and explain the role of microorganisms in IBD. 24 adult pigs were subjected to HS (34 ± 1 °C; 75–85% relative humidity for 24h) while 24 control pigs (CP) were kept at 25 ± 3°C and the same humidity. Pigs were sacrificed on days 1, 7, 14, 21. Colonic content microbiome analyses were conducted. Pseudo-germ-free mice were fed by gavage with fecal microbiota from HS-pigs and CP to induce pig-like responses in mice. From 7 d, HS-pigs exhibited fever and diarrhea, and significantly lower colonic mucosal thickness, crypt depth/width, and goblet cell number. Compared with each control group, the concentration of cortisol in the peripheral blood of HS pigs gradually increased, significantly so on days 7, 14, and 21 (P < 0.01). While the concentration of LPS in HS pigs' peripheral blood was significantly higher on days 7, 14 (P < 0.01), and 21 (P < 0.05) compared with that of the control group. The colonic microbiome composition of HS-pigs was different to that of CP. By day 14, opportunistic pathogens (e.g., Campylobacterales) had increased in HS-pigs. The composition of the colonic microbiome in mice administered feces from HS-pigs was different from those receiving CP feces. Bacteroides were significantly diminished, Akkermansia were significantly increased, and intestinal damage and goblet cell numbers were higher in mice that received HS-pig feces. Moreover, we verified the relevance of differences in the microbiota of the colon among treatments. Heat stress promotes changes in gut microbiome composition, which can affect the colonic microbial structure of mice through fecal microbiota transplantation; the molecular mechanisms require further investigation. This study enhanced our understanding of stress-induced inflammation in the colon and the increase in diarrhea in mammals subjected to prolonged HS. Our results provide useful information for preventing or ameliorating deficits in pig production caused by prolonged exposure to high temperatures.
Collapse
Affiliation(s)
- Canying Hu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yadnyavalkya Patil
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Dongliang Gong
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Tianyue Yu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Junyu Li
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Lianyun Wu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Xinbing Ma
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Jinjun Chen
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Xianghong Ju
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Xianghong Ju
| |
Collapse
|
20
|
Liu L, Kirst ME, Zhao L, Li E, Wang GP. Microbiome Resilience despite a Profound Loss of Minority Microbiota following Clindamycin Challenge in Humanized Gnotobiotic Mice. Microbiol Spectr 2022; 10:e0196021. [PMID: 35019780 PMCID: PMC8754120 DOI: 10.1128/spectrum.01960-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antibiotics are known to induce gut dysbiosis and increase the risk of antibiotic resistance. While antibiotic exposure is a known risk factor leading to compromised colonization resistance against enteric pathogens such as Clostridioides difficile, the extent and consequences of antibiotic perturbation on the human gut microbiome remain poorly understood. Human studies on impacts of antibiotics are complicated by the tremendous variability of gut microbiome among individuals, even between identical twins. Furthermore, antibiotic challenge experiments cannot be replicated in human subjects for a given gut microbiome. Here, we transplanted feces from three unrelated human donors into groups of identical germfree (GF) Swiss-Webster mice, and examined the temporal responses of the transplanted microbiome to oral clindamycin challenge in gnotobiotic isolators over 7 weeks. Analysis of 177 longitudinal fecal samples revealed that 59% to 81% of human microbiota established a stable configuration rapidly and stably in GF mice. Microbiome responses to clindamycin challenge was highly reproducible and microbiome-dependent. A short course of clindamycin was sufficient to induce a profound loss (∼one third) of the microbiota by disproportionally eliminating minority members of the transplanted microbiota. However, it was inadequate to disrupt the global microbial community structure or function, which rebounded rapidly to resemble its pre-treatment state after clindamycin discontinuation. Furthermore, the response of individual microbes was community-dependent. Taken together, these results suggest that the overall gut microbiome structure is resilient to antibiotic perturbation, the functional consequences of which warrant further investigation. IMPORTANCE Antibiotics cause imbalance of gut microbiota, which in turn increase our susceptibility to gastrointestinal infections. However, how antibiotics disrupt gut bacterial communities is not well understood, and exposing healthy volunteers to unnecessary antibiotics for research purposes carries clinical and ethical concerns. In this study, we used genetically identical mice transplanted with the same human gut microbiota to control for both genetic and environmental variables. We found that a short course of oral clindamycin was sufficient to eliminate one third of the gut bacteria by disproportionally eliminating minority members of the transplanted microbiota, but it was inadequate to disrupt the overall microbial community structure and function, which rebounded rapidly to its pre-treatment state. These results suggest that gut microbiome is highly resilient to antibiotic challenge and degradation of the human gut ecosystem may require repeated or prolonged antibiotic exposure.
Collapse
Affiliation(s)
- Lin Liu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mariana E. Kirst
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lisa Zhao
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Eric Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gary P. Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| |
Collapse
|
21
|
Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:834485. [PMID: 35242721 PMCID: PMC8886906 DOI: 10.3389/fcimb.2022.834485] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases in the world. Due to the rise in morbidity and mortality, it has become a global health problem. To date, T2DM still cannot be cured, and its intervention measures mainly focus on glucose control as well as the prevention and treatment of related complications. Interestingly, the gut microbiota plays an important role in the development of metabolic diseases, especially T2DM. In this review, we introduce the characteristics of the gut microbiota in T2DM population, T2DM animal models, and diabetic complications. In addition, we describe the molecular mechanisms linking host and the gut microbiota in T2DM, including the host molecules that induce gut microbiota dysbiosis, immune and inflammatory responses, and gut microbial metabolites involved in pathogenesis. These findings suggest that we can treat T2DM and its complications by remodeling the gut microbiota through interventions such as drugs, probiotics, prebiotics, fecal microbiota transplantation (FMT) and diets.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Dongsheng Yu, ; Chunsheng Zhu,
| |
Collapse
|
22
|
Liu Y, Huang B, Zhu Z, Zheng T. Curcumae Ameliorates Diabetic Neuropathy in Streptozotocin Induced Diabetic Rats via Alteration of Gut Microbiota. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.374.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Zhang J, Zhang Y, Yuan Y, Liu L, Zhao Y, Wang X. Gut Microbiota Alteration Is Associated With Cognitive Deficits in Genetically Diabetic (Db/db) Mice During Aging. Front Aging Neurosci 2022; 13:815562. [PMID: 35153726 PMCID: PMC8826473 DOI: 10.3389/fnagi.2021.815562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have revealed that the microbiota may be implicated in diabetes-related cognitive dysfunction. However, the relationship between gut microbiota and cognitive dysfunction during the progression of type 2 diabetes remains elusive. We used 16S rRNA sequencing combined with conventional behavioral tests to explore the longitudinal changes of gut microbiota and cognition in diabetic db/db mice (leptin receptor knockout mice) and their wild-type littermates at different ages. Prussian blue staining was performed to detect the microhemorrhage in the brain, and immunofluorescent study was applied to analyze microglia activation. Moreover, a Meso Scale Discovery kit was used to determine the cytokine levels in the brain. Db/db mice exhibited age dependent pathological characteristics, including cognitive deficits, neuron damage, spontaneous hemorrhages and neuroinflammation. Furthermore, we observed that the diversity and composition of gut microbiota significantly differed between the wild-type and db/db mice during aging. We found that compared to age-matched wild-type mice, genus Helicobacter was significant higher in db/db mice at 18 and 26 weeks. Correlation analysis revealed that Helicobacter is positively associated with Iba-1 positive cells and TNF-α expression. Collectively, our longitudinal study suggests that diabetic cognitive impairment during aging is associated with abnormal gut microbiota composition, which may play a role in the regulation of neuroinflammation.
Collapse
|
24
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Koc F, Stanton C, Ross RP, Salkovic-Petrisic M. Disbalance of the Duodenal Epithelial Cell Turnover and Apoptosis Accompanies Insensitivity of Intestinal Redox Homeostasis to Inhibition of the Brain Glucose-Dependent Insulinotropic Polypeptide Receptors in a Rat Model of Sporadic Alzheimer's Disease. Neuroendocrinology 2022; 112:744-762. [PMID: 34607331 DOI: 10.1159/000519988] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Gastrointestinal dyshomeostasis is investigated in the context of metabolic dysfunction, systemic, and neuroinflammation in Alzheimer's disease. Dysfunctional gastrointestinal redox homeostasis and the brain-gut incretin axis have been reported in the rat model of insulin-resistant brain state-driven neurodegeneration induced by intracerebroventricular streptozotocin (STZ-icv). We aimed to assess whether (i) the structural epithelial changes accompany duodenal oxidative stress; (ii) the brain glucose-dependent insulinotropic polypeptide receptor (GIP-R) regulates redox homeostasis of the duodenum; and (iii) the STZ-icv brain-gut axis is resistant to pharmacological inhibition of the brain GIP-R. METHODS GIP-R inhibitor [Pro3]-GIP (85 μg/kg) was administered intracerebroventricularly to the control and the STZ-icv rats 1 month after model induction. Thiobarbituric acid reactive substances (TBARSs) were measured in the plasma and duodenum, and the sections were analyzed morphometrically. Caspase-3 expression and activation were assessed by Western blot and multiplex fluorescent signal amplification. RESULTS Intracerebroventricular [Pro3]-GIP decreased plasma TBARSs in the control and STZ-icv animals and increased duodenal TBARSs in the controls. In the controls, inhibition of brain GIP-R affected duodenal epithelial cells, but not villus structure, while all morphometric parameters were altered in the STZ-icv-treated animals. Morphometric changes in the STZ-icv animals were accompanied by reduced levels of caspase-3. Suppression of brain GIP-R inhibited duodenal caspase-3 activation. CONCLUSION Brain GIP-R seems to be involved in the regulation of duodenal redox homeostasis and epithelial cell turnover. Resistance of the brain-gut GIP axis and morphological changes indicative of abnormal epithelial cell turnover accompany duodenal oxidative stress in the STZ-icv rats.
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fatma Koc
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | | | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
25
|
Probiotics for Alzheimer's Disease: A Systematic Review. Nutrients 2021; 14:nu14010020. [PMID: 35010895 PMCID: PMC8746506 DOI: 10.3390/nu14010020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
Collapse
|
26
|
Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114464. [PMID: 34329715 DOI: 10.1016/j.jep.2021.114464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cognitive dysfunction (DCD) is mainly one of the complications of type 2 diabetes mellitus (T2DM) with complex and obscure pathogenesis. Extensive evidence has demonstrated the effectiveness and safety of traditional Chinese medicine (TCM) for DCD management. AIM OF THE STUDY This review attempted to systematically summarize the possible pathogenesis of DCD and the current Chinese medicine on the treatment of DCD. MATERIALS AND METHODS We acquired information of TCM on DCD treatment from PubMed, Web of Science, Science Direct and CNKI databases. We then dissected the potential mechanisms of currently reported TCMs and their active ingredients for the treatment of DCD by discussing the deficiencies and giving further recommendations. RESULTS Most TCMs and their active ingredients could improve DCD through alleviating insulin resistance, microvascular dysfunction, abnormal gut microbiota composition, inflammation, and the damages of the blood-brain barrier, cerebrovascular and neurons under hyperglycemia conditions. CONCLUSIONS TCM is effective in the treatment of DCD with few adverse reactions. A large number of in vivo and in vitro, and clinical trials are still needed to further reveal the potential quality markers of TCM on DCD treatment.
Collapse
Affiliation(s)
- Jinni Meng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, China
| | - Huixia Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
27
|
Liu Q, Xie T, Xi Y, Li L, Mo F, Liu X, Liu Z, Gao JM, Yuan T. Sesamol Attenuates Amyloid Peptide Accumulation and Cognitive Deficits in APP/PS1 Mice: The Mediating Role of the Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12717-12729. [PMID: 34669408 DOI: 10.1021/acs.jafc.1c04687] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, is the leading cause of dementia. Sesamol is a lignan extracted from sesame oil and has been found to exert neuroprotective effects. The present study aimed to investigate the neuroprotective effects of sesamol on APPswe/PS1dE9 transgenic AD mice. The AD mice were fed with a diet supplemented with sesamol (0.075 w/w %). Sesamol treatment improved spatial memory and learning ability in AD mice, improved neuronal damage, and decreased Aβ accumulation. Sesamol protected the synaptic ultrastructure and inhibited neuroinflammatory responses in the brain of AD mice. Sesamol also significantly inhibited the overactivated microglia and reduced the overexpression of TNF-α and IL-1β in the brain of AD mice. Notably, sesamol reshaped gut microbiota by significantly decreasing the relative abundance of Helicobacter hepaticus, Clostridium, and Bacillaceae, enhancing the relative abundance of Rikenellaceae and Bifidobacterium in AD mice. It has been found that sesamol protected the gut barrier integrity and prevented the LPS leakage into the serum. Importantly, sesamol remarkably enhanced the content of SCFAs, including acetate, propionate, isobutyrate, butyrate, and valerate, in AD mice. Correlation analysis indicated that there was a strong correlation between the levels of SCFAs and cognitive functions. These results demonstrated that sesamol attenuated AD-related cognitive dysfunction and neuroinflammatory responses, which could be partly explained by its role in mediating the gut microbe-SCFA-brain axis. Thus, sesamol is a promising nutritional intervention strategy to prevent AD via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. China
| | - Tian Yuan
- Department of Food Science, Cornell University, Ithaca, New York 14853, United States
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
28
|
Olson CA, Iñiguez AJ, Yang GE, Fang P, Pronovost GN, Jameson KG, Rendon TK, Paramo J, Barlow JT, Ismagilov RF, Hsiao EY. Alterations in the gut microbiota contribute to cognitive impairment induced by the ketogenic diet and hypoxia. Cell Host Microbe 2021; 29:1378-1392.e6. [PMID: 34358434 PMCID: PMC8429275 DOI: 10.1016/j.chom.2021.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.
Collapse
Affiliation(s)
- Christine A. Olson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ,
| | - Alonso J. Iñiguez
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Grace E. Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ping Fang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Geoffrey N. Pronovost
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelly G. Jameson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tomiko K. Rendon
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Paramo
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jacob T. Barlow
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91108, USA
| | - Rustem F. Ismagilov
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91108, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ,
| |
Collapse
|
29
|
Bi T, Feng R, Zhan L, Ren W, Lu X. ZiBuPiYin Recipe Prevented and Treated Cognitive Decline in ZDF Rats With Diabetes-Associated Cognitive Decline via Microbiota-Gut-Brain Axis Dialogue. Front Cell Dev Biol 2021; 9:651517. [PMID: 34485269 PMCID: PMC8416319 DOI: 10.3389/fcell.2021.651517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota is becoming one of the key determinants in human health and disease. Shifts in gut microbiota composition affect cognitive function and provide new insights for the prevention and treatment of neurological diseases. Diabetes-associated cognitive decline (DACD) is one of the central nervous system complications of type 2 diabetes mellitus (T2DM). ZiBuPiYin recipe (ZBPYR), a traditional Chinese medicine (TCM) formula, has long been used for the treatment of T2DM and prevention of DACD. However, the contribution of ZBPYR treatment to the interaction between the gut microbiota and metabolism for preventing and treating DACD remains to be clarified. Here, we investigate whether the gut microbiota plays a key role in ZBPYR-mediated prevention of DACD and treatment of T2DM via incorporating microbiomics and metabolomics, and investigate the links between the microbiota-gut-brain axis interaction and the efficacy of ZBPYR in ZDF rats. In the current study, we found that ZBPYR treatment produced lasting changes in gut microbiota community and metabolites and remotely affected hippocampus metabolic changes, thereby improving memory deficits and reversing β-amyloid deposition and insulin resistance in the brain of ZDF rats from T2DM to DACD. This may be related to a series of metabolic changes affected by gut microbiota, including alanine, aspartic acid, and glutamic acid metabolism; branched-chain amino acid metabolism; short-chain fatty acid metabolism; and linoleic acid/unsaturated fatty acid metabolism. In summary, this study demonstrates that prevention and treatment of DACD by ZBPYR partly depends on the gut microbiota, and the regulatory effects of bacteria-derived metabolites and microbiota-gut-brain axis are important protective mechanisms of ZBPYR.
Collapse
Affiliation(s)
- Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruiqi Feng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Ren
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
| |
Collapse
|
30
|
Nandwana V, Debbarma S. Fecal Microbiota Transplantation: A Microbiome Modulation Technique for Alzheimer's Disease. Cureus 2021; 13:e16503. [PMID: 34430117 PMCID: PMC8374998 DOI: 10.7759/cureus.16503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and the fifth leading cause of death among the elderly. AD involves parts of the brain that can lead to progressive memory loss and impaired language skills and cognitive thinking, affecting one’s ability to carry out daily activities. Aging, bad dietary habits, family history, as well as altered gut microbiota composition may play a role in the pathogenesis of AD. Although the association between the imbalance of gut microbiota and AD is still difficult to determine, it has been suggested that dysbiosis can lead to the increased secretion of lipopolysaccharides and amyloid, which may impair the permeability of the intestine and the blood-brain barrier. Moreover, it can progress the process of neuroinflammation, amyloid-beta formation, and ultimately neuronal death. Microbiota-targeted interventions such as personalized diet, probiotics, or fecal microbiota transplantation (FMT) might represent a potential therapeutic option for AD. This review article discusses the procedure of FMT and its possible side effects on the recipient’s body. In addition, we review the role of FMT in the context of its application in various nervous system-related disorders (AD, Parkinson’s disease, multiple sclerosis).
Collapse
Affiliation(s)
- Varsha Nandwana
- Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| | - Shibajee Debbarma
- Community Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| |
Collapse
|
31
|
Wang Y, Dykes GA. Direct modulation of the gut microbiota as a therapeutic approach for Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:14-25. [PMID: 34365962 DOI: 10.2174/1871527320666210806165751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/18/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by a progressive decline in memory and cognitive functions. It is a multifactorial disease involving a wide range of pathological factors that are not fully understood. As supported by a growing amount of evidence in recent years, the gut microbiota plays an important role in the pathogenesis of Alzheimer's disease through the brain-gut-microbiota axis. This suggests that direct modulation of the gut microbiota can be a potential therapeutic target for Alzheimer's disease. This review summarizes recent research findings on the modulation of the gut microbiota by probiotic therapies and faecal microbiota transplantation for controlling the pathologies of Alzheimer's disease. Current limitations and future research directions of this field are also discussed.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, the University of Queensland, Keyhole Road, St Lucia, Queensland 4072. Australia
| |
Collapse
|
32
|
Liu M, Song S, Chen Q, Sun J, Chu W, Zhang Y, Ji F. Gut microbiota mediates cognitive impairment in young mice after multiple neonatal exposures to sevoflurane. Aging (Albany NY) 2021; 13:16733-16748. [PMID: 34182544 PMCID: PMC8266337 DOI: 10.18632/aging.203193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Multiple exposures to anesthesia may increase the risk of cognitive impairment in young children. However, the mechanisms underlying this neurodevelopmental disorder remain elusive. In this study, we investigated alteration of the gut microbiota after multiple neonatal exposures to the anesthetic sevoflurane and the potential role of microbiota alteration on cognitive impairment using a young mice model. Multiple neonatal sevoflurane exposures resulted in obvious cognitive impairment symptoms and altered gut microbiota composition. Fecal transplantation experiments confirmed that alteration of the microbiota was responsible for the cognitive disorders in young mice. Microbiota profiling analysis identified microbial taxa that showed consistent differential abundance before and after fecal microbiota transplantation. Several of the differentially abundant taxa are associated with memory and/or health of the host, such as species of Streptococcus, Lachnospiraceae, and Pseudoflavonifractor. The results reveal that abnormal composition of the gut microbiota is a risk factor for cognitive impairment in young mice after multiple neonatal exposures to sevoflurane and provide insight into a potential therapeutic strategy for sevoflurane-related neurotoxicity.
Collapse
Affiliation(s)
- Meiyu Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Shaoyong Song
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingcai Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Sun
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Chu
- Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
33
|
Xu X, Wang K, Cao X, Li Z, Zhou Y, Ren J, Liu F. Gut Microbial Metabolite Short-Chain Fatt Acids Partially Reverse Surgery and Anesthesia-Induced Behavior Deficits in C57BL/6J Mice. Front Neurosci 2021; 15:664641. [PMID: 34168535 PMCID: PMC8217457 DOI: 10.3389/fnins.2021.664641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has demonstrated that damages of gut microbiota are strongly associated with central nervous system (CNS) diseases, such as perioperative neurocognitive disorders (PND). The present study investigated the role of gut microbial metabolite short-chain fatty acids (SCFAs) in surgery-induced cognitive deficits and neuroinflammation in the hippocampus. Adult male C57BL/6J mice received either SCFA mixture or saline orally for 4 weeks, and then partial hepatectomy was performed. The fecal supernatant of surgical mice was transplanted to normal mice for 3 weeks. The Morris water maze (MWM) and open-field tests were used to evaluate behavioral performance on postoperative or post-transplantation days 3 and 7. In the MWM test, pretreatment with exogenous SCFAs partially reversed surgery-induced impairments in crossing times and the time spent in the target quadrant on postoperative day 3 (p < 0.05, p < 0.05, respectively). In the open-field test, compared with the surgical mice, exogenous SCFA administration prior to surgery partially improved the locomotor activity (p < 0.05) and anxiety-like behavior (p < 0.05) on postoperative day 3. Surgical trauma and anesthesia enhanced ionized calcium-binding adapter molecule 1 (Iba-1) expression (p < 0.001), increased the levels of interleukin (IL)-1β (p < 0.001) and IL-6 (p < 0.001), and inhibited SCFA production (p < 0.001) on postoperative day 3. The expression of the brain-derived neurotrophic factor (BDNF) was also decreased (p < 0.001). Overall, surgical trauma and anesthesia exacerbated cognitive impairment, enhanced neuroinflammatory responses, and inhibited SCFA production. Pretreatment with SCFAs attenuated these effects partially by reversing microglial overactivation, inhibiting neuroinflammatory responses, and enhancing BDNF expression.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kexin Wang
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuezhao Cao
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Li
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongjian Zhou
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiancong Ren
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Liu Y, Kong C, Gong L, Zhang X, Zhu Y, Wang H, Qu X, Gao R, Yin F, Liu X, Qin H. The Association of Post-Stroke Cognitive Impairment and Gut Microbiota and its Corresponding Metabolites. J Alzheimers Dis 2021; 73:1455-1466. [PMID: 31929168 DOI: 10.3233/jad-191066] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) is an important factor causing disabilities after acute ischemic stroke (AIS). Emerging evidence suggested that gut microbiota play an important role in cognitive impairment. OBJECTIVE This study aimed to explore the association between PSCI and gut microbiota. METHOD 65 patients with newly diagnostic AIS finished the fecal collection on admission and cognitive assessment 3 months later in the clinic. Fecal samples were subjected to 16SrRNA gene sequencing and gas chromatography-mass spectrometry analysis. Additionally, we enrolled new 18 AIS patients, whose treatment was supplemented by probiotics, to assess the potential of microbial treatment in PSCI. RESULTS PSCI patients were characterized by the significantly decreased alpha-diversity, disturbed microbial composition, and corresponding metabolites compared with non-PSCI patients. Increased Fusobacterium and deficiency of microbial metabolized short-chain fatty acids (SCFAs) were significantly associated with PSCI. A model based on gut microbiota and SCFAs could predict 3 months or longer PSCI early and accurately after stroke onset. While traditional probiotic administration had little effect on PSCI, it could ameliorate patients' mood, including depression and anxiety in the 3 months after stroke. CONCLUSION Our study revealed the association between PSCI and gut microbiota and its corresponding metabolites for the first time, suggesting the potential for applying microbiota and its corresponding metabolites to early clinical diagnosis and treatment of PSCI.
Collapse
Affiliation(s)
- Yongqiang Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Cheng Kong
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Li Gong
- Department of Neurology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaohui Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuefei Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Haichao Wang
- Department of Neurology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiao Qu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Renyuan Gao
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Fang Yin
- Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
35
|
A cross-sectional study on gut microbiota in prostate cancer patients with prostatectomy or androgen deprivation therapy. Prostate Cancer Prostatic Dis 2021; 24:1063-1072. [PMID: 33850270 DOI: 10.1038/s41391-021-00360-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Androgen deprivation therapy (ADT), either by medical or surgical castration, is the backbone for standard treatment of locally advanced or metastatic prostate cancer, yet it is also associated with various metabolic and cardiovascular complications. Recent evidence have shown that obesity, insulin resistance, or metabolic disturbances can be associated with changes in the gut microbiome, while animal studies also show that castration is associated with changes in the gut microbiome. This study aims to investigate whether the fecal microbiota in prostate cancer patients who had undergone prostatectomy or ADT are different, and explore changes in phylogeny and pathways that may lead to side effects from ADT. METHODS A total of 86 prostate cancer patients (56 patients on ADT and 30 patients with prostatectomy) were recruited. The fecal microbiota was analyzed by the 16S rRNA gene for alpha- and beta-diversities by QIIME2, as well as the predicted metabolic pathways by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2. RESULTS The alpha-diversity was significantly lower in the ADT group. The beta-diversity was significantly different between the groups, in which Ruminococcus gnavus and Bacteroides spp were having higher relative abundance in the ADT group, whereas Lachnospira and Roseburia were reduced. The Firmicutes-to-Bacteroidetes ratio is noted to be lower in the ADT group as well. The functional pathway prediction showed that the biosynthesis of lipopolysaccharide (endotoxin) and propanoate was enriched in the ADT as well as the energy cycle pathways. This study is limited by the cross-sectional design and the clinical heterogeneity. CONCLUSIONS There is a significant difference in gut microbiome between prostate cancer patients on ADT and prostatectomy. We theorize that this difference may contribute to the development of metabolic complications from ADT. Further longitudinal studies are awaited.
Collapse
|
36
|
Obeticholic Acid Inhibits Anxiety via Alleviating Gut Microbiota-Mediated Microglia Accumulation in the Brain of High-Fat High-Sugar Diet Mice. Nutrients 2021; 13:nu13030940. [PMID: 33803974 PMCID: PMC7999854 DOI: 10.3390/nu13030940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
Anxiety is one of the complications of metabolic disorders (MDs). Obeticholic acid (OCA), the bile acids (BAs) derivative, is a promising agent for improving MDs in association with gut dysbiosis. Yet, its protective effect on MDs-driven anxiety remains unknown. Here, we assessed the serum biochemical parameters and behavioral performance by open field and Morris water maze tests in HFHS diet-induced MDs mice after OCA intervention for nine and 18 weeks. Moreover, antibiotics intervention for microbial depletion was conducted simultaneously. We found that OCA treatment inhibited the initiation and progression of anxiety in HFHS diet-MDs mice via a microbiota–BAs–brain axis: OCA decreased the neuroinflammatory microglia and IL-1β expression in the hippocampus, reversed intestinal barrier dysfunction and serum proinflammatory LPS to a normal level, modified the microbial community, including the known anxiety-related Rikenellaceae and Alistipes, and improved the microbial metabolites especially the increased BAs in feces and circulation. Moreover, the OCA-reversed bile acid taurocholate linked disordered serum lipid metabolites and indole derivatives to anxiety as assessed by network analysis. Additionally, microbial depletion with antibiotics also improved the anxiety, microgliosis and BAs enrichment in the experimental MDs mice. Together, these findings provide microbiota–BAs–brain axis as a novel therapeutic target for MDs-associated neuropsychiatric disorders.
Collapse
|
37
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|
38
|
Li Y, Zhang W, Sun T, Liu B, Manyande A, Xu W, Xiang HB. The Role of Gut Microbiota in Chronic Itch-Evoked Novel Object Recognition-Related Cognitive Dysfunction in Mice. Front Med (Lausanne) 2021; 8:616489. [PMID: 33614682 PMCID: PMC7892771 DOI: 10.3389/fmed.2021.616489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The high incidence of patients with chronic itch highlights the importance of fundamental research. Recent advances in the interface of gut microbiota have shed new light into exploring this phenomenon. However, it is unknown whether gut microbiota plays a role in chronic itch in rodents with or without cognitive dysfunction. In this study, the role of gut microbiota in diphenylcyclopropenone (DCP)-evoked chronic itch was investigated in mice and hierarchical cluster analysis of novel object recognition test (ORT) results were used to classify DCP-evoked itch model in mice with or without cognitive dysfunction (CD)-like phenotype and 16S ribosomal RNA (rRNA) gene sequencing was used to compare gut bacterial composition between CD (Susceptible) and Non-CD phenotypes (Unsusceptible) in chronic itch mice. Results showed that the microbiota composition was significantly altered by DCP-evoked chronic itch and chronic itch induced novel object recognition-related CD. However, abnormal gut microbiota composition induced by chronic itch may not be correlated with novel object recognition-related CD.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tainning Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Doifode T, Giridharan VV, Generoso JS, Bhatti G, Collodel A, Schulz PE, Forlenza OV, Barichello T. The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacol Res 2021; 164:105314. [PMID: 33246175 DOI: 10.1016/j.phrs.2020.105314] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiota is a complex ecosystem that comprises of more than 100 trillion symbiotic microbial cells. The microbiota, the gut, and the brain form an association, 'the microbiota-gut-brain axis,' and synchronize the gut with the central nervous system and modify the behavior and brain immune homeostasis. The bidirectional communication between gut and brain occurs via the immune system, the vagus nerve, the enteric nervous system, and microbial metabolites, including short-chain fatty acids (SCFAs), proteins, and tryptophan metabolites. Recent studies have implicated the gut microbiota in many neurodegenerative diseases, including Alzheimer's disease (AD). In this review, we present an overview of gut microbiota, including Firmicutes, Bacteroidetes, SCFA, tryptophan, bacterial composition, besides age-related changes in gut microbiota composition, the microbiota-gut-brain axis pathways, the role of gut metabolites in amyloid-beta clearance, and gut microbiota modulation from experimental and clinical AD models. Understanding the role of the microbiota may provide new targets for treatment to delay the onset, progression, or reverse AD, and may help in reducing the prevalence of AD.
Collapse
Affiliation(s)
- Tejaswini Doifode
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jaqueline S Generoso
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gursimrat Bhatti
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allan Collodel
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paul E Schulz
- Neurocognitive Disorders Center, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Orestes V Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
40
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Yu F, Jiang R, Han W, Zhan G, Xu X, Jiang X, Wang L, Xiang S, Zhou Q, Liu C, Zhu B, Hua F, Yang C. Gut microbiota transplantation from db/db mice induces diabetes-like phenotypes and alterations in Hippo signaling in pseudo germ-free mice. Aging (Albany NY) 2020; 12:24156-24167. [PMID: 33223509 PMCID: PMC7762484 DOI: 10.18632/aging.104101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an age-related metabolic disease that is of increasing concern. Gut microbiota might have a critical role in the pathogenesis of T2DM. Additionally, Hippo signaling has been associated strongly with the progression of T2DM and the aging process. We adopted db/db male mice as a T2DM model, and the gut microbiota of db/db and m/m mice were transplanted successfully into pseudo germ-free mice. Furthermore, Hippo signaling, including mammalian sterile 20-like protein kinases 1 (MST1), large tumor suppressors 1 (LATS1), Yes-associated protein (YAP), and phosphorylation of YAP (p-YAP) in peripheral tissues were significantly altered and highly correlated with blood glucose in db/db mice. Interestingly, the host after gut microbiota transplantation from db/db mice showed decreased MST1 and LATS1 levels, and p-YAP/YAP ratio in the heart, liver, and kidney compared to those from m/m mice. Negative correlations between fasting blood glucose and Hippo signaling levels in selected peripheral tissues also were identified. These findings suggest that alterations in Hippo signaling in selected peripheral tissues may contribute to the development of T2DM, and that therapeutic interventions improving Hippo signaling by gut microbiota transplantation might be beneficial for the treatment of T2DM and other age-related metabolic diseases.
Collapse
Affiliation(s)
- Fan Yu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Riyue Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohong Jiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Long Wang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Shoukui Xiang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Qin Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cunming Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
42
|
Dey P. The role of gut microbiome in chemical-induced metabolic and toxicological murine disease models. Life Sci 2020; 258:118172. [PMID: 32738359 DOI: 10.1016/j.lfs.2020.118172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The role of gut microbiome in human health and disease is well established. While evidence-based pharmacological studies utilize a variety of chemical-induced metabolic and toxicological disease models that in part recapitulate the natural mode of disease pathogenesis, the mode of actions of these disease models are likely underexplored. Conventionally, the mechanistic principles of these disease models are established as direct tissue toxicity through redox imbalance and pro-inflammatory injury. However, emerging evidences suggest that the mode of action of these chemicals could be largely associated with changes in gut microbial populations, diversity and metabolic functions, affecting pathological changes along the gut-liver and gut-pancreas axis. Especially in these disease models, reversal of disease severity or less sensitivity to induced disease pathogenesis has been observed when germ-free or antibiotic-supplemented microbiota-depleted rodents were treated with disease causing chemicals. Thus, by summarizing evidences from in vivo pharmacological interventions, this review revisits the mode of action of carbon tetrachloride-induced cirrhosis, diethylnitrosamine-induced hepatocellular carcinoma, acetaminophen-induced hepatotoxicity and alloxan- and streptozotocin-induced diabetes through the light of gut microbiota. How changes in gut microbiome affects tissue-level toxicity likely through intestinal-level mechanisms like gastrointestinal inflammation and gut barrier dysfunction has also been discussed. Additionally, this review discusses potential pitfalls of inconsistent experimental models that precludes defining the gut microbial effects in evidence-based pharmacology. Collectively, this review emphasizes the underexplored role of microbial intervention in experimental pharmacology and aims to provide direction towards redefining and establishing microbiome-centric alternative mode of action of chemical-induced metabolic and toxicological disease models in pharmacological research.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
43
|
Zhao Y, Zhou X, Zhao X, Yu X, Wang A, Chen X, Qi H, Han TL, Zhang H, Baker PN. Metformin administration during pregnancy attenuated the long-term maternal metabolic and cognitive impairments in a mouse model of gestational diabetes. Aging (Albany NY) 2020; 12:14019-14036. [PMID: 32697764 PMCID: PMC7425475 DOI: 10.18632/aging.103505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
Background: Gestational diabetes mellitus (GDM) is a metabolic disease that can have long-term adverse effects on the cognitive function of mothers. In our study, we explored the changes in metabolic health and cognitive function in mice of middle- and old- age after exposure to GDM, and whether metformin therapy during pregnancy provided long-term benefits. Results: Mice with GDM demonstrated significant cognitive impairment in old age, which was associated with insulin resistance. Gestational metformin therapy was shown to increase insulin sensitivity and improve cognition. The ovarian aging rate was also accelerated in mice exposed to GDM during pregnancy, which may be related to fatty acid metabolism in the ovaries. Conclusion: Treatment with metformin during pregnancy was shown to improve fatty acid metabolism in ovarian tissues. Method: During pregnancy, mice were fed with a high-fat diet (GDM group) or a low-fat diet (Control group), and a third group received metformin while receiving a high-fat diet (Treatment group). At 12 months old, the mice completed an oral glucose tolerance test, insulin tolerance test, Morris water maze test, female sex hormones were measured, and metabolite profiles of tissue from the ovaries, hypothalamus, and pituitary glands were analysed using gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Yalan Zhao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Zhao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Andi Wang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuyang Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| |
Collapse
|
44
|
Du HX, Liu Y, Zhang LG, Zhan CS, Chen J, Zhang M, Chen XG, Zhang L, Liang CZ. Abnormal gut microbiota composition is associated with experimental autoimmune prostatitis-induced depressive-like behaviors in mice. Prostate 2020; 80:663-673. [PMID: 32255522 DOI: 10.1002/pros.23978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/17/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Depressive symptoms are found in approximately 78% of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) patients, but the pathological mechanisms remain unknown. Increasing evidence suggests that abnormal gut microbiota may play an important role in depression. Thus, we aimed to investigate whether gut microbiota contributes to CP/CPPS-associated depression by using a mouse model of experimental autoimmune prostatitis (EAP). METHODS Male nonobese diabetic mice were immunized twice by subcutaneous injection of prostate antigen and adjuvant. Behavioral tests consisted of an open field test, sucrose preference test, forced swimming tests, and tail suspension test was used to confirm the depression-like symptoms that were induced by EAP. Then, fecal samples were collected, and 16S ribosomal RNA gene sequencing was performed to detect differences in gut microbiota composition between control and EAP group. Additionally, fecal bacteria from the control and EAP mice were transplanted into antibiotics-induced pseudo-germ-free mice to investigate the effects on host behaviors and the composition of gut bacteria. RESULTS EAP was successfully established and exhibited depressive-like behaviors in mice. The 16S rRNA analysis of fecal samples indicated the abnormal composition of gut microbiota in the EAP mice compared to the control mice. In the fecal microbiota transplant study, antibiotics-treated pseudo-germ-free mice presented depressive states as compared to naïve mice. Fecal bacteria transplant from EAP mice, but not from control mice, into the pseudo-germ-free mice, significantly exaggerated host depression-like behaviors. Moreover, fecal bacteria transplants from control and EAP mice induced distinct alterations in α-diversity and β-diversity indices. In all, 24 bacteria at six phylogenetic levels were remarkably changed by the fecal bacteria transplantation. CONCLUSIONS Abnormal gut microbiota composition after EAP induction may contribute to the development of depression in mice. A therapeutic strategy that targets gut microbiota may provide an alternative treatment for alleviating this condition.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li-Gang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chang-Sheng Zhan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xian-Guo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
45
|
Wu Y, Wu C, Ye L, Wang B, Yuan Y, Liu Y, Zheng P, Xiong J, Li Y, Jiang T, Li X, Xiao J. Exogenous fibroblast growth factor 1 ameliorates diabetes-induced cognitive decline via coordinately regulating PI3K/AKT signaling and PERK signaling. Cell Commun Signal 2020; 18:81. [PMID: 32460803 PMCID: PMC7251863 DOI: 10.1186/s12964-020-00588-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetes induces central nervous system damage, leading to cognitive decline. Fibroblast growth factor 1 (FGF1) has dual function of neuroprotection and normalizing hyperglycemia. To date, the precise mechanisms and potential treating strategies of FGF1 for diabetes-induced cognitive decline (DICD) hasn't been fully elucidated. METHODS In this study, db/db mice were used as DICD animal model. We found that diabetes remarkably suppressed FGF1 expression in hippocampus. Thus, exogenous FGF1 had been treated for db/db mice and SH-SY5Y cells. RESULTS FGF1 significantly ameliorates DICD with better spatial learning and memory function. Moreover, FGF1 blocked diabetes-induced morphological structure change, neuronal apoptosis and Aβ1-42 deposition and synaptic dysfunction in hippocampus. But normalizing glucose may not the only contributed factor for FGF1 treating DICD with evidencing that metformin-treated db/db mice has a inferior cognitive function than that in FGF1 group. Current mechanistic study had found that diabetes inhibits cAMP-response element binding protein (CREB) activity and subsequently suppresses brain derived neurotrophic factor (BDNF) level via coordinately regulating PERK signaling and PI3K/AKT signaling in hippocampus, which were reversed by FGF1. CONCLUSION We conclude that FGF1 exerts its neuroprotective role and normalizing hyperglycemia effect, consequently ameliorates DICD, implying FGF1 holds a great promise to develop a new treatment for DICD. Video abstract.
Collapse
Affiliation(s)
- Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chengbiao Wu
- Clinical Research Center, Affiate Xiangshang Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Libing Ye
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Beini Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuan Yuan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yaqian Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Peipei Zheng
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun Xiong
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiyang Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ting Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
46
|
Vendrik KEW, Ooijevaar RE, de Jong PRC, Laman JD, van Oosten BW, van Hilten JJ, Ducarmon QR, Keller JJ, Kuijper EJ, Contarino MF. Fecal Microbiota Transplantation in Neurological Disorders. Front Cell Infect Microbiol 2020; 10:98. [PMID: 32266160 PMCID: PMC7105733 DOI: 10.3389/fcimb.2020.00098] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Several studies suggested an important role of the gut microbiota in the pathophysiology of neurological disorders, implying that alteration of the gut microbiota might serve as a treatment strategy. Fecal microbiota transplantation (FMT) is currently the most effective gut microbiota intervention and an accepted treatment for recurrent Clostridioides difficile infections. To evaluate indications of FMT for patients with neurological disorders, we summarized the available literature on FMT. In addition, we provide suggestions for future directions. Methods: In July 2019, five main databases were searched for studies and case descriptions on FMT in neurological disorders in humans or animal models. In addition, the ClinicalTrials.gov website was consulted for registered planned and ongoing trials. Results: Of 541 identified studies, 34 were included in the analysis. Clinical trials with FMT have been performed in patients with autism spectrum disorder and showed beneficial effects on neurological symptoms. For multiple sclerosis and Parkinson's disease, several animal studies suggested a positive effect of FMT, supported by some human case reports. For epilepsy, Tourette syndrome, and diabetic neuropathy some studies suggested a beneficial effect of FMT, but evidence was restricted to case reports and limited numbers of animal studies. For stroke, Alzheimer's disease and Guillain-Barré syndrome only studies with animal models were identified. These studies suggested a potential beneficial effect of healthy donor FMT. In contrast, one study with an animal model for stroke showed increased mortality after FMT. For Guillain-Barré only one study was identified. Whether positive findings from animal studies can be confirmed in the treatment of human diseases awaits to be seen. Several trials with FMT as treatment for the above mentioned neurological disorders are planned or ongoing, as well as for amyotrophic lateral sclerosis. Conclusions: Preliminary literature suggests that FMT may be a promising treatment option for several neurological disorders. However, available evidence is still scanty and some contrasting results were observed. A limited number of studies in humans have been performed or are ongoing, while for some disorders only animal experiments have been conducted. Large double-blinded randomized controlled trials are needed to further elucidate the effect of FMT in neurological disorders.
Collapse
Affiliation(s)
- Karuna E W Vendrik
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands
| | - Rogier E Ooijevaar
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | - Pieter R C de Jong
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, Netherlands
| | - Bob W van Oosten
- Department of Neurology, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, Netherlands
| | | | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
| | - Eduard J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands.,Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (Rijksinstituut voor Volksgezondheid en Milieu, RIVM), Bilthoven, Netherlands.,Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.,Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
47
|
Wang G, Wu X, Zhu G, Han S, Zhang J. Dexmedetomidine alleviates sleep-restriction-mediated exaggeration of postoperative immunosuppression via splenic TFF2 in aged mice. Aging (Albany NY) 2020; 12:5318-5335. [PMID: 32200357 PMCID: PMC7138555 DOI: 10.18632/aging.102952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
Major abdominal procedures could induce dysfunction in the immune system and lead to postoperative immunosuppression. Sleep dysfunction is associated with impaired immune activity. However, the effects of postoperative sleep dysfunction on postoperative immune function remain unclear. In this study, we found that sleep-restriction (SR) after surgery increased the spleen weight and the percentage of myeloid-derived suppressor cells (MDSCs) in the spleen, and inhibited splenic CD8+ T cells activity, which was via inhibiting subdiaphragmatic vagus nerve (SVN)-mediated trefoil factor 2 (TFF2) expression in the spleen of aged mice. Dexmedetomidine could alleviate SR-induced these changes via modulating gut microbiota, which acted through SVN. Moreover, we showed essential roles of splenic TFF2 in attenuating SR-induced reduced protective ability against Escherichia coli (E. coli) pneumonia, increased expression of IL-4 and IL-13 in the lung and M2 polarization of alveolar macrophages (AMs), and decreased phagocytic activity of AMs. Dexmedetomidine improved SR-induced reduced protective ability against E. coli pneumonia via splenic TFF2, and subsequently decreasing IL-4 and IL-13 expression in the lung via modulating gut microbiota/SVN, increasing the compromised phagocytic activity of AMs, and ultimately decreasing M2 polarization of AMs. Taken together, dexmedetomidine-induced increase in splenic TFF2 expresssion could alleviate SR-induced exaggeration of postoperative immunosuppression.
Collapse
Affiliation(s)
- Guangzhi Wang
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, China
| | - Xiaoying Wu
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, China
| | - Guosong Zhu
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, China
| | - Jiaqiang Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, Henan, China
| |
Collapse
|
48
|
Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging (Albany NY) 2019; 11:10454-10467. [PMID: 31760385 PMCID: PMC6914402 DOI: 10.18632/aging.102469] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
It is well recognized that type 2 diabetes mellitus (T2DM) is an age-related metabolic disease, emerging gradually as a major global health burden that has gained public attention. Meanwhile, increasing attention is paid to the crucial role of gut microbiota in the pathogenesis and therapeutic mechanisms of metabolic disorders, especially T2DM. In this study, we used C57 BL/KS db/db male mice as a T2DM murine model. We found that the β-diversity and relative abundances of gut bacteria were obviously altered in db/db mice, associated with a significant increase in Verrucomicrobia at six levels (phylum, class, order, etc.) and family S24-7 and a significant decrease in Bacteroidaceae at family, genus, and species levels, as well as Prevotellaceae at family and genus levels. Furthermore, fecal bacteria from db/db and m/m mice transplanted into pseudo-germ-free mice showed a significant change in the metabolic parameters, including the body weight, fasting blood glucose, fluid and food intake, and alterations in the composition of the gut microbiota. Taken together, these findings suggest that abnormalities in the composition of the gut microbiota might contribute to the development of T2DM and that potential therapeutic strategies improving gut microbiota might provide beneficial effects for individuals with T2DM and age-related glucose intolerance.
Collapse
|