1
|
Amantakul A, Amantakul A, Pojchamarnwiputh S, Chattipakorn N, Chattipakorn SC, Sripetchwandee J. Targeting mitochondria and programmed cell death as potential interventions for metastatic castration-resistant prostate cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03784-y. [PMID: 39681803 DOI: 10.1007/s12094-024-03784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer is one of the major causes of morbidity and mortality in men worldwide. Most patients with prostate cancer will turn into end-of-life stage when those tumor cells become metastatic castration-resistant prostate cancer (mCRPC). The mCRPC subsequently developed a resistance to androgen signaling. The current regimens for mCRPC therapy are still ineffective. Much evidence from in vitro and in vivo studies explored the roles of therapeutic interventions targeted at the mitochondria and programmed cell death for prostate cancer therapy. The present review will focus on the recent medications which targeted at mitochondria and programmed cell death in mCRPC and the significant findings from each study will be summarized and discussed. Development of therapeutic interventions, particularly at mitochondrial and cytotoxic targets for treatment of mCRPC without inducing cellular toxicity of normal tissues will be considered as the novel therapeutic strategy for mCRPC.
Collapse
Affiliation(s)
- Amonlaya Amantakul
- Department of Diagnostic Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Akara Amantakul
- Department of Urology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suwalee Pojchamarnwiputh
- Department of Diagnostic Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn Chaisin Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Deswal M, Yadav D, Kumar V, Meenu M, Tanwar P, Srivastava S, Singh P, Sandeep K. Clinico-Pathological Factors and AR-LBD Mutations in Early and Late Castration-Resistant Prostate Cancer. Cancer Manag Res 2024; 16:1509-1516. [PMID: 39464307 PMCID: PMC11505485 DOI: 10.2147/cmar.s477439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
Background Prostate cancer (PCa) is not well understood because of its enormous biological heterogeneity and unreliable progression. We conducted this retrospective analysis to examine the variables predicting early and late progression to castration-resistant PCa (CRPC) for better management of this disease. Methods This single institutional retrospective study was conducted from January 2018 to January 2022. A total of 98 consecutive men meeting with the diagnosis of CRPC as per the inclusion criteria were included in the study and were stratified in four quartiles on the basis of time to CRPC (time to castration resistance [TTCR]) development. Early CRPC (1st quartile, TTCR = 6-12 months) and late CRPC (4th quartile, TTCR = 38-120 months) were then compared on the basis of different clinical, pathological and AR-LBD sequence to find the correlation with response duration. Results Median time to develop castration resistance was 25 ± 26.44 months. The mean age of the patients was 66.8 ± 9.20 years and median baseline PSA was calculated 100±685.06 ng/mL respectively. Higher Gleason score (≥7-10) was found to be significantly associated with early development of CRPC (p<0.001) and lower nadir PSA was significantly indicating late CRPC progression (p<0.005). No mutations were found in androgen receptor exon-5, 6, 7 except a homozygous mutation in the 7th intronic region, which is involved in splice variants formation playing noteworthy role in CRPC development. Conclusion Time for metastatic PCa to CRPC ranges from 6-120 months revealing its heterogeneous nature. Early age presentation in the clinic and high initial PSA and high grade (GS>7) at diagnosis were positively associated with early CRPC while lower nadir PSA was correlated with late CRPC progression. No remarkable genomic mutations were discovered. Therefore, more data are needed and further research is required with large no. of patients to discover the predictive prognostic biomarkers for better patients' management.
Collapse
Affiliation(s)
- Monu Deswal
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Durgavati Yadav
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Vinay Kumar
- Heart and Vascular Institute, Pennsylvania State University, Hershey Medical Center, Hershey, PA, USA
| | - Meenakshi Meenu
- Department of Pharmacology, All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India
| | - Pranay Tanwar
- Lab Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Shivani Srivastava
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Prabhjot Singh
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Sandeep
- Preventive Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Kınıkoğlu O, Öven BB, Çelik S, Alan Selçuk N, Beydağı G, Akçay K, Kabasakal L. Investigating Combination Therapy: The Role of Lutetium-177 PSMA-617 Radioligand Therapy and Androgen Receptor Pathway Inhibitors in Metastatic Castration-Resistant Prostate Cancer. J Clin Med 2024; 13:4585. [PMID: 39200727 PMCID: PMC11354391 DOI: 10.3390/jcm13164585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Background: The combination of Lutetium-177 (Lu-177) PSMA-617 radioligand therapy (RLT) with androgen receptor pathway inhibitors (ARPIs) has shown promise in metastatic castration-resistant prostate cancer (mCRPC). However, real-world data on the efficacy and safety of this combination are limited. This study aimed to evaluate the impact of combination therapy with Lu-177 PSMA-617 RLT and ARPIs on progression-free survival (PFS) and overall survival (OS) in patients with mCRPC. Methods: In this retrospective study, 104 mCRPC patients receiving Lu-177 PSMA-617 RLT at our institution between December 2017 and January 2024 were divided into the following two groups those receiving Lu-177 PSMA-617 RLT plus ARPI (n = 34) and those receiving Lu-177 PSMA-617 RLT alone (n = 70). Patients received 150 to 200 millicuries Lu-177 PSMA-617 RLT in each cycle. PFS and zOS were assessed using Kaplan-Meier analysis and Cox proportional hazard models. Results: The combination therapy significantly prolonged median PFS compared to Lu-177 PSMA-617 RLT alone (11 vs. 5.6 months; HR, 0.47; 95% CI, 0.28-0.79; p < 0.01). A trend towards improved OS was also observed in the combination group (20.3 vs. 15.9 months; HR, 0.58; 95% CI, 0.33-1.02; p = 0.06). Age was a significant predictor of OS (21.2 vs. 12.4 months for younger vs. older patients; p < 0.01), while Gleason score and visceral involvement did not significantly impact PFS. The safety profile indicated that adverse effects were generally comparable between the two groups, with no statistically significant differences in the incidence of anemia, neutropenia, thrombocytopenia, nephrotoxicity, or hepatotoxicity. Conclusions: This study provides evidence that combining Lu-177 PSMA-617 RLT with ARPIs may significantly improve PFS in mCRPC patients. The potential OS benefit warrants further investigation in larger prospective trials. Age should be considered when making treatment decisions for mCRPC patients.
Collapse
Affiliation(s)
- Oğuzcan Kınıkoğlu
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, İstanbul 34865, Türkiye
| | - Bala Başak Öven
- Department of Medical Oncology, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (B.B.Ö.); (S.Ç.)
| | - Serkan Çelik
- Department of Medical Oncology, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (B.B.Ö.); (S.Ç.)
| | - Nalan Alan Selçuk
- Department of Nuclear Medicine, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (N.A.S.); (G.B.); (K.A.)
| | - Gamze Beydağı
- Department of Nuclear Medicine, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (N.A.S.); (G.B.); (K.A.)
| | - Kaan Akçay
- Department of Nuclear Medicine, Yeditepe University Medical Faculty, İstanbul 34718, Türkiye; (N.A.S.); (G.B.); (K.A.)
| | - Levent Kabasakal
- Department of Nuclear Medicine, Istanbul University Cerrahpaşa Medical Faculty, İstanbul 34098, Türkiye;
| |
Collapse
|
4
|
Zhang W, Huang RS. Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data. Expert Opin Drug Discov 2024; 19:841-853. [PMID: 38860709 PMCID: PMC11537242 DOI: 10.1080/17460441.2024.2365370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs. AREAS COVERED Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination. EXPERT OPINION Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - R. Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
5
|
Han D, Labaf M, Zhao Y, Owiredu J, Zhang S, Patel K, Venkataramani K, Steinfeld JS, Han W, Li M, Liu M, Wang Z, Besschetnova A, Patalano S, Mulhearn MJ, Macoska JA, Yuan X, Balk SP, Nelson PS, Plymate SR, Gao S, Siegfried KR, Liu R, Stangis MM, Foxa G, Czernik PJ, Williams BO, Zarringhalam K, Li X, Cai C. Androgen receptor splice variants drive castration-resistant prostate cancer metastasis by activating distinct transcriptional programs. J Clin Invest 2024; 134:e168649. [PMID: 38687617 PMCID: PMC11142739 DOI: 10.1172/jci168649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain-truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared with the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remain unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7-induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7's pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7-mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.
Collapse
Affiliation(s)
- Dong Han
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | - Maryam Labaf
- Center for Personalized Cancer Therapy
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, USA
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Jude Owiredu
- Department of Cell & Developmental Biology, Weill Cornell Medical College, New York, New York, USA
| | - Songqi Zhang
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | - Krishna Patel
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | | | | | - Wanting Han
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Muqing Li
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | - Mingyu Liu
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | - Zifeng Wang
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | | | - Susan Patalano
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | | | - Jill A. Macoska
- Center for Personalized Cancer Therapy
- Department of Biology, and
| | - Xin Yuan
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter S. Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephen R. Plymate
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Veterans Affairs Puget Sound Health Care System, Geriatric Research and Education Clinical Center (VAPSHCS-GRECC), Seattle, Washington, USA
| | - Shuai Gao
- Department of Cell Biology and Anatomy and
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | | | - Ruihua Liu
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Mary M. Stangis
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Gabrielle Foxa
- Department of Cell Biology, and Core Technologies and Services, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Piotr J. Czernik
- Department of Orthopaedic Surgery, MicroCT and Skeletal Research Core Facility, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Bart O. Williams
- Department of Cell Biology, and Core Technologies and Services, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Kourosh Zarringhalam
- Center for Personalized Cancer Therapy
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Changmeng Cai
- Center for Personalized Cancer Therapy
- Department of Biology, and
| |
Collapse
|
6
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
7
|
Maranto C, Sabharwal L, Udhane V, Pitzen SP, McCluskey B, Qi S, O’Connor C, Devi S, Johnson S, Jacobsohn K, Banerjee A, Iczkowski KA, Wang L, Dehm SM, Nevalainen MT. Stat5 induces androgen receptor ( AR) gene transcription in prostate cancer and offers a druggable pathway to target AR signaling. SCIENCE ADVANCES 2024; 10:eadi2742. [PMID: 38416822 PMCID: PMC10901378 DOI: 10.1126/sciadv.adi2742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, and truncated AR proteins. Pharmacological Stat5 inhibition by a specific small-molecule Stat5 inhibitor down-regulated Stat5-inducible genes as well as AR and AR-regulated genes and suppressed PC growth. This work introduces the concept of Stat5 as an inducer of AR gene transcription in PC. Pharmacological Stat5 inhibitors may represent a new strategy for suppressing AR and CRPC growth.
Collapse
Affiliation(s)
- Cristina Maranto
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lavannya Sabharwal
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vindhya Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Braedan McCluskey
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songyan Qi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine O’Connor
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Savita Devi
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott Johnson
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kenneth Jacobsohn
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anjishnu Banerjee
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marja T. Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center at Jefferson Health, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Pimenta R, Malulf FC, Romão P, Caetano GVB, da Silva KS, Ghazarian V, Dos Santos GA, Guimarães V, Silva IA, de Camargo JA, Recuero S, Melão BVLA, Antunes AA, Srougi M, Nahas W, Leite KRM, Reis ST. Evaluation of AR, AR-V7, and p160 family as biomarkers for prostate cancer: insights into the clinical significance and disease progression. J Cancer Res Clin Oncol 2024; 150:70. [PMID: 38305916 PMCID: PMC10837222 DOI: 10.1007/s00432-023-05598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/25/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To assess the role of the p160 family, AR, and AR-V7 in different initial presentations of prostate cancer and their association with clinical endpoints related to tumor progression. METHODS The study sample comprises 155 patients who underwent radical prostatectomy and 11 healthy peripheral zone biopsies as the control group. Gene expression was quantified by qPCR from the tissue specimens. The statistical analysis investigated correlations between gene expression levels, associations with disease presence, and clinicopathological features. Additionally, ROC curves were applied for distinct PCa presentations, and time-to-event analysis was used for clinical endpoints. RESULTS The AR-V7 diagnostic performance for any PCa yielded an AUC of 0.77 (p < 0.05). For locally advanced PCa, the AR-V7 AUC was 0.65 (p < 0.05). Moreover, the metastasis group had a higher expression of SRC-1 than the non-metastatic group (p < 0.05), showing a shorter time to metastasis in the over-expressed group (p = 0.005). Patients with disease recurrence had super-expression of AR levels (p < 0.0005), with a shorter time-to-recurrence in the super-expression group (p < 0.0001). CONCLUSION Upregulation of SRC-1 indicates a higher risk of progression to metastatic disease in a shorter period, which warrants further research to be applied as a clinical tool. Additionally, AR may be used as a predictor for PCa recurrence. Furthermore, AR-V7 may be helpful as a diagnostic tool for PCa and locally advanced cancer, comparable with other investigated tools.
Collapse
Affiliation(s)
- Ruan Pimenta
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil.
- D'Or Institute for Research and Education (ID'Or), São Paulo, SP, 04501000, Brazil.
| | - Feres Camargo Malulf
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Poliana Romão
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Giovana Vilas Boas Caetano
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Karina Serafim da Silva
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Vitoria Ghazarian
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Gabriel A Dos Santos
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Vanessa Guimarães
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Iran Amorim Silva
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Juliana Alves de Camargo
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Saulo Recuero
- Division of Urology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Alberto Azoubel Antunes
- Division of Urology, Clinics Hospital, University of São Paulo Medical School, São Paulo, Brazil
| | - Miguel Srougi
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
- D'Or Institute for Research and Education (ID'Or), São Paulo, SP, 04501000, Brazil
| | - William Nahas
- Uro-Oncology Group, Urology Department, Institute of Cancer State of São Paulo (ICESP), São Paulo, SP, 01246000, Brazil
| | - Katia R M Leite
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| | - Sabrina T Reis
- Laboratório de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, Av. Dr. Arnaldo 455, 2° andar, Sala 2145, Cerqueira Cesar, São Paulo, SP, CEP: 01246-903, Brazil
| |
Collapse
|
9
|
Xi Y, Wen R, Zhang R, Dong Q, Hou S, Zhang S. Genetic evidence supporting a causal role of Janus kinase 2 in prostate cancer: a Mendelian randomization study. Aging Male 2023; 26:2257300. [PMID: 37706641 DOI: 10.1080/13685538.2023.2257300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Janus kinase-2 (JAK2) inhibitors are now being tried in basic research and clinical practice in prostate cancer (PCa). However, the causal relationship between JAK2 and PCa has not been uniformly described. Here, we examined the cause-effect relation between JAK2 and PCa. METHODS Two-sample Mendelian randomization (MR) analysis of genetic variation data of JAK2, PCa from IEU OpenGWAS Project was performed by inverse variance weighted, MR-Egger, and weighted median. Cochran's Q heterogeneity test and MR-Egger multiplicity analysis were performed to normalize the MR analysis results to reduce the effect of bias on the results. RESULTS Five instrumental variables were identified for further MR analysis. Specifically, combining the inverse variance-weighted (OR: 1.0009, 95% CI: 1.0001-1.0015, p = 0.02) and weighted median (OR: 1.0009, 95% CI: 1.0000-1.0017, p = 0.03). Sensitivity analysis showed that there was no heterogeneity (p = 0.448) and horizontal multiplicity (p = 0.770) among the instrumental variables. CONCLUSIONS We found JAK2 was associated with the development of PCa and was a risk factor for PCa, which might be instructive for the use of JAK2 inhibitors in PCa patients.
Collapse
Affiliation(s)
- Yujia Xi
- Department of Urology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Rui Wen
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Ran Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Qirui Dong
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
| | - Sijia Hou
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
- Department of Neurology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, PR China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, PR China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Feng K, Liu C, Wang W, Kong P, Tao Z, Liu W. Emerging proteins involved in castration‑resistant prostate cancer via the AR‑dependent and AR‑independent pathways (Review). Int J Oncol 2023; 63:127. [PMID: 37732538 PMCID: PMC10609492 DOI: 10.3892/ijo.2023.5575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Despite achieving optimal initial responses to androgen deprivation therapy, most patients with prostate cancer eventually progress to a poor prognosis state known as castration‑resistant prostate cancer (CRPC). Currently, there is a notable absence of reliable early warning biomarkers and effective treatment strategies for these patients. Although androgen receptor (AR)‑independent pathways have been discovered and acknowledged in recent years, the AR signaling pathway continues to play a pivotal role in the progression of CRPC. The present review focuses on newly identified proteins within human CRPC tissues. These proteins encompass both those involved in AR‑dependent and AR‑independent pathways. Specifically, the present review provides an in‑depth summary and analysis of the emerging proteins within AR bypass pathways. Furthermore, the significance of these proteins as potential biomarkers and therapeutic targets for treating CRPC is discussed. Therefore, the present review offers valuable theoretical insights and clinical perspectives to comprehensively enhance the understanding of CRPC.
Collapse
Affiliation(s)
- Kangle Feng
- Department of Blood Transfusion, Shaoxing Central Hospital, Shaoxing, Zhejiang 312030, P.R. China
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunhua Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weixi Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Piaoping Kong
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhihua Tao
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Weiwei Liu
- Department of Laboratory Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
11
|
Ferraz RS, Cavalcante JVF, Magalhães L, Ribeiro‐dos‐Santos Â, Dalmolin RJS. Revealing metastatic castration-resistant prostate cancer master regulator through lncRNAs-centered regulatory network. Cancer Med 2023; 12:19279-19290. [PMID: 37644825 PMCID: PMC10557827 DOI: 10.1002/cam4.6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive form of cancer unresponsive to androgen deprivation therapy (ADT) that spreads quickly to other organs. Despite reduced androgen levels after ADT, mCRPC development and lethality continues to be conducted by the androgen receptor (AR) axis. The maintenance of AR signaling in mCRPC is a result of AR alterations, androgen intratumoral production, and the action of regulatory elements, such as noncoding RNAs (ncRNAs). ncRNAs are key elements in cancer signaling, acting in tumor growth, metabolic reprogramming, and tumor progression. In prostate cancer (PCa), the ncRNAs have been reported to be associated with AR expression, PCa proliferation, and castration resistance. In this study, we aimed to reconstruct the lncRNA-centered regulatory network of mCRPC and identify the lncRNAs which act as master regulators (MRs). METHODS We used publicly available RNA-sequencing to infer the regulatory network of lncRNAs in mCRPC. Five gene signatures were employed to conduct the master regulator analysis. Inferred MRs were then subjected to functional enrichment and symbolic regression modeling. The latter approach was applied to identify the lncRNAs with greater predictive capacity and potential as a biomarker in mCRPC. RESULTS We identified 31 lncRNAs involved in cellular proliferation, tumor metabolism, and invasion-metastasis cascade. SNHG18 and HELLPAR were the highlights of our results. SNHG18 was downregulated in mCRPC and enriched to metastasis signatures. It accurately distinguished both mCRPC and primary CRPC from normal tissue and was associated with epithelial-mesenchymal transition (EMT) and cell-matrix adhesion pathways. HELLPAR consistently distinguished mCRPC from primary CRPC and normal tissue using only its expression. CONCLUSION Our results contribute to understanding the regulatory behavior of lncRNAs in mCRPC and indicate SNHG18 and HELLPAR as master regulators and potential new diagnostic targets in this tumor.
Collapse
Affiliation(s)
- Rafaella Sousa Ferraz
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | | | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | - Ândrea Ribeiro‐dos‐Santos
- Laboratory of Human and Medical Genetics, Institute of Biological SciencesFederal University of ParaBelemBrazil
| | | |
Collapse
|
12
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
13
|
Yu Y, Papukashvili D, Ren R, Rcheulishvili N, Feng S, Bai W, Zhang H, Xi Y, Lu X, Xing N. siRNA-based approaches for castration-resistant prostate cancer therapy targeting the androgen receptor signaling pathway. Future Oncol 2023; 19:2055-2073. [PMID: 37823367 DOI: 10.2217/fon-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Androgen deprivation therapy is a common treatment method for metastatic prostate cancer through lowering androgen levels; however, this therapy frequently leads to the development of castration-resistant prostate cancer (CRPC). This is attributed to the activation of the androgen receptor (AR) signaling pathway. Current treatments targeting AR are often ineffective mostly due to AR gene overexpression and mutations, as well as the presence of splice variants that accelerate CRPC progression. Thus there is a critical need for more specific medication to treat CRPC. Small interfering RNAs have shown great potential as a targeted therapy. This review discusses prostate cancer progression and the role of AR signaling in CRPC, and proposes siRNA-based targeted therapy as a promising strategy for CRPC.
Collapse
Affiliation(s)
- Yanling Yu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | | | - Ruimin Ren
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Department of Urology, Taiyuan, 030032, China
| | | | - Shunping Feng
- Southern University of Science & Technology, Shenzhen, 518000, China
| | - Wenqi Bai
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Huanhu Zhang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Yanfeng Xi
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| | - Nianzeng Xing
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
14
|
Wang F, Zhao M, Jiang Y, Xia S, Sun D, Zhou D, Dong Z. LncRNA UBE2R2-AS1, as prognostic marker, promotes cell proliferation and EMT in prostate cancer. Histol Histopathol 2023; 38:637-645. [PMID: 35916204 DOI: 10.14670/hh-18-505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Long noncoding RNA ubiquitin-conjugating enzyme E2 R2 antisense RNA 1 (UBE2R2-AS1) has been recently reported to participate in the progression of tumors, including glioma and liver cancer. However, the roles of UBE2R2-AS1 in prostate cancer (PC) remained poorly understood. METHODS The expression of UBE2R2-AS1 was determined in tumor tissues and paired adjacent tissues from PC patients using quantitative reverse transcription PCR analysis. Correlation between UBE2R2-AS1 expression and clinicopathological parameters and overall survival were investigated by Chi-square test and Kaplan-Meier method analysis. The in vitro experiments, including CCK-8 assay, colony formation, flow cytometry and transwell assay were performed to investigate the functional role of UBE2R2-AS1 knockdown or overexpression on PC cell lines (PC-3 and DU145). Related protein expression levels were measured by western blot analysis. RESULTS Our data showed that UBE2R2-AS1 expression was significantly upregulated in PC tissues compared with that in adjacent tissues. The high levels of UBE2R2-AS1 were associated with high Gleason score, advanced clinical T stage, lymph node metastasis and poor prognosis. Knockdown of UBE2R2-AS1 suppressed cell proliferation, migration and invasion, induced cell cycle G0/G1 arrest and apoptosis in PC cells, along with decreased expression of PCNA, CDK4, Cyclin D1, Bcl-2, N-cadherin and Vimentin, and increased E-cadherin expression. Overexpression of UBE12R2-AS1 obtained the opposite results in PC cells. CONCLUSIONS Our findings suggest that UBE2R2-AS1 might be a potential diagnostic and/or therapeutic target in PC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Miao Zhao
- Department of Ophthalmology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Yuehong Jiang
- Laboratory Medicine, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Silong Xia
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Dapeng Sun
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Dahong Zhou
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China
| | - Zipu Dong
- Department of Urology, Heilongjiang Hospital, Harbin city, Heilongjiang Province, China.
| |
Collapse
|
15
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Kang B, Mottamal M, Zhong Q, Bratton M, Zhang C, Guo S, Hossain A, Ma P, Zhang Q, Wang G, Payton-Stewart F. Design, Synthesis, and Evaluation of Niclosamide Analogs as Therapeutic Agents for Enzalutamide-Resistant Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:735. [PMID: 37242518 PMCID: PMC10222209 DOI: 10.3390/ph16050735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using 1H NMR, 13C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (B9, IC50 LNCaP95 and 22RV1 = 0.130 and 0.0997 μM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF3 groups of the most active B9 in the sterically favorable field and the presence of the -CN group of the least active B7 in the sterically unfavorable field seem to make B9 more potent than B7 in the antiproliferative activity.
Collapse
Affiliation(s)
- Borui Kang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Madhusoodanan Mottamal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Qiu Zhong
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Melyssa Bratton
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Changde Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Ahamed Hossain
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Peng Ma
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Florastina Payton-Stewart
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| |
Collapse
|
17
|
Congregado Ruiz B, Rivero Belenchón I, Lendínez Cano G, Medina López RA. Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy. Biomedicines 2023; 11:biomedicines11041105. [PMID: 37189723 DOI: 10.3390/biomedicines11041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of "hinge" treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis.
Collapse
Affiliation(s)
- Belén Congregado Ruiz
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Inés Rivero Belenchón
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Guillermo Lendínez Cano
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, Biomedical Institute of Seville (IBIS), University Hospital Virgen del Rocío, 41013 Seville, Spain
| |
Collapse
|
18
|
Yashi M, Nishihara D, Yokoyama M, Fuchizawa H, Okazaki A, Takei K, Suzuki I, Sakamoto K, Kijima T, Kobayashi M, Kamai T. Plasma progastrin-releasing peptide level shows different predictive profiles for treatment response by androgen receptor axis-targeted agents in patients with metastatic castration-resistant prostate cancer. Cancer Rep (Hoboken) 2023; 6:e1762. [PMID: 36470854 PMCID: PMC10026284 DOI: 10.1002/cnr2.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/19/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neuroendocrine (NE) pathway cannot be ignored as a mechanism for castration-resistant prostate cancer (CRPC) progression. The neuromediator, gastrin-releasing peptide (GRP) may be involved in the aberrant activation of the normal androgen receptor (AR) and increased AR variants. This study focused on plasma levels of progastrin-releasing peptide (ProGRP) and examined the treatment outcomes with androgen receptor axis-targeted (ARAT) agents. METHODS One hundred patients with metastatic CRPC were enrolled. Enzalutamide (ENZ) or abiraterone acetate/prednisone (AA/P) were administered to 50 patients each in a nonrandomized manner as a first-line or later choice. Plasma ProGRP levels were determined using a chemiluminescent enzyme immunoassay, and data were collected prospectively. The study endpoints were prostate-specific antigen (PSA) response and survival estimates. RESULTS In the ENZ series, ProGRP levels correlated with the maximum PSA change from baseline (high ProGRP: -34.5% vs. low ProGRP: -85.7% p = .033). PSA progression-free survival (PFS), radiographic/symptomatic (r/s) PFS, and overall survival (OS) in patients with high ProGRP were significantly worse than those in patients with low ProGRP (median PSA-PFS: 3.3 vs. 10.0 months, p = .001, r/s PFS: 5.0 vs. 15.0 months, p < 0.001, and OS 17.5 vs. 49.0 months, p < .001, respectively). In addition, ProGRP showed an independent predictive value for all survival estimates in multivariate analyses. In the AA/P series, ProGRP levels did not correlate with the PSA change or predict PSA-PFS and r/s PFS, but they maintained a significant difference in OS (19.0 vs. 48.0 months, p = .003). CONCLUSIONS Plasma ProGRP provides a consistent predictive value for OS in metastatic CRPC patients who underwent therapy with ARAT agents. Meanwhile, ProGRP showed different predictive profiles for PSA- and r/s PFS between ENZ and AA/P. These findings clinically suggest a mechanism for CRPC progression involving the NE pathway via the GRP. The underlying mechanism of different predictive profiles by the ARAT agent should be explored in future research.
Collapse
Affiliation(s)
- Masahiro Yashi
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| | | | - Megumi Yokoyama
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| | | | - Akihito Okazaki
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| | - Kohei Takei
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| | - Issei Suzuki
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| | | | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| | - Minoru Kobayashi
- Department of Urology, Utsunomiya Memorial Hospital, Tochigi, Japan
| | - Takao Kamai
- Department of Urology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
19
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
20
|
Yuan S, Bi J, Zhang Y. LncRNA SSTR5-AS1 as a Prognostic Marker Promotes Cell Proliferation and Epithelial-to-Mesenchymal Transition in Prostate Cancer. Crit Rev Eukaryot Gene Expr 2023; 33:1-12. [PMID: 36734853 DOI: 10.1615/critreveukaryotgeneexpr.2022042183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study is aimed to investigate the clinical significance and biological function of long non-coding RNA somatostatin receptor 5 antisense RNA 1 (SSTR5-AS1) in prostate cancer (PCa). Here, we found that SSTR5-AS1 expression was upregulated in PCa tissues compared with adjacent tissues using quantitative real time PCR analysis. The results from Chi-square test showed that increased SSTR5-AS1 expression levels were correlated with preoperative prostate specific antigen, tumor stage and lymph node metastasis. Kaplan-Meier survival curve described patients with high SSTR5-AS1 expression level showed poor survival. Univariate and multivariate cox regression analysis further identified SSTR5-AS1 expression as a poor independent prognostic factor for PCa patients. Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine incorporation assay, wound-healing assay and Transwell assay were performed to investigate the functional role of SSTR5-AS1 in PCa cells. The in vitro results indicated that SSTR5-AS1 knockdown inhibited, while SSTR5-AS1 overexpression promoted the proliferation, migration, and invasion of PCa cells. At molecular level, SSTR5-AS1 knockdown downregulated the protein levels of proliferating cell nuclear antigen, N-cadherin and vimentin, and upregulated E-cadherin expression in PC-3 cells. SSTR5-AS1 overexpression obtained opposite results on these protein markers in DU145 cells. In conclusion, these findings indicated that SSTR5-AS1 promotes PCa cell behaviors, which might provide a potential therapeutic target for PCa patients.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, 030032, China
| | - Jianlong Bi
- Department of Emergency, Peking University International Hospital, Beijing, 102206, China
| | - Yangang Zhang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
21
|
Metzler VM, de Brot S, Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Nilsson EM, Ntekim A, Persson JL, Robinson BD, Khani F, Laursen KB, Gudas LJ, Toss MS, Madhusudan S, Rakha E, Heery DM, Rutland CS, Mongan NP, Jeyapalan JN. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front Cell Dev Biol 2023; 11:1116424. [PMID: 37152294 PMCID: PMC10154691 DOI: 10.3389/fcell.2023.1116424] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC.
Collapse
Affiliation(s)
- Veronika M. Metzler
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Emeli M. Nilsson
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Emad Rakha
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Catrin S. Rutland
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| |
Collapse
|
22
|
Mori JO, Shafran JS, Stojanova M, Katz MH, Gignac GA, Wisco JJ, Heaphy CM, Denis GV. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: Rationale for targeting BET proteins. Prostate 2022; 82:1005-1015. [PMID: 35403746 PMCID: PMC11134172 DOI: 10.1002/pros.24351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.
Collapse
Affiliation(s)
- Joakin O. Mori
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jordan S. Shafran
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Marija Stojanova
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark H. Katz
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gretchen A. Gignac
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jonathan J. Wisco
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher M. Heaphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gerald V. Denis
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
23
|
AR independent anticancer potential of enza against prostate cancer. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Miranda RADR, Oliveira MMDP, Sampaio MIG, Gomes JVD, Silveira D, Guerra ENS, Lofrano‐Porto A, Meireles CG, Simeoni LA. Effects of medicinal plants and natural compounds in models of prostate cancer related to sex steroids: A systematic review. Phytother Res 2022; 36:3032-3079. [DOI: 10.1002/ptr.7498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - João Victor Dutra Gomes
- Laboratory of Natural Products, Faculty of Health Sciences University of Brasília Brasília Brazil
| | - Damaris Silveira
- Laboratory of Natural Products, Faculty of Health Sciences University of Brasília Brasília Brazil
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, Faculty of Health Sciences University of Brasília Brasília Brazil
| | - Adriana Lofrano‐Porto
- Molecular Pharmacology Laboratory, Faculty of Health Sciences University of Brasília Brasília Brazil
- Gonadal and Adrenal Diseases Clinics University Hospital of Brasília, University of Brasília Brasília Brazil
| | - Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, Faculty of Health Sciences University of Brasília Brasília Brazil
| | - Luiz Alberto Simeoni
- Molecular Pharmacology Laboratory, Faculty of Health Sciences University of Brasília Brasília Brazil
| |
Collapse
|
25
|
Sharma V, Joshi J, Yeh IJ, Doughman Y, Blankenberg D, Wald D, Montano MM. Re-Expression of ERα and AR in Receptor Negative Endocrine Cancers via GSK3 Inhibition. Front Oncol 2022; 12:824594. [PMID: 35402240 PMCID: PMC8988137 DOI: 10.3389/fonc.2022.824594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferase (DNMT), is a well-characterized epigenetic modification in cancer cells. In particular, promoter hypermethylation of AR and ESR1 results in loss of expression on Androgen Receptor (AR) and Estrogen Receptor (ER), respectively, and is associated with a hormone refractory state. We now report that Glycogen Synthase Kinase 3 (GSK3) phosphorylates DNMT1 at S714, which is localized to a 62 amino acid region referred to as auto-inhibitory linker, which functions to occlude the DNA from the active site of DNMT1 to prevent the methylation of unmethylated DNA. Molecular Dynamics simulation indicates that phosphorylation at S714 resulted in conformational rearrangement of the autoinhibitory domain that inactivated its ability to block the methylation of unmethylated DNA and resulted in enhanced DNA binding. Treatment with a novel and more selective inhibitor of GSK3 resulted in decreased methylation of the promoter region of genes encoding the Androgen Receptor (AR) and Estrogen Receptor alpha (ERa) and re-expression of the AR and ERa in AR negative prostate cancer and ER negative breast cancer cells, respectively. As a result, concurrent treatment with the GSK3 inhibitor resulted in responsiveness of AR negative prostate cancer and ER negative breast cancer cells to inhibitors of the AR or ER, respectively, in in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - I-Ju Yeh
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - YongQiu Doughman
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Daniel Blankenberg
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Monica M. Montano,
| |
Collapse
|
26
|
Marhold M, Kramer G, Krainer M, Le Magnen C. The prostate cancer landscape in Europe: Current challenges, future opportunities. Cancer Lett 2022; 526:304-310. [PMID: 34863887 DOI: 10.1016/j.canlet.2021.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer in men in Europe and is predicted to exhibit declining mortality in the European Union (EU) due to various recent improvements in treatment. The goal of this short review is to give insight into the European treatment landscape of PCa, while focusing on improvements in care.
Collapse
Affiliation(s)
- Maximilian Marhold
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Michael Krainer
- Division of Oncology, Department for Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clémentine Le Magnen
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland; Department of Urology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
27
|
CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer. Cell Calcium 2022; 103:102554. [DOI: 10.1016/j.ceca.2022.102554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
|
28
|
Helsen C, Nguyen T, Vercruysse T, Wouters S, Daelemans D, Voet A, Claessens F. The T850D Phosphomimetic Mutation in the Androgen Receptor Ligand Binding Domain Enhances Recruitment at Activation Function 2. Int J Mol Sci 2022; 23:ijms23031557. [PMID: 35163481 PMCID: PMC8836279 DOI: 10.3390/ijms23031557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Several key functions of the androgen receptor (AR) such as hormone recognition and co-regulator recruitment converge in the ligand binding domain (LBD). Loss- or gain-of-function of the AR contributes to pathologies such as the androgen insensitivity syndrome and prostate cancer. Here, we describe a gain-of-function mutation of the surface-exposed threonine at position 850, located at the amino-terminus of Helix 10 (H10) in the AR LBD. Since T850 phosphorylation was reported to affect AR function, we created the phosphomimetic mutation T850D. The AR T850D variant has a 1.5- to 2-fold increased transcriptional activity with no effect on ligand affinity. In the androgen responsive LNCaP cell line grown in medium with low androgen levels, we observed a growth advantage for cells in which the endogenous AR was replaced by AR T850D. Despite the distance to the AF2 site, the AR T850D LBD displayed an increased affinity for coactivator peptides as well as the 23FQNLF27 motif of AR itself. Molecular Dynamics simulations confirm allosteric transmission of the T850D mutation towards the AF2 site via extended hydrogen bond formation between coactivator peptide and AF2 site. This mechanistic study thus confirms the gain-of-function character of T850D and T850 phosphorylation for AR activity and reveals details of the allosteric communications within the LBD.
Collapse
Affiliation(s)
- Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, ON I, 3000 Leuven, Belgium;
- Correspondence: ; Tel.: +32-16377388
| | - Tien Nguyen
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium; (T.N.); (S.W.); (A.V.)
| | - Thomas Vercruysse
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (T.V.); (D.D.)
| | - Staf Wouters
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium; (T.N.); (S.W.); (A.V.)
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (T.V.); (D.D.)
| | - Arnout Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium; (T.N.); (S.W.); (A.V.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, ON I, 3000 Leuven, Belgium;
| |
Collapse
|
29
|
Yin S, Chen Y, Tong H, Li T, Qin Z, Zhu J, He W. PP2A promotes apoptosis and facilitates docetaxel sensitivity via the PP2A/p‑eIF4B/XIAP signaling pathway in prostate cancer. Oncol Lett 2022; 23:101. [PMID: 35154432 PMCID: PMC8822497 DOI: 10.3892/ol.2022.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Serine/threonine protein phosphatase 2A (PP2A) is a protein that has a wide range of biological functions. As prostate cancer progresses from hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC), the expression level of PP2A has been found to decrease. The present study aimed to determine the roles that PP2A may play in prostate cancer and its association with the downstream factor, X-linked inhibitor of apoptosis (XIAP). First, the mRNA and protein expression levels of PP2A in LNCaP, DU145 and PC-3 prostate cancer cell lines were measured. Next, the population of PP2A heterodimers was increased using a PP2A agonist, DT061, in the DU145 and PC-3 cell lines. PP2A expression was then knocked down in the LNCaP cell line. Western blot analysis was performed to determine the association between PP2A, phosphorylated (p)-eukaryotic initiation factor 4B (eIF4B) and XIAP. The results revealed that following the increase in PP2A expression, the DU145 and PC-3 cell lines were more sensitive to docetaxel according to Cell Counting Kit-8 assays and had an increased apoptotic rate as assessed by flow cytometry. Conversely, following the transfection of small interfering (si)PP2A into the LNCaP cell line, the sensitivity to docetaxel decreased, as well as the apoptotic rate. In addition, following treatment with the PP2A agonist, DT061, PP2A expression was found to be significantly upregulated, while p-eIF4B and XIAP protein expression levels were significantly downregulated. By contrast, following the transfection of siPP2A into the LNCaP cell line, PP2A protein expression levels were found to be downregulated, while p-eIF4B and XIAP expression levels were significantly upregulated. In conclusion, by affecting the downstream factor XIAP, PP2A may play a key role in promoting apoptosis and facilitating docetaxel sensitivity in prostate cancer cell lines.
Collapse
Affiliation(s)
- Siwen Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zijia Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
30
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
31
|
Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development? Cancers (Basel) 2021; 13:cancers13205204. [PMID: 34680353 PMCID: PMC8533841 DOI: 10.3390/cancers13205204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Prostate Cancer (PC) is currently estimated to affect 1 in 9 men and is the second leading cause of cancer in men in the US. While androgen deprivation therapy, which targets the androgen receptor, is one of the front-line therapies for advanced PC and for recurrence of organ-confined PC treated with surgery, lethal castrate-resistant PC develops consistently in patients. PC is a multi-focal cancer with different grade carcinoma areas presenting simultaneously. Jak2-Stat5 signaling pathway has emerged as a potentially highly effective molecular target in PCs with positive areas for activated Stat5 protein. Activated Jak2-Stat5 signaling can be readily targeted by the second-generation Jak2-inhibitors that have been developed for myeloproliferative and autoimmune disorders and hematological malignancies. In this review, we analyze and summarize the Jak2 inhibitors that are currently in preclinical and clinical development. Abstract Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.
Collapse
|
32
|
Luo Y, Vlaeminck-Guillem V, Baron S, Dallel S, Zhang CX, Le Romancer M. MEN1 silencing aggravates tumorigenic potential of AR-independent prostate cancer cells through nuclear translocation and activation of JunD and β-catenin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:270. [PMID: 34446068 PMCID: PMC8393735 DOI: 10.1186/s13046-021-02058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Background Recent studies highlighted the increased frequency of AR-low or -negative prostate cancers (PCas) and the importance of AR-independent mechanisms in driving metastatic castration-resistant PCa (mCRPC) development and progression. Several previous studies have highlighted the involvement of the MEN1 gene in PCa. In the current study, we focused on its role specifically in AR-independent PCa cells. Methods Cell tumorigenic features were evaluated by proliferation assay, foci formation, colony formation in soft agar, wound healing assay and xenograft experiments in mice. Quantitative RT-PCR, Western blot and immunostaining were performed to determine the expression of different factors in human PCa lines. Different ChIP-qPCR-based assays were carried out to dissect the action of JunD and β-catenin. Results We found that MEN1 silencing in AR-independent cell lines, DU145 and PC3, resulted in an increase in anchorage independence and cell migration, accompanied by sustained MYC expression. By searching for factors known to positively regulate MYC expression and play a relevant role in PCa development and progression, we uncovered that MEN1-KD triggered the nuclear translocation of JunD and β-catenin. ChIP and 3C analyses further demonstrated that MEN1-KD led to, on the one hand, augmented binding of JunD to the MYC 5′ enhancer and increased formation of loop structure, and on the other hand, increased binding of β-catenin to the MYC promoter. Moreover, the expression of several molecular markers of EMT, including E-cadherin, BMI1, Twist1 and HIF-1α, was altered in MEN1-KD DU145 and PC3 cells. In addition, analyses using cultured cells and PC3-GFP xenografts in mice demonstrated that JunD and β-catenin are necessary for the altered tumorigenic potential triggered by MEN1 inactivation in AR-independent PCa cells. Finally, we observed a significant negative clinical correlation between MEN1 and CTNNB1 mRNA expression in primary PCa and mCRPC datasets. Conclusions Our current work highlights an unrecognized oncosuppressive role for menin specifically in AR-independent PCa cells, through the activation of JunD and β-catenin pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02058-7.
Collapse
Affiliation(s)
- Yakun Luo
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France.,Centre de biologie Sud, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 Place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Sarah Dallel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 Place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Chang Xian Zhang
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France.
| | - Muriel Le Romancer
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France
| |
Collapse
|
33
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
34
|
Trnski D, Sabol M, Tomić S, Štefanac I, Mrčela M, Musani V, Rinčić N, Kurtović M, Petrić T, Levanat S, Ozretić P. SHH-N non-canonically sustains androgen receptor activity in androgen-independent prostate cancer cells. Sci Rep 2021; 11:14880. [PMID: 34290270 PMCID: PMC8295376 DOI: 10.1038/s41598-021-93971-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is the second most frequent cancer diagnosed in men worldwide. Localized disease can be successfully treated, but advanced cases are more problematic. After initial effectiveness of androgen deprivation therapy, resistance quickly occurs. Therefore, we aimed to investigate the role of Hedgehog-GLI (HH-GLI) signaling in sustaining androgen-independent growth of prostate cancer cells. We found various modes of HH-GLI signaling activation in prostate cancer cells depending on androgen availability. When androgen was not deprived, we found evidence of non-canonical SMO signaling through the SRC kinase. After short-term androgen deprivation canonical HH-GLI signaling was activated, but we found little evidence of canonical HH-GLI signaling activity in androgen-independent prostate cancer cells. We show that in androgen-independent cells the pathway ligand, SHH-N, non-canonically binds to the androgen receptor through its cholesterol modification. Inhibition of this interaction leads to androgen receptor signaling downregulation. This implies that SHH-N activates the androgen receptor and sustains androgen-independence. Targeting this interaction might prove to be a valuable strategy for advanced prostate cancer treatment. Also, other non-canonical aspects of this signaling pathway should be investigated in more detail and considered when developing potential therapies.
Collapse
Affiliation(s)
- Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sanja Tomić
- Laboratory for Protein Biochemistry and Molecular Modelling, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| | - Ivan Štefanac
- Primary Health Care Center Osijek, Park kralja Petra Krešimira IV 6, 31000, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Milanka Mrčela
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Department of Pathology, Clinical Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Nikolina Rinčić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Tina Petrić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
35
|
Shabbir M, Mukhtar H, Syed D, Razak S, Afsar T, Almajwal A, Badshah Y, Aldisi D. Tissue microarray profiling and integrative proteomics indicate the modulatory potential of Maytenus royleanus in inhibition of overexpressed TPD52 in prostate cancers. Sci Rep 2021; 11:11935. [PMID: 34099820 PMCID: PMC8184821 DOI: 10.1038/s41598-021-91408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Maytenus roylanus (MEM) is a plant with anti-proliferative effects against prostate cancer. We aimed to explore the mechanism of action of MEM in prostate cancer (PCa) by employing an in vitro global proteome approach to get useful information of various signaling pathways and effected genes to define the mechanism of MEM action in prostate cancer. We conducted a global proteome analysis of CWR22Rv1after treatment with methanolic extract of MEM. The result of the proteomic profiling of in vitro PCa cells demonstrated the reduction in tumor protein D52 (TPD52) expression after treatment with methanolic extract of MEM. Down-regulation of TPD52 expression at mRNA level was observed by MEM treatment in CWR22Rν1 and C4-2 cells in a dose-dependent fashion probably by cleavage of Caspase 3 and PARP, or by modulation of cyclin-dependent kinases in CWR22Rν1 and C4-2 cells. The progressive character of the TRAMP model demonstrates a chance to evaluate the potential of chemo-preventive agents for both initial and late stages of prostate cancer development, and induction in TPD52 protein expression with development as well as the progression of prostate cancer was observed in the TRAMP model. Analyses of the tissue microarray collection of 25 specimens confirmed the clinical significance of our findings identifying TPD52 as a potential marker for PCa progression. We determined that knockdown of TPD52 (CWR22Rν1 cells), a considerable downregulation was seen at the protein level. Downregulation of TPD52 inhibited the migration and invasive behavior of prostate cancer cells as observed. Moreover, we observed that the siRNA-TPD52 transfection of CWR22Rν1 cells resulted in tumor growth inhibition with a marked reduction in the secretion of prostate-specific antigen (PSA) in the serum. Intraperitoneal injection of MEM considerably slowed tumor growth in athymic mice, inhibited TPD52 expression, and caused a marked reduction in PSA levels of serum as demonstrated by immunoblot screening and immune-histochemical staining. This report illustrates a molecular overview of pathological processes in PCa, indicating possible new disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Maria Shabbir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, USA
| | - Deeba Syed
- Department of Dermatology, University of Wisconsin, Madison, USA
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| | - Yasmin Badshah
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Dara Aldisi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, KSA, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Tan YG, Quek SZH, Huang HH, Ho HSS, Yuen JSP, Tay KJ, Tuan JKL, Chen K. Serum testosterone levels and testosterone 'bounce' phenomenon predict response to novel anti-androgen therapies in castration-resistant prostate cancer. Urol Oncol 2021; 39:829.e9-829.e17. [PMID: 34023195 DOI: 10.1016/j.urolonc.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The relevance of continuous testosterone (TT) monitoring in castration-resistant prostate cancer (CRPC) remains in question. OBJECTIVE To determine if TT levels before and during novel anti-androgen therapies (NAAT), and the TT 'bounce' phenomenon may predict treatment response in CRPC. MATERIALS AND METHODS From 2014 through 2018, we identified 92 CRPC patients treated with either Abiraterone or Enzalutamide from a prospectively maintained cancer registry. The TT levels measured before and during NAAT were correlated with the oncological outcomes, determined by PSA response (% change), PSA progression-free survival (PFS) and overall survival (OS). RESULTS AND LIMITATIONS At CRPC, 58 (63.0%) and 34 (37.0%) patients opted for Abiraterone and Enzalutamide respectively. Median TT levels at CRPC status before and during NAAT were 10.37 ng/dl and 20.46 ng/dl respectively. PSA response was superior in patients with a higher TT before NAAT (P:0.048, median difference: 18.22%, 95% CI 0.70 - 40.37) and longer time to CRPC (P: 0.041, median difference: 15.31%, 95% CI 1.84 -34.84), with a trend towards lower TT during NAAT (P: 0.062). Over a follow up of 33.0 months, 65 patients (70.7%) developed PSA progression. PSA PFS was longer in patients with higher TT before NAAT (16.3 vs. 10.8 months; P: 0.023), lower TT during NAAT (17.0 vs. 9.1 months; P: 0.001), and longer time to CRPC (13.4 vs. 8.0 months; P: 0.032). Importantly, better OS was observed in lower TT during NAAT (45.0 vs. 33.0 months; P:0.029) and longer time to CRPC (43.0 vs. 31.0 months; P: 0.025). The TT 'bounce' phenomenon was observed in 28 patients (33.3%), and was associated with a poorer PSA response (P: 0.029, median difference: 18.90%, 95% CI 3.83 - 41.45), shorter PSA PFS (8.6 vs 15.2 months, P: 0.002) and shorter OS (29.0 vs. 45.0 months, P: 0.012). CONCLUSION In CRPC patients, TT behaviors before and during NAAT, and the 'bounce' phenomenon continue to predict treatment response and could guide clinical decisions.
Collapse
Affiliation(s)
- Yu Guang Tan
- Department of Urology, Singapore General Hospital, Singapore.
| | - Sheriff Z H Quek
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Hong Huang
- Department of Urology, Singapore General Hospital, Singapore
| | - Henry S S Ho
- Department of Urology, Singapore General Hospital, Singapore
| | - John S P Yuen
- Department of Urology, Singapore General Hospital, Singapore
| | - Kae Jack Tay
- Department of Urology, Singapore General Hospital, Singapore
| | - Jeffrey K L Tuan
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Kenneth Chen
- Department of Urology, Singapore General Hospital, Singapore
| |
Collapse
|
37
|
Gao Y, Ha YS, Kwon TG, Cho YC, Lee S, Lee JN. Characterization of Kinase Expression Related to Increased Migration of PC-3M Cells Using Global Comparative Phosphoproteome Analysis. Cancer Genomics Proteomics 2021; 17:543-553. [PMID: 32859632 DOI: 10.21873/cgp.20210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the second-most commonly occurring cancer among men, worldwide. Although the mechanisms associated with the progression of castration-resistant prostate cancer (CRPC) have been widely studied, the mechanism associated with more distant metastases from the bone remains unknown. This study aimed to characterize potential pathogenic kinases associated with highly metastatic PCa, that may regulate phosphorylation in extensively involved and diverse signaling pathways that are associated with the development of various cancers. MATERIALS AND METHODS A mass spectrometry (MS)-based comparative phosphoproteome strategy was utilized to identify differentially expressed kinases between the highly aggressive PCa cell-lines PC-3 and PC-3M. RESULTS Among 2,968 phosphorylation sites in PCa cells, 151 differently expressed phosphoproteins were identified. Seven motifs: -SP-, -SxxE-, -PxS-, -PxSP-, -SxxK-, -SPxK-, and -SxxxxxP- were found to be highly expressed in PC-3M cells. Based on these motifs, the kinases p21-activated kinase (PAK)2, Ste20-like kinase (SLK), mammalian Ste20-like kinase (MST)4, mitogen-activated kinase kinase (MAP2K)2, and A-Raf proto-oncogene serine/threonine kinase (ARAF) were up-regulated in PC-3M cells. CONCLUSION PAK2, SLK, MST4, MAP2K2, and ARAF are kinases that are potentially associated with the progression of increased migration in PC-3M cells and may represent molecule regulators or drug targets for highly metastatic PCa therapy.
Collapse
Affiliation(s)
- Yan Gao
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Diaz Cruz MA, Karlsson S, Szekeres F, Faresjö M, Lund D, Larsson D. Differential expression of protein disulfide-isomerase A3 isoforms, PDIA3 and PDIA3N, in human prostate cancer cell lines representing different stages of prostate cancer. Mol Biol Rep 2021; 48:2429-2436. [PMID: 33761087 PMCID: PMC8060222 DOI: 10.1007/s11033-021-06277-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is a highly heterogeneous and unpredictable progressive disease. Sensitivity of PCa cells to androgens play a central role in tumor aggressiveness but biomarkers with high sensitivity and specificity that follow the progression of the disease has not yet been verified. The vitamin D endocrine system and its receptors, the Vitamin D Receptor (VDR) and the Protein Disulfide-Isomerase A3 (PDIA3), are related to anti-tumoral effects as well as carcinogenesis and have therefore been suggested as potential candidates for the prevention and therapy of several cancer forms, including PCa. In this study, we evaluated the mRNA expression of VDR and PDIA3 involved in vitamin D signaling in cell lines representing different stages of PCa (PNT2, P4E6, LNCaP, DU145 and PC3). This study further aimed to evaluate vitamin D receptors and their isoforms as potential markers for clinical diagnosis of PCa. A novel transcript isoform of PDIA3 (PDIA3N) was identified and found to be expressed in all PCa cell lines analyzed. Androgen-independent cell lines showed a higher mRNA expression ratio between PDIA3N/PDIA3 contrary to androgen-dependent cell lines that showed a lower mRNA expression ratio between PDIA3N/PDIA3. The structure of PDIA3N differed from PDIA3. PDIA3N was found to be a N-truncated isoform of PDIA3 and differences in protein structure suggests an altered protein function i.e. cell location, thioredoxin activity and affinity for 1,25(OH)2D3. Collectively, PDIA3 transcript isoforms, the ratio between PDIA3N/PDIA3 and especially PDIA3N, are proposed as candidate markers for future studies with different stages of PCa progression.
Collapse
Affiliation(s)
- Maria Araceli Diaz Cruz
- Research School of Health and Welfare, School of Health and Welfare, University of Jönköping, Jönköping, Sweden.
| | - Sandra Karlsson
- Department of Natural Science and Biomedicine, School of Health and Welfare, University of Jönköping, Jönköping, Sweden
| | - Ferenc Szekeres
- Department of Biomedicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Maria Faresjö
- Department of Natural Science and Biomedicine, School of Health and Welfare, University of Jönköping, Jönköping, Sweden
| | - Dan Lund
- Department of Natural Science and Biomedicine, School of Health and Welfare, University of Jönköping, Jönköping, Sweden
| | - Dennis Larsson
- Sahlgrenska University Hospital, Gothia Forum - for Clinical Research, Gothenburg, Sweden
| |
Collapse
|
39
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
40
|
Schille JT, Nolte I, Beck J, Jilani D, Roolf C, Pews-Davtyan A, Rolfs A, Henze L, Beller M, Brenig B, Junghanss C, Schütz E, Murua Escobar H. PDA Indolylmaleimides Induce Anti-Tumor Effects in Prostate Carcinoma Cell Lines Through Mitotic Death. Front Vet Sci 2021; 7:558135. [PMID: 33553272 PMCID: PMC7855975 DOI: 10.3389/fvets.2020.558135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Castrate resistant prostate cancer in men shares several characteristics with canine prostate cancer (PCa). Due to current insufficient therapies, evaluating novel therapeutic agents for late-stage PCa is of considerable interest for both species. PDA indolylmaleimides showed anticancer effects in several neoplastic cell lines. Herein, a comparative characterization of PDA-66 and PDA-377 mediated effects was performed in human and canine PCa cell lines, which is also the first detailed characterization of these agents on cells derived from solid tumors in general. While PDA-377 showed only weak growth inhibition on human PCa cell lines, PDA-66 inhibited proliferation and induced apoptosis in human and canine cell lines with concentrations in the low micromolar range. Morphological characterization and whole transcriptome sequencing revealed that PDA-66 induces mitotic death through its microtubule-depolymerizing ability. PDA-66 appears to be a worthwhile anti-mitotic agent for further evaluation. The similarities in cellular and molecular response observed in the cell lines of both origins form a solid basis for the use of canine PCa in vivo models to gain valuable interchangeable data to the advantage of both species.
Collapse
Affiliation(s)
- Jan Torben Schille
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Daria Jilani
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany.,Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Catrin Roolf
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | | | | | - Larissa Henze
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis, University of Rostock, Rostock, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Ekkehard Schütz
- Chronix Biomedical, Göttingen, Germany.,Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
41
|
Kiliccioglu I, Bilen CY, Sozen S, Konac E. Upregulation of potential regulatory signaling molecules correlate with androgen receptor splice variants AR-V7 and AR-V567es in prostate cancer metastasis. Gene 2021; 772:145377. [PMID: 33359129 DOI: 10.1016/j.gene.2020.145377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
AIM Androgen receptor splice variants (AR-Vs) produced by alternative splicing of the AR play an important role in the treatment resistance and progression of prostate cancer (PCa). In this study, two most common AR variants and how they associate with the inflammatory response (NF-Kβ) and regulatory transcriptional activity (HSP-27) genes were investigated in patients with PCa and metastatic PCa (Met-PCa). METHODS Our study was carried out with the whole blood obtained from 25 healthy control subjects, 25 PCa patients and 39 Met-PCa patients. We examined the expression levels of AR, AR-V7 and AR-V567es genes via Real-time PCR and those of HSP-27 and NF-Kβ via ELISA method. RESULTS AR, AR-V7 and AR-V567es expressions were observed in 84.61%, 64.1%, 23.07% of Met-PCa patients respectively. The expression levels of full-length AR and variants (AR-V7 and AR-V567es) were associated with the prostate cancer stage. In the Met-PCa, the expression levels of AR, AR-V7 and AR-V567es were associated with the Gleason Scores but not with the PSA levels. AR-V7 expression levels in stage T4 patients significantly increased. NF-Kβ and HSP-27 protein levels were significantly higher in Met-PCa patients. DISCUSSION Our findings highlight the targeting of the proteostasis and inflammation pathways through inhibiting HSP-27 and NF-Kβ. This might be a valuable strategy to overcome anti-androgen resistance and improve drug therapy in Met-PCa patients whose gene expression levels of AR-V7 and AR-V567es variants are high.
Collapse
Affiliation(s)
- Ilker Kiliccioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06510, Ankara, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, 06100, Ankara, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Besevler, 06510, Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06510, Ankara, Turkey.
| |
Collapse
|
42
|
Pinto CIG, Bucar S, Alves V, Fonseca A, Abrunhosa AJ, da Silva CL, Guerreiro JF, Mendes F. Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Front Mol Biosci 2020; 7:609172. [PMID: 33335914 PMCID: PMC7736412 DOI: 10.3389/fmolb.2020.609172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer type in men, and in advanced metastatic stages is considerable incurable. This justifies the need for efficient early diagnostic methods and novel therapies, particularly radiopharmaceuticals with the potential for simultaneous diagnosis and therapy (theranostics). We have previously demonstrated, using monolayer-cultured cells, that copper-64 chloride, a promising theranostic agent for PCa, has the potential to induce significant damage in cancer cells while having minimal side effects in healthy tissues. Here, we further explored this compound for its theranostic applications using more advanced PCa cellular models, specifically multicellular spheroids. Namely, we evaluated the cellular uptake of 64CuCl2 in three human PCa spheroids (derived from 22RV1, DU145, and LNCaP cells), and characterized the growth profile and viability of those spheroids as well as the clonogenic capacity of spheroid-derived cells after exposure to 64CuCl2. Furthermore, the populations of cancer stem cells (CSCs), known to be important for cancer resistance and recurrence, present in the spheroid models were also evaluated using two different markers (CD44 and CD117). 64CuCl2 was found to have significant detrimental effects in spheroids and spheroid-derived cells, being able to reduce their growth and impair the viability and reproductive ability of spheroids from both castration-resistant (22RV1 and DU145) and hormone-naïve PCa (LNCaP). Interestingly, resistance to 64CuCl2 treatment seemed to be related with the presence of a CSC population, since the most resistant spheroids, derived from the DU145 cell line, had the highest initial percentage of CSCs among the three cell lines under study. Altogether, these results clearly highlight the theranostic potential of 64CuCl2.
Collapse
Affiliation(s)
- Catarina I G Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vítor Alves
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Alexandra Fonseca
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Antero J Abrunhosa
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Cláudia L da Silva
- Departamento de Bioengenharia, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
44
|
Smith R, Liu M, Liby T, Bayani N, Bucher E, Chiotti K, Derrick D, Chauchereau A, Heiser L, Alumkal J, Feiler H, Carroll P, Korkola JE. Enzalutamide response in a panel of prostate cancer cell lines reveals a role for glucocorticoid receptor in enzalutamide resistant disease. Sci Rep 2020; 10:21750. [PMID: 33303959 PMCID: PMC7729982 DOI: 10.1038/s41598-020-78798-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023] Open
Abstract
Representative in vitro model systems that accurately model response to therapy and allow the identification of new targets are important for improving our treatment of prostate cancer. Here we describe molecular characterization and drug testing in a panel of 20 prostate cancer cell lines. The cell lines cluster into distinct subsets based on RNA expression, which is largely driven by functional Androgen Receptor (AR) expression. KLK3, the AR-responsive gene that encodes prostate specific antigen, shows the greatest variability in expression across the cell line panel. Other common prostate cancer associated genes such as TMPRSS2 and ERG show similar expression patterns. Copy number analysis demonstrates that many of the most commonly gained (including regions containing TERC and MYC) and lost regions (including regions containing TP53 and PTEN) that were identified in patient samples by the TCGA are mirrored in the prostate cancer cell lines. Assessment of response to the anti-androgen enzalutamide shows a distinct separation of responders and non-responders, predominantly related to status of wild-type AR. Surprisingly, several AR-null lines responded to enzalutamide. These AR-null, enzalutamide-responsive cells were characterized by high levels of expression of glucocorticoid receptor (GR) encoded by NR3C1. Treatment of these cells with the anti-GR agent mifepristone showed that they were more sensitive to this drug than enzalutamide, as were several of the enzalutamide non-responsive lines. This is consistent with several recent reports that suggest that GR expression is an alternative signaling mechanism that can bypass AR blockade. This study reinforces the utility of large cell line panels for the study of cancer and identifies several cell lines that represent ideal models to study AR-null cells that have upregulated GR to sustain growth.
Collapse
Affiliation(s)
- Rebecca Smith
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
| | - Moqing Liu
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
| | - Tiera Liby
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
| | - Nora Bayani
- Life Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA, 94720, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
| | - Kami Chiotti
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Daniel Derrick
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
| | - Anne Chauchereau
- INSERM U981, Gustave Roussy Institute, Paris-Saclay University, 94800, Villejuif, France
| | - Laura Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Joshi Alumkal
- Department of Medicine, Oregon Health & Science University, Portland, OR, 97201, USA
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Heidi Feiler
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Peter Carroll
- Department of Urology, UCSF, San Francisco, CA, 94158, USA
| | - James E Korkola
- Department of Biomedical Engineering, Oregon Health & Science University, 2730 SW Moody Ave CLSB Rm 3N018, Portland, OR, 97201, USA.
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR, 97201, USA.
| |
Collapse
|
45
|
Leng X, Liu M, Tao D, Yang B, Zhang Y, He T, Xie S, Wang Z, Liu Y, Yang Y. Epigenetic modification-dependent androgen receptor occupancy facilitates the ectopic TSPY1 expression in prostate cancer cells. Cancer Sci 2020; 112:691-702. [PMID: 33185915 PMCID: PMC7894013 DOI: 10.1111/cas.14731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023] Open
Abstract
Testis‐specific protein Y‐encoded 1 (TSPY1), a Y chromosome‐linked oncogene, is frequently activated in prostate cancers (PCa) and its expression is correlated with the poor prognosis of PCa. However, the cause of the ectopic transcription of TSPY1 in PCa remains unclear. Here, we observed that the methylation status in the CpG islands (CGI) of the TSPY1 promoter was negatively correlated with its expression level in different human samples. The acetyl‐histone H4 and trimethylated histone H3‐lysine 4, two post–translational modifications of histones occupying the TSPY1 promoter, facilitated the TSPY1 expression in PCa cells. In addition, we found that androgen accelerated the TSPY1 transcription on the condition of hypomethylated of TSPY1‐CGI and promoted PCa cell proliferation. Moreover, the binding of androgen receptor (AR) to the TSPY1 promoter, enhancing TSPY1 transcription, was detected in PCa cells. Taken together, our findings identified the regulation of DNA methylation, acting as a primary mechanism, on TSPY1 expression in PCa, and revealed that TSPY1 is an androgen‐AR axis‐regulated oncogene, suggesting a novel and potential target for PCa therapy.
Collapse
Affiliation(s)
- Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangwei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Tianrong He
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shengyu Xie
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhaokun Wang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Orozco M, Valdez RA, Ramos L, Cabeza M, Segovia J, Romano MC. Dutasteride combined with androgen receptor antagonists inhibit glioblastoma U87 cell metabolism, proliferation, and invasion capacity: Androgen regulation. Steroids 2020; 164:108733. [PMID: 32980365 DOI: 10.1016/j.steroids.2020.108733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GB) is the most common and aggressive primary brain tumor in adult humans. Therapeutic resistance and tumor recurrence after surgical resection contributes to a poor prognosis for glioblastoma patients. Men are known to be more likely than women to develop an aggressive form of GB. Although the reasons for this disparity remain poorly understood, differences in sex steroids have emerged as a leading explanation. Studies indicate that GB-derived cells express androgen receptors (ARs) and synthesize androgens, suggesting that androgens may have a role in the tumor pathogenesis. Thus, our objective was to investigate the effects of the 5α-reductase enzyme inhibitor dutasteride, the AR antagonists cyproterone and flutamide, and combinations of these drugs on the metabolism, proliferation, and invasion capacity of GB-derived U87 cells. We also examined the effects of three natural androgens testosterone, androstenedione and dihydrotestosterone (T, A4, and DHT) on these cells. Cell metabolism was investigated by MTT assay, proliferation was assessed by the bromodeoxyuridine (BrdU) incorporation assay, and invasion was assessed by Boyden chamber assay. The results revealed that T and especially DHT, but not A4, increased U87 cell metabolism and proliferation. Following these findings, we examined the effect of adding dutasteride, cyproterone, or flutamide to the culture media and found that they all significantly decreased cell metabolism and proliferation. Dutasteride also significantly reduced cell invasion. Moreover, any combination of these drugs enhanced their inhibitory effects; the combination of dutasteride to flutamide was most effective at decreasing GB cell proliferation. Our results suggest that administering a combination of AR antagonists and enzyme blockers may be a more effective alternative treatment for GB.
Collapse
Affiliation(s)
- M Orozco
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México
| | - R A Valdez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México
| | - L Ramos
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de Mexico, Mexico
| | - M Cabeza
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
| | - J Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV del IPN, Ciudad de México, México.
| |
Collapse
|
47
|
Prospects for Clinical Development of Stat5 Inhibitor IST5-002: High Transcriptomic Specificity in Prostate Cancer and Low Toxicity In Vivo. Cancers (Basel) 2020; 12:cancers12113412. [PMID: 33217941 PMCID: PMC7724566 DOI: 10.3390/cancers12113412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary There is an unmet medical need for new and potent pharmacological inhibitor drugs for the protein Stat5 that would be orally bioavailable for treatment of several different cancers. Previous work has established a critical role for Stat5 in molecular and clinical progression of prostate cancer to metastatic disease and in the pathogenesis of several leukemias and blood-based disorders. Our group has developed a potent pharmacological inhibitor for Stat5, IST5-002, which targets two critical steps in the activation process of Stat5 in cancer cells. In the present work, we evaluated the characteristics of IST5-002 for further development into a cancer drug. We evaluated whether IST5-002 affects the Stat5 targets genes in prostate cancer, defined more closely its mechanisms of action, and investigated its initial toxicity as the basis for further development in order to enable its entrance into clinical testing in patients. Our study supports optimization of IST5-002 compound for oral bioavailability and for clinical development. Abstract Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98–0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.
Collapse
|
48
|
Involvement of the MEN1 Gene in Hormone-Related Cancers: Clues from Molecular Studies, Mouse Models, and Patient Investigations. ENDOCRINES 2020. [DOI: 10.3390/endocrines1020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MEN1 mutation predisposes patients to multiple endocrine neoplasia type 1 (MEN1), a genetic syndrome associated with the predominant co-occurrence of endocrine tumors. Intriguingly, recent evidence has suggested that MEN1 could also be involved in the development of breast and prostate cancers, two major hormone-related cancers. The first clues as to its possible role arose from the identification of the physical and functional interactions between the menin protein, encoded by MEN1, and estrogen receptor α and androgen receptor. In parallel, our team observed that aged heterozygous Men1 mutant mice developed cancerous lesions in mammary glands of female and in the prostate of male mutant mice at low frequencies, in addition to endocrine tumors. Finally, observations made both in MEN1 patients and in sporadic breast and prostate cancers further confirmed the role played by menin in these two cancers. In this review, we present the currently available data concerning the complex and multifaceted involvement of MEN1 in these two types of hormone-dependent cancers.
Collapse
|
49
|
Smith MT, Guyton KZ, Kleinstreuer N, Borrel A, Cardenas A, Chiu WA, Felsher DW, Gibbons CF, Goodson WH, Houck KA, Kane AB, La Merrill MA, Lebrec H, Lowe L, McHale CM, Minocherhomji S, Rieswijk L, Sandy MS, Sone H, Wang A, Zhang L, Zeise L, Fielden M. The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiol Biomarkers Prev 2020; 29:1887-1903. [PMID: 32152214 PMCID: PMC7483401 DOI: 10.1158/1055-9965.epi-19-1346] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California.
| | - Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Nicole Kleinstreuer
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandre Borrel
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Weihsueh A Chiu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Catherine F Gibbons
- Office of Research and Development, US Environmental Protection Agency, Washington, D.C
| | - William H Goodson
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Keith A Houck
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Herve Lebrec
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Sheroy Minocherhomji
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
- Institute of Data Science, Maastricht University, Maastricht, the Netherlands
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Hideko Sone
- Yokohama University of Pharmacy and National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
| | - Amy Wang
- Office of the Report on Carcinogens, Division of National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Mark Fielden
- Expansion Therapeutics Inc, San Diego, California
| |
Collapse
|
50
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|