1
|
Kim SH, Shin SH, Kim SM, Jung SE, Shin BJ, Ahn JS, Lim KT, Kim DH, Lee K, Ryu BY. Bisphenol Analogs Downregulate the Self-Renewal Potential of Spermatogonial Stem Cells. World J Mens Health 2025; 43:154-165. [PMID: 38606862 PMCID: PMC11704178 DOI: 10.5534/wjmh.230166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE In this study, we investigated the effect of bisphenol-A (BPA) and its major analogs, bisphenol-F (BPF), and bisphenol-S (BPS), on spermatogonial stem cells (SSCs) populations using in vitro SSC culture and in vivo transplantation models. MATERIALS AND METHODS SSCs enriched from 6- to 8-day-old C57BL/6-eGFP⁺ male mice testes were treated with varying concentrations of bisphenols for 7 days to examine bisphenol-derived cytotoxicity and changes in SSC characteristics. We utilized flow cytometry, immunocytochemistry, real-time quantitative reverse transcription-PCR, and western blot analysis. The functional alteration of SSCs was further investigated by examining donor SSC-derived spermatogenesis evaluation through in vivo transplantation and subsequent testis analysis. RESULTS BPF exhibited a similar inhibitory effect on SSCs as BPA, demonstrating a significant decrease in SSC survival, inhibition of proliferation, and induction of apoptosis. On the other hand, while BPS was comparatively weaker than BPA and BPF, it still showed significant SSC cytotoxicity. Importantly, SSCs exposed to BPA, BPF, and BPS exhibited a significant reduction in donor SSC-derived germ cell colonies per total number of cultured cells, indicating that, like BPA, BPF, and BPS can induce a comparable reduction in functional SSCs in the recipient animals. However, the progress of spermatogenesis, as evidenced by histochemistry and the expressions of PCNA and SSC specific markers, collectively indicates that BPA, BPF, and BPS may not adversely affect the spermatogenesis. CONCLUSIONS Our findings indicate that the major BPA substitutes, BPF and BPS, have significant cytotoxic effects on SSCs, similar to BPA. These effects may lead to a reduction in the functional self-renewal stem cell population and potential impacts on male fertility.
Collapse
Affiliation(s)
- Seo-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Seok-Man Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Sang-Eun Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Beom-Jin Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Jin Seop Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea
| | - Kyoung Taek Lim
- Department of Urology, Maria Fertility Hospital, Seoul, Korea
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Korea.
| |
Collapse
|
2
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Kim SG, Jeon JH, Shin SH, Varias DC, Moon SH, Ryu BY. Inhibition of reactive oxygen species generation by N-Acetyl Cysteine can mitigate male germ cell toxicity induced by bisphenol analogs. Food Chem Toxicol 2024; 188:114652. [PMID: 38583502 DOI: 10.1016/j.fct.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Jeong Hoon Jeon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Daniel Chavez Varias
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
4
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
5
|
Davis OS, Truong VB, Hickey KD, Favetta LA. Quality of fresh and cryopreserved bovine sperm is reduced by BPA and BPF exposure. REPRODUCTION AND FERTILITY 2023; 4:RAF-23-0018. [PMID: 37698168 PMCID: PMC10784754 DOI: 10.1530/raf-23-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine disrupting compound, used as the key monomer of polycarbonate plastics and epoxy resins. BPA has been detected in both humans and farm animals and has been correlated with decreased sperm counts and motility. BPS and BPF are structural analogs of BPA and are increasingly being used in manufacturing as BPA substitutes. In this study we aim to assess the direct outcomes of BPA, BPS and BPF exposure on bovine sperm parameters in vitro to elucidate how they affect sperm quality and fertilization potential, and to assess whether BPS and/or BPF are less harmful than BPA. Sperm from three or more bulls was obtained from either fresh samples or cryopreserved straws and exposed to 0.05 mg/mL of BPA, BPS and BPF in vitro. After 4h incubation, motility, capacitation, apoptosis/necrosis, and mitochondrial membrane potential levels were measured by CASA or computational flow cytometry. Results showed that BPA exposure significantly reduced both fresh and cryopreserved sperm motility, capacitation, viability and mitochondrial membrane potential levels. Furthermore, BPF significantly decreased motility, capacitation and mitochondrial membrane potential in cryopreserved sperm only. BPS did not have any significant effects on any of the parameters measured. Our results suggest that BPA is the most harmful to sperm, while BPF is toxic under certain conditions, and BPS seems to be the least detrimental. Overall, this study provides an understanding of how the ubiquitous environmental chemicals, bisphenols, may impact male fertility even after ejaculation.
Collapse
Affiliation(s)
- Ola S Davis
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, Ontario, Canada
| | - Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, Ontario, Canada
| | - Katie D Hickey
- Department of Research and Development, Semex Alliance, Guelph, Ontario, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Molina-López AM, Bujalance-Reyes F, Ayala-Soldado N, Mora-Medina R, Lora-Benítez A, Moyano-Salvago R. An Overview of the Health Effects of Bisphenol A from a One Health Perspective. Animals (Basel) 2023; 13:2439. [PMID: 37570248 PMCID: PMC10417040 DOI: 10.3390/ani13152439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Bisphenol A (BPA) is a chemical compound, considered as an "emerging pollutant", that appears ubiquitously, contaminating the environment and food. It is an endocrine disruptor, found in a multitude of consumer products, as it is a constituent of polycarbonate used in the manufacture of plastics and epoxy resins. Many studies have evaluated the effects of BPA, using a wide range of doses and animal models. In this work, we carried out a review of relevant research related to the effects of BPA on health, through studies performed at different doses, in different animal models, and in human monitoring studies. Numerous effects of BPA on health have been described; in different animal species, it has been reported that it interferes with fertility in both females and males and causes alterations in their offspring, as well as being associated with an increase in hormone-dependent pathologies. Similarly, exposure to BPA has been related to other diseases of great relevance in public health such as obesity, hypertension, diabetes, or neurodevelopmental disorders. Its ubiquity and nonmonotonic behavior, triggering effects at exposure levels considered "safe", make it especially relevant when both animal and human populations are constantly and inadvertently exposed to this compound. Its effects at low exposure levels make it essential to establish safe exposure levels, and research into the effects of BPA must continue and be focused from a "One Health" perspective to take into account all the factors that could intervene in the development of a disease in any exposed organism.
Collapse
Affiliation(s)
- Ana M. Molina-López
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| | - Francisca Bujalance-Reyes
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Nahúm Ayala-Soldado
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rafael Mora-Medina
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Antonio Lora-Benítez
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain; (F.B.-R.); (R.M.-M.); (A.L.-B.)
| | - Rosario Moyano-Salvago
- Departamento Anatomía y Anatomía Patológica Comparadas y Toxicología, Unidad de Investigación Competitiva Zoonosis y Enfermedades Emergentes desde la Perspectiva de Una Salud ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, E-14071 Córdoba, Spain;
| |
Collapse
|
7
|
Li Z, Xu T, Fan X, Chen K, Wan C, Li X, Yin H, Li S. Bisphenol A aggravate selenium deficiency-induced apoptosis via miR-215-3p/Dio1 to activate ROS/PI3K/AKT pathway in chicken arterial. J Cell Physiol 2023; 238:1256-1274. [PMID: 37012668 DOI: 10.1002/jcp.31007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.
Collapse
Affiliation(s)
- Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
8
|
Yuan J, Yang J, Xu X, Wang Z, Jiang Z, Ye Z, Ren Y, Wang Q, Wang T. Bisphenol A (BPA) Directly Activates the G Protein-Coupled Estrogen Receptor 1 and Triggers the Metabolic Disruption in the Gonadal Tissue of Apostichopus japonicus. BIOLOGY 2023; 12:798. [PMID: 37372083 DOI: 10.3390/biology12060798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The sea cucumber, Apostichopus japonicus, is a marine benthic organism that feeds on small benthic particulate matter and is easily affected by pollutants. Bisphenol A (BPA, 4,4'-isopropylidenediphenol) has been identified as an endocrine disruptor. It is ubiquitously detectable in oceans and affects a variety of marine animals. It functions as an estrogen analog and typically causes reproductive toxicity by interfering with the endocrine system. To comparatively analyze the reproductive effects of estradiol (E2) and BPA on sea cucumbers, we identified a G protein-coupled estrogen receptor 1 (GPER1) in A. japonicus and investigated its effects on reproduction. The results showed that BPA and E2 exposure activated A. japonicus AjGPER1, thereby mediating the mitogen-activated protein kinase signaling pathways. High-level expression of AjGPER1 in the ovarian tissue was confirmed by qPCR. Furthermore, metabolic changes were induced by 100 nM (22.83 μg/L) BPA exposure in the ovarian tissue, leading to a notable increase in the activities of trehalase and phosphofructokinase. Overall, our findings suggest that AjGPER1 is directly activated by BPA and affects sea cucumber reproduction by disrupting ovarian tissue metabolism, suggesting that marine pollutants pose a threat to the conservation of sea cucumber resources.
Collapse
Affiliation(s)
- Jieyi Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiuwen Xu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zexianghua Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhijing Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhiqing Ye
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yucheng Ren
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Tianming Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
9
|
González-Gómez M, Reyes R, Damas-Hernández MDC, Plasencia-Cruz X, González-Marrero I, Alonso R, Bello AR. NTS, NTSR1 and ERs in the Pituitary-Gonadal Axis of Cycling and Postnatal Female Rats after BPA Treatment. Int J Mol Sci 2023; 24:ijms24087418. [PMID: 37108581 PMCID: PMC10138486 DOI: 10.3390/ijms24087418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The neuropeptide neurotensin (NTS) is involved in regulating the reproductive axis and is expressed at each level of this axis (hypothalamus-pituitary-gonads). This dependence on estrogen levels has been widely demonstrated in the hypothalamus and pituitary. We focused on confirming the relationship of NTS with estrogens and the gonadal axis, using a particularly important environmental estrogenic molecule, bisphenol-A (BPA). Based on the experimental models or in vitro cell studies, it has been shown that BPA can negatively affect reproductive function. We studied for the first time the action of an exogenous estrogenic substance on the expression of NTS and estrogen receptors in the pituitary-gonadal axis during prolonged in vivo exposure. The exposure to BPA at 0.5 and 2 mg/kg body weight per day during gestation and lactation was monitored through indirect immunohistochemical procedures applied to the pituitary and ovary sections. Our results demonstrate that BPA induces alterations in the reproductive axis of the offspring, mainly after the first postnatal week. The rat pups exposed to BPA exhibited accelerated sexual maturation to puberty. There was no effect on the number of rats born per litter, although the fewer primordial follicles suggest a shorter fertile life.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| | | | - Xiomara Plasencia-Cruz
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Rafael Alonso
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Aixa R Bello
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| |
Collapse
|
10
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
Li H, Zhao Y, Shen Q, Li H. Multiple circRNAs regulated by QKI5 conjointly spongemiR-214-3p to antagonize bisphenol A-inducedspermatocyte toxicity. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1090-1099. [PMID: 35959880 PMCID: PMC9827849 DOI: 10.3724/abbs.2022101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/07/2022] [Indexed: 11/25/2022] Open
Abstract
Although circular RNAs (circRNAs) are found to play important roles in many pathophysiological processes, the canonical theory that they act as microRNA sponges is now more and more challenged, given that most circRNAs only have few binding sites in a particular microRNA. Our previous study revealed that some up-regulated circRNAs play protective roles in bisphenol A (BPA)-induced toxicity in GC-2 germ cells. Here by CCK-8 assay, apoptosis assay, qRT-PCR and western blot analysis, we further discover that circRNAs (represented by circDcbld2, circMapk1 and circTbcld20) can cooperatively sponge miR-214-3p and then up-regulate AKT1 in ameliorating BPA-induced reproductive toxicity. They share binding sites with miR-214-3p and collectively reinforce the sponging effects. In addition, the upstream regulation mechanism, proven by bioinformatics analysis and in vitro gain- and loss-of-function study, shows that down-regulation of RNA binding protein QKI5 after BPA exposure can increase the expressions of these protective circRNAs, and thus activate the cell protective process. The QKI5-circDcbld2/circMapk1/circTblcd20-miR-214-3p-AKT1 axis ameliorates the toxic effect of BPA on GC-2 cells. Many other circRNAs up-regulated upon BPA treatment and QKI5 down-regulation also show binding sites with miR-214-3p. Thus the above axis may also be extrapolated to other circRNAs. Our results enrich the context of circRNA sponge mode and may provide new ideas in future multiple nucleic acid therapy.
Collapse
Affiliation(s)
- Huimin Li
- Institute of Reproductive Health/Center of Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Guilin Medical UniversityGuilin541000China
| | - Yunhan Zhao
- Institute of Reproductive Health/Center of Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiuzi Shen
- Institute of Reproductive Health/Center of Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Wuhan Tongji Reproductive Medicine HospitalWuhan430030China
| |
Collapse
|
12
|
Wang Y, Cao Z, Zhao H, Gu Z. Bisphenol A attenuates the therapeutic effect of the selective G protein-coupled estrogen receptor agonist G-1 on allergic rhinitis inflammation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113607. [PMID: 35533451 DOI: 10.1016/j.ecoenv.2022.113607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is found in many plastics widely used in everyday life and affects the immune system. Previous studies found that the selective G protein coupled estrogen receptor (GPER) agonist G-1 can reduce the inflammation associated with asthma and allergic rhinitis (AR). BPA also interferes with the protective effect of estradiol against myocardial ischemia-reperfusion injury. OBJECTIVE We explored whether BPA attenuates the effect of G-1 on inflammation in a mouse AR model. METHODS The AR model was established by sensitizing and stimulating female BALB/c mice with ovalbumin (OVA) and G-1/BPA. Eosinophils, neutrophils, and lymphocyte subsets (including T and B cells) in nasal mucosa and Th2 and Treg cells in the spleen were detected by flow cytometry. Cytokines and transcription factors characteristic of Th2 and Treg cells in nasal mucosa were detected using cytometric bead arrays and quantitative PCR, respectively. RESULTS G-1 reduced OVA-induced nasal mucosal inflammation in mice. The proportions of eosinophils, neutrophils, Siglec-F+ neutrophils, lymphocytes, and T cell subsets were reduced by G-1, and this effect was attenuated by BPA. G-1 significantly decreased the Th2 population and levels of IL-4, IL-5, IL-13 and GATA-3; these effects were attenuated by BPA. The enhanced Treg response (as evidenced by an increased Treg population and higher IL-10 and Foxp3 levels) mediated by G-1 tended to be reduced by BPA. DISCUSSION We found that G-1 reduced OVA-induced nasal mucosal inflammation and significantly decreased the Th2 response, while increasing the Treg response. These effects were attenuated by BPA.
Collapse
Affiliation(s)
- Yunxiu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China.
| |
Collapse
|
13
|
Singh RD, Koshta K, Tiwari R, Khan H, Sharma V, Srivastava V. Developmental Exposure to Endocrine Disrupting Chemicals and Its Impact on Cardio-Metabolic-Renal Health. FRONTIERS IN TOXICOLOGY 2022; 3:663372. [PMID: 35295127 PMCID: PMC8915840 DOI: 10.3389/ftox.2021.663372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023] Open
Abstract
Developmental origin of health and disease postulates that the footprints of early life exposure are followed as an endowment of risk for adult diseases. Epidemiological and experimental evidence suggest that an adverse fetal environment can affect the health of offspring throughout their lifetime. Exposure to endocrine disrupting chemicals (EDCs) during fetal development can affect the hormone system homeostasis, resulting in a broad spectrum of adverse health outcomes. In the present review, we have described the effect of prenatal EDCs exposure on cardio-metabolic-renal health, using the available epidemiological and experimental evidence. We also discuss the potential mechanisms of their action, which include epigenetic changes, hormonal imprinting, loss of energy homeostasis, and metabolic perturbations. The effect of prenatal EDCs exposure on cardio-metabolic-renal health, which is a complex condition of an altered biological landscape, can be further examined in the case of other environmental stressors with a similar mode of action.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ratnakar Tiwari
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University Chicago, Chicago, IL, United States
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
14
|
Edaes FS, de Souza CB. BPS and BPF are as Carcinogenic as BPA and are Not Viable Alternatives for its Replacement. Endocr Metab Immune Disord Drug Targets 2022; 22:927-934. [PMID: 35297356 DOI: 10.2174/1871530322666220316141032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plastic polymers are omnipresent, and life without them is virtually impossible. Despite the advantages provided by the material, conventional plastic also has harmful effects on the environment and human health. Plastics release microplastics and compounds, such as BPA, which is a xenoestrogen and once absorbed by the body, have an affinity for estrogen receptors α and β, acting as an agonist on human cells, being an endocrine disrupter able to cause various diseases and acting as a potential neoplastic inducer. BPS and BPF are BPA's analogs, a proposed solution to solve its harmful effects incorporated into the market. The analogs can be found in daily use products and are used in several industrial applications. OBJECTIVES In the present work, the researchers aimed to develop a revisional study of BPA's harmful effects on human health, focusing on its carcinogenic potential, discussing its mechanisms of action, as well as its analogs effects, and identifying if they are a viable alternative to BPA's substitution in plastic polymers' production. METHODS In this review, articles published in the last 15 years related to the different aspects of conventional plastics and BPA were analyzed and revised with precision. The subjects ranged from conventional plastics and the problems related to their large-scale production, BPA, its negative aspects, and the feasibility of using its analogs (BPS and BPF) to replace the compound. The articles were extensively reviewed and concisely discussed. RESULTS This study demonstrated that BPA has a high carcinogenic potential, with known mechanisms to trigger breast, ovarian, prostate, cervical, and lung cancers, thus elucidating that its analogs are also xenoestrogens, that they can exert similar effects to BPA and, therefore, cannot be considered viable alternatives for its replacement. Conclusion This study suggests that new research should be carried out to develop such alternatives, allowing the substitution of plastic materials containing BPA in their composition, such as developing economically viable and sustainable biodegradable bioplastics for socio-environmental well-being.
Collapse
Affiliation(s)
- Felipe Sanches Edaes
- Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos, Brazil
| | - Cleide Barbieri de Souza
- Academic Center for Studies and Research in Biotechnology and Molecular Biology (NAPBBM), Lusíada University Center (UNILUS), Santos
| |
Collapse
|
15
|
Sahu C, Singla S, Jena G. Studies on male gonadal toxicity of bisphenol A in diabetic rats: An example of exacerbation effect. J Biochem Mol Toxicol 2022; 36:e22996. [DOI: 10.1002/jbt.22996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
16
|
Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, Pezzi V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int J Mol Sci 2022; 23:1242. [PMID: 35163166 PMCID: PMC8835409 DOI: 10.3390/ijms23031242] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERβ complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy
| |
Collapse
|
17
|
Cao Y, Chen Z, Zhang M, Shi L, Qin S, Lv D, Li D, Ma L, Zhang Y. Maternal exposure to bisphenol A induces fetal growth restriction via upregulating the expression of estrogen receptors. CHEMOSPHERE 2022; 287:132244. [PMID: 34537452 DOI: 10.1016/j.chemosphere.2021.132244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) accumulation in the placenta leads to fetal growth restriction (FGR). Here we aimed to explore the effect and the underlying mechanism of BPA exposure on fetal development. ELISA was performed to measure estrogen levels in human placenta and BeWo cells. qRT-PCR and Western blotting were conducted to determine the expression of estrogen receptors (ERs), breast cancer resistance protein (BCRP), the key enzymes for ER synthesis, and DNA methyltransferases (DNMTs). Bisulfite-sequencing PCR analysis was performed to measure CpG methylation in ER genes. Flow cytometry was used to examine cell apoptosis. We found that human FGR placentae had significantly increased BPA and estrogen levels and decreased BCRP levels compared with healthy placentae. BPA downregulated BCRP expression via ERs, and BCRP silencing promoted ER expression in BeWo cells. Compared with vehicle treatment, BPA treatment significantly enhanced the expression of key enzymes for estrogen synthesis and ERs in BeWo cells. BPA treatment inhibited CpG methylation in ER genes, along with downregulated DNMT1 expression and upregulated DNMT3a and DNMT3b expression. BPA treatment significantly promoted BeWo cell apoptosis compared with vehicle treatment. Importantly, ER inhibitor ICI-182780 significantly reversed all the BPA-induced effects on BeWo cells. In conclusion, BPA promotes estrogen production and cell apoptosis in BeWo cells via upregulating ER expression, leading to FGR.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Zhenlie Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China
| | - Lei Shi
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Songling Qin
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Dan Lv
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Danyang Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Clinical Medicine Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei, 430071, China.
| |
Collapse
|
18
|
Teratogenicity and toxicity of the new BPA alternative TMBPF, and BPA, BPS, and BPAF in chick embryonic development. Curr Res Toxicol 2021; 2:399-410. [PMID: 34901887 PMCID: PMC8639335 DOI: 10.1016/j.crtox.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Bisphenol A (BPA) is a widely known, yet controversial reproductive toxin, capable of inducing reproductive, developmental, and somatic growth defects across species. Due to scientific findings and public concern, companies have developed BPA alternatives remarkably similar to BPA. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. The newest one, tetramethyl bisphenol F (TMBPF), is the least well-studied and has never been investigated in embryological models, however it continues to be mass produced and found in various products. Here, we used the chicken embryotoxicity screening test to compare the toxicities and potencies of several BPA analogs including TMBPF. We exposed developing chicken (Gallus gallus domesticus) embryos in ovo, from embryonic day 5 to 12 (E5-12), to increasing concentrations of BPA, bisphenol S (BPS), bisphenol AF (BPAF), and TMBPF, from 0.003 to 30 μM, and analyzed their developmental and toxic effects. The bisphenols significantly impaired development, growth, and survival in a dose-dependent manner, even at low, environmentally relevant concentrations of 3-30 nM. There was severely reduced growth and developmental delay, with exposed embryos averaging half the size and weight of control vehicle-treated embryos. The most common and severe dysmorphologies were craniofacial, eye, gastrointestinal, and body pigmentation abnormalities. The bisphenols caused dose-dependent toxicity with the lowest LC50s (lethal concentration with 50% survival) ever demonstrated in chick embryos, at 0.83-2.92 μM. Notably, TMBPF was the second-most toxic and teratogenic of all chemicals tested (rank order of BPAF > TMBPF > BPS > BPA). These results underscore the adverse effects of BPA replacements on early embryo development and may have implications for reproductive health and disease across species, including pregnancy exposures in humans.
Collapse
|
19
|
Wang K, Huang D, Zhou P, Su X, Yang R, Shao C, Wu J. BPA-induced prostatic hyperplasia in vitro is correlated with the unbalanced gene expression of AR and ER in the epithelium and stroma. Toxicol Ind Health 2021; 37:585-593. [PMID: 34486460 DOI: 10.1177/07482337211042986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a typical environmental endocrine disruptor (EED), bisphenol A (BPA) can induce pathological hyperplasia of the prostatic epithelium and stroma. This study concentrates mainly on the effect and underlying mechanisms of BPA on prostatic hyperplasia, which is based on the culture of primary human prostate epithelial cells (HPEpiC) and human prostate fibroblasts (HPrF). In an effect to screen the optimal pro-survival BPA levels, HPEpiC and HPrF were, respectively, exposed to concentration gradients of BPA (10-12 M-10-4 M) solution diluted with two corresponding medium and incubated for 72 h at 37°C. CCK-8 assay showed that 10-9 M-10-5 M BPA could facilitate the proliferation of HPEpiC, while similar proliferative effect of HPrF only needed 10-11 M-10-7 M BPA. HPrF were more sensitive to BPA than HPEpiC. The qualification of PCNA gene expression measured using quantitative real-time polymerase chain reaction (qRT-PCR) also mirrored the BPA-induced cell proliferation. Additionally, our results considered that androgen receptor (AR), estrogen receptor (ERα, ERβ), and NFKB1 gene expressions exhibited up-regulation in HPEpiC treated with 10-9 M BPA for 72 h. However, in HPrF, the identical BPA treatment could activate ERα, ERβ, and NFKB1 gene expressions and down-regulated the expression of AR levels. It is further confirmed that low-dose BPA can indeed promote the proliferation of human prostate cells in vitro, and the mechanisms of BPA for prostatic epithelial and stromal hyperplasia may not be consistent.
Collapse
Affiliation(s)
- Kaiyue Wang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Dongyan Huang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Ping Zhou
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Xin Su
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Rongfu Yang
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Congcong Shao
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jianhui Wu
- NHC Key Lab.of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), 70579Pharmacy School of Fudan University, Shanghai, China.,Department of Pharmacology & Toxicology, 117748Shanghai Institute of Planned Parenthood Research, Shanghai, China
| |
Collapse
|
20
|
Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, Li P, Sun C, Liu K. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145963. [PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
21
|
Harnett KG, Chin A, Schuh SM. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112210. [PMID: 33866271 DOI: 10.1016/j.ecoenv.2021.112210] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 μM), 17β-estradiol (E2; 10 μM), BPS (1-100 μM), BPAF (3×10-4-30 μM), TMBPF (0.01-50 μM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 μM (rASCs) and 0.009 μM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 μM (rASCs) and 0.06 μM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.
Collapse
Affiliation(s)
- Kristen G Harnett
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Ashley Chin
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Sonya M Schuh
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA.
| |
Collapse
|
22
|
Cohen IC, Cohenour ER, Harnett KG, Schuh SM. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int J Mol Sci 2021; 22:ijms22105363. [PMID: 34069744 PMCID: PMC8160667 DOI: 10.3390/ijms22105363] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical used in the production of plastics, and is linked to developmental, reproductive, and metabolic disorders including obesity. Manufacturers have begun using ‘BPA-free’ alternatives instead of BPA in many consumer products. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. Here, we used human female adipose-derived stem cells (hASCs), a type of adult mesenchymal stem cell, to compare the effects of BPA and BPA alternatives on adipogenesis or fat cell development in vitro. We focused on two commonly used BPA replacements, bisphenol AF (BPAF) and tetramethyl bisphenol F (TMBPF; monomer of the new valPure V70 food-contact coating). Human ASCs were differentiated into adipocytes using chemically defined media in the presence of control differentiation media with and without 17β-estradiol (E2; 10 μM), or with increasing doses of BPA (0, 0.1 and 1 μM), BPAF (0, 0.1, 1 and 10 nM), or TMBPF (0, 0.01 and 0.1 μM). After differentiation, the cells were stained and imaged to visualize and quantify the accumulation of lipid vacuoles and number of developing fat cells. Treated cells were also examined for cell viability and apoptosis (programmed cell death) using the respective cellular assays. Similar to E2, BPA at 0.1 μM and BPAF at 0.1 nM, significantly increased adipogenesis and lipid production by 20% compared to control differentiated cells (based on total lipid vacuole number to cell number ratios), whereas higher levels of BPA and BPAF significantly decreased adipogenesis (p < 0.005). All tested doses of TMBPF significantly reduced adipogenesis and lipid production by 30–40%, likely at least partially through toxic effects on stem cells, as viable cell numbers decreased and apoptosis levels increased throughout differentiation. These findings indicate that low, environmentally-relevant doses of BPA, BPAF, and TMBPF have significant effects on fat cell development and lipid accumulation, with TMBPF having non-estrogenic, anti-adipogenic effects. These and other recent results may provide a potential cellular mechanism between exposure to bisphenols and human obesity, and underscore the likely impact of these chemicals on fat development in vivo.
Collapse
Affiliation(s)
- Isabel C. Cohen
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
| | - Emry R. Cohenour
- Department of Cell and Molecular Biology, California State University, East Bay, Hayward, CA 94542, USA;
| | - Kristen G. Harnett
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
| | - Sonya M. Schuh
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
- Correspondence:
| |
Collapse
|
23
|
Kawa IA, Fatima Q, Mir SA, Jeelani H, Manzoor S, Rashid F. Endocrine disrupting chemical Bisphenol A and its potential effects on female health. Diabetes Metab Syndr 2021; 15:803-811. [PMID: 33839640 DOI: 10.1016/j.dsx.2021.03.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM A large number of chemical compounds with endocrine-disrupting activity have been documented. These chemicals are ubiquitous and widely used in many products of our daily lives. Bisphenol A (BPA) is among the most common Endocrine Disrupting Chemical (EDC) that has been used for many years in the manufacture of polycarbonate plastics and epoxy resins. There is growing evidence that exposure to these EDCs poses a possible health risk. This review focuses on the effect of EDCs, in particular, BPA on female reproduction and Polycystic Ovary Syndrome (PCOS), which is the most prevalent endocrine disorder of reproductively aged women. METHODS A relevant literature survey was conducted with Google scholar and Pubmed using several appropriate keywords to select the most relevant studies evaluating the role of endocrine disrupting-chemicals in female reproduction. RESULTS The female menstrual cycle and fertility are very sensitive to hormonal imbalance and alteration in endocrine function during critical times and different stages of lifecycle owing to EDC exposure results in many abnormalities like menstrual irregularities, impaired fertility, PCOS, and Endometriosis among others. BPA is the most extensively studied EDC worldwide and has been strongly associated with female reproductive health. CONCLUSION EDCs lead to deleterious effects on human health including reproductive health which are of global concern. Exposure to EDCs in early life can elicit disease in adult life and maybe even transgenerational. There is an immediate need to minimize the ill effect of EDCs which can be tackled through the collection of more data to clarify the clinical implications of EDCs.
Collapse
Affiliation(s)
- Iram Ashaq Kawa
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Qudsia Fatima
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Shahnaz Ahmad Mir
- Department of Endocrinology, Government Medical College, Shireen Bagh, Srinagar, India
| | - Humira Jeelani
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Saika Manzoor
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Fouzia Rashid
- Department of Biochemistry/Clinical Biochemistry, University of Kashmir, Srinagar, India.
| |
Collapse
|
24
|
Park HJ, Lee WY, Do JT, Park C, Song H. Evaluation of testicular toxicity upon fetal exposure to bisphenol A using an organ culture method. CHEMOSPHERE 2021; 270:129445. [PMID: 33421752 DOI: 10.1016/j.chemosphere.2020.129445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Humans are exposed to a multitude of endocrine disruptor chemicals (EDCs) that can interfere with the action of endogenous hormones and the normal development of reproductive organs. Bisphenol A (BPA) is one of the most common EDCs found in the environment. Here, we evaluated BPA toxicity on fetal testes using an in vitro organ culture system. Mouse fetal testes sampled at 15.5 days post coitus were cultured in a medium containing BPA for 5 days. The number of germ cells was reduced by BPA treatment, whereas the number of Sertoli cells was slightly increased by BPA at the highest dose (100 μM). Consistently, BPA treatment reduced the protein and gene expression levels of germ cell markers, but it increased the expression levels of Sertoli cell markers. The expression levels of fetal Leydig cell markers such as Cyp11a1, Thbs2, Cyp17a1, and Pdgf-α were significantly increased, whereas those of adult Leydig cell markers such as Hsd17b3, Ptgds, Sult1e1, Vcam1, and Hsd11b1 were decreased in the testes exposed to BPA. Generally, Notch signaling restricts Leydig cell differentiation from progenitor cells during fetal testis development. The expression levels of Notch1, Notch2, Notch3, Hes1, Ptch1, Jag1, Jag2, c-Myc, Hey1, and Hey2, which are involved in Notch signaling, were markedly higher in BPA-treated fetal testes than in the controls, indicating that BPA interrupts fetal Leydig cell development. BPA also disrupted steroidogenesis in the fetal testis organ culture system. In conclusion, our study showed that BPA inhibits fetal germ cell growth, Leydig cell development, and steroidogenesis.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk, 54874, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
25
|
Zhou Y, Xu W, Yuan Y, Luo T. What is the Impact of Bisphenol A on Sperm Function and Related Signaling Pathways: A Mini-review? Curr Pharm Des 2021; 26:4822-4828. [PMID: 32954995 DOI: 10.2174/1381612826666200821113126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) is an organic synthetic compound that is ubiquitously present in daily life. It is a typical environmental endocrine disruptor that affects the functions of endogenous hormones. There is a significant negative correlation between BPA and male reproduction. This mini-review describes current research data on the negative effects of BPA on sperm functions in humans and animal models, as well as on its supposed mechanisms of action, such as CATSPER-Ca2+ signaling, cAMP-protein kinase A signaling, and epigenetic changes. The published evidence showed an adverse impact of BPA on sperm tail morphology, counts, motility, and acrosome reaction action. Sperm function related signaling pathways, such as CATSPER-Ca2+ signaling, cAMP-protein kinase A signaling, and phosphorylation signaling, as well as epigenetic changes and sperm aging, are associated with BPA exposure in human and animal models. The clear risks of BPA exposure can provide greater awareness of the potential threat of environmental contaminants on male fertility.
Collapse
Affiliation(s)
- Yian Zhou
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China.,Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, 999 Xuefu
Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Wenqing Xu
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Yuan Yuan
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China.,Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, 999 Xuefu
Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| |
Collapse
|
26
|
Amir S, Shah STA, Mamoulakis C, Docea AO, Kalantzi OI, Zachariou A, Calina D, Carvalho F, Sofikitis N, Makrigiannakis A, Tsatsakis A. Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1464. [PMID: 33557243 PMCID: PMC7913912 DOI: 10.3390/ijerph18041464] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Increasing contamination of the environment by toxic compounds such as endocrine disrupting chemicals (EDCs) is one of the major causes of reproductive defects in both sexes. Estrogen/androgen pathways are of utmost importance in gonadal development, determination of secondary sex characteristics and gametogenesis. Most of the EDCs mediate their action through respective receptors and/or downstream signaling. The purpose of this review is to highlight the mechanism by which EDCs can trigger antagonistic or agonistic response, acting through estrogen/androgen receptors causing reproductive defects that lead to infertility. In vitro, in vivo and in silico studies focusing on the impact of EDCs on estrogen/androgen pathways and related proteins published in the last decade were considered for the review. PUBMED and PUBCHEM were used for literature search. EDCs can bind to estrogen receptors (ERα and ERβ) and androgen receptors or activate alternative receptors such as G protein-coupled receptors (GPCR), GPR30, estrogen-related receptor (ERRγ) to activate estrogen signaling via downstream kinases. Bisphenol A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, polychlorinated biphenyls and phthalates are major toxicants that interfere with the normal estrogen/androgen pathways leading to infertility in both sexes through many ways, including DNA damage in spermatozoids, altered methylation pattern, histone modifications and miRNA expression.
Collapse
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (S.A.); (S.T.A.S.)
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan; (S.A.); (S.T.A.S.)
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Olga-Ioanna Kalantzi
- Department of Environment, University of Aegean, University Hill, 81100 Mytilini, Greece;
| | - Athanasios Zachariou
- Department of Urology, Ioannina University School of Medicine, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Felix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
27
|
Huang M, Huang M, Li X, Liu S, Fu L, Jiang X, Yang M. Bisphenol A induces apoptosis through GPER-dependent activation of the ROS/Ca 2+-ASK1-JNK pathway in human granulosa cell line KGN. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111429. [PMID: 33039870 DOI: 10.1016/j.ecoenv.2020.111429] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is widely distributed in the environment and human surroundings and is closely related to the occurrence of many chronic diseases including female infertility. Although BPA-induced granulosa cell apoptosis has been widely reported, the underlying mechanisms remain unknown. In this study, we evaluated the induction effect of BPA exposure on apoptosis and mechanisms of regulation in KGN cells (a human granulosa-like tumor cell line). Our results indicated that BPA induced apoptosis of KGN cells in a dose- and time-dependent manner. BPA exposure significantly promoted the expression of pro-apoptotic proteins and decreased mitochondrial membrane potential. We also observed that high concentrations of BPA significantly promoted the generation of reactive oxygen species (ROS) and calcium ion (Ca2+) accumulation. The involvement of ROS and Ca2+ in BPA-induced KGN cell apoptosis was confirmed by pretreatment with NAC (an antioxidant) and BAPTA-AM (a calcium chelator). After inhibitors pretreatment to block the corresponding signaling pathways, it was found that BPA-induced phosphorylation of JNK and ASK1 proteins and apoptosis of KGN cells were significantly inhibited. We pretreated with G15 (a GPER inhibitor) and found that BPA-induced ROS generation and Ca2+ accumulation and apoptosis were significantly inhibited. These results suggest that BPA exposure induces KGN cell apoptosis through GPER-dependent activation of the ROS/Ca2+-ASK1-JNK signaling pathway. Our study provides mechanisms by which BPA induced apoptosis of granulosa cells and ovarian dysfunction.
Collapse
Affiliation(s)
- Mingquan Huang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Meizhou Huang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Fu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xue Jiang
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
28
|
Li X, Ni M, Yang Z, Chen X, Zhang L, Chen J. Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116469. [PMID: 33460868 DOI: 10.1016/j.envpol.2021.116469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Mengmei Ni
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Zhirui Yang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Xuxi Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Sarin H. Pressure regulated basis for gene transcription by delta-cell micro-compliance modeled in silico: Biphenyl, bisphenol and small molecule ligand models of cell contraction-expansion. PLoS One 2020; 15:e0236446. [PMID: 33021979 PMCID: PMC7537880 DOI: 10.1371/journal.pone.0236446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Molecular diameter, lipophilicity and hydrophilicity exclusion affinity limits exist for small molecule carrier-mediated diffusion or transport through channel pores or interaction with the cell surface glycocalyx. The molecular structure lipophilicity limit for non-specific carrier-mediated transmembrane diffusion through polarity-selective transport channels of the cell membrane is Lexternal structure ∙ Hpolar group-1 of ≥ 1.07. The cell membrane channel pore size is > 0.752 and < 0.758 nm based on a 3-D ellipsoid model (biphenyl), and within the molecular diameter size range 0.744 and 0.762 nm based on a 2-D elliptical model (alkanol). The adjusted van der Waals diameter (vdWD, adj; nm) for the subset of halogenated vapors is predictive of the required MAC for anesthetic potency at an initial (-) Δ Cmicro effect. The molecular structure L ∙ Hpolar group-1 for Neu5Ac is 0.080, and the L ∙ Hpolar group-1 interval range for the cell surface glycocalyx hydrophilicity barrier interaction is 0.101 (Saxitoxin, Stx; Linternal structure ∙ Hpolar group-1) - 0.092 (m-xylenediamine, Lexternal structure · Hpolar group). Differential predictive effective pressure mapping of gene activation or repression reveals that p-dioxin exposure results in activation of AhR-Erβ (Arnt)/Nrf-2, Pparδ, Errγ (LxRα), Dio3 (Dio2) and Trα limbs, and due to high affinity Dio2 and Dio3 (OH-TriCDD, Lext · H-1: 1.91–4.31) exothermy-antagonism (Δ contraction) with high affinity T4/rT3-TRα-mediated agonism (Δ expansion). co-planar PCB metabolite exposure (Lext · H-1: 1.95–3.91) results in activation of AhR (Erα/β)/Nrf2, Rev-Erbβ, Errα, Dio3 (Dio2) and Trα limbs with a Δ Cmicro contraction of 0.89 and Δ Cmicro expansion of 1.05 as compared to p-dioxin. co-, ortho-planar PCB metabolite exposure results in activation of Car/PxR, Pparα (Srebf1,—Lxrβ), Arnt (AhR-Erβ), AR, Dio1 (Dio2) and Trβ limbs with a Δ Cmicro contraction of 0.73 and Δ Cmicro expansion of 1.18 (as compared to p-dioxin). Bisphenol A exposure (Lext struct ∙ H-1: 1.08–1.12, BPA–BPE, Errγ; BPAF, Lext struct ∙ H-1: 1.23, CM Erα, β) results in increased duration at Peff for Timm8b (Peff 0.247) transcription and in indirect activation of the AhR/Nrf-2 hybrid pathway with decreased duration at Peff 0.200 (Nrf1) and increased duration at Peff 0.257 (Dffa). The Bpa/Bpaf convergent pathway Cmicro contraction-expansion response increase in the lower Peff interval is 0.040; in comparison, small molecule hormone Δ Cmicro contraction-expansion response increases in the lower Peff intervals for gene expression ≤ 0.168 (Dex· GR) ≥ 0.156 (Dht · AR), with grade of duration at Peff (min·count) of 1.33x105 (Dex/Cort) and 1.8–2.53x105 (Dht/R1881) as compared to the (-) coupled (+) Δ CmicroPeff to 0.136 (Wnt5a, Esr2) with applied DES (1.86x106). The subtype of trans-differentiated cell as a result of an applied toxin or toxicant is predictable by delta-Cmicro determined by Peff mapping. Study findings offer additional perspective on the basis for pressure regulated gene transcription by alterations in cell micro-compliance (Δ contraction-expansion, Cmicro), and are applicable for the further predictive modeling of gene to gene transcription interactions, and small molecule modulation of cell effective pressure (Peff) and its potential.
Collapse
Affiliation(s)
- Hemant Sarin
- Freelance Investigator in Translational Science and Medicine, Charleston, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mukherjee U, Samanta A, Biswas S, Das S, Ghosh S, Mandal DK, Maitra S. Bisphenol A-induced oxidative stress, hepatotoxicity and altered estrogen receptor expression in Labeo bata: impact on metabolic homeostasis and inflammatory response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110944. [PMID: 32800225 DOI: 10.1016/j.ecoenv.2020.110944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA), a weak estrogenic endocrine disruptor and a well-known plasticizer, has the potential to perturb diverse physiological functions; however, its impact on immune and metabolic function in aquatic vertebrates is relatively less understood. The present study aims to investigate the impact of BPA on hepatotoxicity, metabolic and immune parameters vis-à-vis estrogen receptor expression modulation in a freshwater teleost, Labeo bata (Cyprinidae, Cypriniformes). The 96-h median lethal concentration of BPA in L. bata has been determined as 4.79 mg/L. Our data demonstrate that congruent with induction of plasma vitellogenin (VTG), chronic exposure to sub-lethal BPA (2 and 4 μM/L) attenuates erythrocyte count, hemoglobin concentration, packed cell volume, mean corpuscular hemoglobin, but not leukocyte number. Further, a significant increase in MDA, concomitant with diminished catalase and heightened GST activity corroborates well with hepatic dystrophic changes, appearance of fatty liver (macrovesicular steatosis) and elevated serum lipids (triglyceride, cholesterol, LDL, VLDL) in BPA-treated groups. Interestingly, a differential regulation of estrogen receptor (ER) subtypes at transcript and protein level signifies negative influence of BPA on hepatic ERα/ERβ homeostasis in this species. While at a lower dose it promotes Akt phosphorylation (activation), BPA at the higher dose attenuates ERK1/2 phosphorylation (activation), suggesting potential alteration in insulin sensitivity. Importantly, dose-dependent decrease in hepatic TNF-α, IL-1β, iNOS (NOS2) expression and nitric oxide (NO) level corresponds well with progressive decline in p-NF-κB, p-p38 MAPK, albeit with differential sensitivity, in BPA-exposed groups. Collectively, BPA exposure has wide-spread negative influence on hematological, biochemical and hepatic events in this species.
Collapse
Affiliation(s)
- Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Anwesha Samanta
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sriparna Das
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Soumyajyoti Ghosh
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Dipak Kumar Mandal
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
31
|
Chimento A, De Luca A, Nocito MC, Avena P, La Padula D, Zavaglia L, Pezzi V. Role of GPER-Mediated Signaling in Testicular Functions and Tumorigenesis. Cells 2020; 9:cells9092115. [PMID: 32957524 PMCID: PMC7563107 DOI: 10.3390/cells9092115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.
Collapse
Affiliation(s)
- Adele Chimento
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| | | | | | | | | | | | - Vincenzo Pezzi
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| |
Collapse
|
32
|
Panax ginseng metabolite (GIM-1) modulates the effects of monobutyl phthalate (MBP) on the GPR30/GPER1 canonical pathway in human Sertoli cells. Reprod Toxicol 2020; 96:209-215. [DOI: 10.1016/j.reprotox.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
|
33
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
34
|
Akash MSH, Sabir S, Rehman K. Bisphenol A-induced metabolic disorders: From exposure to mechanism of action. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103373. [PMID: 32200274 DOI: 10.1016/j.etap.2020.103373] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is considered as ubiquitous xenooestrogen and an endocrine disrupting chemical which has deleterious effects on endocrine functions. Human populations are continuously exposed to BPA as it is abundant in daily life. It has been found to be associated with wide range of metabolic disorders notably type 2 diabetes mellitus (DM). Numerous epidemiological studies have been conducted to find its role in development of DM. Experimental studies have found that BPA exposure is associated with pathogenesis of DM and also considered as a risk factor for gestational diabetes. Being a lipophilic compound, BPA is preferably accumulated in adipose tissues where it alters the production of adipokines that play important roles in insulin resistance. BPA induces apoptosis by caspase activation after mitochondrial damage and it impairs insulin signaling pathways by altering associated ion channel activity especially potassium channels. Perinatal exposure of BPA makes offspring more susceptible to develop DM in early years. Epigenetic modifications are the key mechanisms for BPA-induced metabolic re-programming, where BPA alters the expression of DNA methyltransferases involved in methylation of various genes. In this way, DNA methyltransferase controls the expression of numerous genes including genes important for insulin secretion and signaling. Furthermore, BPA induces histone modifications and alters miRNA expression. In this article, we have briefly described the sources of BPA exposure to human being and summarized the evidence from epidemiological studies linking DM with BPA exposure. Additionally, we have also highlighted the potential molecular pathways for BPA-induced DM.
Collapse
Affiliation(s)
| | - Shakila Sabir
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
35
|
Wei Y, Li S, Han C, Bao Y, Shi W. Cuscuta chinensis flavonoids alleviate bisphenol A-induced apoptosis of testicular cells in male mice offspring. Andrologia 2019; 51:e13427. [PMID: 31583719 DOI: 10.1111/and.13427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is a widespread environmental endocrine disruptor that has multiple effects on reproductive organ development. To investigate the effect of Cuscuta chinensis flavonoids (CCFs) on testicular apoptosis induced by BPA in male mice offspring, pregnant mice were administered intragastrically with BPA and CCF at gestation day (GD) 0.5-17.5. The testes of male offspring (F1 males) were collected at post-natal day (PND) 21 and PND 56 for the detection of related indicators. The results showed that compared with the BPA group, the testicular index in CCF groups was significantly increased at PND 21 (p < .01). For the mice of different concentrations of CCF groups, the expression levels of bax, caspase-9 and caspase-7 proteins were significantly decreased at PND 21 and PND 56, while the expression level of bcl-2 protein was significantly increased, and testicular apoptotic cells were also decreased significantly (p < .01 or p < .05). Forty mg/kg CCF has no significant difference compared with the control group. The results indicated that CCF could protect the testis development of F1 male mice by alleviating the apoptosis of testicular cells induced by BPA.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Shuying Li
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Chao Han
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Yongzhan Bao
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China.,Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
| | - Wanyu Shi
- Institute of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China.,Hebei Provincial Engineering Center for Chinese Veterinary Herbal Medicine, Baoding, China
| |
Collapse
|
36
|
Jia Z, Wang H, Feng Z, Zhang S, Wang L, Zhang J, Liu Q, Zhao X, Feng D, Feng X. Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:168-178. [PMID: 31082581 DOI: 10.1016/j.ecoenv.2019.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Fluorene-9-bisphenol (BHPF), a substitute for bisphenol A, is a chemical component of plastics for industrial production. There is evidence that BHPF exerts an antioestrogenic effect on mice, induces endometrial atrophy and leads to adverse pregnancy outcomes. However, the effects of BHPF on oocyte maturation and ovary development as well as its possible mechanisms remain unclear. The objective of this study was to investigate the toxicity and mechanism of BHPF exposure in mouse oocytes in vitro and in vivo. Our results showed that BHPF could inhibit the maturation of oocytes in vitro by reducing the protein level of p-MAPK and destroying the meiotic spindle. We found that in vitro, BHPF-treated oocytes showed increased ROS levels, DNA damage, mitochondrial dysfunction, and expression of apoptosis- and autophagy-related genes, such as Bax, cleaved-caspase 3, LC 3 and Atg 12. In addition, in vivo experiments showed that BHPF exposure could induce the expression of oxidative stress genes (Cat, Gpx 3 and Sod 2) and apoptosis genes (Bax, Bcl-2 and Cleaved-caspase 3) and increase the number of atresia follicles in the ovaries. Our data showed that BHPF exposure affected the first polar body extrusion of oocytes, increased oxidative stress, destroyed spindle assembly, caused DNA damage, altered mitochondrial membrane potentials, induced apoptosis and autophagy, and affected ovarian development.
Collapse
Affiliation(s)
- Zhenzhen Jia
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China; College of Life Science, Shandong Normal University, Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, Jinan, 250014, China
| | - Hongyu Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Zeyang Feng
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300 071, China
| | - Shaozhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Lining Wang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Jingwen Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Qianqian Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300 071, China.
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300 071, China.
| |
Collapse
|
37
|
Dabeer S, Afjal MA, Ahmad S, Fatima M, Habib H, Parvez S, Raisuddin S. Transgenerational effect of parental obesity and chronic parental bisphenol A exposure on hormonal profile and reproductive organs of preadolescent Wistar rats of F1 generation: A one-generation study. Hum Exp Toxicol 2019; 39:59-76. [PMID: 31510804 DOI: 10.1177/0960327119873017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a global concern about adverse health effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA), an estrogenic and obesogenic compound, used in the plastic and medical industry has a dominant position among EDCs as far as human health and regulatory scenario are concerned. Due to its omnipresence across the biosphere, population of all age groups and health status is unavoidably exposed to BPA. Transgenerational exposure to BPA and its effects have also been recognized. However, there is no report on the transgenerational effect of BPA on metabolically disordered parents, such as obese ones. We studied effect of BPA exposure in F0 generation and its impact on F1 generation and factored parental obesity in transgenerational effect of concurrent exposure to low dose BPA (10 ppm × 180 days) in Wistar rats in a one-generation study protocol. The exposed F0 generation animals were crossed and F1 generation was analyzed 35 days after birth for indications of reproductive toxicity. We observed changes in hormone levels and disturbance in glucose and lipid homeostasis. Animals showed increased serum cholesterol and triglycerides along with higher birth weight and rapid weight gain. Histopathological evidence confirmed the presence of regressive and inflammatory changes in the ovary and testis. The test group showed metabolic disturbances in comparison to control group. Our study showed the additive effect of parental obesity in transgenerational reproductive toxicity of BPA. Female animals of F1 generation of BPA-treated obese parents showed more insulin resistance than males with similar exposure scenario. Our study highlights the confounding role of metabolic disorders such as obesity in the transgenerational toxicity of BPA, which otherwise itself is implicated in the aetiology of such metabolic disorders, directly or indirectly.
Collapse
Affiliation(s)
- S Dabeer
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M A Afjal
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Ahmad
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| | - M Fatima
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| | - H Habib
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Parvez
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| | - S Raisuddin
- Department of Medical Elementology and Toxicology, Molecular Toxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
38
|
Qiu W, Liu S, Yang F, Dong P, Yang M, Wong M, Zheng C. Metabolism disruption analysis of zebrafish larvae in response to BPA and BPA analogs based on RNA-Seq technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:181-188. [PMID: 30826544 DOI: 10.1016/j.ecoenv.2019.01.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/29/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is an environmentally ubiquitous chemical widely used in industry and is known to have adverse effects on organisms. Given the negative effect, BPA-free products have been developed with BPA analogs such as bisphenol F (BPF) and bisphenol S (BPS); however, these analogs are proving to exhibit toxicity similar to that of BPA. In the present study, we aimed to identify and compare the underlying mechanisms of toxicity of BPA, BPF, and BPS at the transcriptional level by conducting global transcriptome sequencing (RNA-Seq) on zebrafish embryos. RNA-seq results showed that the expression levels of 285, 191, and 246 genes were significantly changed in zebrafish larvae after embryos were treated for 120 h with 100 μg/L BPA, BPF, and BPS, respectively. Among the genes exhibiting altered expression, a substantial number were common to two or three exposure groups, suggesting consistent toxicity between the three bisphenols. We further validated the expression levels of 19 differentially expressed genes by qRT-PCR, using sequencing RNA and the RNA samples after treatment by 0.01, 1, and 100 μg/L bisphenols under identical condition, the results were similar to RNA-Seq. Moreover, functional enrichment analysis indicated that metabolism was the main pathway which disrupted in zebrafish larvae by bisphenols treatment. Protein-protein interaction network analysis indicated that six DEGs (ces, cda, dpyd, upp1, upp2, and cmpk2) interact together in the drug metabolism of zebrafish. In summary, our study revealed changes in the transcription of genes upon bisphenols treatment in zebrafish larvae for the first time, indicating that BPF and BPS may cause adverse effects similar to BPA via their involvement in various biological processes, providing a solid foundation for further research on the toxicology of BPA analogs.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Feng Yang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyao Dong
- Institute of Water Sciences, College of Engineering, Peking University, Peking 100871, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
39
|
González-Rojo S, Lombó M, Fernández-Díez C, Herráez MP. Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:368-379. [PMID: 30818116 DOI: 10.1016/j.envpol.2019.01.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
Collapse
Affiliation(s)
- S González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - C Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M P Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain.
| |
Collapse
|
40
|
Li HM, Dai YW, Yu JY, Duan P, Ma XL, Dong WW, Li N, Li HG. Comprehensive circRNA/miRNA/mRNA analysis reveals circRNAs protect against toxicity induced by BPA in GC-2 cells. Epigenomics 2019; 11:935-949. [PMID: 31020848 DOI: 10.2217/epi-2018-0217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To identify the circRNAs expression pattern and roles in bisphenol A (BPA) induced germ cell apoptosis. Materials & methods: We performed circRNA/miRNA/mRNA-Seq in 120 μM BPA treated and nontreated GC-2 cells. Bioinformatic analysis, qPCR, apoptosis assays, luciferase report were done in the function analysis. Results: A large number of apoptosis related circRNAs/miRNAs/mRNAs were differentially expressed with competing endogenous RNA network constructed. Interestingly, most investigated upregulated circRNAs, including circDcbld2, circMapk1, circMpp6 and circTbc1d20 showed protective effects in antagonizing BPA toxicity, with the effects individually and synergistically observed. CircMapk1 may take its role by sponging miR-214-3p. Conclusion: circRNAs can play protective roles via sponging miRNAs in toxicity. Some circRNAs may serve as novel targets for BPA toxicity intervention or as biomarkers.
Collapse
Affiliation(s)
- Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Yu-Wan Dai
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Jiang-Yu Yu
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Peng Duan
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Xiu-Lan Ma
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Wei-Wei Dong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Na Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, PR China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, PR China
| |
Collapse
|
41
|
Li Z, Lu Q, Ding B, Xu J, Shen Y. Bisphenol A promotes the proliferation of leiomyoma cells by GPR30‐EGFR signaling pathway. J Obstet Gynaecol Res 2019; 45:1277-1285. [DOI: 10.1111/jog.13972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Zemin Li
- School of MedicineSoutheast University Nanjing China
| | - Qing Lu
- School of MedicineSoutheast University Nanjing China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| | - Jingyun Xu
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda HospitalSchool of Medicine, Southeast University Nanjing China
| |
Collapse
|
42
|
Lei B, Huang Y, Liu Y, Xu J, Sun S, Zhang X, Xu G, Wu M, Yu Y, Feng C. Low-concentration BPF induced cell biological responses by the ERα and GPER1-mediated signaling pathways in MCF-7 breast cancer cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:144-152. [PMID: 30195206 DOI: 10.1016/j.ecoenv.2018.08.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol F (BPF), one of the alternatives to bisphenol A (BPA), can induce proliferation through the nuclear estrogen receptor ERα (estrogen receptor alpha) pathway in human breast cancer MCF-7 cells. However, the roles of membrane estrogen receptor GPER1 (G-protein-coupled receptor 1)-mediated signaling pathways in MCF-7 cell proliferation caused by BPF are unclear. The influence of BPF on MCF-7 cells was evaluated in terms of cell proliferation, intracellular calcium (Ca2+) fluctuations, and reactive oxygen species (ROS) generation. The molecular mechanisms of the cellular responses to low doses of BPF were studied through detecting the activations of ERα and GPER1-regulated PI3K/PKB or AKT (phosphatidylinotidol 3-kinase/protein kinase B) and ERK1/2 (extracellular-signa1-regulated kinase 1/2) signals. At 0.01-1 μM, BPF significantly promoted cell proliferation and elevated the levels of intracellular ROS and Ca2+. At these concentrations, BPF also significantly upregulated protein expressions of ERα, GPER1, c-myc, and cyclin D and phosphorylations of PKB and ERK1/2. Specific signal inhibitors decreased PKB and ERK1/2 phosphorylations and attenuated the effects of BPF. Silencing of GPER1 also significantly decreased BPF-induced cell proliferation. These results indicate that activating the GPER1-PI3K/PKB and ERK1/2 signals by low doses of BPF can regulate the response of MCF-7 cells and that ERα also influences the effects of exposure to BPF on the cells. The present study suggests a new mechanism by which BPF exerts relevant estrogenic action in cancer cells and also highlights the potential risks in using BPF as an alternative to BPA.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yun Liu
- South China Institute of Environmental Science, MEP, 7th, West Street, Yuancun, Tianhe District, Guangzhou 510655, PR China
| | - Jie Xu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Su Sun
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Gang Xu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Minghong Wu
- Institute of Environmental Pollution and Health, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China.
| |
Collapse
|
43
|
Sidorkiewicz I, Czerniecki J, Jarząbek K, Zbucka-Krętowska M, Wołczyński S. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol Appl Pharmacol 2018; 359:1-11. [DOI: 10.1016/j.taap.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
|
44
|
Chen L, Zhao Y, Li L, Xie L, Chen X, Liu J, Li X, Jin L, Li X, Ge RS. Bisphenol A stimulates differentiation of rat stem Leydig cells in vivo and in vitro. Mol Cell Endocrinol 2018. [PMID: 29524480 DOI: 10.1016/j.mce.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bisphenol A (BPA) is widely used in consumer products and a potential endocrine disruptor linked with sexual precocity. However, its action and underlying mechanisms on male sexual maturation is unclear. In the present study, we used a unique in vivo ethane dimethane sulfonate (EDS)-induced Leydig cell regeneration model that mimics the pubertal development of Leydig cells and an in vitro stem Leydig cell differentiation model to examine the roles of BPA in Leydig cell development in rats. Intratesticular exposure to doses (100 and 1000 pmol/testis) of BPA from post-EDS day 14-28 stimulated Leydig cell developmental regeneration process by increasing serum testosterone level and Leydig cell-specific gene (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, and Hsd11b1) and their protein expression levels. BPA did not alter serum luteinizing hormone and follicle-stimulating hormone levels as well as the proliferative capacity of Leydig cells in vivo. In vitro study demonstrated that BPA (100 nmol/L) stimulated the differentiation of stem Leydig cells by increasing medium testosterone levels and up-regulating Leydig cell-specific gene (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and their proteins but did not affect their proliferation measured by EdU incorporation. In conclusion, BPA stimulates the differentiation of stem Leydig cells in rat testes, thus possibly causing sexual precocity in the male.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linchao Li
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lubin Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianpeng Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lixu Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xingwang Li
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
45
|
Jiang X, Yin L, Zhang N, Han F, Liu WB, Zhang X, Chen HQ, Cao J, Liu JY. Bisphenol A induced male germ cell apoptosis via IFNβ-XAF1-XIAP pathway in adult mice. Toxicol Appl Pharmacol 2018; 355:247-256. [PMID: 30017639 DOI: 10.1016/j.taap.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
|
46
|
Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol 2018; 182:106-118. [PMID: 29704544 DOI: 10.1016/j.jsbmb.2018.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that benzophenone-3 (BP-3) can pass through the placental and blood-brain barriers and thus can likely affect infant neurodevelopment. Despite widespread exposure, data showing the effects of BP-3 on the developing nervous system are scarce. This study revealed for the first time that prenatal exposure to BP-3 led to apoptosis and neurotoxicity, altered the levels of estrogen receptors (ERs) and changed the epigenetic status of mouse neurons. In the present study, subcutaneous injections of pregnant mice with BP-3 at 50 mg/kg, which is an environmentally relevant dose, evoked activation of caspase-3 and lactate dehydrogenase (LDH) release as well as substantial loss of mitochondrial membrane potential in neocortical cells of their embryonic offspring. Apoptosis-focused microarray analysis of neocortical cells revealed up-regulation of 22 genes involved in apoptotic cell death. This effect was supported by increased BAX and CASP3 mRNA and protein levels, as evidenced by qPCR, ELISAs and western blots. BP-3-induced apoptosis and neurotoxicity were accompanied by decreases in the mRNA and protein expression levels of ESR1 and ESR2 (also known as ERα and ERβ), with a simultaneous increase in GPER1 (also known as GPR30) expression. In addition to the demonstration that treatment of pregnant mice with BP-3 induced apoptosis, caused neurotoxicity and altered ERs expression levels in neocortical cells of their embryonic offspring, we showed that prenatal administration of BP-3 inhibited global DNA methylation as well as reduced DNMTs activity. BP-3 also caused specific hypomethylation of the genes Gper1 and Bax, an effect that was accompanied by increased mRNA and protein expression levels. In addition, BP-3 caused hypermethylation of the genes Esr1, Esr2 and Bcl2, which could explain the reduced mRNA and protein levels of the estrogen receptors. This study demonstrated for the first time that prenatal exposure to BP-3 caused severe neuronal apoptosis that was accompanied by impaired ESR1/ESR2 expression, enhanced GPER1 expression, global DNA hypomethylation and altered methylation statuses of apoptosis-related and ERs genes. We suggest that the effects of BP-3 in embryonic neurons may be the fetal basis of the adult onset of nervous system disease.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Joanna Rzemieniec
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland.
| |
Collapse
|
47
|
Kamińska A, Pardyak L, Marek S, Górowska-Wójtowicz E, Kotula-Balak M, Bilińska B, Hejmej A. Bisphenol A and dibutyl phthalate affect the expression of juxtacrine signaling factors in rat testis. CHEMOSPHERE 2018; 199:182-190. [PMID: 29438945 DOI: 10.1016/j.chemosphere.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The study was designed to examine the effects of model plastic derived compounds, bisphenol A (BPA) and dibutyl phthalate (DBP), on juxtacrine communication in adult rat testis, by evaluating the expression of Notch pathway components. Testicular explant were exposed in vitro to BPA (5 × 10-6 M, 2.5 × 10-5 M, 5 × 10-5 M) or DBP (10-6 M, 10-5 M, 10-4 M) for 24 h. To determine the expression of Notch1, Dll4, Hey1, Hes1 and Hey5 real-time RT-PCR was used. Protein levels and localization of NOTCH1 receptor, its ligand DLL4 as well as HEY1, HES1 and HEY5 factors were detected by western blot analysis and immunohistochemistry, respectively. Upregulation of Notch1, Dll4 and Hey1 at the mRNA and protein level was demonstrated in testis explants after BPA and DBP treatment (p < 0.05; p < 0.01; p < 0.001). Hes5 expression decreased after BPA (p < 0.05; p < 0.01; p < 0.001), whereas Hes1 expression was not altered by either BPA or DBP. Tested chemicals altered immunoexpression of activated NOTCH1, DLL4, HEY1 and HES5 both in seminiferous epithelium and interstitial tissue, exerting differential effects on particular cell types. In conclusion, BPA and DBP affect Notch signaling pathway in rat testis, which indicates that juxtacrine communication is a potential target for the action of plastic derived compounds in male gonad.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Górowska-Wójtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
48
|
Stolz A, Schönfelder G, Schneider MR. Endocrine Disruptors: Adverse Health Effects Mediated by EGFR? Trends Endocrinol Metab 2018; 29:69-71. [PMID: 29292062 DOI: 10.1016/j.tem.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/09/2023]
Abstract
Although endocrine disruptors represent a serious concern to human health, the underlying molecular mechanisms leading to diseases such as cancer remain poorly understood. Recent work has uncovered the epidermal growth factor receptor (EGFR) as a possible mediator of these adverse health effects, with important implications for the role of endocrine disruptors in human diseases.
Collapse
Affiliation(s)
- Ailine Stolz
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.
| |
Collapse
|
49
|
Wang P, Xia P, Yang J, Wang Z, Peng Y, Shi W, Villeneuve DL, Yu H, Zhang X. A Reduced Transcriptome Approach to Assess Environmental Toxicants Using Zebrafish Embryo Test. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:821-830. [PMID: 29224359 PMCID: PMC5839301 DOI: 10.1021/acs.est.7b04073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Omics approaches can monitor responses and alterations of biological pathways at genome-scale, which are useful to predict potential adverse effects by environmental toxicants. However, high throughput application of transcriptomics in chemical assessment is limited due to the high cost and lack of "standardized" toxicogenomic methods. Here, a reduced zebrafish transcriptome (RZT) approach was developed to represent the whole transcriptome and to profile bioactivity of chemical and environmental mixtures in zebrafish embryo. RZT gene set of 1637 zebrafish Entrez genes was designed to cover a wide range of biological processes, and to faithfully capture gene-level and pathway-level changes by toxicants compared with the whole transcriptome. Concentration-response modeling was used to calculate the effect concentrations (ECs) of DEGs and corresponding molecular pathways. To validate the RZT approach, quantitative analysis of gene expression by RNA-ampliseq technology was used to identify differentially expressed genes (DEGs) at 32 hpf following exposure to seven serial dilutions of reference chemical BPA (10-10E-5μM) or each of four water samples ranging from wastewater to drinking water (relative enrichment factors 10-6.4 × 10-4). The RZT-ampliseq-embryo approach was both sensitive and able to identify a wide spectrum of biological activities associated with BPA exposure. Water quality was benchmarked based on the sensitivity distribution curve of biological pathways detected using RZT-ampliseq-embryo. Finally, the most sensitive biological pathways were identified, including those linked with adverse reproductive outcomes, genotoxicity and development outcomes. RZT-ampliseq-embryo approach provides an efficient and cost-effective tool to prioritize toxicants based on responsiveness of biological pathways.
Collapse
Affiliation(s)
- Pingping Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Ying Peng
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Wei Shi
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| |
Collapse
|
50
|
Ubuka T, Moriya S, Soga T, Parhar I. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain. Front Endocrinol (Lausanne) 2018; 9:139. [PMID: 29643838 PMCID: PMC5882795 DOI: 10.3389/fendo.2018.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Perinatal exposure of Bisphenol A (BPA) to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH) promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2), an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1), an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir) cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by modifying Tmprss2 and Foxa1 expressions in the brain.
Collapse
|