1
|
Ellis TJ, Ågren J. Adaptation to soil type contributes little to local adaptation in an Italian and a Swedish ecotype of Arabidopsis thaliana on contrasting soils. Biol Lett 2024; 20:20240236. [PMID: 39255844 PMCID: PMC11387056 DOI: 10.1098/rsbl.2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 09/12/2024] Open
Abstract
Natural populations are subject to selection caused by a range of biotic and abiotic factors in their native habitats. Identifying these agents of selection and quantifying their effects is key to understanding how populations adapt to local conditions. We performed a factorial reciprocal-transplant experiment using locally adapted ecotypes of Arabidopsis thaliana at their native sites to distinguish the contributions of adaptation to soil type and climate. Overall adaptive differentiation was strong at both sites. However, we found only very small differences in the strength of selection on local and non-local soil, and adaptation to soil type at most constituted only a few per cent of overall adaptive differentiation. These results indicate that local climatic conditions rather than soil type are the primary driver of adaptive differentiation between these ecotypes.
Collapse
Affiliation(s)
- Thomas James Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
- Gregor Mendel Institute of Molecular Plant Sciences, Austrian Academy of Sciences, Doktor-Bohr-Gasse 3, Vienna1010, Austria
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Jackwerth K, Biella P, Klečka J. Pollen thermotolerance of a widespread plant, Lotus corniculatus, in response to climate warming: possible local adaptation of populations from different elevations. PeerJ 2024; 12:e17148. [PMID: 38708360 PMCID: PMC11067902 DOI: 10.7717/peerj.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/01/2024] [Indexed: 05/07/2024] Open
Abstract
One of the most vulnerable phases in the plant life cycle is sexual reproduction, which depends on effective pollen transfer, but also on the thermotolerance of pollen grains. Pollen thermotolerance is temperature-dependent and may be reduced by increasing temperature associated with global warming. A growing body of research has focused on the effect of increased temperature on pollen thermotolerance in crops to understand the possible impact of temperature extremes on yield. Yet, little is known about the effects of temperature on pollen thermotolerance of wild plant species. To fill this gap, we selected Lotus corniculatus s.l. (Fabaceae), a species common to many European habitats and conducted laboratory experiments to test its pollen thermotolerance in response to artificial increase in temperature. To test for possible local adaptation of pollen thermal tolerance, we compared data from six lowland (389-451 m a.s.l.) and six highland (841-1,030 m a.s.l.) populations. We observed pollen germination in vitro at 15 °C, 25 °C, 30 °C, and 40 °C. While lowland plants maintained a stable germination percentage across a broad temperature range (15-30 °C) and exhibited reduced germination only at extremely high temperatures (40 °C), highland plants experienced reduced germination even at 30 °C-temperatures commonly exceeded in lowlands during warm summers. This suggests that lowland populations of L. corniculatus may be locally adapted to higher temperature for pollen germination. On the other hand, pollen tube length decreased with increasing temperature in a similar way in lowland and highland plants. The overall average pollen germination percentage significantly differed between lowland and highland populations, with highland populations displaying higher germination percentage. On the other hand, the average pollen tube length was slightly smaller in highland populations. In conclusion, we found that pollen thermotolerance of L. corniculatus is reduced at high temperature and that the germination of pollen from plant populations growing at higher elevations is more sensitive to increased temperature, which suggests possible local adaptation of pollen thermotolerance.
Collapse
Affiliation(s)
- Karolína Jackwerth
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Jan Klečka
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Sun PW, Chang JT, Luo MX, Liao PC. Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change. BMC PLANT BIOLOGY 2024; 24:279. [PMID: 38609850 PMCID: PMC11015620 DOI: 10.1186/s12870-024-04942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Climate change is expected to alter the factors that drive changes in adaptive variation. This is especially true for species with long life spans and limited dispersal capabilities. Rapid climate changes may disrupt the migration of beneficial genetic variations, making it challenging for them to keep up with changing environments. Understanding adaptive genetic variations in tree species is crucial for conservation and effective forest management. Our study used landscape genomic analyses and phenotypic traits from a thorough sampling across the entire range of Quercus longinux, an oak species native to Taiwan, to investigate the signals of adaptation within this species. RESULTS Using ecological data, phenotypic traits, and 1,933 single-nucleotide polymorphisms (SNPs) from 205 individuals, we classified three genetic groups, which were also phenotypically and ecologically divergent. Thirty-five genes related to drought and freeze resistance displayed signatures of natural selection. The adaptive variation was driven by diverse environmental pressures such as low spring precipitation, low annual temperature, and soil grid sizes. Using linear-regression-based methods, we identified isolation by environment (IBE) as the optimal model for adaptive SNPs. Redundancy analysis (RDA) further revealed a substantial joint influence of demography, geology, and environments, suggesting a covariation between environmental gradients and colonization history. Lastly, we utilized adaptive signals to estimate the genetic offset for each individual under diverse climate change scenarios. The required genetic changes and migration distance are larger in severe climates. Our prediction also reveals potential threats to edge populations in northern and southeastern Taiwan due to escalating temperatures and precipitation reallocation. CONCLUSIONS We demonstrate the intricate influence of ecological heterogeneity on genetic and phenotypic adaptation of an oak species. The adaptation is also driven by some rarely studied environmental factors, including wind speed and soil features. Furthermore, the genetic offset analysis predicted that the edge populations of Q. longinux in lower elevations might face higher risks of local extinctions under climate change.
Collapse
Affiliation(s)
- Pei-Wei Sun
- School of Life Science, National Taiwan Normal University, No. 88 Ting-Chow Rd., Sec. 4, Taipei, 116, Taiwan
| | - Jui-Tse Chang
- School of Life Science, National Taiwan Normal University, No. 88 Ting-Chow Rd., Sec. 4, Taipei, 116, Taiwan
| | - Min-Xin Luo
- School of Life Science, National Taiwan Normal University, No. 88 Ting-Chow Rd., Sec. 4, Taipei, 116, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, No. 88 Ting-Chow Rd., Sec. 4, Taipei, 116, Taiwan.
| |
Collapse
|
4
|
Deng Z, Zhao J, Ma P, Zhang H, Li R, Wang Z, Tang Y, Luo T. Precipitation and local adaptation drive spatiotemporal variations of aboveground biomass and species richness in Tibetan alpine grasslands. Oecologia 2023:10.1007/s00442-023-05401-1. [PMID: 37314486 DOI: 10.1007/s00442-023-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The Tibetan Plateau contains the highest and largest alpine pasture in the world, which is adapted to the cold and arid climate. It is challenging to understand how the vast alpine grasslands respond to climate change. We aim to test the hypothesis that there is local adaptation in elevational populations of major plant species in Tibetan alpine grasslands, and that the spatiotemporal variations of aboveground biomass (AGB) and species richness (S) can be mainly explained by climate change only when the effect of local adaptation is removed. A 7-year reciprocal transplant experiment was conducted among the distribution center (4950 m), upper (5200 m) and lower (4650 m) limits of alpine Kobresia meadow in central Tibetan Plateau. We observed interannual variations in S and AGB of 5 functional groups and 4 major species, and meteorological factors in each of the three elevations during 2012-2018. Relationships between interannual changes of AGB and climatic factors varied greatly with elevational populations within a species. Elevation of population origin generally had a greater or an equal contribution to interannual variation in AGB of the 4 major species, compared to temperature and precipitation effects. While the effect of local adaptation was removed by calculating differences in AGB and S between elevations of migration and origin, relative changes in AGB and S were mainly explained by precipitation change rather than by temperature change. Our data support the hypothesis, and further provide evidence that the monsoon-adapted alpine grasslands are more sensitive to precipitation change than to warming.
Collapse
Affiliation(s)
- Zhaoheng Deng
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxue Zhao
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Ma
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoze Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruicheng Li
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhong Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Tang
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianxiang Luo
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
5
|
Canales FJ, Montilla-Bascón G, Gallego-Sánchez LM, Flores F, Rispail N, Prats E. Deciphering Main Climate and Edaphic Components Driving Oat Adaptation to Mediterranean Environments. FRONTIERS IN PLANT SCIENCE 2021; 12:780562. [PMID: 34899808 PMCID: PMC8662754 DOI: 10.3389/fpls.2021.780562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Oat, Avena sativa, is an important crop traditionally grown in cool-temperate regions. However, its cultivated area in the Mediterranean rim steadily increased during the last 20 years due to its good adaptation to a wide range of soils. Nevertheless, under Mediterranean cultivation conditions, oats have to face high temperatures and drought episodes that reduce its yield as compared with northern regions. Therefore, oat crop needs to be improved for adaptation to Mediterranean environments. In this work, we investigated the influence of climatic and edaphic variables on a collection of 709 Mediterranean landraces and cultivars growing under Mediterranean conditions. We performed genotype-environment interaction analysis using heritability-adjusted genotype plus genotype-environment biplot analyses to determine the best performing accessions. Further, their local adaptation to different environmental variables and the partial contribution of climate and edaphic factors to the different agronomic traits was determined through canonical correspondence, redundancy analysis, and variation partitioning. Here, we show that northern bred elite cultivars were not among the best performing accessions in Mediterranean environments, with several landraces outyielding these. While all the best performing cultivars had early flowering, this was not the case for all the best performing landraces, which showed different patterns of adaption to Mediterranean agroclimatic conditions. Thus, higher yielding landraces showed adaptation to moderate to low levels of rain during pre- and post-flowering periods and moderate to high temperature and radiation during post-flowering period. This analysis also highlights landraces adapted to more extreme environmental conditions. The study allowed the selection of oat genotypes adapted to different climate and edaphic factors, reducing undesired effect of environmental variables on agronomic traits and highlights the usefulness of variation partitioning for selecting genotypes adapted to specific climate and edaphic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Prats
- CSIC, Institute of Sustainable Agriculture, Córdoba, Spain
| |
Collapse
|
6
|
Keep T, Rouet S, Blanco-Pastor JL, Barre P, Ruttink T, Dehmer KJ, Hegarty M, Ledauphin T, Litrico I, Muylle H, Roldán-Ruiz I, Surault F, Veron R, Willner E, Sampoux JP. Inter-annual and spatial climatic variability have led to a balance between local fluctuating selection and wide-range directional selection in a perennial grass species. ANNALS OF BOTANY 2021; 128:357-369. [PMID: 33949648 PMCID: PMC8389464 DOI: 10.1093/aob/mcab057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIMS The persistence of a plant population under a specific local climatic regime requires phenotypic adaptation with underlying particular combinations of alleles at adaptive loci. The level of allele diversity at adaptive loci within a natural plant population conditions its potential to evolve, notably towards adaptation to a change in climate. Investigating the environmental factors that contribute to the maintenance of adaptive diversity in populations is thus worthwhile. Within-population allele diversity at adaptive loci can be partly driven by the mean climate at the population site but also by its temporal variability. METHODS The effects of climate temporal mean and variability on within-population allele diversity at putatively adaptive quantitative trait loci (QTLs) were evaluated using 385 natural populations of Lolium perenne (perennial ryegrass) collected right across Europe. For seven adaptive traits related to reproductive phenology and vegetative potential growth seasonality, the average within-population allele diversity at major QTLs (HeA) was computed. KEY RESULTS Significant relationships were found between HeA of these traits and the temporal mean and variability of the local climate. These relationships were consistent with functional ecology theory. CONCLUSIONS Results indicated that temporal variability of local climate has likely led to fluctuating directional selection, which has contributed to the maintenance of allele diversity at adaptive loci and thus potential for further adaptation.
Collapse
Affiliation(s)
- T Keep
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - S Rouet
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - J L Blanco-Pastor
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - P Barre
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - T Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - K J Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Inselstr. 9, 23999 Malchow/Poel, Germany
| | - M Hegarty
- IBERS-Aberystwyth University, Plas Goggerdan, Aberystwyth, UK
| | - T Ledauphin
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - I Litrico
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - H Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - I Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - F Surault
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - R Veron
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| | - E Willner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Inselstr. 9, 23999 Malchow/Poel, Germany
| | - J P Sampoux
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (UR P3F), F-86600 Lusignan, France
| |
Collapse
|
7
|
Campos ACAL, van Dijk WFA, Ramakrishna P, Giles T, Korte P, Douglas A, Smith P, Salt DE. 1,135 ionomes reveal the global pattern of leaf and seed mineral nutrient and trace element diversity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:536-554. [PMID: 33506585 DOI: 10.1111/tpj.15177] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 05/06/2023]
Abstract
Soil is a heterogeneous reservoir of essential elements needed for plant growth and development. Plants have evolved mechanisms to balance their nutritional needs based on availability of nutrients. This has led to genetically based variation in the elemental composition, the 'ionome', of plants, both within and between species. We explore this natural variation using a panel of wild-collected, geographically widespread Arabidopsis thaliana accessions from the 1001 Genomes Project including over 1,135 accessions, and the 19 parental accessions of the Multi-parent Advanced Generation Inter-Cross (MAGIC) panel, all with full-genome sequences available. We present an experimental design pipeline for high-throughput ionomic screenings and analyses with improved normalisation procedures to account for errors and variability in conditions often encountered in large-scale, high-throughput data collection. We report quantification of the complete leaf and seed ionome of the entire collection using this pipeline and a digital tool, Ion Explorer, to interact with the dataset. We describe the pattern of natural ionomic variation across the A. thaliana species and identify several accessions with extreme ionomic profiles. It forms a valuable resource for exploratory genetic mapping studies to identify genes underlying natural variation in leaf and seed ionome and genetic adaptation of plants to soil conditions.
Collapse
Affiliation(s)
- Ana Carolina A L Campos
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - William F A van Dijk
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - Priya Ramakrishna
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Tom Giles
- Digital Research Service and Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Pamela Korte
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, United Kingdom
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
8
|
Tang X, Yuan Y, Zhang J. How Climate Change Will Alter the Distribution of Suitable Dendrobium Habitats. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.536339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
MacTavish R, Anderson JT. Resource availability alters fitness trade-offs: implications for evolution in stressful environments. AMERICAN JOURNAL OF BOTANY 2020; 107:308-318. [PMID: 31943133 DOI: 10.1002/ajb2.1417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Industrialization and human activities have elevated temperatures and caused novel precipitation patterns, altering soil moisture and nutrient availability. Predicting evolutionary responses to climate change requires information on the agents of selection that drive local adaptation and influence resource acquisition and allocation. Here, we examined the contribution of nutrient and drought stress to local adaptation, and we tested whether trade-offs across fitness components constrain or facilitate adaptation under resource stress. METHODS We exposed 35 families of Boechera stricta (Brassicaceae) to three levels of water and two levels of nutrient supply in a factorial design in the greenhouse. We sourced maternal families from a broad elevational gradient (2499-3530 m a.s.l.), representing disparate soil moisture and nutrient availability. RESULTS Concordant with local adaptation, maternal families from arid, low-elevation populations had enhanced fecundity under severe drought over those from more mesic, high-elevation sites. Furthermore, fitness trade-offs between growth and reproductive success depended on the environmental context. Under high, but not low, nutrient levels, we found a negative phenotypic relationship between the probability of reproduction and growth rate. Similarly, a negative phenotypic association only emerged between fecundity and growth under severe drought stress, not the benign water treatment levels, indicating that stressful resource environments alter the direction of trait correlations. Genetic covariances were broadly concordant with these phenotypic patterns. CONCLUSIONS Despite high heritabilities in all fitness components across treatments, trade-offs between growth and reproduction could constrain adaptation to increasing drought stress and novel nutrient levels.
Collapse
Affiliation(s)
- Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Milesi P, Berlin M, Chen J, Orsucci M, Li L, Jansson G, Karlsson B, Lascoux M. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evol Appl 2019; 12:1946-1959. [PMID: 31700537 PMCID: PMC6824079 DOI: 10.1111/eva.12855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Norway spruce (Picea abies) is a dominant conifer species of major economic importance in northern Europe. Extensive breeding programs were established to improve phenotypic traits of economic interest. In southern Sweden, seeds used to create progeny tests were collected on about 3,000 trees of outstanding phenotype ('plus' trees) across the region. In a companion paper, we showed that some were of local origin but many were recent introductions from the rest of the natural range. The mixed origin of the trees together with partial sequencing of the exome of >1,500 of these trees and phenotypic data retrieved from the Swedish breeding program offered a unique opportunity to dissect the genetic basis of local adaptation of three quantitative traits (height, diameter and bud-burst) and assess the potential of assisted gene flow. Through a combination of multivariate analyses and genome-wide association studies, we showed that there was a very strong effect of geographical origin on growth (height and diameter) and phenology (bud-burst) with trees from southern origins outperforming local provenances. Association studies revealed that growth traits were highly polygenic and bud-burst somewhat less. Hence, our results suggest that assisted gene flow and genomic selection approaches could help to alleviate the effect of climate change on P. abies breeding programs in Sweden.
Collapse
Affiliation(s)
- Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Mats Berlin
- The Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Marion Orsucci
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Lili Li
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Gunnar Jansson
- The Forestry Research Institute of Sweden (Skogforsk)UppsalaSweden
| | - Bo Karlsson
- The Forestry Research Institute of Sweden (Skogforsk)EkeboSweden
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
| |
Collapse
|
11
|
Kirchhoff L, Kirschbaum A, Joshi J, Bossdorf O, Scheepens JF, Heinze J. Plant-Soil Feedbacks of Plantago lanceolata in the Field Depend on Plant Origin and Herbivory. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Tomiolo S, Bilton MC, Tielbörger K. Plant community stability results from shifts in species assemblages following whole community transplants across climates. OIKOS 2019. [DOI: 10.1111/oik.06536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Tomiolo
- Dept of Ecology and Evolution, Univ. of Tübingen Auf der Morgenstelle 5 DE‐72076 Tübingen Germany
- Dept of Bioscience, Aarhus Univ Vejlsøvej 25 DK‐8600 Silkeborg Denmark
| | - Mark C. Bilton
- Dept of Bioscience, Aarhus Univ Vejlsøvej 25 DK‐8600 Silkeborg Denmark
| | - Katja Tielbörger
- Dept of Bioscience, Aarhus Univ Vejlsøvej 25 DK‐8600 Silkeborg Denmark
| |
Collapse
|
13
|
Svensson EI, Goedert D, Gómez-Llano MA, Spagopoulou F, Nava-Bolaños A, Booksmythe I. Sex differences in local adaptation: what can we learn from reciprocal transplant experiments? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0420. [PMID: 30150219 DOI: 10.1098/rstb.2017.0420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Local adaptation is of fundamental interest to evolutionary biologists. Traditionally, local adaptation has been studied using reciprocal transplant experiments to quantify fitness differences between residents and immigrants in pairwise transplants between study populations. Previous studies have detected local adaptation in some cases, but others have shown lack of adaptation or even maladaptation. Recently, the importance of different fitness components, such as survival and fecundity, to local adaptation have been emphasized. Here, we address another neglected aspect in studies of local adaptation: sex differences. Given the ubiquity of sexual dimorphism in life histories and phenotypic traits, this neglect is surprising, but may be partly explained by differences in research traditions and terminology in the fields of local adaptation and sexual selection. Studies that investigate differences in mating success between resident and immigrants across populations tend to be framed in terms of reproductive and behavioural isolation, rather than local adaptation. We briefly review the published literature that bridges these areas and suggest that reciprocal transplant experiments could benefit from quantifying both male and female fitness components. Such a more integrative research approach could clarify the role of sex differences in the evolution of local adaptations.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
| | - Debora Goedert
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Foteini Spagopoulou
- Animal Ecology, Department of Ecology and Evolution, Uppsala University, 752 36 Uppsala, Sweden
| | - Angela Nava-Bolaños
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Ciudad Universitaria, 04510 Ciudad de México, México.,Secretaría de Educación Abierta y Continua, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.U., 04510 Ciudad de México, México
| | - Isobel Booksmythe
- School of Biological Sciences, Monash University, 3800 Victoria, Australia
| |
Collapse
|
14
|
Terés J, Busoms S, Martín LP, Luís-Villarroya A, Flis P, Álvarez-Fernández A, Tolrà R, Salt DE, Poschenrieder C. Soil carbonate drives local adaptation in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2019; 42:2384-2398. [PMID: 31018012 PMCID: PMC6663613 DOI: 10.1111/pce.13567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 05/22/2023]
Abstract
High soil carbonate limits crop performance especially in semiarid or arid climates. To understand how plants adapt to such soils, we explored natural variation in tolerance to soil carbonate in small local populations (demes) of Arabidopsis thaliana growing on soils differing in carbonate content. Reciprocal field-based transplants on soils with elevated carbonate (+C) and without carbonate (-C) over several years revealed that demes native to (+C) soils showed higher fitness than those native to (-C) soils when both were grown together on carbonate-rich soil. This supports the role of soil carbonate as a driving factor for local adaptation. Analyses of contrasting demes revealed key mechanisms associated with these fitness differences. Under controlled conditions, plants from the tolerant deme A1(+C) native to (+C) soil were more resistant to both elevated carbonate and iron deficiency than plants from the sensitive T6(-C) deme native to (-C) soil. Resistance of A1(+C) to elevated carbonate was associated with higher root extrusion of both protons and coumarin-type phenolics. Tolerant A1(+C) also had better Ca-exclusion than sensitive T6(-C) . We conclude that Arabidopsis demes are locally adapted in their native habitat to soils with moderately elevated carbonate. This adaptation is associated with both enhanced iron acquisition and calcium exclusion.
Collapse
Affiliation(s)
- Joana Terés
- Plant Physiology Lab, Bioscience Faculty, Universidad Autónoma de Barcelona
| | | | - Laura Perez Martín
- Plant Physiology Lab, Bioscience Faculty, Universidad Autónoma de Barcelona
| | | | - Paulina Flis
- Future Food Beacon of Excellence & the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Roser Tolrà
- Plant Physiology Lab, Bioscience Faculty, Universidad Autónoma de Barcelona
| | - David E Salt
- Future Food Beacon of Excellence & the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | |
Collapse
|
15
|
Kesselring H, Hamann E, Armbruster GFJ, Stöcklin J, Scheepens JF. Local adaptation is stronger between than within regions in alpine populations of Anthyllis vulneraria. Evol Ecol 2019. [DOI: 10.1007/s10682-019-09999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Born J, Michalski SG. Trait expression and signatures of adaptation in response to nitrogen addition in the common wetland plant Juncus effusus. PLoS One 2019; 14:e0209886. [PMID: 30608976 PMCID: PMC6319709 DOI: 10.1371/journal.pone.0209886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2018] [Indexed: 01/16/2023] Open
Abstract
Wetland ecosystems are known to mitigate high nutrient loadings and thus can improve water quality and prevent potential biodiversity loss caused by eutrophication. Plant traits affect wetland processes directly through effects on accumulation or metabolization of substances, and indirectly by affecting microbial transformation processes in the soil. Understanding the causes and consequences of intraspecific variation in plant functional traits and associated ecosystem processes can aid applied ecological approaches such as wetland restoration and construction. Here we investigated molecular variation and phenotypic variation in response to three levels of nitrogen availability for a regional set of populations of the common wetland plant Juncus effusus. We asked whether trait expression reveals signatures of adaptive differentiation by comparing genetic differentiation in quantitative traits and neutral molecular markers (QST—FST comparisons) and relating trait variation to soil conditions of the plant’s origin. Molecular analyses showed that samples clustered into three very distinct genetic lineages with strong population differentiation within and among lineages. Differentiation for quantitative traits was substantial but did not exceed neutral expectations when compared across treatments or for each treatment and lineage separately. However, variation in trait expression could be explained by local soil environmental conditions of sample origin, e.g. for aboveground carbon-to-nitrogen (C:N) ratios, suggesting adaptive differentiation to contribute to trait expression even at regional level.
Collapse
Affiliation(s)
- Jennifer Born
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- * E-mail:
| | - Stefan G. Michalski
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| |
Collapse
|
17
|
Manzanedo RD, Schanz FR, Fischer M, Allan E. Fagus sylvatica seedlings show provenance differentiation rather than adaptation to soil in a transplant experiment. BMC Ecol 2018; 18:42. [PMID: 30285730 PMCID: PMC6171197 DOI: 10.1186/s12898-018-0197-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 09/26/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding and predicting the response of tree populations to climate change requires understanding the pattern and scale of their adaptation. Climate is often considered the major driver of local adaptation but, although biotic factors such as soil pathogens or mutualists could be as important, their role has typically been neglected. Biotic drivers might also interact with climate to affect performance and mycorrhizae, in particular, are likely to play a key role in determining drought resistance, which is important in the context of adaptation to future environmental change. To address these questions, we performed a fully reciprocal soil-plant transplant experiment using Fagus sylvatica seedlings and soils from three regions in Germany. To separate the biotic and abiotic effects of inoculation, half of the plants were inoculated with natural soil from the different origins, while the rest were grown on sterilized substrate. We also imposed a drought stress treatment to test for interactions between soil biota and climate. After 1 year of growth, we measured aboveground biomass of all seedlings, and quantified mycorrhizal colonization for a subset of the seedlings, which included all soil-plant combinations, to disentangle the effect of mycorrhiza from other agents. RESULTS We found that plant origin had the strongest effect on plant performance, but this interacted with soil origin. In general, trees showed a slight tendency to produce less aboveground biomass on local soils, suggesting soil antagonists could be causing trees to be maladapted to their local soils. Consistently, we found lower mycorrhizal colonization rate under local soil conditions. Across all soils, seedlings from low elevations produced more annual biomass than middle (+ 290%) and high (+ 97%) elevations. Interestingly, mycorrhizal colonization increased with drought in the two provenances that showed higher drought tolerance, which supports previous results showing that mycorrhizae can increase drought resistance. CONCLUSIONS Our findings suggest that soil communities play a role in affecting early performance of temperate trees, although this role may be smaller than that of seed origin. Also, other effects, such as the positive response to generalists or negative interactions with soil biota may be as important as the highly specialized mycorrhizal associations.
Collapse
Affiliation(s)
- R. D. Manzanedo
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - F. R. Schanz
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - M. Fischer
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - E. Allan
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
18
|
Importance of AM fungi and local adaptation in plant response to environmental change: Field evidence at contrasting elevations. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Vidaller C, Dutoit T, Ibrahim Y, Hanslin HM, Bischoff A. Adaptive differentiation among populations of the Mediterranean dry grassland species Brachypodium retusum: The role of soil conditions, grazing, and humidity. AMERICAN JOURNAL OF BOTANY 2018; 105:1123-1132. [PMID: 29985539 DOI: 10.1002/ajb2.1116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Genetic differentiation in plant species may result from adaptation to environmental conditions, but also from stochastic processes. The drivers selecting for local adaptation and the contribution of adaptation to genetic differentiation are often unknown. Restoration and succession studies have revealed different colonization patterns for Brachypodium retusum, a common Mediterranean grass. In order to understand these patterns, we tested population differentiation and adaptation to different environmental factors. METHODS Structured sampling of 12 populations from six sites and two soil types within site was used to analyze the spatial and environmental structure of population differentiation. Sampling sites differ in grazing intensity and climate. We tested germination and growth in a common garden. In subsets, we analyzed the differential response to stone cover, grazing and soil moisture. KEY RESULTS We found significant differences among populations. The site explained population differentiation better than soil, suggesting a dominant influence of climate and/or genetic drift. Stone cover had a positive influence on seedling establishment, and populations showed a differential response. However, this response was not related to environmental differences between collection sites. Regrowth after clipping was higher in populations from the more intensively grazed Red Mediterranean soils suggesting an adaptation to grazing. Final germination was generally high even under drought, but germination response to differences in soil moisture was similar across populations. CONCLUSIONS Adaptive population differentiation in germination and early growth may have contributed to different colonization patterns. Thus, the provenance of B. retusum needs to be carefully considered in ecological restoration.
Collapse
Affiliation(s)
- Christel Vidaller
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Univ Avignon, Aix Marseille Univ, CNRS, IRD, IUT site Agroparc, 337 Chemin des Meinajaries BP 61207, F-84911, Avignon cedex 09, France
| | - Thierry Dutoit
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Univ Avignon, Aix Marseille Univ, CNRS, IRD, IUT site Agroparc, 337 Chemin des Meinajaries BP 61207, F-84911, Avignon cedex 09, France
| | - Yosra Ibrahim
- Faculté des Sciences de Tunis, Centre de Biotechnologie de Borj Cedria, BP 901 Hammam-Lif 2050, Tunisia
| | - Hans Martin Hanslin
- Norwegian Institute of Bioeconomy Research, Nibio, Urban greening and environmental engineering department, PO box 115, 1431, Ås, Norway
| | - Armin Bischoff
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Univ Avignon, Aix Marseille Univ, CNRS, IRD, IUT site Agroparc, 337 Chemin des Meinajaries BP 61207, F-84911, Avignon cedex 09, France
| |
Collapse
|
20
|
Guerrero J, Andrello M, Burgarella C, Manel S. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics. THE NEW PHYTOLOGIST 2018; 219:378-390. [PMID: 29696659 DOI: 10.1111/nph.15171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 05/22/2023]
Abstract
Spatial differences in environmental selective pressures interact with the genomes of organisms, ultimately leading to local adaptation. Landscape genomics is an emergent research area that uncovers genome-environment associations, thus allowing researchers to identify candidate loci for adaptation to specific environmental variables. In the present study, we used latent factor mixed models (LFMMs) and Moran spectral outlier detection/randomization (MSOD-MSR) to identify candidate loci for adaptation to 10 environmental variables (climatic, soil and atmospheric) among 43 515 single nucleotide polymorphisms (SNPs) from 202 accessions of the model legume Medicago truncatula. Soil variables were associated with a large number of candidate loci identified through both LFMMs and MSOD-MSR. Genes tagged by candidate loci associated with drought and salinity are involved in the response to biotic and abiotic stresses, while those tagged by candidates associated with soil nitrogen and atmospheric nitrogen, participate in the legume-rhizobia symbiosis. Candidate SNPs identified through both LFMMs and MSOD-MSR explained up to 56% of variance in flowering traits. Our findings highlight the importance of soil in driving adaptation in the system and elucidate the basis of evolutionary potential of M. truncatula to respond to global climate change and anthropogenic disruption of the nitrogen cycle.
Collapse
Affiliation(s)
- Jimena Guerrero
- CEFE-CNRS, Centre D'Ecologie Fonctionelle et Evolutive, Route de Mende, 34090, Montpellier, France
| | - Marco Andrello
- CEFE-CNRS, Centre D'Ecologie Fonctionelle et Evolutive, Route de Mende, 34090, Montpellier, France
| | - Concetta Burgarella
- UMR DIADE Institut de Recherche pour le Developpement (IRD), Centre de Montpellier, BP 64501, Montpellier Cedex 5, France
- UMR AGAP Centre de Coopération International en Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, 34398, Montpellier, France
| | - Stephanie Manel
- CEFE-CNRS, Centre D'Ecologie Fonctionelle et Evolutive, Route de Mende, 34090, Montpellier, France
| |
Collapse
|
21
|
Arfin-Khan MAS, Vetter VMS, Reshi ZA, Dar PA, Jentsch A. Factors influencing seedling emergence of three global invaders in greenhouses representing major eco-regions of the world. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:610-618. [PMID: 29450953 DOI: 10.1111/plb.12710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Successful germination and seedling emergence in new environments are crucial first steps in the life history of global plant invaders and thus play a key role in processes of range expansion. We examined the germination and seedling emergence success of three global plant invaders - Lupinus polyphyllus, Senecio inaequidens and Verbascum thapsus - in greenhouses and climate chambers under climate regimes corresponding to seven eco-regions. Seed materials were collected from one non-native population for L. polyphyllus and S. inaequidens, and from 12 populations for V. thapsus (six natives and six non-natives). Experimental climates had significant effects on species responses. No species germinated in the dry (humidity ≤ 50%) and cool (≤ 5 °C) experimental climates. But all species germinated and emerged in two moderately cool (12-19 °C) and in three warm (24-27 °C) experimental climates. In general, V. thapsus showed higher fitness than S. inaequidens and L. polyphyllus. The climate of the seed source region influenced responses of native and non-native populations of V. thapsus. Non-native populations of V. thapsus, originating from the warmer seed source, showed higher performance in warm experimental climates and lower performance in moderately cool experimental climates compared to native populations. Responses of V. thapsus populations were also related to precipitation of the seed source region in moderately dry experimental climates. The warm, semi-arid and humid experimental climates are suitable for the crucial first steps of invasion success for L. polyphyllus, S. inaequidens and V. thapsus. The species adaptation to its source region modified the responses of our studied plants under different experimental climates representing major eco-regions of the world.
Collapse
Affiliation(s)
- M A S Arfin-Khan
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - V M S Vetter
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
- Geoecology/Physical Geography, Institute for Environmental Science, University of Landau, Mainz, Germany
| | - Z A Reshi
- Department of Botany, University of Kashmir, Srinagar, India
| | - P A Dar
- Department of Botany, Amar Singh College, Srinagar, India
| | - A Jentsch
- Disturbance Ecology, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
22
|
Scheepens J, Lachmuth S, Michalski S. Plant population biology in a changing world. Basic Appl Ecol 2018. [DOI: 10.1016/j.baae.2018.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Shi J, Joshi J, Tielbörger K, Verhoeven KJF, Macel M. Costs and benefits of admixture between foreign genotypes and local populations in the field. Ecol Evol 2018; 8:3675-3684. [PMID: 29686848 PMCID: PMC5901173 DOI: 10.1002/ece3.3946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Admixture is the hybridization between populations within one species. It can increase plant fitness and population viability by alleviating inbreeding depression and increasing genetic diversity. However, populations are often adapted to their local environments and admixture with distant populations could break down local adaptation by diluting the locally adapted genomes. Thus, admixed genotypes might be selected against and be outcompeted by locally adapted genotypes in the local environments. To investigate the costs and benefits of admixture, we compared the performance of admixed and within-population F1 and F2 generations of the European plant Lythrum salicaria in a reciprocal transplant experiment at three European field sites over a 2-year period. Despite strong differences between site and plant populations for most of the measured traits, including herbivory, we found limited evidence for local adaptation. The effects of admixture depended on experimental site and plant population, and were positive for some traits. Plant growth and fruit production of some populations increased in admixed offspring and this was strongest with larger parental distances. These effects were only detected in two of our three sites. Our results show that, in the absence of local adaptation, admixture may boost plant performance, and that this is particularly apparent in stressful environments. We suggest that admixture between foreign and local genotypes can potentially be considered in nature conservation to restore populations and/or increase population viability, especially in small inbred or maladapted populations.
Collapse
Affiliation(s)
- Jun Shi
- Institute of Evolution and Ecology Plant Ecology Group University of Tübingen Tübingen Germany.,Ningbo Academy of Agricultural Sciences Ningbo China
| | - Jasmin Joshi
- Biodiversity Research/Systematic Botany Institute of Biochemistry and Biology University of Potsdam Potsdam Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB) Institute of Biology Freie Universität Berlin Berlin Germany
| | - Katja Tielbörger
- Institute of Evolution and Ecology Plant Ecology Group University of Tübingen Tübingen Germany
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO-KNAW) Wageningen the Netherlands
| | - Mirka Macel
- Institute of Evolution and Ecology Plant Ecology Group University of Tübingen Tübingen Germany.,Molecular Interaction Ecology Department of Plant Science Radboud University Nijmegen Nijmegen the Netherlands.,Plant Ecology and Phytochemistry Leiden Institute of Biology Leiden the Netherlands
| |
Collapse
|
24
|
Lankau RA, Keymer DP. Simultaneous adaptation and maladaptation of tree populations to local rhizosphere microbial communities at different taxonomic scales. THE NEW PHYTOLOGIST 2018; 217:1267-1278. [PMID: 29206295 DOI: 10.1111/nph.14911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Plant populations are often adapted to their local conditions, but the specific selective forces creating this adaptation are often unclear. All plants interact with diverse microbial communities, but we know little about how these microbial communities as a whole shape the evolutionary trajectory of plant populations. We tested whether tree populations were adapted or maladapted to their local rhizosphere microbial communities by growing seedlings sourced from multiple locations with soil microbial communities from all locations in a fully reciprocal design, using seedling growth as a proxy for fitness. In addition, we compared the microbial composition of the experimental inocula with that of the communities we detected associating with naturally occurring trees at the seedling source populations. We found that seedlings grew similarly when inoculated with local vs foreign microbial communities, but this neutral response derived from conflicting patterns - plant populations appeared to be adapted to the presence or absence of whole taxonomic groups in their local microbial community, but were simultaneously maladapted to the particular microbial populations present in their local site. As rapid climate change and other factors push tree populations into new areas, the successful establishment of seedlings may depend critically on the balance between the novelty and familiarity of the microbial communities they encounter.
Collapse
Affiliation(s)
- Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel P Keymer
- Department of Plant Biology, University of Georgia, Athens, GA, 30606, USA
- College of Natural Resources, University of Wisconsin - Stevens Point, Stevens Point, WI, 54481, USA
| |
Collapse
|
25
|
Wright SJ, Cui Zhou D, Kuhle A, Olsen KM. Continent-Wide Climatic Variation Drives Local Adaptation in North American White Clover. J Hered 2017; 109:78-89. [PMID: 28992131 DOI: 10.1093/jhered/esx060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
Climate-associated clines in adaptive polymorphisms are commonly cited as evidence of local adaptation within species. However, the contribution of the clinally varying trait to overall fitness is often unknown. To address this question, we examined survival, vegetative growth, and reproductive output in a central US common garden experiment using 161 genotypes of white clover (Trifolium repens L.) originating from 15 locations across North America. White clover is polymorphic for cyanogenesis (hydrogen cyanide release upon tissue damage), a chemical defense against generalist herbivores, and climate-associated cyanogenesis clines have repeatedly evolved across the species range. Over a 12-month experiment, we observed striking correlations between the population of origin and plant performance in the common garden, with climatic distance from the common garden site predicting fitness more accurately than geographic distance. Assessments of herbivore leaf damage over the 2015 growing season indicated marginally lower herbivory on cyanogenic plants; however, this effect did not result in increased fitness in the common garden location. Linear mixed modeling suggested that while cyanogenesis variation had little predictive value for vegetative growth, it is as important as climatic variation for predicting reproductive output in the central United States. Together, our findings suggest that knowledge of climate similarity, as well as knowledge of locally favored adaptive traits, will help to inform transplantation strategies for restoration ecology and other conservation efforts in the face of climate change.
Collapse
Affiliation(s)
- Sara J Wright
- Department of Biology, Washington University, St. Louis, MO 63130-4899
| | - Daniel Cui Zhou
- Department of Biology, Washington University, St. Louis, MO 63130-4899
| | | | - Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, MO 63130-4899
| |
Collapse
|
26
|
Low temperature and low salinity drive putatively adaptive growth differences in populations of threespine stickleback. Sci Rep 2017; 7:16766. [PMID: 29196675 PMCID: PMC5711929 DOI: 10.1038/s41598-017-16919-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022] Open
Abstract
Colonisation can expose organisms to novel combinations of abiotic and biotic factors and drive adaptive divergence. Yet, studies investigating the interactive effects of multiple abiotic factors on the evolution of physiological traits remain rare. Here we examine the effects of low salinity, low temperature, and their interaction on the growth of three North American populations of threespine stickleback (Gasterosteus aculeatus). In north-temperate freshwater habitats, stickleback populations experience a combination of low salinity and low winter temperatures that are not experienced by the ancestral marine and anadromous populations. Here we show that both salinity and temperature, and their interaction, have stronger negative effects on marine and anadromous populations than a freshwater population. Freshwater stickleback showed only a ~20% reduction in specific growth rate when exposed to 4 °C, while marine and anadromous stickleback showed sharp declines (82% and 74% respectively) under these conditions. The modest decreases in growth in freshwater stickleback in fresh water in the cold strongly suggest that this population has the capacity for physiological compensation to offset the negative thermodynamic effects of low temperature on growth. These results are suggestive of adaptive evolution in response to the interactive effects of low salinity and low temperature during freshwater colonisation.
Collapse
|
27
|
Climate variability affects the germination strategies exhibited by arid land plants. Oecologia 2017; 185:437-452. [DOI: 10.1007/s00442-017-3958-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
|
28
|
Wadgymar SM, Lowry DB, Gould BA, Byron CN, Mactavish RM, Anderson JT. Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12777] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Susana M. Wadgymar
- Department of Genetics and Odum School of Ecology University of Georgia Athens GA 30602 USA
| | - David B. Lowry
- Department of Plant Biology Michigan State University East Lansing MI 48824 USA
- Program in Ecology, Evolutionary Biology, and Behavior Michigan State University East Lansing MI 48824 USA
- Plant Resilience Institute Michigan State University East Lansing MI 48824 USA
| | - Billie A. Gould
- Department of Plant Biology Michigan State University East Lansing MI 48824 USA
| | - Caitlyn N. Byron
- Department of Plant Biology Michigan State University East Lansing MI 48824 USA
- Program in Ecology, Evolutionary Biology, and Behavior Michigan State University East Lansing MI 48824 USA
| | - Rachel M. Mactavish
- Department of Genetics and Odum School of Ecology University of Georgia Athens GA 30602 USA
| | - Jill T. Anderson
- Department of Genetics and Odum School of Ecology University of Georgia Athens GA 30602 USA
| |
Collapse
|
29
|
Evolutionary responses to climate change in a range expanding plant. Oecologia 2017; 184:543-554. [PMID: 28409227 PMCID: PMC5487849 DOI: 10.1007/s00442-017-3864-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Abstract
To understand the biological effects of climate change, it is essential to take into account species’ evolutionary responses to their changing environments. Ongoing climate change is resulting in species shifting their geographical distribution ranges poleward. We tested whether a successful range expanding plant has rapidly adapted to the regional conditions in its novel range, and whether adaptation could be driven by herbivores. Furthermore, we investigated if enemy release occurred in the newly colonized areas and whether plant origins differed in herbivore resistance. Plants were cloned and reciprocally transplanted between three experimental sites across the range. Effects of herbivores on plant performance were tested by individually caging plants with either open or closed cages. There was no indication of (regional) adaptation to abiotic conditions. Plants originating from the novel range were always larger than plants from the core distribution at all experimental sites, with or without herbivory. Herbivore damage was highest and not lowest at the experimental sites in the novel range, suggesting no release from enemy impact. Genotypes from the core were more damaged compared to genotypes from newly colonized areas at the most northern site in the novel range, which was dominated by generalist slug herbivory. We also detected subtle shifts in chemical defenses between the plant origins. Genotypes from the novel range had more inducible defenses. Our results suggest that plants that are expanding their range with climate change may evolve increased vigor and altered herbivore resistance in their new range, analogous to invasive plants.
Collapse
|
30
|
Mursinoff S, Tack AJM. Spatial variation in soil biota mediates plant adaptation to a foliar pathogen. THE NEW PHYTOLOGIST 2017; 214:644-654. [PMID: 28042886 DOI: 10.1111/nph.14402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Theory suggests that below-ground spatial heterogeneity may mediate host-parasite evolutionary dynamics and patterns of local adaptation, but this has rarely been tested in natural systems. Here, we test experimentally for the impact of spatial variation in the abiotic and biotic soil environment on the evolutionary outcome of the interaction between the host plant Plantago lanceolata and its specialist foliar pathogen Podosphaera plantaginis. Plants showed no adaptation to the local soil environment in the absence of natural enemies. However, quantitative, but not qualitative, plant resistance against local pathogens was higher when plants were grown in their local field soil than when they were grown in nonlocal field soil. This pattern was robust when extending the spatial scale beyond a single region, but disappeared with soil sterilization, indicating that soil biota mediated plant adaptation. We conclude that below-ground biotic heterogeneity mediates above-ground patterns of plant adaptation, resulting in increased plant resistance when plants are grown in their local soil environment. From an applied perspective, our findings emphasize the importance of using locally selected seeds in restoration ecology and low-input agriculture.
Collapse
Affiliation(s)
- Sini Mursinoff
- Department of Biosciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
31
|
Doherty KD, Butterfield BJ, Wood TE. Matching seed to site by climate similarity: Techniques to prioritize plant materials development and use in restoration. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:1010-1023. [PMID: 28112847 DOI: 10.1002/eap.1505] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 11/11/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Land management agencies are increasing the use of native plant materials for vegetation treatments to restore ecosystem function and maintain natural ecological integrity. This shift toward the use of natives has highlighted a need to increase the diversity of materials available. A key problem is agreeing on how many, and which, new accessions should be developed. Here we describe new methods that address this problem. Our methods use climate data to calculate a climate similarity index between two points in a defined extent. This index can be used to predict relative performance of available accessions at a target site. In addition, the index can be used in combination with standard cluster analysis algorithms to quantify and maximize climate coverage (mean climate similarity), given a modeled range extent and a specified number of accessions. We demonstrate the utility of this latter feature by applying it to the extents of 11 western North American species with proven or potential use in restoration. First, a species-specific seed transfer map can be readily generated for a species by predicting performance for accessions currently available; this map can be readily updated to accommodate new accessions. Next, the increase in climate coverage achieved by adding successive accessions can be explored, yielding information that managers can use to balance ecological and economic considerations in determining how many accessions to develop. This approach identifies sampling sites, referred to as climate centers, which contribute unique, complementary, climate coverage to accessions on hand, thus providing explicit sampling guidance for both germplasm preservation and research. We examine how these and other features of our approach add to existing methods used to guide plant materials development and use. Finally, we discuss how these new methods provide a framework that could be used to coordinate native plant materials development, evaluation, and use across agencies, regions, and research groups.
Collapse
Affiliation(s)
- Kyle D Doherty
- U.S. Geological Survey, Southwest Biological Science Center, 2255 North Gemini Drive, Flagstaff, Arizona, 86001, USA
| | - Bradley J Butterfield
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Troy E Wood
- Department of Biological Sciences and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
32
|
Gibson AL, Espeland EK, Wagner V, Nelson CR. Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies. Evol Appl 2016; 9:1219-1228. [PMID: 27877201 PMCID: PMC5108214 DOI: 10.1111/eva.12379] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/27/2016] [Indexed: 12/03/2022] Open
Abstract
Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inform management decisions has not been formally evaluated. We assessed local adaptation literature for six key experimental methodologies that have the greatest effect on the application of research to selecting plant materials for natural resource management: experimental environment, response variables, maternal effects, intraspecific variation, selective agents, and spatial and temporal variability. We found that less than half of experiments used reciprocal transplants or natural field conditions, which are both informative for revegetation and restoration. Population growth rate was rarely (5%) assessed, and most studies measured only single generations (96%) and ran for less than a year. Emergence and establishment are limiting factors in successful revegetation and restoration, but the majority of studies measured later life‐history stages (66%). Additionally, most studies included limited replication at the population and habitat levels and tested response to single abiotic selective factors (66%). Local adaptation research should be cautiously applied to management; future research could use alternative methodologies to allow managers to directly apply findings.
Collapse
Affiliation(s)
- Alexis L Gibson
- College of Forestry and Conservation University of Montana Missoula MT USA
| | | | - Viktoria Wagner
- College of Forestry and Conservation University of Montana Missoula MT USA; Present address: Department of Botany and Zoology Masaryk University Kotlářská 2CZ-611 37 Brno Czech Republic
| | - Cara R Nelson
- College of Forestry and Conservation University of Montana Missoula MT USA
| |
Collapse
|
33
|
Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz‐Barrientos D. Diversification across a heterogeneous landscape. Evolution 2016; 70:1979-92. [DOI: 10.1111/evo.13009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Greg M. Walter
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Melanie J. Wilkinson
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Maddie E. James
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - Thomas J. Richards
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
| | - J. David Aguirre
- School of Biological Sciences University of Queensland St. Lucia QLD 4072 Australia
- Institute of Natural and Mathematical Sciences Massey University Auckland 0745 New Zealand
| | | |
Collapse
|
34
|
Jeong TS, Kim JG. Parnassia palustris population differences in three Korean habitat types. LANDSCAPE AND ECOLOGICAL ENGINEERING 2016. [DOI: 10.1007/s11355-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Koskella B, Vos M. Adaptation in Natural Microbial Populations. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054458] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720;
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall TR10 9FE, United Kingdom;
| |
Collapse
|
36
|
Pickles BJ, Twieg BD, O'Neill GA, Mohn WW, Simard SW. Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. THE NEW PHYTOLOGIST 2015; 207:858-71. [PMID: 25757098 DOI: 10.1111/nph.13360] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/10/2015] [Indexed: 05/05/2023]
Abstract
Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate.
Collapse
Affiliation(s)
- Brian J Pickles
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brendan D Twieg
- UC Cooperative Extension, Humboldt and Del Norte Counties, Eureka, CA, 95503, USA
| | - Gregory A O'Neill
- Kalamalka Research Station, BC Ministry of Forests, Lands and Natural Resource Operations, 3401 Reservoir Road, Vernon, BC, V1B 2C7, Canada
| | - William W Mohn
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Suzanne W Simard
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
37
|
Tomiolo S, van der Putten WH, Tielbörger K. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change. Ecology 2015; 96:1298-308. [DOI: 10.1890/14-1445.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Ortego J, Bonal R, Muñoz A, Espelta JM. Living on the edge: the role of geography and environment in structuring genetic variation in the southernmost populations of a tropical oak. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:676-683. [PMID: 25284378 DOI: 10.1111/plb.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/26/2014] [Indexed: 06/03/2023]
Abstract
Understanding the factors determining genetic diversity and structure in peripheral populations is a long-standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter-population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.
Collapse
Affiliation(s)
- J Ortego
- Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana, Seville, Spain; Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain
| | | | | | | |
Collapse
|
39
|
Volis S, Ormanbekova D, Yermekbayev K, Song M, Shulgina I. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale. PLoS One 2015; 10:e0121153. [PMID: 25793512 PMCID: PMC4368821 DOI: 10.1371/journal.pone.0121153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/07/2015] [Indexed: 11/21/2022] Open
Abstract
Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.
Collapse
Affiliation(s)
- Sergei Volis
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- * E-mail:
| | - Danara Ormanbekova
- Institute of Plant Biology and Biotechnology, 45 Timiryazev St., Almaty 050040, Kazakhstan
| | - Kanat Yermekbayev
- Institute of Plant Biology and Biotechnology, 45 Timiryazev St., Almaty 050040, Kazakhstan
| | - Minshu Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Irina Shulgina
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| |
Collapse
|
40
|
Černá L, Münzbergová Z. Conditions in home and transplant soils have differential effects on the performance of diploid and allotetraploid anthericum species. PLoS One 2015; 10:e0116992. [PMID: 25607545 PMCID: PMC4301807 DOI: 10.1371/journal.pone.0116992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/17/2014] [Indexed: 01/30/2023] Open
Abstract
Due to increased levels of heterozygosity, polyploids are expected to have a greater ability to adapt to different environments than their diploid ancestors. While this theoretical pattern has been suggested repeatedly, studies comparing adaptability to changing conditions in diploids and polyploids are rare. The aim of the study was to determine the importance of environmental conditions of origin as well as target conditions on performance of two Anthericum species, allotetraploid A. liliago and diploid A. ramosum and to explore whether the two species differ in the ability to adapt to these environmental conditions. Specifically, we performed a common garden experiment using soil from 6 localities within the species' natural range, and we simulated the forest and open environments in which they might occur. We compared the performance of diploid A. ramosum and allotetraploid A. liliago originating from different locations in the different soils. The performance of the two species was not affected by simulated shading but differed strongly between the different target soils. Growth of the tetraploids was not affected by the origin of the plants. In contrast, diploids from the most nutrient poor soil performed best in the richest soil, indicating that diploids from deprived environments have an increased ability to acquire nutrients when available. They are thus able to profit from transfer to novel nutrient rich environments. Therefore, the results of the study did not support the general expectation that the polyploids should have a greater ability than the diploids to adapt to a wide range of conditions. In contrast, the results are in line with the observation that diploids occupy a wider range of environments than the allotetraploids in our system.
Collapse
Affiliation(s)
- Lucie Černá
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Zuzana Münzbergová
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Botany, Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
41
|
Kardol P, De Long JR, Wardle DA. Local plant adaptation across a subarctic elevational gradient. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140141. [PMID: 26064553 DOI: 10.5061/dryad.v2k50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 05/28/2023]
Abstract
Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3(°)C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature.
Collapse
Affiliation(s)
- Paul Kardol
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences , 90183 Umeå, Sweden
| | - Jonathan R De Long
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences , 90183 Umeå, Sweden
| | - David A Wardle
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences , 90183 Umeå, Sweden
| |
Collapse
|
42
|
Kardol P, De Long JR, Wardle DA. Local plant adaptation across a subarctic elevational gradient. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140141. [PMID: 26064553 PMCID: PMC4448849 DOI: 10.1098/rsos.140141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/14/2014] [Indexed: 05/15/2023]
Abstract
Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3(°)C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature.
Collapse
Affiliation(s)
- Paul Kardol
- Author for correspondence: Paul Kardol e-mail:
| | | | | |
Collapse
|
43
|
Frei ER, Ghazoul J, Pluess AR. Plastic responses to elevated temperature in low and high elevation populations of three grassland species. PLoS One 2014; 9:e98677. [PMID: 24901500 PMCID: PMC4046993 DOI: 10.1371/journal.pone.0098677] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 05/07/2014] [Indexed: 11/23/2022] Open
Abstract
Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.
Collapse
Affiliation(s)
- Esther R. Frei
- Department of Environmental Systems Science, Ecosystem Management, ETH Zurich, Zurich, Switzerland
| | - Jaboury Ghazoul
- Department of Environmental Systems Science, Ecosystem Management, ETH Zurich, Zurich, Switzerland
| | - Andrea R. Pluess
- Department of Environmental Systems Science, Ecosystem Management, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Sedlacek JF, Bossdorf O, Cortés AJ, Wheeler JA, van Kleunen M. What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea? Basic Appl Ecol 2014. [DOI: 10.1016/j.baae.2014.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Pánková H, Raabová J, Münzbergová Z. Mycorrhizal symbiosis and local adaptation in Aster amellus: a field transplant experiment. PLoS One 2014; 9:e93967. [PMID: 24709748 PMCID: PMC3977983 DOI: 10.1371/journal.pone.0093967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/12/2014] [Indexed: 11/19/2022] Open
Abstract
Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies may increase our understanding of the mechanisms by which plants adapt to their environment.
Collapse
Affiliation(s)
- Hana Pánková
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
| | - Jana Raabová
- Department of Botany, National Museum, Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
46
|
De Frenne P, Coomes DA, De Schrijver A, Staelens J, Alexander JM, Bernhardt-Römermann M, Brunet J, Chabrerie O, Chiarucci A, den Ouden J, Eckstein RL, Graae BJ, Gruwez R, Hédl R, Hermy M, Kolb A, Mårell A, Mullender SM, Olsen SL, Orczewska A, Peterken G, Petřík P, Plue J, Simonson WD, Tomescu CV, Vangansbeke P, Verstraeten G, Vesterdal L, Wulf M, Verheyen K. Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. THE NEW PHYTOLOGIST 2014; 202:431-441. [PMID: 24387238 DOI: 10.1111/nph.12672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/30/2013] [Indexed: 05/23/2023]
Abstract
Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts.
Collapse
Affiliation(s)
- Pieter De Frenne
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - David A Coomes
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - An De Schrijver
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
| | - Jeroen Staelens
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
| | - Jake M Alexander
- Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | | | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, SE-230 53, Alnarp, Sweden
| | - Olivier Chabrerie
- EDYSAN (FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, 1 rue des Louvels, FR-80037, Amiens Cedex, France
| | - Alessandro Chiarucci
- BIOCONNET, Biodiversity and Conservation Network, Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, IT-53100, Siena, Italy
| | - Jan den Ouden
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, NL-6700AA, Wageningen, the Netherlands
| | - R Lutz Eckstein
- Institute of Landscape Ecology and Resource Management, Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig-University Gießen, Heinrich-Buff-Ring 26-32, DE-35392, Gießen, Germany
| | - Bente J Graae
- Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Robert Gruwez
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
| | - Radim Hédl
- Department of Vegetation Ecology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, CZ-65720, Brno, Czech Republic
| | - Martin Hermy
- Department of Earth & Environmental Sciences, Division of Forest, Nature and Landscape, K.U. Leuven, Celestijnenlaan 200E, BE-3001, Leuven, Belgium
| | - Annette Kolb
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2, University of Bremen, Leobener Str., DE-28359, Bremen, Germany
| | - Anders Mårell
- UR EFNO, Irstea, Domaine des Barres, FR-45290, Nogent-sur-Vernisson, France
| | - Samantha M Mullender
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Siri L Olsen
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, PO Box 5003, NO-1432, Ås, Norway
| | - Anna Orczewska
- Department of Ecology, Faculty of Biology and Environmental Protection, University of Silesia, ul. Bankowa 9, PL-40-007, Katowice, Poland
| | | | - Petr Petřík
- Department of Geographic Information Systems and Remote Sensing, Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-25243, Průhonice, Czech Republic
| | - Jan Plue
- Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91, Stockholm, Sweden
| | - William D Simonson
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Cezar V Tomescu
- Forestry Faculty, Stefan cel Mare University, Str. Universităţii 19, RO-720229, Suceava, Romania
| | - Pieter Vangansbeke
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
- Unit Transition Energy and Environment, Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400, Mol, Belgium
| | - Gorik Verstraeten
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark
| | - Monika Wulf
- Institute of Land Use Systems, Leibniz-ZALF, Eberswalder Strasse 84, DE-15374, Müncheberg, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode-Melle, Belgium
| |
Collapse
|
47
|
Kreyling J, Buhk C, Backhaus S, Hallinger M, Huber G, Huber L, Jentsch A, Konnert M, Thiel D, Wilmking M, Beierkuhnlein C. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments. Ecol Evol 2014; 4:594-605. [PMID: 25035801 PMCID: PMC4098140 DOI: 10.1002/ece3.971] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 12/27/2013] [Accepted: 01/10/2014] [Indexed: 11/12/2022] Open
Abstract
Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.
Collapse
Affiliation(s)
| | - Constanze Buhk
- Geoecology/Physical Geography, University of Landau Landau, Germany
| | - Sabrina Backhaus
- Disturbance Ecology, BayCEER, University of Bayreuth Bayreuth, Germany
| | | | - Gerhard Huber
- Bavarian Institute for Forest Seeding and Planting (ASP) Teisendorf, Germany
| | - Lukas Huber
- Geoecology/Physical Geography, University of Landau Landau, Germany
| | - Anke Jentsch
- Disturbance Ecology, BayCEER, University of Bayreuth Bayreuth, Germany
| | - Monika Konnert
- Bavarian Institute for Forest Seeding and Planting (ASP) Teisendorf, Germany
| | - Daniel Thiel
- Bavarian Institute for Forest Seeding and Planting (ASP) Teisendorf, Germany
| | - Martin Wilmking
- Landscape Ecology, University of Greifswald Greifswald, Germany
| | | |
Collapse
|
48
|
Frei ER, Ghazoul J, Matter P, Heggli M, Pluess AR. Plant population differentiation and climate change: responses of grassland species along an elevational gradient. GLOBAL CHANGE BIOLOGY 2014; 20:441-455. [PMID: 24115364 DOI: 10.1111/gcb.12403] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 08/14/2013] [Indexed: 06/02/2023]
Abstract
Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species.
Collapse
Affiliation(s)
- Esther R Frei
- Ecosystem Management - Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Pahl AT, Kollmann J, Mayer A, Haider S. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. ANNALS OF BOTANY 2013; 112:1921-30. [PMID: 24214934 PMCID: PMC3838567 DOI: 10.1093/aob/mct246] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Local adaptation enables plant species to persist under different environmental conditions. Evolutionary change can occur rapidly in invasive annual species and has been shown to lead to local adaptation. However, the patterns and mechanisms of local adaptation in invasive species along colonization sequences are not yet understood. Thus, in this study the alien annual Impatiens glandulifera was used to investigate local adaptation to distinct habitats that have been consecutively invaded in central Europe. METHODS A reciprocal transplant experiment was performed using 15 populations from alluvial deciduous forests, fallow meadows and coniferous upland forests, and a greenhouse experiment was performed in which plants from these habitats were grown under treatments reflecting the main habitat differentiators (shade, soil acidity, competition). KEY RESULTS Biomass production, specific leaf area, plant height and relative growth rate differed between habitats in the field experiment and between treatments in the greenhouse, but not between seed origins. Overall, there was no indication of local adaptation in either experiment. CONCLUSIONS Since I. glandulifera is a successful invader in many habitats without showing local adaptation, it is suggested that the species is coping with environmental variation by means of high phenotypic plasticity. The species seems to follow a 'jack-and-master' strategy, i.e. it is able to maintain high fitness under a wide range of environmental conditions, but performs particularly well in favourable habitats. Therefore, the proposed colonization sequence is likely to be based primarily on changes in propagule pressure. It is concluded that invasive alien plants can become dominant in distinct habitats without local adaptation.
Collapse
Affiliation(s)
- Anna T. Pahl
- Restoration Ecology, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
- For correspondence. E-mail
| | - Johannes Kollmann
- Restoration Ecology, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Andreas Mayer
- Restoration Ecology, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Sylvia Haider
- Restoration Ecology, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, D-06108 Halle (Saale), Germany
| |
Collapse
|
50
|
Bocedi G, Atkins KE, Liao J, Henry RC, Travis JMJ, Hellmann JJ. Effects of local adaptation and interspecific competition on species' responses to climate change. Ann N Y Acad Sci 2013; 1297:83-97. [PMID: 23905876 DOI: 10.1111/nyas.12211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research.
Collapse
Affiliation(s)
- Greta Bocedi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | |
Collapse
|